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ABSTRACT

Randomized smoothing-based certification is an effective approach for obtaining
robustness certificates of deep neural networks (DNNs) against adversarial attacks.
This method constructs a smoothed DNN model and certifies its robustness through
statistical sampling, but it is computationally expensive, especially when certifying
with a large number of samples. Furthermore, when the smoothed model is
modified (e.g., quantized or pruned), certification guarantees may not hold for the
modified DNN, and recertifying from scratch can be prohibitively expensive.

We present the first approach for incremental robustness certification for random-
ized smoothing, IRS. We show how to reuse the certification guarantees for the
original smoothed model to certify an approximated model with very few samples.
IRS significantly reduces the computational cost of certifying modified DNNs while
maintaining strong robustness guarantees. We experimentally demonstrate the ef-
fectiveness of our approach, showing up to 4.1x certification speedup over the cer-
tification that applies randomized smoothing of approximate model from scratch.

1 INTRODUCTION

Ensuring the robustness of deep neural networks (DNNs) to input perturbations is gaining increased
attention from both users and regulators in various application domains (Bojarski et al., 2016; Amato
et al., 2013; Julian et al., 2018; ISO). Out of many techniques for obtaining robustness certificaties,
statistical methods currently offer the greatest scalability. Randomized smoothing (RS) is a popular
statistical certification method by constructing a smoothed model g from a base network f under
noise (Cohen et al., 2019). To certify the model g on an input, RS certification checks if the estimated
lower bound on the probability of the top class is greater than the upper bound on the probability of the
runner-up class (with high confidence). RS certification computes the certified accuracy metric of the
DNN on the set of test inputs as a proxy for the DNN robustness. However, despite its effectiveness,
RS-based certification can be computationally expensive as it requires DNN inference on a large
number of corruptions per input.

The high cost of certification complicates the DNN deployment process, which has become increas-
ingly iterative: the networks are often modified post-training to improve their execution time and/or
accuracy. Especially, deploying DNNs on real-world systems with bounded computing resources
(e.g., edge devices or GPUs with limited memory), has led to various techniques for approximating
DNNs. Common approximation techniques include quantization — reducing the numerical precision
of weights (Fiesler et al., 1990; Balzer et al., 1991), and pruning — removing weights that have
minimal impact on accuracy (Janowsky, 1989; Reed, 1993).

Common to all of these approximations is that the network behavior (e.g., the classifications) remains
the same on most inputs, its architecture does not change, and many weights are only slightly changed.
When a user seeks to select a robust and accurate DNN from these possible approximations, RS needs
to be performed to compute the robustness of all candidate networks. For instance, in the context of
approximation tuning, there are multiple choices for approximation where different quantization or
pruning strategies are applied at different layers. Tools such as (Chen et al., 2018b;a; Sharif et al.,
2019; Zhao et al., 2023) use approximations iteratively and test the network at each step. To ensure
DNN robustness when using such tools, one would need to check certified accuracy, computed using
RS on test data in each step. However, performing RS to compute certified accuracy from scratch
can take hours as shown in our experiments even for a single network (with only 500 test images).
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Therefore, a major encumbrance of almost all existing RS-based certification practices in the above
setting, is that the expensive certification needs to be re-run from scratch for each approximate
network. Overcoming this main limitation requires addressing the following fundamental problem:

How can we leverage the information generated while certifying a given network to speed up the
certification of similar networks?

This Work. We present the first incremental RS-based certification framework called Incremental
Randomized Smoothing (IRS) to answer this question. The primary objective of our work is to
improve the sample complexity of the certification process of similar networks on a predefined test
set. Improved sample complexity results in overall speedup in certification, and it reduces the energy
requirement and memory footprint of the certification. Given a network f and its smoothed version g,
and a modified network fP with its smoothed version g?, IRS incrementally certifies the robustness
of g” by reusing the information from the execution of RS certification on g.

IRS optimizes the process of certifying the robustness of smoothed classifier g” on an input z, by
estimating the disparity (, — the upper bound on the probability that outputs of f and f? are distinct.
Our new algorithm is based on three key insights about disparity:

1. Common approximations yield small {, values — for instance, it is below 0.01 for int8 quantization
for multiple large networks in our experiments.

2. Estimating ¢, through binomial confidence interval requires fewer samples as it is close to 0 — it
is, therefore, less expensive to certify with this probability than directly working with lower and
upper probability bounds in the original RS algorithm.

3. We can leverage (, alongside the bounds in the certified radius of g around x to compute the
certified radius for gP — thus soundly reusing the samples from certifying g.

We extensively evaluate the performance of IRS when applying several common DNN approximations
such as pruning and quantization on state-of-the-art DNNs on CIFAR10 (ResNet-20, ResNet-110)
and ImageNet (ResNet-50) datasets.

Contributions. The main contributions of this paper are:
* We propose a novel concept of incremental RS certification of the robustness of the updated
smoothed classifier by reusing the certification guarantees for the original smoothed classifier.

* We design the first algorithm IRS for incremental RS that efficiently computes the certified radius
of the updated smoothed classifier.

* We present an extensive evaluation of the performance of IRS speedups of up to 4.1x over the
standard non-incremental RS baseline on state-of-the-art classification models.
IRS code is available at https://github.com/uiuc-arc/Incremental -DNN-Verification.
2 BACKGROUND

Randomized Smoothing. Let f : R™ — ) be an ordinary classifier. A smoothed classifier
g : R™ — ) can be obtained from calculating the most likely result of f(x+¢) where ¢ ~ N(0, o21).

g(z) == argmaxP.(f(zx +¢€) =¢)
ceY

The smoothed network g satisfies following guarantee for a single network f:
Theorem 1. [From (Cohen et al., 2019)] Suppose ca € Y, pa, DB € [0,1]. if

P(f(z+€) =ca) >pa>pp > ggfpe(f(wﬂ%) =c),

then g(x + 6) = cy for all § satisying ||6]2 < $(®~(pa) — ' (PB)), where =1 denotes the
inverse of the standard Gaussian CDF.

Computing the exact probabilities P.(f(x + €) = ¢) is generally intractable. Thus, for practical
applications, CERTIFY (Cohen et al., 2019) (Algorithm 1) utilizes sampling: First, it takes n¢ samples
to determine the majority class, then n samples to compute a lower bound p 4 to the success probability
with confidence 1 — « via the Clopper-Pearson lemma (Clopper and Pearson, 1934). If p4 > 0.5, we

set pg = 1 — p4 and obtain radius R = ¢ - ®~*(p,) via Theorem 1, else we return ABSTAIN.
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Figure 1: Workflow of IRS from left to right. IRS takes the classifier f and input x. IRS reuses the
pa and pp estimates computed for f on x by RS. IRS estimate ¢, from f and f?. For the smoothed
classifier gP obtained from any of the approximate classifiers fP it computes the certified radius by

combining p4 and pg with (.

DNN approximation. DNN weights need
to be quantized to the appropriate datatype
for deploying them on various edge de-
vices. DNN approximations are used to
compress the model size at the time of de-
ployment, to allow inference speedup and
energy savings without significant accuracy
loss. While IRS can work with most of these
approximations, for the evaluation, we fo-
cus on quantization and pruning as these are
the most common ones (Zhou et al., 2017,
Frankle and Carbin, 2019).

Algorithm 1 RS certification (Cohen et al., 2019)

Inputs: f: DNN, o: standard deviation, x: input to the DNN,
no: number of samples to predict the top class, n: number of
samples for computing pa, a: confidence parameter

1

2
3
4
5:
6:
7
8
9

: function CERTIFY(f, o, x, no, N, )

countsg < SampleUnderNoise(f, =, no, o)
Ca < top index in countsg
counts < SampleUnderNoise( f, x,n, o)
pa + LowerConfidenceBound(counts[éa], n, 1 — )
ifpy > % then
return prediction ¢4 and radius o - ' (pa)

else T
return ABSTAIN

3 INCREMENTAL RANDOMIZED SMOOTHING

Figure 1 illustrates the high-level idea behind the workings of IRS. It takes as input the classifier f,
the updated classifier fP, and an input z. Let g and g” denote the smoothed network obtained from f
and f? using RS respectively. IRS reuses the p4 and pp estimates computed for g to compute the

certified radius for gP.

3.1 MOTIVATION

Insight 1: Similarity in approximate networks We observe that for many practical approximations,

f and fP produce the same result on most inputs. Taple 1: Average (, with n = 1000
In this experiment, we estimate the disparity between gamples for various approximations.
f and fP on Gaussian corruptions of the input =z.

We compute a lower confidence bound (, such that
P.(f(z+¢€) # fP(x +€)) < ¢, fore ~ N(0,0%1).

CIFAR10  ImageNet
ResNet-110  ResNet-50

Table 1 presents empirical average (, for int8 quantization int8 0.009 0.006

and pruning 10% lowest magnitude weights for some of the

prunelO 0.010 0.008

networks in our experiments computed over 500 inputs. We
compute (,, value as the binomial confidence upper limit using (Clopper and Pearson, 1934) method
with n = 1000 samples with o = 1. The results show that the ¢, value is quite small in all the cases.

Insight 2: Sample reduction through (, estimation We demonstrate that (, estimation for ap-
proximate networks is more efficient than running certification from scratch. Fig. 2 shows that
for the fixed target error x, confidence (1 — &) and estimation technique, the number of samples
required for estimation peaks, when the actual parameter value is around 0.5 and is smallest around
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the boundaries. For example, when xy = 0.5% and o = 0.01 estimating the unknown binomial
proportion will take 41, 500 samples if the actual parameter value is 0.05 while achieving the same
target error and confidence takes 216, 900 samples (5.22x higher) if the actual parameter value is 0.5.
As observed in the previous section, (;’s value for many practical approximations is close to 0.

Leveraging the observation shown in Fig. 2 and given actual value (, is close to 0, estimating
(, with existing binomial proportion estimation techniques is efficient and requires a smaller
number of samples. In Appendix A.7, we show the distribution of p4 and pgp for various
cases. We see that p4 and pg do not always lie close to 0 or 1 and have a more dispersed
distribution. Thus, estimating those requires more samples. Prior work (Thulin, 2013) has the-
oretically shown that the expected length of the confidence interval for Clopper-Pearson fol-
lows a similar trend as in Fig. 2. This theoretical result supports our observation. We show
in Appendix A.l that this observation is not contingent on a specific estimation method and
holds for other popular estimation techniques, e.g., (Wilson, 1927), (Agresti and Coull, 1998).

— x=050%
— x=075%
— x=1.00%

Insight 3: Computing the approximate network’s cer-
tified radius using (, For certification of the approximate
network ¢”, our main insight is that estimating ¢, and
using that value to compute the certified radius is more
efficient than computing RS certified radius from scratch.
The next theorem shows how to use estimated value of ¢,
to certify g (the proof is in Appendix A.2):

Theorem 2. If a classifier fP is such that for all x €
]Rmv]P)C(f(l + 6) 7& fp(m + 6)) S Cl” and ClaSSi_ 0.0 0.2 0.4 0.6 0.8 1.0
fier f satisfies Pe(f@j +e€ = CA) > pa > PB > Actual Binomial Proportion Value
maXeze, Pe(f(x +€) = ¢) and pa — ¢ > DB + G

then gP satisfies gP(x + 6) = ca for all § satisying FhiguCrle 2 Tlfl)e number t(;lf (Slatmple;_ for
162 < 2(@ (pa — o) — © (B5 + Ca) e Clopper-Pearson method to achieve

a target error y with confidence (1 — «).

200000

150000

100000

50000

Required Sample Size

Theorem 1 considers standard RS for a single network.
Our Theorem 2 shows how to use the estimated value of
(. to transfer the certification guarantees across two networks f and fP.

3.2 IRS CERTIFICATION ALGORITHM

The Algorithm 2 presents the pseudocode for - Algorithm 2 IRS algorithm: Certification with cache

the I.R S algorithm, Wh]Ch extends RS gertl— Inputs: f?: DNN obtained from approximating f, o: stan-
fication from ’Algorlthn'l 1. The algorl?hm dard deviation, z: input to the DNN, n,: number of Gaussian
takes the modified classifier f* and certifies  gamples used for certification, C;: stores the information
the robustness of g¥ around x. The input p  to be reused from certification of f, o and a.: confidence
denotes the number of Gaussian corruptions parameters, v: threshold hyperparameter to switch between
used by the algorithm. estimation methods
1: function CERTIFYIRS(f?, 0, z,np,Cys, o, ¢, 7y)

¢a + top index in Cy[z]

pa < lower confidence of f from Cy|[z]

The IRS algorithm utilizes a cache C¢, which ’
stores information obtained from the RS exe- 5
cution of the classifier f foreachinputxz. The 4 ifpa < - then
cached information is crucial for the opera- 5. " EgtimateZeta(f?, 0, 2, np, Cs, ac)
tion of IRS. Cy stores the top predicted class . if pa — (o > 1 then
index c4 and its lower confidence bound ps4 4 ot

8

9

. return prediction é4 and radius 0@~ (pa — ;)
for f on input x. —

else

The standard RS algorithm takes a conser- 9:  counts < SampleUnderNoise(f”, z,np, o)
vative value of g by letting p5 = 1 — pa. 10:  pla < LowerConfidenceBound(

This works reasonably well in practice and 11 e 1 counts[éa], np, 1 — (@ + a¢))
simplifies the computation of certified radius 1% #Pla > 3 then . -
%(‘I’_l(pA) — &~ 1(pp)) to o® 1 (pa). We 13: return prediction ¢4 and radius c® " (py)
make a similar choice in IRS, which sim- 14: return ABSTAIN

plifies the certified radius calculation from

Z2(® " (pa — Co) — @ (DB + () of Theorem 2 to 0@~ (p4 — () as we state in the next theorem
(the proof is in Appendix A.2):
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Theorem 3. Ifpa — (> %, then 0@ (pa — () < $(@7Hpa — &) — 271 (DB + &)

As per our insight 2 (Section 3.1), binomial confidence interval estimation requires fewer samples for
binomial with actual probability close to 0 or 1. IRS can take advtange of this when p 4 is not close
to 1. However, when p 4 is close to 1 then there is no benefit of using ,-based certified radius for g”.
Therefore, the algorithm uses a threshold hyperparameter -y close to 1 that is used to switch between
certified radius from Theorem 2 and standard RS from Theorem 1.

If the pa4 is less than the threshold -, then an estimate of ¢, for classifier f? and the classifier f is
computed using the EstimateZeta function. We discuss EstimateZeta procedure in the next section.
If the pa — (, is greater than % then the top predicted class in the cache is returned as the prediction

with the radius 0®~*(p4 — (,) as computed in Theorem 3.

In case, p4 is greater than the threshold +, similar to standard RS, the IRS algorithm draws n?
samples of fP(x + €) by running n? noise-corrupted copies of x through the classifier fP. The
function SampleUnderNoise( f?, x, n,, o) in the pseudocode draws n,, samples of noise, €; . . . €n, ~
N(0,0%I), runs each x + ¢; through the classifier f?, and returns a vector of class counts. If the
lower confidence bound is greater than %, the top predicted class is returned as the prediction with a
radius based on the lower confidence bound p 4.

If the function does certify the input in both of the above cases, it returns ABSTAIN.

The hyperparameters « and o¢ denote confidence of IRS results. The IRS algorithm result is correct
with confidence at least 1 — (o + ag). For the case p4 > ~, this holds since we follow the same
steps as standard RS. The function LowerConfidenceBound(counts[éal, np, 1 — (o + a¢)) in the
pseudocode returns a one-sided 1 — (o + cv¢) lower confidence interval for the Binomial parameter p
given a sample counts[éa] ~ Binomial(n,, p). We next state the theorem that shows the confidence
of IRS results in the other case when p4 < « (the proof is in Appendix A.2):

Theorem 4. If P.(f(x +¢€) = fP(xz +¢€)) > 1 — (, with confidence at least 1 — a. If classifier
[ satisfies P(f(x + €) = ca) > pa with confidence at least 1 — o. Then for classifier fP,

Pc(fP(x +€) = ca) > pa — (u with confidence at least 1 — (a + o)

3.3 ESTIMATING THE UPPER CONFIDENCE BOUND (.

In this section, we present our method for estimating (,. such that P.(f(z 4+ €) # fP(z +¢€)) < (,
with high confidence (Algorithm 3). We use the Clopper-Pearson (Clopper and Pearson, 1934)
method to estimate the upper confidence bound ¢, .

We store the seeds used for randomly gener-

ating Gaussian samples while certifying the Algorithm 3 Estimate ¢,

Inputs: fP: DNN obtained from approximating f, o: stan-
dard deviation, x: input to the DNN, n,: number of Gaussian
samples used for estimating (,, Cys: stores the information to
be reused from certification of f, a¢: confidence parameter
Output: Estimated value of ¢,

function ESTIMATEZETA(f?, 0, x, np, Cy, t¢)
: na < 0

function f in the cache, and we reuse these
seeds to generate the same Gaussian samples.
seeds(i] stores the seed used for generating
i-th sample in the RS execution of f, and
predictions[i] stores the prediction of f on .
the corrsponding = + €. We evaluate fP on .
each corruption € generated from seeds and 3. seeds «— seeds for original samples from C;[z]
match them to predictions by f. ¢y and ¢y» 4: predictions « f’s predictions on samples from Cj []
represent the top class prediction by f and f? 5: fori e {1,...n,} do
respectively. na is the count of the number 6 € ~ N(0,0%I) using seeds]i]
of corruptions € such that f and fP do not 7 ¢y < predictions]i]
match on x + €. 8: e fP(zte)

9 na < na + I(cy # csv)
The function UpperConfidenceBound(na, 10:  return UpperConfidenceBound(na., np, 1 — ac)
np, 1 — a¢) in the pseudocode returns a one-

sided 1 — ¢ upper confidence interval for the Binomial parameter p given a sample na ~
Binomial(ny, p). We compute this upper confidence bound using the Clopper-Pearson method.
This is similar to how the lower confidence bound is computed in the standard RS Algorithm 1. It is
sound since the Clopper-Pearson method is conservative.
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Reusing the seeds for generating noisy samples does not change the certified radius and is 2x faster
compared to naive Monte Carlo estimation of (, with fresh Gaussian samples. Storing the seeds
used in the cache results in a small memory overhead (less than 2MBs for our largest benchmark).
We use the same Gaussian samples for estimations of p4 and (,. This is equivalent to estimating
two functions, p(X) and ¢(X), of a random variable X, where the same set of samples of X can be
employed for their respective estimations. Theorem 4 makes no assumptions about the independence
of estimating p 4 and (,, thus we can soundly reuse the same Gaussian samples for both estimations.

4 EXPERIMENTAL METHODOLOGY

Networks and Datasets. We evaluate IRS on CIFAR-10 (Krizhevsky et al.) and ImageNet (Deng
et al., 2009). On each dataset, we use several classifiers, each with a different ¢’s. For an experiment
that adds Gaussian corruptions with o to the input, we use the network that is trained with Gaussian
augmentation with variance o2. On CIFAR-10 we use the base classifier a 20-layer and 110-layer
residual network. On ImageNet our base classifier is a ResNet-50.

Network Approximations. We evaluate IRS on multiple approximations. We consider float16 (fp16),
bfloat16 (bf16), and int8 quantizations (Section 5.1). We show the effectiveness of IRS on pruning
approximation in Section 5.3. For int8 quantization, we use dynamic per-channel quantization mode.
from (Paszke et al., 2019) library. For float16 and bfloat16 quantization, we change the data type
of the DNN weights from float32 to the respective types. We perform float32, float16, and bfloat16
inferences on the GPU and int8 inferences on CPU since Pytorch does not support int8 quantization
for GPUs yet (PyTorch). For the pruning experiment, we perform the lowest weight magnitude
(LWM) pruning. The top-1 accuracy of the networks used in the evaluation and the approximate
networks is discussed in Appendix A.3.

Experimental Setup. We ran experiments on a 48-core Intel Xeon Silver 4214R CPU with 2 NVidia
RTX A5000 GPUs. IRS is implemented in Python and uses PyTorch 2.0.1. (Paszke et al., 2019).

Hyperparameters. We use confidence parameters o = 0.001 for the certification of g, and o¢ =
0.001 for the estimation of (. To establish a fair comparison, we set the baseline confidence with
ap = o+ a¢ = 0.002. This choice ensures that both the baseline and IRS, provide certified radii
with equal confidence. We use grid search to choose an effective value for . A detailed description
of our hyperparameter search and its results are described in Section 5.4.

Average Certified Radius. We compute the certified radius  when the certification algorithm did
not abstain and returned the correct class with radius r, for both IRS (Algorithm 2) and the baseline
(Algorithm 1). In other cases, we say that the certified radius » = 0. We compute the average certified
radius (ACR) by taking the mean of certified radii computed for inputs in the test set. Higher ACR
indicates stronger robustness certification guarantees.

Speedup. IRS is applicable while certifying multiple similar networks, where it can reuse the certifi-
cation of one of the networks for faster certification of all other similar networks. We demonstrate the
effectiveness of IRS by comparing IRS’s certification time for these other similar networks with the
baseline certification from scratch. We do not include the certification time of the first network in the
comparison as it adds the same time for both IRS and baseline.

5 EXPERIMENTAL RESULTS

We now present our main evaluation results. We consider the float32 representation of the DNN as f
and a particular approximation as fP. However, IRS can be used with any similar f and f?s, e.g.,
where f is an int8 quantized network and fP is the float32 network. In all of our experiments, we
follow a specific procedure:

1. We certify the smoothed classifier g using standard RS with a sample size of n.

2. We approximate the base classifier f with fP.

3. Using the IRS, we certify smoothed classifier g by employing Algorithm 2 and utilizing the
cached information C obtained from the certification of g.

We compare IRS to the baseline that uses standard non-incremental RS (Algorithm 1), to certify gP.
Our results compare ACR and certification time between IRS and the baseline for various n,, values.
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5.1 [EFFECTIVENESS OF IRS

We compare the ACR and the certification time of the baseline and IRS for the common int8
quantization. We use n = 105 samples for certification of g. For certifying g”, we consider n,, values
from {5%, ...50%} of n and 0 = 1. We perform experiments on 500 images and compute the total
time for certifying g”.

rs)

(h
s

total certification time (hrs)

total certification time

0540 0545 0550 0555 0560  0.565 0.82 0.84 0.86 0.88 0.90
average certified radius average certified radius

(a) ResNet-110 on CIFAR-10 (b) ResNet-50 on ImageNet
Figure 3: Total certification time versus ACR with o = 1.0.

Figure 3 presents the comparison between IRS and RS for int8 quantization. The x-axis displays the
ACR and the y-axis displays the certification time. The plot consists of 10 markers each for the IRS
and the baseline representing a specific value of n,,. Expectedly, the higher the value of n,,, the higher
the average time and ACR. The marker coordinate denotes the ACR and the time for an experiment.
In all the cases, IRS consistently takes less certification time to obtain the same ACR.

Figure 3a, for ResNet-110 on CIFAR10, shows that IRS reduced the certification time from 2.91
hours (baseline) to 0.71 hours, resulting in time savings of 2.12 hours (4.1x faster). Moreover, we see
that IRS achieves an ACR of more than 0.565, whereas the baseline does not reach this ACR for any
of the n,, values in our experiments.

Figure 3b, for ResNet-50 on ImageNet, for certifying an ACR of 0.875, IRS substantially reduced
certification time from 27.82 hours (baseline) to 22.45 hours, saving approximately 5.36 hours (1.24x
faster). Additionally, IRS achieved an ACR of 0.90 and reduced the certification time from 53.93
hours (baseline) to 40.58 hours, resulting in substantial time savings of 13.35 hours (1.33x faster).

5.2 IRS SPEEDUPS ON DIFFERENT QUANTIZATIONS

Next, we study if IRS can handle other Table 2: Average IRS speedup for combinations of quan-
kinds of quantization. We perform exper- tizations and o’s.

iments for 10 different values of n,, along
with distinct approximations, and 3 values

of 0. Since this would take months of ex- Dataset Architecture o fpl guangfg on int8
periment time with n and n,, values from 095 137x  1.29x 13x
Section 5.1, for the rest of the experiments C[FAR10 ResNet-20 0.5 1.79x  1.7x 1.77x
we use smaller values for these parame- 1.0 2.85x 241x  2.65x
ters. In these experiments, we compute 025 142x 1.35x 1.29%x
the relative speedup due to IRS in com- CIFARIO ResNet-110 0.5  197x 1.74x 1.77x
parison to the baseline. We use n = 10* 1.0 3.02x  2.6x  2.6x
for samples for certification of g. For cer- 0.5 12x  1L14x  1.19x
tifying g”, we consider n, values from ImageNet ResNet-50 1.0 1.43x  131x 143x
{1%,...10%} of n. For CIFARIO, we 20 204x 169x 1.80x

consider o € {0.25,0.5, 1.0}, and for Ima-
geNet, we consider o € {0.5,1.0,2.0} as in the previous work(Cohen et al., 2019). We validated that
the speedups for int8 quantization in this section for ResNet-50-ImageNet and ResNet-110-CIFAR10
are similar to those studied in Section 5.1.

To quantify IRS’s average speedup over the baseline, we employ an approximate area under the curve
(AOC) analysis. Specifically, we plot the certification time against the ACR. In most cases, IRS
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certifies a larger ACR compared to the baseline, resulting in regions on the x-axis where IRS exists
but the baseline does not. To ensure a conservative estimation, we calculate the speedup only within
the range where both IRS and the baseline exist. We determine the speedup by computing the ratio of
the AOC for IRS to the AOC for the baseline within this common range. Table 2 summarizes the
average speedups for all quantization experiments.

We observe that IRS gets a larger speedup for smoothing with larger o since on average the p 4 values
are smaller. Appendix A.7 presents a further justification for this observation. Appendix A.9 presents
further experiments with all combinations of DNNs, o, and quantizations.

5.3 IRS SPEEDUPS ON PRUNED MODELS

In this experiment, we study IRS’s abil- Table 3: Average IRS speedup for combinations of prun-
ity to certify beyond quantized models. ing ratio and o’s.
We employ /1 unstructured pruning, which

prunes the fraction of the lowest I; mag- Dataget Architecture o Prune

nitude weights from the DNN. Table 3 5% 10%  20%
presents the average IRS speedup for 0.25 I.3x  1.25x  0.99x
DNNSs obtained by pruning 5%, 10% and CIFARI0 ResNet-20 0.5  1.63x 1.39x  1.13x
20% weights. The speedups range from 1.0 25x  2.09x  1.39%
0.99x to 2.7x. As the DNN is pruned 025 135x  1.24x  1.04x

CIFARIO ResNet-110 0.5 1.83x 1.6x 1.23x

more aggressively, it’s expected that IRS’s
1.0 27x  225x  1.63x

speedup will be lower. This is due to

h'igher va'lues of G aSSO.Ciated with aggres- ImageNet ResNet-50 (1)(5) }1132: }(l)gi 823:
sive pruning. In Appendix A.4, we provide 20  187x  154x  10lx
average (, values for all approximations.
Compared to pruning, quantization typi-
cally yields smaller (, values, making IRS more effective for quantization.

5.4 ABLATION STUDIES

Next, we show the effect of v on ACR. In Appendix A.5 we show IRS speedup on distinct values of n.

Sensitivity to threshold ~y. For each DNN archi- Table 4: ACR for each 7.
tecture, we chose the hyperparameter v by run-
ning IRS to certify a small subset of the valida- 7 CIFARIO  CIFARIO ImageNet
tion set images for certifying the int8 quantized ResNet-20  ResNet-110 ResNet-50
DNN and comparing the ACR. The choice of v 09 0.438 0.436 0.458
has no effect on certification time, as we perform 0.95 0.442 0.439 0.464
. . 0.975 0.445 0.441 0.465
n,, inferences in both cases, pa < v and p4 > 7. 099  0.446 0.443 0.466
We use the same ~ for each DNN irrespective of 905 445 0442 0.467
the approximation and 0. We use the grid search (999 (444 0.442 0.464

to choose the best value of gamma from the set
{0.9,0.95,0.975,0.99,0.999}. Table 4 presents the ACR obtained for each . We chose + as 0.99
for CIFAR10 networks and 0.995 for the ImageNet networks since they result in the highest ACR.

6 RELATED WORK

Incremental Program Verification. The scalability of traditional program verification has been
significantly improved by incremental verification, which has been applied on an industrial scale
(Johnson et al., 2013; O’Hearn, 2018; Stein et al., 2021). Incremental program analysis tasks achieve
faster analysis of individual commits by reusing partial results (Yang et al., 2009), constraints (Visser
et al., 2012), and precision information (Beyer et al., 2013) from previous runs.

Incremental DNN Certification. Several methods have been introduced in recent years to certify
the properties of DNNs deterministically (Tjeng et al., 2017; Bunel et al., 2020; Katz et al., 2017;
Wang et al., 2021b; Laurel et al., 2022; 2023) and probabilisticly (Cohen et al., 2019). Researchers
used incremental certification speed up DNN certification (Fischer et al., 2022b; Ugare et al., 2022;
Wei and Liu, 2021; Ugare et al., 2023; Ugare et al.) — these works apply complete and incomplete
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deterministic certification using formal logic cannot scale to e.g., ImageNet. In contrast, we propose
incremental probabilistic certification with Randomized Smoothing, which enables much greater
scalability.

Randomized Smoothing. Cohen et al. (2019) introduced the addition of Gaussian noise to achieve
lo-robustness results. Several extensions to this technique utilize different types of noise distributions
and radius calculations to determine certificates for general [,-balls. Yang et al. (2020) and Zhang
et al. (2020) derived recipes for determining certificates for p = 1, 2, and co. Lee et al. (2019), Wang
et al. (2021a), and Schuchardt et al. (2021) presented extensions to discrete perturbations such as
lp-perturbations, while Bojchevski et al. (2023), Gao et al. (2020), Levine and Feizi (2020), and Liu
et al. (2021) explored extensions to graphs, patches, and point cloud manipulations. Dvijotham et al.
(2020) presented theoretical derivations for the application of both continuous and discrete smoothing
measures, while Mohapatra et al. (2020) improved certificates by using gradient information. Horvath
et al. (2022) used ensembles to improve the certificate.

Beyond norm-balls certificates, Fischer et al. (2020) and Li et al. (2021) presented how geometric
operations such as rotation or translation can be certified via Randomized Smoothing. yeh Chiang
et al. (2022) and Fischer et al. (2022a) demonstrated how the certificates can be extended from the
setting of classification to regression (and object detection) and segmentation, respectively. For
classification, Jia et al. (2020) extended certificates from just the top-1 class to the top-k classes,
while Kumar et al. (2020) certified the confidence of the classifier, not just the top-class prediction.
Rosenfeld et al. (2020) used Randomized Smoothing to defend against data poisoning attacks. These
RS extensions (using different noise distributions, perturbations, and geometric operations) are
orthogonal to the standard RS approach from Cohen et al. (2019). While these extensions have been
shown to improve the overall bredth of RS, IRS is complementary to these extensions.

7 LIMITATIONS

We showed that IRS is effective at certifying the smoothed version of the approximated DNN.
However, there are certain limitations to the effectiveness of IRS. First, the IRS algorithm requires
a cache with the top predicted class index, its lower confidence bound, and the seeds for Gaussian
corruptions obtained from the RS execution of the original classifier. However, storing this additional
information is reasonable since it has negligible memory overhead and is a byproduct of certification
(as trustworthy ML matures, we anticipate that this information will be shipped with pre-certified
networks for reproducibility purposes).

The smoothing parameter o used in IRS affects its efficiency, with larger values of o generally leading
to better results. As a consequence, we observed a smaller speedup when using a smaller value of o
(e.g., 0.25 on CIFAR10) compared to a larger value (e.g., 1 on CIFAR10). The value of ¢ offers a
trade-off between robustness and accuracy. By choosing a larger o, one can improve robustness but it
may lead to a loss of accuracy in the model.

IRS targets fast certification while maintaining a sufficiently large radius. Therefore, we considered
n, smaller than 50% of n for our evaluation. However, IRS certified radius can be smaller than the
non-incremental RS, provided the user has a larger sample budget. In our experiment in Appendix A.6
we test IRS on larger n,, and observe that IRS is better than baseline for n,, less than 70% of n. This
is particularly advantageous when computational resources are limited.

8 CONCLUSION

We propose IRS, the first incremental approach for probabilistic DNN certification. IRS leverages
the certification guarantees obtained from the smoothed model to certify a smoothed approximated
model with very few samples. Reusing the computation of original guarantees significantly reduces
the computational cost of certification while maintaining strong robustness guarantees. IRS speeds up
certification up to 4.1x over the standard non-incremental RS baseline on state-of-the-art classification
models. We anticipate that IRS can be particularly useful for approximate tuning when the users need
to analyze the robustness of multiple similar networks. Further, one can easily ship the certification
cache to allow other users to further modify these networks based on their specific device and
application needs and recertify the new network. We believe that our approach paves the way for
efficient and effective certification of DNNSs in real-world applications.
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A APPENDIX

A.1 OBSERVATION FOR BINOMIAL CONFIDENCE INTERVAL METHODS

In this section, we show the plots for the number of samples required to estimate an unknown binomial
proportion parameter through two popular estimation techniques - the Wilson (Wilson, 1927) and
Agresti-Coull method (Agresti and Coull, 1998). For this experiment, we use three different values
of the target error x = 0.5 %, 0.75 %, and 1.0 % and a fixed confidence value (1 — ) = 0.99 for both
estimation methods. As shown in Fig 4, for a fixed target error x, confidence (1 — «), and estimation
technique, the number of samples required for estimation peaks, when the actual parameter value
is around 0.5 and is the smallest around the boundaries. This is consistent with the observation
described in Section 3.1.
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(a) Agresti-Coull method (b) Wilson method

Figure 4: The number of samples for the Agresti-Coull and Wilson method to achieve a target error y
with confidence (1 — «) where @ = 0.01. The plots show that the number of required samples for
different methods peaks at 0.5 and decreases towards the boundaries.

A.2 THEOREMS

Theorem 2. If a classifier fP is such that for all x € R™ P, (f(w +e) #£ fP(x+e€) < and
classifier f satisfies Pc(f(x 4 €) = ca) > pa > PB > MaXepe, P (f(a: +e)=¢) andpA — (>
DB+ then gP satisfies gP (x+06) = ca for all § satisying ||§]|2 < (P~ (@ )= (P +Ca))

Proof. If f(x +¢€) =caand fP(x+¢€) = f(x +¢€) then fP(x+¢€) =
Thus, if fP(x + €) # ca then f(z + €) # caor fP(x +¢€) # f(x + )
Using union bound,
Pe(fP(x+€) # ca) SPe(f(x+€) # ca) + Pe(f(z +€) # [P (2 +€))
(I=P(f(z+e€) =ca)) < (1 —Pc(f(z +€) =ca)) + Pe(f(z+€) # fP(z+6))
Pe(f(z 4 €) = ca) S Pe(fP(z +¢) —CA)+Pe(f(I+€) # Pz +¢€))
pa— G SP(fP(z+¢€) =ca)
Similarly, if f(z + €) # cthen fP(z +¢€) # cor fP(z+¢€) # f(z +¢).
Hence, using union bound,
P(f(z +€) #¢) SP(fP(x + €) # o) + Pe(f(z + €) # fP(x + €))
(1 =Pc(f(z+€) =c)) <A -Pc(f’(x+€) =) + Pe(f(x +€) # [Pz +¢))
Pe(fP(x+e€) =c) SP(flx+e) =c) +P(f(x+e) # [z +e)
max (72 + ) = ) < max Po(f(+ €) = ) + G,

c#ca

<
<

maxIP’ fPlx+e€) =c) <D+

(
Hence, using Theorem 1, g? satlsﬁes gP (x4 6) = ca for all § satisying [|6]]2 < §(® " (pa — (o) —
o (pB + Cw))
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Theorem 3. Ifpa — (> %, then 0@ (pa — () < $(@7Hpa — &) — 271 (DB + &)

Proof. Since ps — (» > 5,0 <pa <land(, >0, weget0<ps—( <1

Andsincel—@Zﬁ,wegetﬁ—I—@ < %,andthus,O <pp+¢ <1
Since ~1(1 —t) = —d~1(t)
(P + () =-7'(1— (P5 + )
=—& 1 ((1-7B) — )
Since 1 —pa > pB
< _(b_l(pi - Cz)
Hence,

O pa— ) < -2 (BB + (o)

207 (pa =) < 27 (FE + C)

Adding $®~!(pa — () on both sides,

0@ (pa = ) < (27 (pa — G) = 27 (PE + o))

7
2
O

Theorem 4. If P.(f(x +€) = fP(x +¢€)) > 1 — (, with confidence at least 1 — a. If classifier
[ satisfies P(f(x + €) = ca) > pa with confidence at least 1 — a. Then for classifier fP,
Pc(fP(x +€) = ca) > pa — (u with confidence at least 1 — (o + o)

Proof. Suppose f and f? are classifiers such that for a fixed x € R™ P.(f(z +¢€) =ca) > pa and
P.(f(x +€) = fP(x +€)) > 1 — (,. Note that this is true by the definition of p 4, and is a separate
p4 for each x. The statement is not true for all = with single p 4

Let E; denote the event that P(f(x+€)=ca) > pa. o

Let E; denote the event that P, (f(z +€) = fP(z +¢€)) > 1 — (.

By Theorem 2,

Pe(f(x+€) = ca) SP(fP(z+€) = ca) + Pe(f(z +€) # fP(z +¢))
pa— G SP(fP(z+€) =ca)
Let E3 denote the event that py — ¢, < Pe(fP(x +¢€) = ca)
Since, E1 and Es imply Esie. B4 N Ey C Fs,
P(E3) > P(E; N Es)
By the additive rule of probability,
P(El N E2) = ]P)(El) + ]P(EQ) — P(El U E2)
IP)(EL;) > (1—0[)+(1—Oz<)—1
P(Es;) >1— (a+ o)
Hence, for classifier f?, P.(f?(x 4 €) = ca) > pa — (, has confidence at least 1 — (o 4+ a¢) [

16
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A.3 EVALUATION NETWORKS

Table 5 and Table 6 respectively present the standard top-1 accuracy of the original and approximated
base classifiers and smoothed classifiers respectively.

Table 5: Standard top-1 accuracy for (non-smoothed) networks for combinations of approximations
and o’s.

Dataset Architecture o original Quantization Prune
fpl6  bfl6 int8 5% 10% 20%
0.25 672 672 668 672 674 666 66.6

CIFAR10  ResNet-20 0.5 56.8 56.8 572 56.8 57 574 58
1.0 472 472 470 472 47 462 452
0.25 69.0 69.0 694 690 692 688 682
CIFAR10  ResNet-110 0.5 594 594 594 594 596 59 58.8
1.0 470 470 468 46.8 468 472 47
0.5 242 242 244 242 242 244 242
ImageNet ResNet-50 1.0 9.6 9.6 9.6 9.6 9.6 9.6 9.6
2.0 6.4 6.4 64 64 64 6.4 6.4

Table 6: standard top-1 accuracy for smoothed networks for combinations of approximations and o’s.

Dataset Architecture o original Quantization Prune
fpl6  bfl6 int8 5% 10% 20%
0.25 77.2 77 772 772 716 712 776

CIFARIO  ResNet-20 0.5 67.8 674 678 678 678 674 678
1.0 55.6 556 556 558 548 552 55.6
0.25 76.6 764 762 764 762 762 764
CIFARIO  ResNet-110 0.5 66.2 67 68 66.4 67 66.8 66.6
1.0 55.6 554 562 56.2 55 55 54.8
0.5 63.8 634 632 634 63.6 64 63
ImageNet  ResNet-50 1.0 488 48.6 488 486 488 486 478
2.0 344 342 338 342 342 344 334
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Table 8: ¢, for approximate networks trained on different Gaussian augmentation o’s.

Dataset Architecture o Quantization Prune
fpl6  bfl6 int8 5% 10% 20%
0.25 0.01 0.01  0.006 0.01 0.02 0.04
CIFAR10 ResNet-20 0.5 0.006  0.008 0.01 0.01 0.02 0.03
1.0 0.006 0.007 0.006 0.007 0.02 0.02
0.25  0.006 0.01 0.006 0.009 0.02 0.04
CIFARIO ResNet-110 0.5 0.006 0.006 0.006 0.008 0.02 0.03
1.0 0.006 0.008 0.009 0.007 0.01 0.02
0.5 0.006 0.009 0.006 0.01 0.02 0.09
ImageNet ResNet-50 1.0 0.007 0.01 0.006 0.01 0.02 0.08
2.0 0.006 0.01 0.006 0.007 0.02 0.07

A.4 (, EVALUATION

We compute (, value as the binomial confidence upper limit using (Clopper and Pearson, 1934)
method with n = 1000 samples. For an experiment that adds Gaussian corruptions with o to the

input, we use the network that is trained with Gaussian data augmentation with variance 2.

A.5 SENSITIVITY TO CHANGING n

In Section 5, to save time due to a large number of approx-
imations and DNNSs tested, we used n = 10* samples for
g’s certification. Here, we present the effect of certifying
with a larger n by comparing the ACR vs certification
time on the IRS and baseline approaches for ResNet-20
on CIFARI10. On average, for larger n, we demonstrate
greater speedup for larger o. For instance, for int8 quan-
tization with 0 = 1.0, the speedup for certifying with
n = 10% samples was 5.85x as compared to certification
with n = 10* which yielded at 2.65x speedup. However,
for smaller o, certification with a larger n results in less
speedup. For o = 0.25, we observe speedups from 1.29x
to 1.372 for n = 10* whereas from 0.93x to 1.15x for
n = 10°.

A.6 EVALUATION WITH LARGER np

The objective of IRS is to certify the approxi-
mated DNN with few samples. Thus, we con-
sider n,, ranging from 1% to 10%. Nevertheless,
we check IRS effectiveness for larger n, values
in this ablation study.

-
o

o
®

o
o

Since, IRS certifies radius c® 1 (p4 — ;) that
is always smaller than original certified radius.
When n,, = n, the baseline running from scratch
should perform better than IRS, as it will reach
a certification radius close to c® 1 (p4).

In this experiment, on CIFAR10 ResNet-20 with
o =1 weletn, € {6%,10%...80%} of n.

o
»

average certification time (sec)

o
N

)
o

0.

Figure 5 shows the ACR vs mean time plot for Figure 5: CIFAR10 ResNet-20 with o = 1, for

Table 7: Average IRS speedup for com-
binations of n, o’s, and quantizations for

ResNet-20 on CIFAR10.

n o Quantization
fp16 bfl6  int8
025 137x 1.29x  1.3x
104 05  1.79x  1.7x 1.77x
1.0 2.85x 241x 2.65x
025 1.22x 1.11x 1.27x
10° 0.5 1.73x  14x 1.86x
1.0 3.88x 240x 4.31x
025 1.12x 0.93x 1.15x
10 05  1.97x 1.04x 2.25x
1.0 458x 1.25x 5.85x

— baseline
IRS
-=- original

42 0.44 0.46 0.48

0.50

average certified radius

the baseline and IRS. We see that IRS gives n, € {5%,10%...80%} of n

speedup for n, = 70%. For n, = 75% and
n, = 80%, we see that baseline ACR is higher
and IRS cannot achieve that ACR.
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A.7 EFFECT OF STANDARD DEVIATION ¢ ON IRS SPEEDUP.
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0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

(a) ResNet-110 on CIFAR-10 (o = 0.25) (b) ResNet-110 on CIFAR-10 (o = 1.0)

Figure 6: Distribution of p4 values greater than 0.5 with different o for ResNet-110 on CIFAR-10.
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(a) ResNet-50 on ImageNet (o = 1.0) (b) ResNet-50 on ImageNet (o = 2.0)

Figure 7: Distribution of p4 values greater than 0.5 with different o for ResNet-50 on ImageNet.

Figure 6 and Figure 7, present the p 4 distribution between 0.5 to 1, for ResNet-110 on CIFAR-10
and ResNet-50 on ImageNet respectively. The x-axis represents the range of p 4 values and the y-axis
represents their respective proportion. The results show that while certifying larger o, on average the
pa values are smaller. As shown in Figure 7a, for o = 0.25, less than 35% of p4 values are smaller
than 0.95. On the other hand, in Figure 7b, when o = 1.0, the distribution is less left-skewed as
nearly 75% of p4 values are less than 0.95. When the o is larger, the values of p 4 tend to be farther
away from 1. Therefore, the estimation of p4 is less precise in such cases, as observed in insight 2.
As a result, non-incremental RS performs poorly compared to IRS in these situations, leading to a
greater speedup with IRS.

A.8 THRESHOLD PARAMETER vy

Table 9 presents the proportion of cases for which p4 > «y for the v chosen through hyperparameter
search in Section 5.4 for different o and networks.

Table 9: Proportion of p4 > for different o and networks.

Dataset Architecture o pa>7y
0.25 0.346
CIFAR10  ResNet-20 0.99 0.5 0.162
1.0 0.034
0.25 0.362
CIFAR10 ResNet-110  0.99 0.5 0.146
1.0 0.034
0.5 0.292
ImageNet ResNet-50 0.995 1.0 0.14
2.0 0.04
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For CIFAR10 ResNet-20, we observe that p4 > v = 0.346 when o = 0.25 and p4 > v = 0.034
when ¢ = 1.0. Additionally, for ImageNet ResNet-50, the results show p4 > v = 0.292 when
o =0.50and p4 > v = 0.04 when o = 2.0. As shown in Section 5, certifying larger o yields on
average smaller p 4. Expectedly, we see a smaller proportion of p4 > v for larger o and vice versa.

A.9 QUANTIZATION PLOTS

In this section, we present the ACR vs. time plots for all the quantization experiments. We use n = 10*
for samples for certification of g. For certifying g?, we consider n,, values from {1%, ...10%} of n.
Note that these smaller values of 2, n, compared to Section 5.1 allow us to perform a large number
of experiments.
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020 02 02 02 028 03 03 020 022 024 02 o0z 0% 0 020 0z o0z o0z
us average certed radius.

average cortfd radus. average certed rad)

(a) fpl6 (b) bf16 (c) int8
Figure 8: ResNet-20 on CIFAR10 with 0 = 0.25.
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Figure 9: ResNet-20 on CIFAR10 with o = 0.5.
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Figure 10: ResNet-20 on CIFAR10 with o = 1.0.
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Figure 11: ResNet-110 on CIFAR10 with o = 0.25.
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Figure 13: ResNet-110 on CIFAR10 with o = 1.0.
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Figure 14: ResNet-50 on ImageNet with o = 0.5.
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Figure 15: ResNet-50 on ImageNet with o = 1.0.
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Figure 16: ResNet-50 on ImageNet with o = 2.0.
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