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Abstract—Heart rate, a commonly accessible health data from
most wearables, carries rich information of a person’s well-being,
yet remains of limited deep health applications, due to the lack
of groundtruth of health events and their impact on heart rate
patterns. Specifically, standard health analytics usually are de-
signed based on well-modeled health conditions thus known data
patterns and rich training data. To bridge the gap, we propose
HeartInsightify, an exploratory framework that facilitates the
process of deriving health-relevant measurable indicators from
longitudinal heart rate data, without any of the above knowledge.
HeartInsightify focuses on comparative and qualitative study,
using model-free statistical methods such as conformal prediction,
to study similarities, perform clustering and detect outliers, and
build multi-resolutional data summaries, allowing human experts
to efficiently examine and verify their health relevance. We
conduct extensive experiments to evaluate HeartInsightify using
individuals’ free-living heart rate data collected through Fitbit
over 6 years. We illustrate the process of analyzing heart rate
data for its health relevance and demonstrate the effectiveness
of HeartInsightify. We envision that HeartInsightify lays the
groundwork for personalized health analytics with continuous
monitoring data from wearables.

I. INTRODUCTION

Continuous health monitoring [24] with integrated diagnos-
tic devices worn on the body and used in the home holds
great potential to identify and prevent early manifestations of
diseases [1]. Data before and after health events at home are
critical for causality studies, yet they are already gone at the
time of a later clinical visit. Continuous monitoring would be
instrumental from this perspective, enabling the construction
of an individual health profile with which one can make
predictions and even take early intervetions.

The prevalence of wearable devices [32], [10] provides
great opportunities for continuous monitoring because they
are accessible to the general population. In this paper, we
specifically focus on heart rate data, which is available in most
wearable technologies and has long been used to assess the
overall well-being. A number of diseases are associated with
changes in resting heart rate, and rapid or gradual changes
in heart rate over time. A high resting heart rate has been
associated with an increased risk for coronary heart disease,
and cardiovascular associated mortality [7], [8], [13]. A study
of stroke risk found that for each 10bpm increase in resting
heart rate there was a 10% increase in risk for stroke [21].
These studies though longitudinal in nature only obtained
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Fig. 1: The workflow of analyzing longitudinal heart rate data for
its health relevance. HeartInsightify bridges the gap between raw
wearable data, human intuition, and customized health analytics. The
resulting multi-level clusters and detected outliers preserve human-
understandable information, allowing human in the loop to verify and
associate the data patterns to potential health conditions.

measurements at given points in time. We hypothesize that
if heart rate data are collected continuously, data evaluation
could sooner predict onset of these heart related conditions at
a point where they are either preventable or more treatable.

However, despite some literature showing that various
health conditions (physical and/or cognitive, e.g., clinical
deterioration [14], stress and depression [31]) exhibit certain
heart rate patterns, practical applications of free-living heart
rate data for daily health management are still limited. This is
because the existence of potential health conditions and their
corresponding patterns in the heart rate data are ill-defined
or unknown a priori. Such unknowns pose new challenges
to the traditional health analytic paradigm where the specific
incidents, events and corresponding patterns are known, and
sufficient training data exist for development of analytics.
What is needed in this situation is reverse engineering lon-
gitudinal heart rate to identify the patterns, detect the health
incidents, events, thus onset, progression of conditions from
daily lives. We summarize intrinsic challenges as follows:

• Unspecified health relevant patterns to be detected. The
ground truth of when, what health incidents, events exist
and how they evolve, is seldom available because even the
user cannot fully remember or record them. Due to the
general lack of ground truth labels of corresponding conditions
in longitudinal heart rate data, existing supervised learning
approaches are inapplicable. Moreover, there is a high varia-
tion across subjects due to fundamental differences in basic
demographics, genetics, health conditions and variations in
living environments. Even for the same individual, multiple
factors can contribute to the change in trends and patterns in
heart rate, such as diseases, drug response, activities, social



interactions, sleep stages and even motion artifacts. How all
these factors impact and produce exactly what data patterns,
is largely unknown.

• Variation in time scales. Different health conditions may
manifest in noticeable patterns at different time scales. For
example, an overall rising trend of resting heart rate may last
for weeks during an infection, yet it may fluctuate within
hours during different sleep stages. Those happening at fine
time granularity may not even be noticeable to the user (e.g.,
persons with hypertyroid disease have a faster heart rate,
and those with hypothyroid disease have a slower heart rate,
however, none of them presents noticeable changes at a fine
granularity), and how data patterns are impacted are not yet
well studied or documented in the literature. The reliability
of analysis results cannot be guaranteed in the absence of
knowledge regarding the time scale of health-relevant events
and the corresponding patterns in the heart rate data, and such
uncertainties is further compounded by the inherent variability
in heart rate measures.

In this context, we introduce HeartInsightify (see Figure 1),
an exploratory framework, that facilitates the process of deriv-
ing from free-living wearable data, health relevant measurable
indicators correlated to unknown, non-predetermined health
incidents and events, for practical usefulness regarding health
analytics. The development of HeartInsightify is driven by
three major design choices:

1) Using model-free data analysis methods. To potentially
accommodate the unknowns in input data, we opt for algo-
rithms that make no assumptions on the input data. Instead,
each cluster is represented by a set of “core points” which can
be understood as representatives of this cluster. New/incoming
data points are compared with the core points of each cluster
to decide which cluster they belong. This step is carried out
by using a model-free statistical method called conformal
prediction, which allows one to test if a new data point
belongs to an empirical distribution or not. The core points
are updated with new data streams to reflect the current trend,
with historical data gradually discounted.

2) Handling data patterns at varying resolutions. We de-
velop a multi-level processing framework. At the local level
we partition the heart rate data into chunks of a given time
window size. We calculate similarities of these pieces by using
Dynamic Time Warping metric [19] on time series data (which
allows for the shifting/misalignment in the temporal domain
and allows for missing data in the input). The cluster name
is used as “label” of the chunk, with which we produce a
compact representation of the heart beat rate data for a day as
a discrete sequence where the alphabet comes from the cluster
labels. The compact data representation is crucial for system
scalability but also shows to be insightful as data patterns at
the ‘right’ resolution can be distinctive with the unnecessary
details hidden/summarized away.

3) Comparative and qualitative study. Since ground truth
labels or even hypotheses are not available, our focus is on
comparative data analysis – finding similarities, dissimilarities,
correlations and outliers in the data streams, for the same

subject over time or for different subjects living in the same
area or the same household. Even without ground truth of ‘nor-
mal’ patterns, segments of repetitive trends are grouped due
to circadian rhythm which allows the detection of outliers that
may be indicative of potential health relevant conditions for
further examination by health professionals (such as disease
progression, treatment response, or health outcomes).

We conduct extensive experiments to evaluate HeartInsight-
ify using free-living heart rate data from individuals’ Fitbit
over 6 years. We illustrate the process of analyzing heart rate
data for its health relevance and demonstrate that COVID-
affected days can be detected at a ratio of 12/16 according
to users’ annotation. We also demonstrate positive correlation
between the scale of data representation and the reliability
of analysis results, which necessitates HeartInsightify for
integrating continuous monitoring data over longer time scales.
Although we focus solely on the heart rate data in this study,
our method is applicable to time series data of any modality
without loss of generality. Our key contributions are:

• We define a new paradigm of analyzing longitudinal
heart rate data for health insights, and identify intrinsic
challenges primarily from uncertainties of the existence,
evolution and extent of potential conditions and their
patterns in free-living wearable data.

• We present HeartInsightify as an exploratory framework
that effectively transforms a large volume of longitudinal
data into a manageable set of human-understandable data
representations, for incorporating human feedback and
integrating with downstream processing models.

• We conduct extensive experiments using individuals’
heart rate data collected through Fitbit over 5 years to
illustrate the process of analyzing longitudinal heart rate
data and demonstrate the effectiveness of HeartInsightify.

II. RELATED WORK

Health analytics. There has been a growing interest in health
analytics [11] due to the aging population. With large amounts
of health data (e.g., MIMIC datasets [12]) becoming publicly
available, a substantial body of work in health analytics [30],
[29] has emerged, primarily falling into three categories: data
mining [46], representation learning [47], [41], and predictive
models [45]. Although such studies have shown promising re-
sults, they rely on traditional health data (e.g., EHR) collected
in sophisticated clinical environments [26], [27], not easily
accessible in our day-to-day life.
Health monitoring. To enhance the accessibility of health
measurements, researchers (particularly those in the sensing
community) proposed a range of sensing technologies for at-
home health monitoring. There are mainly two categories:
device-based and device-free. In device-based settings, wear-
able devices have been explored as body area sensors to mea-
sure various physiological and/or physical parameters, such as
cardiac signals [43], blood pressure [2], respiration [37], [4],
jaw motion [33], and gait [15]. In device-free settings, sensors
are deployed in the built environments to capture and analyze
health relevant information, including vital signs [20], [38],



indoor trajectories [39], body postures [48] and daily activ-
ities [23]. Although a rich set of health measurements have
been demonstrated feasible and promising, they are usually
limited to short-term settings in controlled environments.
Healthcare applications of wearable data. With the preva-
lence of wearable devices, longitudinal wearable data has
become widely available for analyzing health-related fac-
tors [32], [10]. Researchers have instantiated the concept of
digital phenotyping [22] through wearable data analysis which
provides personalized health insights (e.g., sleep quality [28],
stress level [31]) and recommendations regarding lifestyle
choices [25] (e.g., dietary behaviors [34] and physical ac-
tivities [3]). Moreover, wearable data has been demonstrated
to be indicative of disease progression (e.g., Parkinson [17])
and outcomes [5], [14], thereby facilitating timely diagnosis
and medical intervention. While these studies have identified
correlations between the wearable data and predetermined
health-related factors, discovering unspecified patterns from
extensive wearable data still remains an ongoing challenge.
Time series data analysis. Longitudinal wearable data rep-
resents a time series. Many methods using deep learning
approaches have shown promises for processing time series
data [16] and extracting features representative of a certain
condition or event [42], [47], [44], however, they lack inter-
pretability, especially when dealing with an open world prob-
lem where the patterns of events/conditions to be discovered
is unspecified. Change point detection has been extensively
studied to identify moments of changes in statistical properties
of a time series [35]. However, the detected change points
may primarily arise from normal fluctuations in physiological
parameters during repetitive daily routines, but provide limited
information regarding the temporal trend.

III. AN EXPLORATORY FRAMEWORK: HEARTINSIGHTIFY

A. Problem Formulation

We propose to build compact multi-resolution data sum-
maries for a data stream of health monitoring data. Our design
consideration is to prioritize scalability and flexibility with
both data modalities and applications. The output (i.e., data
summaries) from one scale is the input of the processing
in the next (coarser) resolution scale. At each resolution
scale, we also allow users/health professionals to examine
and provide feedback such as the normal patterns or patterns
that would warrant an alert. The parameters in our processing
module includes: the resolution scales for which the data
summaries need to be computed, for each resolution the choice
of algorithms for computing summaries and (when available)
patterns of interest to be identified. We discuss the choice of
parameters in Section IV. Last the data summaries will be
continuously updated with a steam of incoming data.

Below we describe at a high level our approach for process-
ing large-scale streaming health data. The following discussion
focuses on the particular data set we work with: heart rate data
from fitbit over multiple years. We believe the considerations
are applicable to other continuous health monitoring data.

a) Representation and clustering for heart rate data:
Raw Fitbit data comprises of sequence of time-stamped heart
rate data. For heart rate data, there are two important resolu-
tions that we consider: the heart rate pattern in a day (at smaller
time scale) and the daily patterns (days with similar activities).
Within a day, the heart rate is heavily influenced by the activity
and intensity level. Heart rate during sleep is typically lower on
average compared to that when the subject stays awake and
heart rate increases dramatically during strenuous activities.
Therefore, in our design we first divide the continuous heart
rate data into smaller time segments and perform clustering
on these segments. Next, we build a compact representation
for heart rate data at day level using these cluster labels.
Henceforth, we refer to this as the daily representation, which
more concretely represents a day as a vector with entries
corresponding to the cluster label of the corresponding time
segment. We can now cluster daily patterns using this represen-
tation and also use the same idea to cluster longer sequences.
Here we remark that this choice of resolution is tailored for
heart rate data. Other health signals would reveal different
activity patterns and might involve different considerations.
For example, blood sugar level is mainly influenced by meal
time and intake of food or medication.

b) Identifying change and outliers: With clustering at
different scales, we now consider trends or changes at the
resolution of days. One pattern of interest at this level is
anomaly detection – days when the subject deviates from a
typical routine (e.g., due to health events), as well as trends
that can be identified due to seasonal changes (e.g., holiday
break) or changes in living styles (e.g., daily gym time). When
data is available from multiple subjects, we would also be
able to correlate the identified patterns to detect population
level or sub-group level trends. This may reveal differences in
both demographics and lifestyles due to culture, geographical
location and socio-economical status.

B. Algorithm Design

a) Clustering segments: For clustering segments, we
consider each segment to correspond to data for 30 mins.
Clustering at this level using smaller length of time segment
serves two purposes: 1) Since we are now dealing with smaller
time segments, it becomes computationally less extensive for
distance computation and comparison, and 2) Similarities of
heart rate segments reveal meaningful patterns that correlate
with daily activity patterns. Changes or trends in activity level
are more informative than changes at the raw time scales.

We use Dynamic Time Warping as the distance measure
between time segments, which is widely used in time series
applications, and use a model-free method called Conformal
DBSCAN [36] for clustering. We refer to [36] for a detailed
description of the algorithm and comparisons. At a high level,
Conformal DBSCAN first identifies a cluster and compares
other segments in order to grow this cluster, one cluster at
a time. For each cluster, the algorithm maintains a list of
core data points – the data points believed to be in a cluster
with high confidence. Throughout the process of clustering,



the algorithm compares new segments to the core data points
to determine the cluster membership. For clustering segments
of 30 min, core points across different clusters form a natural
interpretation - activity patterns of different shape and heart
rate levels. Conformal DBSCAN requires a discrepancy mea-
sure for which we use sum of distances to k-nearest neighbors.

Implementing Conformal DBSCAN using sum of distances
to k-nearest neighbor requires O(n2ℓ2) time for clustering n
points of length ℓ. This computation can be expensive for
clustering smaller segments. To overcome this, we modify
Conformal DBSCAN to process data in a streaming fashion,
which we describe next.

b) Addressing scalability for clustering segments: We
first start by clustering a small subset of the continuous stream
of data. Then use the core points from these clusters to later
assign cluster label to incoming stream of data, while updating
the set of core points. We still risk increasing the size of core
points, requiring us to compute distance of a new segment
with a large set. To overcome this, we limit the the maximum
number of core points and adapt a randomized scheme to
update the set of core points. Any time the addition of a
new segment increases the size of core points beyond this
threshold, we randomly select a segment within this set with
probability depending on the recency of point. Concretely, we
assign a number to data points in order of their arrival. Let
i be the number assigned to x which belongs to core points.
If the number of core points exceed the threshold, x will be
removed from core points with probability proportional to 1/i.
Recall our setup is to deal with continuous time series data,
and removing older points from the set of core points has
the added benefit of comparing with newer points which will
account for small changes in distribution for a cluster.

c) Runtime analysis: To quantify the computational sav-
ings of this approach, consider that we run initial clustering on
subset of size m from n data points (m << n) with segments
of length ℓ. Naive implementation scales as O(n2ℓ2) for
distance matrix computation and O(n2 log k) for Conformal
DBSCAN (updating core points by maintaining distances
to k-nearest neighbors can be done for n using min-heap
and hash sort in O(n log k) time). Following this, we need
O(m2ℓ2 +m2 log k) for initial clustering of m segments. For
clustering remaining segments, setting the limit on number of
core points to be a constant adds additional O(nℓ2 log k) to
runtime. So the total time complexity improvement is from
O(n2ℓ2 + n2 log k) to O(m2ℓ2 + m2 log k + nℓ2 log k).For
small m, run time has linear dependency on the data size.

d) Clustering daily representations: Now for clustering
daily patterns, we cluster heart rate data with 24 hr segments
as a data point and use cluster labels for representation. Using
30 min segments we represent 24hrs as 48 continuous cluster
labels, each corresponding to 30 min segment of the day. This
lets us form representation for any arbitrarily long sequence for
clustering. We refer to this approach henceforth as multi-level
clustering. For multi-level clustering, we use a combination of
edit distance and DTW as our distance measure. To measure
distance between two different days, we compare cluster label

for respective 30 min time segment and for those that have
different labels we sum up the DTW distance. Comparing at a
coarse level, this measure ignores the small changes in similar
patterns and focuses on potential change in activities. Note
that we can also cluster days by considering 24hr heart rate
data, but now the length of segments (ℓ) is large and recall
computing DTW scales quadratically with ℓ. We consider
this approach for one of our experiments (discussed in detail
in Section IV). Note that for clustering longer sequences,
one may also use the naive implementation with multi-level
representation as with longer segments and fewer data points,
computing the distance matrix becomes feasible.

e) Identifying outlier days: In order to identify outlier
days, we consider the multi-level representation. Using this
representation, we then consider edit distance coupled with
a standard outlier detection algorithm (Local Outlier Factor).
We discuss our findings in Section IV.

IV. EXPERIMENTS

We conduct extensive experiments to demonstrate the ef-
fectiveness of HeartInsightify and illustrate the process of
analyzing longitudinal heart rate data for the discovery of
unspecified health relevant information. In experiments, we
aim to answer following questions:

– Q1: How does HeartInsightify facilitates making sense
of heart rate data for its health relevance?

– Q2: When integrating continuous monitoring data, how
does the scale of data representations impact the relia-
bility of analysis results?

A. Experimental Setup

We use heart rate data of two subjects, referenced hereafter
as subject 1 and subject 2, over a period of 6 years (2016 to
2021). For majority of our results we focus on the year 2021
for subject 1 and 2019 for subject 2 as they correspond to the
time period with most health related events (e.g, Covid) as
confirmed by the subjects. Below we report year-wise statistics
about heart rate data from Fitbit for subject 1 in Table I.

TABLE I: Subject 1 data statistics (in bpm) across years.

2016 2017 2018 2019 2020 2021

Mean 74.49 72.76 68.36 71.33 69.66 71.77
Std. Dev 2.06 2.04 1.88 2.32 2.33 1.87

75th percentile 86 83 76 78 76 83

a) Preprocessing: The heart rate data obtained from
Fitbit consists of data sampled at uneven frequency and time
periods with missing data. In order to deal with these issues,
we use standard pre-processing techniques for time series
data: linear interpolation and resampling. We resample at 10s
interval, and use median for interpolation. This results in
∼315k data points for a year. We then group these data points
in time segments of 30 min, ending up with ∼17.5k data
points, each as a vector of dimension 180.



b) Choosing the length of time segment: The choice
of length of time segment allows a trade-off between the
resolution at which we hope to capture the patterns and the
number of data points. For our goal of identifying days that are
different from the regular ones, we focus on activities that form
a part of individuals routine activities like workout, commuting
to work, etc. With this aim, we choose 30 mins as the length
of time segment, as this is small enough to capture meaningful
variation but long enough to have relatively fewer data points.
Note that different analysis warrant different length of time
segments. E.g, for trends in sleep patterns and identifying days
where changes in sleep patterns occur, one could consider 5
mins segments, focusing only on night time data.

TABLE II: Clustering algorithm parameters.

Parameter 2016 2017 2018 2019 2020 2021

k 15 15 17 14 15 8
ε 0.6 0.7 0.64 0.6 0.45 0.8

c) Choosing the algorithm parameters: For initial clus-
tering, we consider the data for month of January for each
year and simulate the rest of data in streaming fashion. Since
Conformal DBSCAN does not require specifying number of
clusters a priori, we discuss our process for choosing the
parameters. Conformal DBSCAN starts by identifying the
densest set of data points.We observed that for heart rate data,
time segments in this initial set of densest cluster usually
corresponded to sleep. As a result, we use the following
heuristic: select the parameters resulting in appropriate number
of points being clustered for sleep segments. More concretely,
expecting an average 7hr of sleep for the month of January,
we would expect ∼ 400 data points within this cluster. We
believe this approach provides us clustering specific to the
individual while only requiring a very high level knowledge
of sleep pattern for a month. We report the parameters (k :
number of neighbors for the discrepancy score measure, and
ε : parameter to control growing phase of clusters) used for
our experiments in Table II. All our experiments were run on
a virtual server with 8 core CPU and 64GB RAM.

B. Sensemaking for Health Relevance (Q1)

For recognizing health related events in a year, our goal is to
identify the days that deviate from normal days which are dif-
ferent for different individuals. The multi-scale representation
captures activity level information specific to individual. As a
result the days detected as outliers have a natural interpretation
– days where activities are significantly different from the
usual ones for the individual. For detecting outliers we focus
on data from 2021 for subject 1 and use k = 8 and ε = 0.75
for clustering daily patterns. Figure 2 shows representative
samples of daily-basis data representation corresponding to
each day-wise cluster. The color code is used to visualize
the distribution of local temporal patterns encoded by the
corresponding cluster assignments. The resulting data repre-
sentation accommodates both short and long time scales, and
is indicative of nuanced changes in health status. The outlier
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Fig. 2: Representative samples of daily-basis data representation
corresponding to each day-wise cluster.

day (first row) has longer sleep like pattern (cluster colored
red) during mid-day which is different from other clusters for
daily patterns (row 2, 3).

As we do not have access to labeled data, the outliers
detected were manually labeled by subject 1 as part of the
human evaluation. From among the days that were detected
as outliers the noteworthy days confirmed by human evaluation
corresponded to a significant health event and the week indi-
vidual contracted Covid. We also observe sudden increase in
the number of outlier days detected for the month of November
2021 and December 2021 which was confirmed as the time
period with health events. Apart from health related events,
other labels provided by human annotations for days detected
as outliers consisted of “very sedentary”, “day with change in
workout time” and “recovery” which corresponded to restful
days after a health event.

In order to understand how good multi-level representation
is for detecting outliers, we examine days considered as
outliers by running Conformal DBSCAN of 1-day segment of
raw data (data points not clustered are treated as outliers). With
smaller time segments, 12 of 16 Covid days were identified
as outliers whereas multi-level representation identified 2. On
the other hand, smaller time segments only identified 6 of 17
recovery days as outliers whereas multi-level representation
identified 12. Out of 45 outlier days for smaller time segments,
14 were false positives and of 53 outlier days for multi-
level representation, 21 were false positives. As the choice of
representing same data is different for these approaches, the
reason for a day being considered outlier may be different.

1) Remarks: The outliers suggested by our method are rea-
sonably reliable for distinguishing Covid-affected days from
regular days, and can be further combined with heuristics
about continuity in the Covid period to identify a complete
period. In contrast, we observe a relatively low detection rate
for the days annotated as “recovery days”, during which the
subject would stay more “sedentary” than usual. The low
detection rate of “recovery days” is due to the fact that the
difference between regular and recovery days is nuanced. This,
however, is also fixable when combined with simple heuristics.
The false positive rate achieved in this implementation is
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Fig. 3: Visualizations of different data representations through 2D PCA projections.

below 1/3, and it is tunable based on the significance level
configured in conformal prediction framework to be updated
in the loop according to trade offs in the downstream analysis.

C. Integrating Data for Reliability (Q2)

In the longitudinal heart rate data, there exist various sources
of variability that may impact of reliability of analysis results.
For example, short-scale measures may vary a lot during the
day depending on daily routine activities at different times.
Motion artifacts may also contribute to the variability/noise
to heart rate data. We conduct experiments to demonstrate
that long-scale data presentation through multi-level data in-
tegration is more resilient to variability thus reliable than
short-scale data representation.

1) Discriminating between regular and Covid periods:
We first evaluate the discriminative power using different
data representations in distinguishing between regular days
and Covid-affected days. Empirically, we choose 15, 30, 45
minutes (which fall within the typical range of the clinical
visit duration) as short-scale data representations, to preserve
local time-series patterns.

TABLE III: Wilcoxon rank sum test (Regular vs. Covid).

Data representation Statistical significance Effect size

15-min **** 0.1173
30-min **** 0.1236
45-min **** 0.1302
daily **** 1.1277

Note: the symbols *, **, ***, **** denote the statistical
significance at 10%, 5%, 1%, and 0.1% levels, respectively.

Figure 3 shows the 2D PCA projections [9] of different
representations of longitudinal heart rate data during regular
days and Covid-affected days. It visually shows that daily-
basis data representation is more discriminative than short-
period ones. We further quantify the discriminative power
of the representation based on the observation that the data
from the same category usually has a similar distribution of
intra-group pairwise distances, and vice versa. We contrasting
distributions of pairwise distances among regular and Covid-
affected days using respective data representations, and DTW
is used to measure distance between time series data. We
apply Wilcoxon rank sum test (also known as the Mann-
Whitney U test, which does not assume a specific distribu-
tion for the data) to verify if there is significant difference
between the distributions of regular days and Covid-affected

days (see Table III). Surprisingly, the distribution differences
between regular and Covid-affected days using different data
representations are all comparably significant according to
the p-value, be it short-scale (15, 30, 45 minutes) or daily-
basis data representation. While p-value does not show much
difference between different data representations, the effect
size quantified via Cohen’s d [40] shows that using daily-basis
data representation is more discriminative than short-scale (15,
30, 45 minutes) data representations.

2) Clustering and outlier detection: Next, we assess the re-
liability of the framework for clustering and outlier detection.
Variability in heart data data stems mainly from two sources
that may impact the analysis results: motion artifacts that add
Gaussian noise to heart rate measures [18], and uncertainty in
the personal schedule of physical activities during a day that
may change the order of certain heart rate trends. To evaluate
the reliability of our framework, we add artificial perturbations
according to the two sources of variability in real data.

TABLE IV: Normalized Mutual Information between original
and perturbed clustering results.

σ NMI NMI
(30-min) (1-day, multi-level)

0.1 0.7666 0.8027
0.5 0.7019 0.7443
1 0.6972 0.6816

In Table IV, we compare the reliability of clustering results
between using 30-min representation and 1-day representation.
We quantify the reliability of clustering results according to
Normalized Mutual Information score (NMI), which ranges
from 0 to 1; “0” means no agreement with original results,
indicating fully skewed, while “1” indicates full agreement [6].
For clustering time segments, we add Gaussian noise of
different magnitudes (standard deviation σ = 0.1, 0.5, 1). For
multi-level clustering, Gaussian noise is added in obtaining
the initial cluster labels of 30 min segments, which are then
used to represent 1-day time segment. Then we performing
clustering on this representation of 1-day segments. The results
show that integrating data into 1-day time segments in a multi-
level setting is more resilient to the perturbations than using
the 30-min one, as the impact of perturbations is confined in
the local scale when the Gaussian noise is limited (σ ≤ 0.5).

Furthermore, we aim to understand how much perturbation
in the local patterns (represented and encoded by clustering



TABLE V: The relation between the fraction of flip in the data
representation and detection as outlier.

Fraction of flip Ratio of becoming outlier

3/48 15%
6/48 54%
12/48 93%

results) will cause 1-day segments be skewed and detected as
outlier. Towards this, we start by selecting days randomly from
the year that were not recognized as outliers. For these days,
we randomly select and change their local cluster assignments
to cluster labels other than the current ones. We then run
outlier detection algorithm for data corresponding to the entire
year (using same parameters). We wish to observe how much
perturbation (e.g., the ratio of cluster assignments that are
flipped) is needed before a particular day is considered to be
an outlier. To this extent, we select 3, 6 and 12 labels out
of 48 in a 1-day data representation to flip (corresponding to
6.25%, 12.5% and 25%, respectively). Averaging over repeated
experiments, with same parameters for the outlier detection
algorithm across all runs, we report the ratio of days randomly
selected ones that were detected to be outliers (Table V).
We observe that flipping 25% of local labels in a daily-basis
data representation (corresponding to 6hrs) would cause the
majority (93%) of normal samples to become outliers.

D. Correlation analysis

Access to longitudinal heart rate data for multiple subjects
provides further opportunities for investigating interesting pat-
terns at group and population level. As an elementary study
in this direction, we try to investigate the cross correlation
of heart rate date across two cohabiting subjects, comparing
the heart rate data month wise for two cohabiting subjects.
For comparison, we also perform cross correlation on the data
represented using cluster label for 30 min segments (we use
k = 12 and ε = 0.9 for clustering subject 2’s data).

For evaluation, we obtain feedback from the subjects on
pattern we expect to observe, according to which we expect
to observe months of February and March to be relatively
similar (in terms of activities and daily patterns) while May
and September to be different. We focus on correlation values
for these months due to space constraints.

TABLE VI: Cross correlation between subjects

February March May September

Heart rate data 0.22 0.37 0.44 0.42
30 min segments 0.33 0.30 0.29 0.16

As observed, the cross correlation between sequences better
aligns with human feedback with cluster labels as representa-
tion rather than raw data. We attribute this to the fact that data
itself is at finer level and noisy whereas representation using
30 min segments enables us to capture details at a coarser
level, enabling us to focus on trends and changes in a more
meaningful way.

1) Remarks: In this case study, the long-scale data rep-
resentation (e.g., daily basis) shows better consistency (com-
pactness) among the same period of a certain condition (e.g.,
Covid), and is discriminative from the non-Covid period. In
contrast, short-period data representation varies largely over a
day, subject to condition-irrelevant factors, not discriminative
between Covid and non-Covid periods. We conclude that long-
scale representation is more resilient to perturbations than
short ones as the impact of perturbations is confined to local.

V. CONCLUSION AND FUTURE WORK

This work is a starting point towards an ecosystem that
exploits continuous health data collected through wearable
devices for health monitoring and management. The re-
cent breakthrough in machine learning techniques and large-
scale health data collection through wearable devices have
demonstrated feasibility of using such data for well defined
events/activities/health conditions (e.g., [15], [28]). But ex-
tending such efforts for unknown, diverse health conditions
without high quality ground truth label faces a major gap.
Solving this issue requires the inclusion of both users and
health professional in the loop to identify, define and label
patterns that are of interest to the subject. This work provides
basic data processing and prepares data representations that
facilitate the discovery and confirmation of interesting pat-
terns, and is on the trajectory of eventually fully exploiting
wearable measurements for health benefits. Therefore the work
in this paper is considered as complementary and instrumental
to existing literature.

There are a number of opportunities for future work in-
cluding and not limited to the following directions: 1) our
design choice is empirically motivated by the particular Fitbit
data set and guided by health professionals’ recommendations.
In general, we would like to develop a set of metrics to
evaluate different data analysis methods, including user studies
with health professionals in the loop to evaluate the identi-
fication of interesting short-term and long term patterns; 2)
study a larger pool of subjects and correlate data analysis of
interesting groups (individuals within the same demographic
group, geographical location, profession, or with similar health
concerns) to reveal new discoveries on commonalities and
individualities; 3) apply the framework to a diverse set of
health related signals for multi-modality analysis.
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