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Abstract—Accelerating matrix multiplication is crucial to
achieve high performance in many application domains, includ-
ing neural networks, graph analytics, and scientific computing.
These applications process matrices with a wide range of spar-
sities, from completely dense to highly sparse. Ideally, a single
accelerator should handle matrices of all sparsity levels well. How-
ever, prior matrix multiplication accelerators each target a limited
range of sparsity levels.

We present Trapezoid, a versatile accelerator that performs
matrix multiplication across all sparsity levels effectively. Trape-
zoid builds on a 2D spatial array design, which excels at dense
matrix multiplication, and extends it with new hardware mecha-
nisms that let it handle sparse inputs. We present a novel inner-
product-based dataflow with a multi-fiber intersection unit that
handles mildly sparse matrices. Furthermore, novel Gustavson-
based dataflows and a multi-level memory hierarchy enable high
performance on highly sparse matrices. Trapezoid’s hardware ex-
tensions are reused across dataflows to minimize area overheads.

We evaluate Trapezoid on a broad range of dense and sparse
matrix multiplication workloads. Trapezoid has gmean 19.7x,
4.3x, and 2.9 better performance/area than TPU, SIGMA, and
Flexagon, prior state-of-the-art accelerators that target dense,
mildly sparse, and highly sparse matrices, respectively.

Index Terms—Sparsity, Matrix Multiplication, Accelerator,
Dataflow

I. INTRODUCTION

Matrix multiplication is a dominant kernel in many domains,
including neural networks [9, 15, 28, 44], tensor algebra [37],
graph analytics [21, 36], and scientific computing [24, 53, 57].
As a result, GPUs [55] and many specialized processors spend
considerable area to accelerate matrix multiplication.

While most deployed accelerators target multiplication of
dense matrices, many applications compute on sparse data, i.e.,
those with a large fraction of zeros. Sparse algorithms avoid
storing and processing zeros, achieving high efficiency. This has
sparked many research efforts to accelerate the multiplication
of sparse matrices [32, 43, 50, 58, 60, 64, 70, 79, 81].

A key challenge is that sparsity varies widely across appli-
cations. Fig. 1 shows the range of sparsities typical in several
application domains. For example, neural networks often use
mildly sparse matrices where 90-1% of values are nonzero,
whereas scientific and graph algorithms often process highly
sparse matrices where nonzeros are extremely infrequent (e.g., 1
per million values). But sparsity is a continuum, with substantial
diversity within each domain and overlap across domains. For
example, some neural networks process highly sparse data [9].
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Fig. 1: Matrix sparsity varies widely across application domains.

To complicate matters further, a single application often mul-
tiplies matrices with different sparsities, e.g., sparse weights
and dense activations in deep learning [28], and a highly sparse
matrix times a dense vector or matrix in solvers [24, 57].
Ideally, a single matrix multiplication accelerator should
gracefully handle operands across the full range of sparsities,
from dense to highly sparse. But this is challenging, because
sparsity dramatically changes the performance characteristics
of matrix multiplication. Thus, prior accelerators are effective
on limited ranges of sparsity, and perform poorly on other cases.
We can broadly distinguish three types of accelerators, based
on the sparsity of the operands they target:
1. Dense (D) matrices make matrix multiplication regular and
with high arithmetic intensity, as each value is reused many
times. Dense matrix multiplication accelerators, like TPUs [34]
and Tensor Cores [55] in GPUs, are 2D spatial arrays, grids of
multiply-add units connected with local links. These arrays are
pipelined and are often systolic, which reduces handshaking
costs [39]. These units spend nearly all their area on compute,
and achieve extremely high throughput when matrices are dense.
But they are inflexible, and their efficiency quickly plummets
with sparse operands, as zeros waste time and energy.
2. Mildly sparse (MS) matrices have modest sparsity, typ-
ically above 1% nonzeros. With MS inputs, matrix multipli-
cation enjoys medium arithmetic intensity. Thus, accelerators
like SIGMA [60], DSTC [70], and HighLight [71] follow a
similar organization to 2D spatial arrays, which they extend
with mechanisms to handle some degree of sparsity, like distri-
bution networks that gather sparse inputs (either unstructured
or structured), or more flexible accumulation buffers for sparse
outputs. Accelerators targeting MS inputs are relatively effi-
cient on dense operands, but are still wildly inefficient when
matrices are highly sparse.
3. Highly sparse (HS) matrices have below 1% nonzeros, and
often far less. They are common in scientific computing and
graph analytics. Matrix multiplication with HS inputs has little
reuse, very low arithmetic intensity, and high memory traffic, so
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Fig. 2: Performance/area of prior accelerators and Trapezoid on matrix
multiplication with different sparsity levels.

data movement is the main bottleneck. Thus, accelerators like
OuterSPACE [58], SpArch [81], MatRaptor [64], Gamma [79],
Flexagon [50], and Spada [43] focus on implementing dataflows
(i.e., schedules) that minimize data movement. They spend most
area on on-chip storage structures and on hardware to traverse
sparse fibers (rows or columns) [66]. Multipliers and adders
take less than 5-10% of area, resulting in low peak through-
put, so they are inefficient on D/MS matrices. Moreover, HS
accelerators are hard to scale up, so they cannot reach the peak
throughput of accelerators targeting denser inputs.

Fig. 2a shows the problems of these disjoint designs: it com-
pares three representative accelerators, one of each type: TPU,
SIGMA, and Flexagon. Each row reports results for a given
combination of input sparsities; the table covers all sparsity
combinations (e.g., MSxD is mildly sparse times dense; see
Sec. IV for methodology details). All designs are normalized
to have the same area, and performance is reported relative to
the best design. Fig. 2a shows that each of these accelerators is
inefficient on matrices outside its range of targeted sparsities.
Trapezoid handles the full range of sparsities: To address
the limitations of prior accelerators, we introduce Trapezoid,
a versatile matrix multiplication accelerator that, for the first
time, handles from dense to highly sparse inputs. Fig. 2a shows
Trapezoid’s performance across the range: while its flexibility
sacrifices some performance at the extremes, it performs con-
sistently well across the full range of sparsities. When averaged
across all input densities, Fig. 2b shows that Trapezoid’s overall
performance is substantially better than prior designs.

To achieve this, we design Trapezoid around two key princi-
ples and novel contributions. First, to achieve high performance
on D and MS inputs, Trapezoid builds on a 2D spatial array,
like prior accelerators targeting D and MS inputs. However,
we contribute new techniques that extend their usefulness to a
much wider range of MS inputs at modest area cost. Second,
to work well on HS inputs, Trapezoid supports sophisticated
dataflows that minimize data movement, but does so in a way
that reuses existing hardware or requires small modifications.

Concretely, Trapezoid integrates the following contributions:
« We introduce a novel inner-product-based dataflow (called

TrIP) that intersects several rows and columns at once to re-

duce the chance of ineffectual intersections, and exploits reuse

in both inputs and outputs. We present a high-throughput or-
ganization for this dataflow that extends a spatial array with
the novel high-throughput multi-fiber intersection unit, dis-

tribution networks for sparse inputs, and a reduction tree for

sparse outputs. This design avoids the limitations of prior

MS accelerators like SIGMA by achieving high utilization

when both inputs are mildly sparse.

e We codesign two memory-efficient Gustavson-based
dataflows (called TrGT and TrGS) with hardware extensions
to handle HS inputs and combinations of one HS and
one MS or D input, respectively. These dataflows enable
reusing existing hardware when possible, and require cheap
modifications otherwise. Furthermore, we design a multi-
level memory hierarchy that achieves high on-chip gather
bandwidth needed by these Gustavson-based dataflows with
low area consumption. These novel dataflows and hardware
support achieve good performance on HSxD and HS xMS
that no prior accelerators can obtain, and provide almost
the same performance on HS xHS as prior accelerators that
focus only on highly sparse inputs.

We evaluate Trapezoid on a range of matrix multiplication
workloads with varying levels of sparsity. Trapezoid has gmean
19.7x, 4.3 %, and 2.9x better performance/area than TPU [33,
34], SIGMA [60], and Flexagon [50], the prior state-of-the-
art accelerators for matrix multiplication with dense, mildly
sparse, and highly sparse matrices, respectively. Trapezoid is
also gmean 2.1x faster than the optimal mix of these prior
accelerators for this set of workloads, when both Trapezoid and
this optimal mix use the same area.

II. BACKGROUND AND MOTIVATION

Matrix multiplication computes C' = A x B, where A is a
[M x K| matrix, B is a [K x N| matrix, and C'is a [M x N]
matrix. Matrix multiplication can be implemented with three
nested loops, two that traverse the independent uncontracted
dimensions M and N, and one that coiterates the contracted
dimension K, which is shared by A and B (we will refer to K
as the coiteration dimension). The order of these loops induces
a dataflow, i.e., a schedule of computation [8, 66].

Fig. 3 shows the three basic matrix multiplication dataflows,
which differ by the level of the coiteration loop. Inner-product
(IP) coiterates in the innermost loop, producing an output at a
time by reducing a row and column of the input matrices. Outer-
product (OP) coiterates in the outermost loop, producing an
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Outer-product (OP) Dataflow

for kin [0, K)
for min [0, M)
for nin [0, N)
C[m,n] += A[m k] * B[k,n]

Gustavson (Gust) Dataflow
for min [0, M)
for kin [0, K) = X =
for nin [0, N) N
C[m,n] += A[m k] * B[k,n] -

Fig. 3: Basic matrix multiplication dataflows.
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entire partial result matrix at a time; K such matrices are then
reduced to produce the output. Gustavson coiterates in the
middle loop, producing a row of the output at a time.

These basic dataflows have key differences, including the
traversal order and level of reuse of each input and output
operand, and with sparsity, the frequency and effectiveness of
sparsity-handling operations, like intersections and reductions.

Accelerators implement enhanced versions of these dataflows:
they often tile the computation, creating additional loop levels
to improve reuse of operands; parallelize it, mapping loop it-
erations spatially to different processing units; and include a
wide range of sparsity-handling mechanisms to skip ineffec-
tual work and capture irregular reuse. Nonetheless, the basic
dataflow accelerators build on determines key characteristics,
so we refer to them as *-based dataflows (e.g., IP-based).

We now discuss how matrix multiplication changes with spar-
sity, and review prior accelerators targeting each sparsity level.

A. Spatial arrays for dense matrix multiplication

Dense matrix multiplication is regular and has plentiful data
reuse. Dense accelerators, like the TPU [33, 34], adopt a 2D
spatial array designed to exploit these features. Fig. 4a shows
a P x P TPU array, with a grid of multiply-and-accumulate
(MAC) units, each connected only to its neighbors.

Fig. 4b shows mapping the dense IP matrix multiplication
dataflow to the TPU. The M and K loops are mapped spatially
to the vertical (Y) and horizontal (X) dimensions. (assume M
and K match the PE array dimensions; if they exceed them,
they can be tiled). In this way, each element of A is stationary
in a MAC unit. Each cycle, a column of B is fed to the first row
of the array, and successive B columns move through the array
using the vertical links. Each row of the 2D array performs a
dot product between a row of A and a column of B; each PE
computes a different partial product, and partial products are
accumulated horizontally (along the K dimension), producing
a column of C at a time.

This 2D spatial array achieves high data reuse and com-
pute intensity, delivering quadratic compute throughput (P2
MACs/cycle) with linear communication from the outside (P
input and output values/cycle). Communication within the array
is local, between adjacent MAC units, and thus cheap. There-
fore, most area is spent on compute units.

B. Leveraging mildly sparse (MS) inputs

Mildly sparse (MS) matrices, with 1-90% nonzeros, are com-
mon in domains like deep neural networks (DNN) [28]. Both

weight and activation matrices can be sparse due to weight prun-
ing and activation functions like ReLU [51], but a substantial
fraction of nonzeros remains. Exploiting this mild sparsity can
bring significant speedups, e.g., if both inputs are 90% sparse,
the number of MACs can potentially be reduced by 100x.

The level of sparsity greatly affects the effectiveness of differ-
ent dataflows: with sparse matrices, the coiteration loop implies
an intersection, and values produced below the coiteration loop
must be reduced. IP performs element-level intersections and
reductions: it intersects the coordinates of each row and column
to find the k coordinates where both are nonzero. Those nonze-
ros are multiplied, then reduced to produce one output element.
Element-level reductions are simple (needing just an accumula-
tor), but intersections are frequent (M x NN of them) and they
become very inefficient as sparsity grows, because matches on
k coordinates will be very rare. For example, in Fig. 3, only one
element from A’s row and B’s column results in an effectual
intersection; the others are at non-matching coordinates.

OP, by contrast, performs matrix-level intersections and re-
ductions: each of the K outer products is a successful inter-
section if the input A column and B row have any nonzero,
so unlike IP, there are very few intersections (only K) that are
trivial to perform. The tradeoff is that OP reduces K matrices,
so reductions are complicated and may cause excessive data
movement, e.g., to store and align these partial products.

Finally, Gustavson performs row-level intersections and re-
ductions, balancing their cost: each element of A is intersected
with a row of B, so there are as many intersections as nonzeros
in A, and each intersection succeeds if B’s row is not empty;
and reductions happen on partial output rows.

In general, for MS inputs, IP’s intersections can still be made
reasonably efficient. For example, if nonzero coordinates are
represented using bitvectors (a space-efficient choice with mild
sparsity), intersections can be computed cheaply at high through-
put, by ANDing bitvectors. If matrices have p = 20% den-
sity and coordinates are uniformly distributed, only one out of
1/p®=25 intersections yields a match on average, but ANDing
25 bits/cycle is cheap compared to the multiply-accumulate
induced by the match. But highly sparse inputs make IP very
inefficient, and using another dataflow becomes necessary.

SIGMA [60] is an IP-based accelerator that builds on a 2D
spatial array. SIGMA achieves quadratic compute with linear
inputs and outputs, like dense accelerators, with modest addi-
tions. SIGMA packs A’s nonzeros, placing them sequentially
into each row of PEs. It then streams B columns like in the
dense array (Sec. II-A). Each row of PE computes a few ele-
ments of C, as many as rows of A are mapped. The challenge
is that B elements need to be routed to matching A nonzeros.
This requires all-to-all communication within each row of PEs;
SIGMA presents an efficient Benes distribution network that
achieves this with modest overheads, adding about 30% area
to a dense array. In addition, partial results of multiple output
elements need to be reduced separately; since each A row is
placed sequentially, a cheap reduction tree accomplishes this.

SIGMA maintains the high arithmetic intensity and reuse of
a 2D spatial array (quadratic operations for a linear amount of



inputs and outputs). However, SIGMA works well only with
modest sparsity: it exploits one-sided sparsity of A, but not of B
in MSxMS, which is fed uncompressed (i.e., including zeros).

Alternatively, DSTC [70] extends a 2D array to accelerate
MSXMS using an OP-based dataflow. OP lets DSTC exploit
dual-sided sparsity, unlike SIGMA. OP makes it trivial to pro-
duce partial products: nonzeros of each column of A and row
of B are streamed into the array packed, resulting in full uti-
lization of MAC units. The problem is that each partial product
must be streamed out of the 2D array, buffered, and reduced.
This sacrifices a key advantage of 2D spatial arrays: quadratic
compute now requires quadratic output, instead of linear, so
it is not possible to scale to large 2D arrays. Moreover, the
merging step requires complex hardware, as nonzeros must be
scattered to their correct locations for reduction.

These tradeoffs make IP a more efficient choice for MS in-
puts; Trapezoid builds on SIGMA with a new [P-based dataflow,
TrIP, and hardware that enables dual-sided MS sparsity.

C. Leveraging highly sparse (HS) inputs

Domains like graph analytics and scientific computing use
highly sparse (HS) matrices, with < 1% and often many fewer
nonzeros (e.g., 0.0001%).

Multiplying HS matrices causes low arithmetic intensity and
reuse, as each input of A and B contributes to one or a few
outputs of C. Thus, data movement becomes the key concern.

As we discussed, IP is inefficient for HS inputs because
it’s dominated by ineffectual intersections, leaving OP and
Gustavson. Early HSxHS accelerators OuterSPACE [58] and
SpArch [81] are OP-based, but OP’s large partial result matri-
ces add data movement. Thus, all recent HS xHS accelerators,
including MatRaptor [64], Gamma [79], Flexagon [50], and
Spada [43], leverage a Gustavson-based dataflow.

Gustavson has two advantages over OP. First, it greatly re-
duces the complexity of reductions; in practice, this means
worse reuse of B for much better reuse of partial outputs, trading
more reads for fewer writes+reads. Second, Gustavson leverages
structure in A: in many applications, nearby rows of A have
matching nonzeros. This causes repeated accesses to the same
rows of B. Gamma [79] uses a special cache, the fibercache,
to exploit this reuse, achieving close to compulsory traffic.

Recent accelerators can support multiple dataflows: Flexa-
gon [50] presents a Merge-Reduction Network (MRN) that can
be used as a reduction tree when running IP or as a merger (to
facilitate reduction) when running Gustavson or OP. Spada [43]
proposes a configurable window-based dataflow that acts as IP,
Gustavson, or OP depending on window size.

Unfortunately, HSxHS accelerators lack the compute
throughput and scalability of DxD and MSXxMS accelerators.
First, they dedicate most area to caches, buffers, and structures
to support HS, like mergers. Second, they use crossbar-based
networks between PEs and on-chip storage, which are flexible
but sacrifice the scalability of a 2D spatial array.

Trapezoid addresses these limitations by cheaply support-
ing two Gustavson-based dataflows (TrGT and TrGS) in its
2D spatial array, which retains high throughput. We observe
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that flexible interconnects in prior accelerators stem from Gus-
tavson’s need to perform gather loads; we introduce a multi-
level memory hierarchy that increases gather bandwidth with
a small amount of shared storage.

III. TRAPEZOID ARCHITECTURE

Overview and supported dataflows: Fig. 5 shows an overview
of Trapezoid’s hardware. We build Trapezoid by extending a
2D spatial array (128 x128 PEs in our implementation), which
excels at dense matrix multiplication and supports the standard
IP dense dataflow from Sec. II-A.

To efficiently support MS inputs, Trapezoid implements a
new IP-based dataflow, TrIP, by extending the spatial array:
each row of the array, called the PE row and shown in Fig. 6,
has a local buffer, a multi-fiber intersection unit (MFIU), two
distribution networks, and a merge-reduction tree to support
TrIP.

To efficiently support HS inputs, Trapezoid implements two
new memory-efficient Gustavson-based dataflows, 7rGT and
TrGS, ! which process sparse rows of B temporally (TrGT) or
spatially (TrGS). We introduce a multi-level memory hierarchy
with row-local buffers and a global cache to handle Gustavson’s
data movement, and reuse TrIP’s hardware extensions as well.

These four dataflows let Trapezoid work well across inputs
with all sparsity combinations: the standard IP dataflow han-
dles DxD; TrIP handles MS xD and MS xMS; TrGT handles
HS xHS; and TrGS handles HS xMS and HS xD.

To distinguish them easily, we read TrGT as target and TrGS as targus.
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Matrix formats: Trapezoid supports the most efficient for-
mats for matrices of different sparsity levels: compressed sparse
row/column (CSR/CSC) formats for HS inputs, where each
sparse fiber (compressed row or column) is stored as a list
of nonzero values and their coordinates; and variants of these
formats where the nonzero coordinates are represented using
bitmasks instead, which are more efficient for MS inputs.

In this section we introduce Trapezoid dataflow by dataflow,
presenting detailed examples and introducing the novel hard-
ware components that enable each dataflow.

A. Dense IP dataflow (for DxD)

We first explain how Trapezoid runs densexdense (D xD).
Fig. 7 shows a walkthrough example of how a 4-multiplier
PE row runs DxD. In this and future examples, all unused
hardware blocks are greyed out.

Trapezoid uses a standard IP dataflow for D xD, similar to the
TPU’s (Sec. II-A): each PE row computes the dot product of a
row of A and a column of B. Elements of A are held at PEs, and
B’s columns are streamed vertically. Our only deviation from
the TPU is that, instead of reducing partial products through
horizontal connections, the merge-reduction tree performs these
reductions spatially. We adapt Flexagon’s merge-reduction net-
work [50] (MRN), and explain its full functionality later. Since
this is needed for sparse dataflows, we reuse it for DxD.

Fig. 7 shows PE row 2, which holds row 2 of matrix A
( ) in registers. In this example, 0 column 0
of B arrives to PE row 2 (from adjacent PE row 1); 9 the mul-
tipliers compute individual partial products; 9 the reduction
tree accumulates partial products and produces a single output
element, , which is streamed out of the array; in parallel,
e column O of B is forwarded to the next PE row (3).

mm Effectual MACs O Ineffectual MACs =1 Work per PE row per cycle

— —

=
M “ 0 RN
K TPU N SIGMA Trapezoid

Fig. 8: Comparison of IP-based dataflows on MSxMS.

B. TrIP dataflow (for MSXMS and MSxD)

Trapezoid uses a new IP-based dataflow, TrIP, to handle MS
inputs. TrIP supports dual-side sparsity, i.e., it remains efficient
when both inputs are mildly sparse. To achieve high efficiency
and reuse even when some intersections are ineffectual, TrIP
intersects a few rows of A and columns of B at a time. By
considering multiple rows and columns, each nonzero of A and
B can contribute to multiple partial products. This compensates
for ineffectual intersections and achieves fine-grained reuse.

To make this concrete, Fig. 8 compares how TPU, SIGMA’s
IP-based dataflow, and TrIP run the same MSxMS multiplica-
tion on a 4-multiplier PE row. The red box indicates the amount
of work that is performed by a single PE row per cycle. The
TPU processes a single row of A and column of B per cycle;
sparsity causes ineffectual work (multiplications where either
input is zero) that quickly tanks performance. In this example,
A row 0 and B column 0 have a single effectual multiplication
(darker color), yielding 25% utilization.

SIGMA improves on the TPU by packing A’s sparse rows.
In this example, the 4-multiplier PE row can hold A’s rows 0
and 1. Every cycle, the PE row receives a column of B and
initiates multiplications with the two rows of A. In the example,
A rows 0-1 and B column 0 have two effectual multiplications,
yielding 50% utilization. This is better than the TPU, but it is
still limited by B’s sparsity, which SIGMA does not exploit.

Trapezoid’s TrIP improves on SIGMA by, in addition to pack-
ing A’s sparse rows, streaming multiple columns of B per cycle
when B is sparse. In this example, TrIP maps A’s rows 0 and
1 to the PE row (like SIGMA), and streams B’s columns O
and 1. This yields four effectual intersections, using 100% of
multipliers even though only 25% of intersections are effectual.

TrIP handles sparsity better than SIGMA, but it also takes
more area and complexity: whereas SIGMA distributes B val-
ues to A nonzeros in fixed locations, Trapezoid must dynami-
cally find matching nonzeros in both A and B, and distribute
these nonzeros to multipliers. The complexity of some of this
matching step (specifically, intersections) is quadratic with the
number of rows of A and columns of B that are packed/streamed
at a time. To limit complexity, we restrict the number of rows
of A and columns of B to a maximum of 4 (i.e., 4 x 4 = 16
fiber intersections), which keeps hardware costs modest.

Since A and B have varying sparsities, streaming as many of
B’s columns as possible may require computing more partial
products than multipliers in a PE row. Trapezoid dynamically
adjusts the number of B columns streamed at a time so that all
PE rows can process them in one shot, avoiding overflowing.

Fig. 9 shows the loop nest of TrIP dataflow and how it maps
to the hardware. We first explain TrIP through an example, then
detail the hardware components needed to support it.
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for n1 = [0, N1):
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for n@ = [n_1, n_h): # spatial X, local buf word, MFIU
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C[n1,m1,m@,n0] += A[ml,k1,m0,ke] * B[nl,kl1,n0,ke]

Fig. 9: Loop nest of TrIP dataflow.
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Fig. 10: Example of Trapezoid running TrIP for MS xMS.

Walkthrough example: Fig. 10 shows Trapezoid running a
similar multiplication to Fig. 7, but with mildly sparse A and B.
Because A is sparse, four nonzeros from two rows of A (

) are mapped to the registers in PE row 1. In
this example, @) the PE row first receives two sparse columns
of B ( ); the intersection unit takes their bit-
masks; 9 the intersection unit intersects each B bitmask with
the bitmasks of the two rows of A, and finds the matching &
coordinates, which constitute the routing information for the
A and B distribution networks; 6 the A and B distribution
networks route values of all matching coordinates (A-,-Bq0,
) to multipliers. Note that and

are not routed to any of the multipliers because they do not
contribute to any effectual computation; however, and
are both used twice, compensating for this inefficiency. 9 Mul-
tipliers generate four partial results that eventually contribute to
three final outputs (-, , ). In TrIP, the merge-reduction
tree is configured into reduction mode. 6 The merge-reduction
tree behaves as 3 smaller reduction trees to generate the fi-
nal outputs (= ), (= + ), and
(= ). @ Final outputs are written to the local buffer (2-

b} s

Multi-fiber intersection unit (MFIU)
B bitmask I[ﬂml [Llool1] mm mm
A bitmask .m.m m.lm [1]o[1]0]| [o[ZTaIO]
A&B bit-vector [I[0]0l0] [0[o[ol0] | [ZToI10]| [OTolEo
(2] Prefix| sum
A&Bprefixsum 1111 1111 2121313]| [313]414]
& &
A&B bit-vector lmmm mmmm mm mmm
Effectual 1 O OP_ 0 0 0 0 |2|013|0| 0 01410
compute idx X
Shltt Sh‘ift Shif dil
routing meta N

data . 1] 3] =@ E
vegister [Tyl [BolEulBalBal
© A Distribution B Distribution
AZQ AZQ A22|A32| By, | Boq | B,q | B
(4 [

Fig. 11: Example of multi-fiber intersection and distribution.

bank 2-word wide in this example). Because and are
contiguous, they are coalesced into one wide write to the same
bank. Different banks hold the outputs of different rows; that’s
why is written to the other bank. ﬂ Concurrently with
this, B’s columns (values and bitmasks) are forwarded to the
next PE row, 2.

Hardware extensions: As shown in the example, TrIP requires
(1) an intersection unit to find matching coordinates, (2) two
distribution networks to align matching A and B nonzeros, (3) a
merge-reduction tree capable of producing multiple outputs per
cycle, and (4) banked buffers to store scattered outputs.

We use SIGMA’s distribution network, a Benes network [3],
which is non-blocking and has low area overhead. However,
Trapezoid has two networks, for A and B, whereas SIGMA has
a single one for B. We also adopt Flexagon’s merge-reduction
tree [50] that can both merge and reduce multiple partial sum
clusters in a parallel and non-blocking way; However, we en-
hance it with a banked local buffer, described later, to achieve
higher gather and scatter bandwidth. Our key innovation for
TrIP is the multi-fiber intersection unit, which we explain next.
Multi-fiber intersection unit (MFIU): Fig. 11 shows the struc-
ture of the multi-fiber intersection unit, which consists of hard-
ware to (/) produce all pairwise intersections of A row and B
column bitmasks (just AND gates, A&B); (2) compute the cumu-
lative sum of matching bits, using a prefix sum; and (3) shift
indices to produce routing metadata for the distribution net-
works.

Fig. 11 also shows how the intersection unit generates the
routing information for the example in Fig. 10. 0 A row and B
column bitmasks are intersected (ANDed) pairwise, producing
4 4-bit masks, which in this case have 4 1’s; @ The prefix
sum unit (a tree of narrow adders) computes the count of 1’s
at or below each index; o These counts are masked by the
intersected bitmasks, keeping only the indices of each effectual
computation. For example, focus on the intersection between
the first row of A ( ) and second column of B
( ), (marked with a red box in Fig. 11). The prefix
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Fig. 12: Example of shift unit.

sum for the two successful pairs of intersection are 2 (As-
) and 3 (A22-55:). Thus, - is the second effectual
computation and - is the third effectual computation,
which should be mapped to multipliers 2 and 3. This effectively
packs the sparse multi-fiber multiplication into a dense vector
multiplication, with elements in increasing coordinate order,
so that all partial products that contribute to the same output
element are contiguous. 9 The shift unit (described below)
shifts these effectual computation indices to the corresponding
registers holding the values of A and B. For instance, values
and receive index 2. e Finally, the A and B distribution
networks deliver the values to multipliers using the indices as
routing information (this routing is done as in SIGMA [60]).

Shift unit: Fig. 12 shows the microarchitecture of the shift unit
and an example of its operation. The design is similar to the
zero eliminator in SpAtten [68]. It is responsible for shifting
the effectual computation index to the corresponding value. In
this example, the effectual computation indices of A[1] ( )
are shifted to their corresponding registers holding A[1] values
( ). f does not receive an index because after intersection
with columns of B, no effectual computation is generated. We
start by calculating the zero count of A[1] before each element
offline. A K -element input is shifted by log K levels, with each
bit of the zero count controlling whether to shift the value at
this level. At i-th level, if the bit ¢ is 1, the value is shifted left
by 2. For example, since bit 1 is 1 for index 6, it is shifted left
by 2. In this way, each effectual computation index is eventually
shifted to the corresponding value starting at position 0. Note
that since rows of A are stored contiguously along registers
in the PE row, the starting location of A[1] is not position O.
A final right shift using the offset of A[1] aligns the effectual
computation indices to the values.

Dynamic packing of B columns: The key hardware constraint
for choosing the number of columns of B to stream in each
cycle is that the number of effectual computation generated by
the intersection unit of each PE row should not exceed the num-
ber of multipliers (128). Trapezoid makes this choice ahead of
time, when columns of B are streamed from off-chip to on-chip.
Using the A bitmask and B bitmask, it calculates the number
of effectual computations per PE row (using popcount on the
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Fig. 13: Multi-level memory hierarchy.

A&B bitvector). Then, the maximum number of effectual com-
putations across all PE rows is produced for every number of
columns of B (i.e., 1-4), and Trapezoid chooses the maximum
number of B columns so that the number of effectual compu-
tations does not exceed the number of multipliers per row.
Reductions and output buffering: After partial products are
computed, the merge-reduction tree accumulates them. Each
tree node consists of an adder, a comparator, and a few muxes.
When configured in merge mode (which is not used in TrIP),
comparators in each node are used to forward the smaller of the
inputs up the tree; this is used to merge partial output fibers in
coordinate order in TrGT/TrGS. TrIP uses the tree in reduction
mode, where the adders within each node are used to form
reduction trees. Following Flexagon’s design, the tree can be
sliced into smaller subtrees, each accumulating a contiguous
subset of input elements. TrIP configures subtrees so that each
subtree produces one element of C.

Since TrIP processes several A rows and B columns per
cycle, it produces a larger number of C elements per cycle
than SIGMA. We add a banked local buffer to support this
output bandwidth. Each subtree writes results directly to the
local buffer; in our implementation, the local buffer has 4 banks,
each 4 words wide, which suffices to absorb the scatter-output
bandwidth of intersecting 4 rows of A and 4 columns of B (i.e.
a 4x4 partial result matrix).

C. TrGT dataflow (for HSxHS)

Trapezoid uses a memory-efficient Gustavson-based dataflow,
TrGT (Fig. 14), similar to Gamma [79] and Flexagon’s Gus-
tavson mode [50], to handle multiplications of highly sparse
inputs. In the Gustavson dataflow, A is accessed element by
element and C is produced row by row, but B suffers accesses
to non-consecutive rows, and has matrix-level reuse.

Trapezoid leverages caching, a key optimization to reduce B
matrix traffic [50, 79]. The key innovation is Trapezoid’s multi-
level memory hierarchy, which offers the high gather bandwidth
needed by Gustavson dataflow in HS xHS while keeping the
area overhead low. In this way, Trapezoid can scale up the
processing throughput of HSxXHS at only modest area cost.
Multi-level memory hierarchy: Fig. 13 shows Trapezoid’s
memory hierarchy. Trapezoid’s global cache is organized as
4 clusters, each serving 32 PE rows. Each 4 MB cluster has



Matrix(shape=[M2,M1,M0,K])
Matrix(shape=[N1,K,N0])
M

A
B
C atrix(shape=[N1,M2,M1,M0,NO])

for n1 = [0, N1):
for m2 = [0, M2):
for m1 = [0, M1): # spatial Y, PE row

B tile on-chip
C tile on-chip

for m@ = [0, MO): # spatial Y, PE subrow
B_tmp = Matrix(shape=[K,N0])
for k = [0, K): # leader follower

:for ne = [0, NO):

I B_tmp[k,n@] = B[n1,k,n0]

# merger, pipelined with next loop

B_tmp_t = B_tmp.transpose() # merger [K,NO] -> [NO,K]
for ne = [0, NO):

:for k = [0, K): # reduction

I C[n1,m2,m1,m@,n0] += A[m2,ml,md,k] * B_tmp_t[n1,n0,k]

Fig. 14: Loop nest of TrGT dataflow.

32 banks, and 16-word (64B) lines. A 32x32 crossbar con-
nects banks and PE rows. This clustered organization avoids
an expensive 128x 128 all-to-all network between PE rows and
caches, but at the same time offers sufficient cache capacity in
each cluster (4 MB) to capture irregular reuse in the B matrix.

Each PE row has a 4-bank, 4-word-wide (16B) local buffer
(matching the throughput to cache banks). Since the TrIP
dataflow uses local buffers holding outputs, we reuse them for
TrGT, though to hold inputs (rows of B). In this way, the wider
16-word sequential access to the global cache can be translated
into several narrower gather accesses (4 gather reads/cycle) to
4 banks of the local buffer, effectively increasing gather band-
width to the global cache. This hierarchical organization avoids
the all-to-all communication overhead of prior HS xHS accel-
erators, at a modest cost of local buffer and global cache area.

In principle, we could dedicate each PE row to produce a
single output row using a row of A, i.e., spatially map M to PE
rows. This would let each PE row handle up to 128 nonzeros
per row of A, since we have a 128 multipliers and a radix-
128 merge-reduction tree. But HS matrices rarely have that
many nonzeros per row, so this would leave most of the PE
row unused. Since TrIP already has the hardware needed to
support up to 4 rows of A, including 4 local buffer banks, and
the multi-level memory hierarchy can support 4 gather accesses
per cycle, we divide each PE row into 4 PE subrows.

TrGT maps different rows of A to different PE subrows
(rather than PE rows), making the spatial M dimension 4 x
larger. Fig. 14 shows TrGT’s loop nest, which includes this
mapping: both the M; and M, dimensions are mapped spa-
tially (instead of just M;) to hardware. TrGT fetches each row
of B temporally, i.e., one element at a time, according to the
nonzeros in the A row, and computes the linear combination
of these rows of B to produce one C row. The merge-reduction
tree is configured into a merge tree to facilitate the linear combi-
nation. This offers a similar functionality as a Gamma PE [79].
Depending on the number of nonzeros of A, each PE subrow
gets a slice of the PE row resources. Specifically, a PE subrow
handling a K-element row of A is allocated K registers (stor-
ing A values), K multipliers, 1 buffer bank (storing B rows),
K-to-K distribution networks and a radix-K merge tree (by us-
ing K-element slices of the 128-element distribution networks
and merge-reduction tree).
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Fig. 15: Example of Trapezoid running TrGT for HS xHS.

Walkthrough example: Fig. 15 shows a 4-multiplier PE row
divided in two PE subrows. In this example, the left PE subrow
gathers and linearly combines 2 rows of B, B[0] ( )
and B[2] ( ), to produce row 2 of C ( ).
Each row of B is stored in a FIFO. The two B FIFOs (holding
a few head elements of B[0] and B[2]) are implemented using
the local buffer; in this mode, each buffer bank offers a read
throughput of 1 element/cycle. 0 Elements from each B row
are routed to the multiplier holding the corresponding nonzero
of A (with the matching & coordinate), and scaled. For example,
B[0] is routed to ; the figure shows how is multiplied
to produce partial product . 9 The merge tree flows
partial products in the order of n coordinate, and accumulates
those with a matching n coordinate, e.g., and
produce . 9 Elements of C’s row at the output of the merge
tree are written to the cache in order. 9 The B FIFO only
buffers a few head elements of the row while rest of the row
( ) is obtained from the cache in a wider word fetch
(2-word in the example).

D. TrGS dataflow (for HSxMS and HSxD)

While TrGT minimizes traffic, which is the key for HS ma-
trices, it has low peak arithmetic intensity. Our final dataflow,
TrGS, is a novel Gustavson-based dataflow that processes rows
of B spatially. TrGS leverages our spatial fabric’s multipliers
and cache bandwidth, and is useful for HSxMS and HSxD,
which have higher arithmetic intensity than HS xHS.

Fig. 16 shows TrGS’s loop nest. TrGS uses a PE row (not
subrow) to compute a single row of C, by linearly combining
rows of B. TrGS spatially maps A’s rows (i.e., the M dimension
in Fig. 16) across PE rows. TrGS’s key feature is that it also



A
B
C

Matrix(shape=[M1,M0,K])
Matrix(shape=[N2,K,N1,N@])
Matrix(shape=[N2,M1,M0,N1,N0])

for n2 = [0, N2):
for ml = [0, M1):
for mo = [0, M@): # spatial Y, PE row ¢ tile on-chip
for k = [0, K): # leader follower
for n1 = [0, N1): # cacheline
for n@ = [0, NO): # spatial X, within cacheline
C[n2,m1,m0,n1,n0] += A[mi,m0,k] * B[n2,k,n1,n0]

Fig. 16: Loop nest of TrGS dataflow.
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Fig. 17: Example of Trapezoid running TrGS for HS xMS.

spatially maps elements of each row of B (i.e., the Ny dimension
in Fig. 16) within each PE row. TrGS reuses existing hardware.
Each multiplier is responsible for producing a single element
in the final C row; 128 elements of C’s row will be produced
after merging all the relevant B rows. The 16-word wide cache
is able to provide 16 contiguous nonzeros of B per cycle to the
PE row; the B distribution network routes these nonzeros to
the corresponding multipliers using their n coordinates. In this
way, the PE row running TrGS conducts 16 MACs/cycle, which
is 4x higher than TrGT (1 MAC/cycle/subrow). TrGS works
well for HSxMS and HS xD, but not for MS xMS, because it
leverages the fact that the B row is MS or D so that we can
treat the IV dimension as a dense dimension with low overhead.
Walkthrough example: Fig. 17 shows a 4-multiplier PE row
running TrGS to generate a row of C ( ) with
a 2-word wide cache. Every multiplier is responsible for pro-
ducing one final output element of C’s row. According to the &
coordinate of the nonzeros in A ( ), the PE row needs
to scale and accumulate B row 0O ( ) and B row
2 ( ). The nonzeros of these two rows of B are
streamed in from the cache in order. In this example we are
currently working on B row 0, so the corresponding A value
(A.y) is broadcast to all multipliers using the A distribution
network. @) Because the cache is 2-word wide, the first two
nonzeros of B row 0 ( ) are fetched. @ The bitmasks of

the two elements are read in from cache and used to route the
B distribution network. @) The B distribution network routes
these B values to the corresponding multipliers using their n
coordinates: is routed to multiplier 0; is routed to mul-
tiplier 2. e A and B values are multiplied to produce partial
products. 6 The reduction tree accumulates partial products
( ) with the partial results of and , Te-
spectively. @ Later, the remaining nonzeros of B row 0 (/343)
and B row 2 ( ) are fetched in wide 2-word accesses
from the cache and accumulated. 0 Finally, when all the ac-
cumulation of B row 0 and B row 2 are done, the final result
row of C ( ) is written to the cache.

IV. METHODOLOGY

System: We built a cycle-level simulator to evaluate Trapezoid,
using the configuration shown in Table I. This configuration
provides 32 TFLOP/s, using 128 PE rows, each with 128 FP32
multipliers and adders, running at 1 GHz. The 17 MB of on-
chip SRAM is organized as a 16MB cache (4MB/cluster); local
buffers take an additional 1 MB. The system has 2TB/s HBM
main memory, representative of modern GPUs and TPUs. We
model the activities of all hardware components cycle by cycle,
including MAC units, merge-reduction tree, distribution net-
works, multi-fiber intersection unit, local buffers, global cache,
and HBM. We model contention and stalls faithfully.
Baselines: We compare Trapezoid against three state-of-the-art
accelerators designed for matrix multiplication with D, MS, and
HS inputs: TPU [33], SIGMA [60], and Flexagon [50]. Since
TPU and SIGMA are also designed on top of a 2D spatial array,
we size them with the same 128 x 128 spatial array as Trapezoid
and a 16MB global scratchpad. SIGMA is also equipped with
the same 1MB local buffer as Trapezoid.

The original Flexagon design has 64 MACs and a IMB cache,
which provide limited compute throughput (this is the case
for other HS accelerators). We carefully scale it up to match
Trapezoid’s area by replicating 67 Flexagon instances without
establishing all-to-all connections among instances (otherwise,
the crossbar would completely dominate area). The scaled-up
Flexagon system has 67x64 MACs, and 67 MB of cache.

We model the baselines using the same simulation infras-
tructure described above. Our simulation results closely follow
the performance numbers reported in the original papers.
Area and energy: We implement Trapezoid and baseline
components in RTL and synthesize them in 45 nm using the
FreePDK library [52]. We use CACTI7 [5] to estimate SRAM
area in 45 nm. We then scale the area to 16 nm [59]. We present
detailed area analysis in Sec. V-A. We obtain component en-
ergies using FreePDK15 [6] and Synopsys Design Compiler,
and estimate HBM energy from prior work [18, 61].
Workloads: We evaluate 128 standalone matrix multiplication
workloads (15 DxD, 15 MSxD, 38 MSxMS, 12 HSxD, 36
HSxMS, 12 HS xHS) and 8 DNNs (4 Llama, 2 ResNet, 2 VGG)
with widely varying sparsity levels. Table III and Table IV list
the matrices we use and their densities.

D and MS combinations use DNN workloads. For DxD,
we select 15 projection layers from the Llama-2-7B [67] large



TABLE I
CONFIGURATION AND AREA BREAKDOWN OF TRAPEZOID.

Component  Config Area(mm?)

Vector multiplier 128 x FP32 multiplier 0.17
Merge-reduction tree  radix-128, FP32 adder 0.13
Distribution network  32b 128 x 128 Benes 0.10
Multi-fiber intersection unit 4 rows & 4 columns 0.12

Local Buffer 8KB, 4 banks, 16B-wide 0.03
PE row 0.54
Compute overall 128 XPE row 69.7
i 16MB, 128 banks, 16-way
Cache set-associative, 64B line 102
4 64B 32x32 crossbar (32
NoC cache banks <> 32 PE rows) 20
. 1GHz, 128x 128 MACs,
Trapezoid Overall 17MB SRAM. 2TB/s HBM 81.9
TABLE IT
CONFIGURATION AND AREA OF THE BASELINE SYSTEMS.
Component  Config Area(mm?)
. 1GHz, 128128 MACs,
TPUV3like [33]ovig sRAM, 2TB/s HBM 10
1GHz, 128 x128 MACs,
SIGMA [60] 17MB SRAM, 2TB/s HBM 62.3
1GHz, 67 Flexagon instances,
Scaled-up Flexagon [50] 67x64 MACs, 67MB SRAM, 80.8
2TB/s HBM
TABLE III
DNN WORKLOADS.
DNN weight density  activation density
Llama2-7b 0.2-0.6, 1.0 1.0
ResNet-0.2 0.11-0.22 0.27-0.75
ResNet-0.1 0.03-0.12 0.30-0.76
VGG-0.32 0.27-0.53 0.26-0.71
VGG-0.1 0.1 0.29-0.75
TABLE IV
HS MATRICES.
Name density TOWS nnz name density TOWS nnz
p2p-Gnutella2d ~ 9.3¢-5 26518 65369 | sme3Db 2.5¢3 29067 2081063
sx-mathoverflow 3.9¢-4 24818 239978 poisson3Da 1.9¢-3 13514 352762
ca-CondMat 3.5c-4 23133 186936 | wiki-RIA 15c3 11380 188077
Oregon-2 35c-4 11806 65460 | ca-AstwoPh  1.1c-3 18772 396160
cmail-Enron 27c-4 36692 367662 | mscl0848 10c2 10848 1229776
optl 8.1c3 15449 1930655 | ramagc02 T0c2 16830 2866352
scircuit 3.3e-5 170998 958936 cagel?2 1.2¢-4 130228 2032536
gupta2 T.1c3 62064 4248286

language model with dense activations. For MSxD, we use a
sequence length of 1024 and follow recent work that sparsifies
GPT networks [15, 40]: we conduct magnitude-based pruning
on the weight matrices of 3 Llama-2-7B [67] projection layers
to match the density levels in this recent work: 0.2, 0.3, 0.4,
0.5, 0.6. For MSxMS, we prune ResNet-50 [29] to average
weight densities of 0.1 and 0.2 using STR [41], and pick 8
convolution layers per model. We also conduct magnitude-based
pruning on VGG-16 [62] to density 0.1 and 0.32 and use all 11
convolution layers. Sparse activations are extracted by running
the pruned model on ImageNet [11]. We also evaluate end-to-
end performance on these DNNSs, pruned to different degrees.

Combinations involving HS inputs use matrices from SuiteS-
parse [38]. For HSxD, we select 12 diverse matrices and mul-
tiply them with a randomly generated 1024-column dense B
matrix; this is representative of e.g. solvers with multiple right
hand sides. For HS xMS, the same 12 matrices are multiplied

with 3 randomly generated 1024-column sparse B matrices with
density 0.2, 0.4, 0.6. For HS xHS, we evaluate A x AT for the
12 matrices (matching the workload of prior HS accelerators).
Tiling: We conduct coordinate-space [32] and occupancy-based
tiling [54] on the inputs to maximize data reuse and on-chip
buffer utilization similar to prior work [50, 60, 79]. For TrIP,
we perform coordinate-space tiling on K and occupancy-based
tiling on M and N. For TrGT, we perform occupancy-based
tiling on M. For TrGS, we perform coordinate-space tiling on
N and occupancy-based tiling on M.

V. EVALUATION

A. Area

Table I shows the area break-
down of Trapezoid and Table II  m sram
reports the overall area of the 1.0
baseline accelerators. Trapezoid is

W Add & Mul m Sparsity handling
M Other

81.9mm? at 16nm, which is 2.0x  § %87
larger than TPU and 1.3x larger § 0.6-
than SIGMA at iso-throughput con- 9
figurations (32 TFLOPs). PRl
Fig. 18 shows the area break- <.

down of all accelerators. TPU,
SIGMA, and Trapezoid dedicate a
significant fraction of area to com-
pute to ensure high throughput on
dense inputs. The area overhead of
Trapezoid over TPU mainly comes from the sparsity handling
hardware (distribution network, multi-fiber intersection unit,
merge-reduction tree), which occupies half of the PE row area.
The additional A distribution network and multi-fiber intersec-
tion unit in Trapezoid contributes to a modest 30% area increase
over SIGMA but improves performance significantly. Flexagon,
on the other hand, spends most of the area on buffers to over-
come the memory bottleneck with HS inputs, and therefore
cannot offer high performance on denser cases due to the insuffi-
cient compute resources. Trapezoid’s novel multi-level memory
hierarchy design enables the same traffic reduction and high
gather bandwidth while keeping total capacity modest.

o
o

Fig. 18: Area breakdown.

B. Overall Performance

Fig. 19 presents the performance/area of all accelerators
on all 6 category of workloads: DxD, MSxD, MSxMS,
HS xD, HS xMS, and HS xHS. For accelerators supporting mul-
tiple dataflows (Trapezoid and Flexagon), we pick the best-
performing dataflow for each workload, like [50]; Sec. V-C
analyzes dataflow choice. We use performance/area rather than
performance to penalize Trapezoid for its higher area over the
iso-throughput TPU and SIGMA designs. Within each cate-
gory, we take the gmean over all workloads and report perfor-
mance/area normalized to the best design. The overall perfor-
mance/area is the gmean over the gmean of all categories (this
avoids biasing to categories with more inputs).

Trapezoid achieves 19.7x, 4.3%, and 2.9x better perfor-
mance/area than TPU, SIGMA, and Flexagon, respectively.
From left to right, the workloads become sparser. TPU, designed
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Fig. 20. End-to-end performance/area comparison on DNNs with dlfferent
sparsity levels (normalized to the best accelerator).

B Flexagon

for DxD, is the best on DxD but tanks on sparser workloads be-
cause it cannot exploit any sparsity (e.g., TPU is 4134 x worse
than Trapezoid on the sparsest HS xHS). SIGMA is optimized
for mildly sparse inputs and therefore performs better than TPU
on MSxD and MS xMS. But it also takes a significant perfor-
mance hit on HS inputs. Flexagon performs well on HS xHS
and HS xMS, but on denser inputs, it is far slower than other
accelerators due to its limited compute throughput.

By contrast, Trapezoid performs consistently well across
workloads despite their vastly different sparsity levels. It is
only 2.0x and 1.3x away performance/area-wise from the best
performing accelerator on DxD (TPU) and MS xD (SIGMA).
Because Trapezoid is able to achieve the same peak throughput
of TPU in DxD and SIGMA in MS xD, their performance/area
difference stems from the area overhead of sparsity handling
hardware in Trapezoid. Thanks to the multi-fiber intersection
unit, Trapezoid is 2.1x better than SIGMA on MSxMS. The
TrGS dataflow excels at HS xD and HS xMS and achieves 2.4 x
and 2.5x better performance/area than Flexagon. On HS xHS,
Trapezoid is only 1.2x worse than Flexagon.

End-to-end DNN performance: Fig. 20 shows the end-to-end
performance per area of running 8 DNN workloads with vary-
ing levels of activation and weight sparsity (DxD, MSxD and
MSxMS). Llama-1.0 is fully dense, so the TPU is optimal;
Trapezoid is only 2.0x/1.3x slower than TPU and SIGMA.
The weight-sparsified Llamas (L1ama-0.6,0.4,0.2) are dom-
inated by MS xD, so SIGMA is optimal for them; Trapezoid is
only 1.3x slower. Finally, the layers in ResNet-50 and VGG-
16 leverage both weight and activation sparsity, and are there-
fore MSxMS workloads. Trapezoid has 1.4-2.9x better per-
formance/area than SIGMA on ResNet-50 and VGG-16, and
outperforms the other accelerators further.

Roofline analysis: Fig. 21 shows two roofline plots of all ac-
celerators on all workloads. The full plot is shown on the
bottom-right corner; the large plot is a zoomed-in region.
The memory roofline is 2TB/s and the compute roofline is
TPU/SIGMA/Trapezoid’s peak throughput (32TFLOPs).
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Fig. 21: Log-log roofline of all workloads.

Trapezoid is always on or close to the roofline because its
design optimizes for all sparsity levels. For accelerators that
can run multiple dataflows (Trapezoid and Flexagon), only the
best-performing dataflow per workload is shown. When run-
ning workloads with any sparsity, TPU’s (+) throughput quickly
drops. SIGMA (Y) achieves modest throughput with MS inputs
(top right region), but quickly drops far below the roofline on
sparser inputs (bottom left region). Flexagon uses its Gustavson-
based dataflow with HS inputs (), leveraging its cache to im-
prove arithmetic intensity and reach the memory roofline. Its
limited gather bandwidth sometime limits throughput (flat line).
On denser workloads, Flexagon’s IP-based dataflow (X) is far
away from the roofline due to its limited peak throughput.

Trapezoid is always close to the roofline across different
arithmetic intensities. With high arithmetic intensity DxMS
inputs (top right corner), TrIP (¢) achieves the highest through-
put. When we gradually move left on the plot lowering the
arithmetic intensity, the TrGS dataflow (a) takes over and lets
Trapezoid comfortably saturate the memory bandwidth. Finally
on HSxHS, TrGT (M) performs the best. Thanks to the on-chip
cache and Gustavson-based dataflows, Trapezoid is also at or
near the roofline for HS xD, HS xMS, and HS xHS.
Trapezoid outperforms combinations of prior accelerators:
Faced with a diverse workload mix, we could combine multiple
accelerators to achieve better gmean performance. We study this
by finding the optimal accelerator mix for our workload mix.
We explore combinations of TPU, SIGMA, and Flexagon that
take the same total area as Trapezoid, and process each matrix
across all accelerators (this way, each accelerator contributes
to performance on all workloads). We find that, for this mix of
workloads, the optimal combination is to devote 60% of area to
SIGMA and 40% to Flexagon. Still, Trapezoid is gmean 2.1 x
faster than this combination.

C. Analysis of representative workloads

We select 3 representative workloads from each category
MSxD, MSxMS, HS xD, HS xMS, HS xHS) and present their
results to gain more insights into Trapezoid’s efficiency. Fig. 22
shows the performance/area of these 15 workloads normalized
to the best-performing accelerator. In addition, for denser work-
loads MSxD, MSxMS), which are typically compute-bound,
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Fig. 22: Performance/area comparison on 15 representative workloads (normalized to the best accelerator).
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we plot the compute utilization in Fig. 23. Trapezoid consis-
tently achieves the highest compute utilization in denser work-
loads. And for sparser workloads (HS xD, HS xMS, HS xHS)
which tend to be memory bound, we plot the off-chip traffic
breakdown by data type in Fig. 24 (normalized to SIGMA).
Trapezoid has the lowest traffic for all sparser workloads.
For MSxD, SIGMA, Flexagon, and Trapezoid all exploit
A’s sparsity using an IP-based dataflow and achieve high com-
pute utilization. But these accelerators cannot fully exploit the
20% dense A in 1lama®.2-1.0 because they can only pack
4 rows of A. TPU utilization drops as A gets sparser as doing
IP densely results a significant amount of ineffectual work.
Trapezoid particularly shines in MSxMS. It achieves a
13.3x utilization gain over TPU in Res®.27-0.15 with 27%
dense A and 15% dense B, which translates into 6.5x better
performance/area. This is because Trapezoid’s multi-fiber in-
tersection unit is able to conduct 16 fiber intersections (4 rows
of A and 4 columns of B) at once rather than 1 fiber intersec-

tion in TPU. Trapezoid’s gain over SIGMA derives from its
ability to exploit the additional B sparsity using the multi-fiber
intersection unit. Its theoretical 4 utilization gain is realized
in Res0.27-0.15 and Res0.62-0.15, which results in 3.0x
and 2.0x better performance/area than SIGMA. TrIP’s benefits
are lower when B is denser: in VGGO.45-0.42, the Trapezoid
intersection unit can pack 2 columns of B per cycle at most,
achieving 1.4x higher utilization. Though Flexagon achieves
similar utilization to SIGMA, its low peak throughput results
in 6-9x worse performance/area than Trapezoid.

For HS workloads, we pick four representative matrices
(ca-CondMat, p2p, optl, cagel2) with varying sparsity de-
grees and nonzero patterns. In HSxD, Trapezoid achieves
10.6x and 5.4x better performance/area than SIGMA on ca
and p2p, because it runs TrGS, avoiding the ineffectual work of
IP-based SIGMA. Gustavson’s dataflow also reduces effectual
fetch of B, which can be observed in Fig. 24 as Trapezoid and
Flexagon has lower traffic than SIGMA and TPU. opt1 shows
different behavior, and SIGMA performs best. Though opt1
has low overall density, its nonzeros appear in dense clusters.
SIGMA’s IP-based dataflow achieves high throughput in the
dense clusters and skips the other regions. Trapezoid’s TrIP is
close to SIGMA (1.3x performance/area away).

In HSxMS, Trapezoid performs the best on varying density
of B matrices, roughly 2x better than Flexagon owing to our
novel TrGS dataflow over Flexagon’s TrGT-like dataflow. TrGS
can utilize a larger fraction of the spatial array (compared to
TrGT) to achieve higher peak throughput.

For HSxHS, Trapezoid achieves similar performance/area
as HS xHS-optimized Flexagon. Trapezoid runs TrGS more ef-
ficiently on opt1 because of its dense clusters, achieving 1.8x
performance/area improvement over Flexagon. Flexagon is
more efficient on ca. Because both Trapezoid and Flexagon run
a TrGT-like dataflow, Flexagon has higher peak throughput than
Trapezoid in TrGT mode. However, their efficiency is flipped on
cage, which saturates HBM bandwidth, so Flexagon’s smaller
cache translates to higher traffic. Finally, both Trapezoid and
Flexagon have the lowest traffic in HS xHS.

Finally, Fig. 25 reports the performance/area of individual
dataflows (IP- and Gustavson-based) on 5 representative work-
loads. For MS inputs, IP-based dataflows outperform Gustavson-
based ones. As Sec. II-B described, supporting complex row
reductions in Gustavson (and matrix reductions in OP) has
higher costs and is thus less desirable than intersections for
MS inputs. When the sparsity level increases, i.e. from MSxD
to MSxMS, IP-based dataflows (e.g., SIGMA) gradually drop
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Fig. 26: Energy breakdown comparison on 15 workloads (normalized to SIGMA). P: TPU, S: SIGMA, F: Flexagon, T: Trapezoid.

in performance/area due to increasing ineffectual intersections.
On HS inputs, Gustavson-based dataflows (Flexagon, TrGT,
TrGS) consistently outperform IP-based dataflows, by avoiding
ineffectual intersections and reducing memory traffic.

By looking at individual dataflows, we can also establish
comparisons with other HSxHS accelerators beyond Flexagon.
Spada [43] would be similar performance as Flexagon, as they
have similar compute to memory ratio and support multiple
dataflows. We expect Gamma [79] to perform similarly to
Flexagon-Gust; MatRaptor [64] would be slower due to the
lack of caching [79], and conversely, Trapezoid’s memory or-
ganization increases effective capacity and reduces traffic.

D. Energy and Power

Fig. 26 shows the energy breakdown (normalized to SIGMA)
on the same 15 representative workloads. In MSxD and
MS xMS, Trapezoid only incurs a modest 13% energy overhead
over SIGMA on average. Trapezoid is 1.1-2.6x and 2.4-6.8 x
more energy-efficient than TPU on MSxD and MS xMS by ex-
ploiting sparsity. For HS inputs, Trapezoid and Flexagon signif-
icantly reduce energy over SIGMA and TPU. TPU suffers from
high static energy, and SIGMA’s ineffectual IP intersections re-
sult in high sparsity-handling energy. On HS inputs, Trapezoid
uses gmean 13.5x and 1660x less energy than SIGMA and
TPU. Trapezoid is even more energy efficient than Flexagon
because its multi-level memory hierarchy can hold larger tiles
of B, reducing HBM traffic. Across all workloads, Trapezoid
achieves gmean 1697 x, 20x, and 3.6x better EDP than TPU,
SIGMA, and Flexagon.

Power analysis shows TPU operates at around 100W, con-
sistent with published figures [33, 34]. Trapezoid, with 2x the
area of TPU, consumes 25-191W (average 110W), with HS
inputs on the lower end and MS/D inputs on the higher end.

VI

Prior work has proposed accelerators for applications do-
mains involving matrix multiplication. In dense/sparse neural
networks, accelerators for CNNs [1, 2, 8, 16, 17, 22, 59, 74, 80],
transformers [25, 26, 35, 47, 68, 76, 77, 78], point clouds [13,
14, 45] and beyond have been proposed. These focus on the
D/MS matrices in neural networks and do not handle HS ma-
trices well. In domains involving HS matrices, such as graph
analytics [7, 10, 19, 23, 27, 42, 48, 49, 72, 73, 75] and scientific
computing [4, 12, 20, 30, 63, 69], various accelerators have been
designed. They devote significant area to memory optimizations
due to the low arithmetic intensity of HS matrices.

ADDITIONAL RELATED WORK

ExTensor [32] supports operations beyond matrix multiplica-
tion, such as tensor contractions. ExTensor can perform tiling
and multi-level intersection of coordinate lists to skip ineffectual
work, e.g., skipping intersections of tiles that are zero. ExTen-
sor is tailored to HS tensors and, like the HS xHS accelerators
above, has limited compute throughput needed by MS and D
inputs. Tensaurus [65] codesigns a novel storage format and
accelerator for computations that combine sparse and dense
tensors.

Another line of work exploits a specific type of sparsity
presents in neural networks, structured sparsity, where zeros
appear in a structured pattern (e.g. an entire channel) [31]. The
NVIDIA Sparse Tensor Core (STC) [56] exploits 2:4 sparsity
of weights in DNNs where there are at most 2 nonzeros in a 4-
element block. S2TA [46] supports structured sparsity on both
weights and activations. HighLight [71] proposes Hierarchical
Structured Sparsity (HSS) to represent finer-grain sparsity lev-
els in DNNs and presents cheap hardware support for it. How-
ever, structured sparsity is limited to DNNs, degrades accuracy
further (so for a given target accuracy, exploiting unstructured
sparsity allows sparser matrices), and cannot be applied to other
domains where matrices have arbitrary sparsity patterns.

VII. CONCLUSION

Matrix multiplication is a key kernel in many application
domains. However, applications process matrices with orders-
of-magnitude variation in their sparsity degree, which induce
very different performance characteristics. We have shown that
it is possible to design a single accelerator that exploits a wide
range of sparsities. Trapezoid extends a 2D spatial array archi-
tecture with a novel multi-fiber intersection unit and multi-level
memory hierarchy to gracefully handle increasing levels of spar-
sity at modest area costs. The architecture supports multiple
novel dataflows, both inner-product-based (TrIP) and Gustavson-
based (TrGT, TrGS), that achieve high throughput while reusing
hardware. As a result, Trapezoid’s substantially outperforms
prior accelerators, which target a specific sparsity range.
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