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Abstract

The minimax problems arise throughout machine learning applications, ranging
from adversarial training and policy evaluation in reinforcement learning to AU-
ROC maximization. To address the large-scale distributed data challenges across
multiple clients with communication-efficient distributed training, federated learn-
ing (FL) is gaining popularity. Many optimization algorithms for minimax problems
have been developed in the centralized setting (i.e., single-machine). Nonetheless,
the algorithm for minimax problems under FL is still underexplored. In this paper,
we study a class of federated nonconvex minimax optimization problems. We pro-
pose FL algorithms (FedSGDA+ and FedSGDA-M) and reduce existing complexity
results for the most common minimax problems. For nonconvex-concave problems,
we propose FedSGDA+ and reduce the communication complexity to O(ε−6).
Under nonconvex-strongly-concave and nonconvex-PL minimax settings, we prove
that FedSGDA-M has the best-known sample complexity of O(κ3N−1ε−3) and
the best-known communication complexity of O(κ2ε−2). FedSGDA-M is the
first algorithm to match the best sample complexity O(ε−3) achieved by the
single-machine method under the nonconvex-strongly-concave setting. Extensive
experimental results on fair classification and AUROC maximization show the
efficiency of our algorithms.

1 Introduction

The nonconvex minimax optimization has been actively applied to solve enormous machine learning
problems, such as adversarial training [56, 61], generative adversarial networks (GANs) [16, 18],
policy evaluation in reinforcement learning [55, 22, 25], robust optimization [11, 60], AUROC
(area under the ROC curve) maximization [39], etc. Many single-machine minimax optimization
algorithms have been proposed to address these problems.
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Machine learning tasks with large-scale distributed datasets call for distributed training [3] because
of its ability to shorten the calculation time and train models with data from various locations. At the
same time, communication overhead has emerged as the most restrictive bottleneck of distributed
training due to the increasing model and data size. To tackle these issues, federated learning (FL) [44]
has emerged as a promising technique since it makes use of distributed data from different clients,
avoids frequent transmission between clients and the central server, and preserves data privacy. In
FL, clients train and update their models locally, and the server aggregates and averages the model
parameters from all clients periodically. Only models are shared among clients and the training
data are stored locally, which provides a certain level of data privacy. In addition, FL also enhances
computation power since it utilizes many clients to train models.

Although federated learning has gained popularity, most existing works focus on the standard
stochastic minimization problem [33, 48, 34, 36, 71, 58, 70, 72]. Recently, some algorithms for non-
minimization optimization in FL are proposed [53, 21, 15, 50, 59]. However, existing FL minimax
algorithms have not achieved the complexity level reached by single-machine algorithms. To bridge
this gap, we consider the federated nonconvex minimax optimization problem as follows:

min
x∈Rd1

max
y∈Rd2

{
F (x, y) =

1

N

N∑
i=1

fi(x, y)

}
(1)

where the function fi(x, y) = Eξi∼Di
[fi(x, y; ξi)] : Rd1 × Rd2 → R is the loss function of the ith

client. We restrict our focus to the non-convex minimax problem, where fi(x, y) is nonconvex over
x ∈ Rd1 and concave or nonconcave over y ∈ Rd2 . N is the total number of clients. ξi = (xi, yi) ∼
Di denotes data point ξi is sampled from the local data distribution Di on machine i. In this paper,
heterogeneous datasets are considered, namely, Di and Dj (i ̸= j ) are not identical.

Some recent works have attempted to solve federated minimax optimization for convex-concave
setting [11, 26, 52]. Due to the popularity of deep neural networks, nonconvex minimax has wider
applications. More recently, some works [50, 53, 10, 19, 67] extend single-machine algorithms, such
as SGDA, to federated learning settings for nonconvex minimax optimization. However, theoretical
understandings of federated minimax optimization remain limited in the literature. In the context of
stochastic smooth nonconvex minimax problems, their analysis either relies on strict assumptions
[19] or achieves suboptimal convergence results [50]. For example, single-machine methods [42, 28]
achieve O(κ3ε−3) under nonconvex-strongly-concave setting, which is much better than O(κ4ε−4)
achieved by the best FL minimax algorithm [50, 63] in existing literature. Therefore, a natural
question arises:

Can we design stochastic gradient decent ascent methods with better sample and com-
munication complexities to match the convergence rate of single-machine counterparts
for solving the problem (1)?

In this paper, we provide an affirmative answer to the aforementioned question and propose a class of
algorithms to solve the problem (1) under different settings. In particular, we consider three most
common classes of nonconvex minimax optimization problems: 1) NC-C: NonConvex in x, Concave
in y; 2) NC-SC: NonConvex in x, Strongly-Concave in y; 3) NC- PL: NonConvex in x, PL-condition
in y. For each of these problems, we propose a new algorithm with provably better convergence rate
(please see Table 1) and provide a theoretical analysis. Our main contributions are four-fold:

1) NC-C setting. We propose FedSGDA+, and prove it has sample complexity of O(N−1ε−8)
and communication complexity of O(ε−6). FedSGDA+ takes advantage of the structure of
FL by adding the global learning rate at the server and reduces communication complexity
to O(ε−6) from O(ε−7) in [50]. It also achieves a linear speedup to the number of clients.

2) NC-PL setting. We propose a federated stochastic gradient ascent (FedSGDA-M) algorithm
with the momentum-based variance reduction technique. It has the best sample complexity
of O(κ3N−1ε−3) and the best communication complexity of O(κ2ε−2). Compared with
existing momentum-based variance reduction algorithms, our result employs a novel theo-
retical analysis framework that produces a tighter convergence rate (i.e., our rate gets rid of
a logarithmic term appearing in existing works).

3) NC-SC setting. FedSGDA-M can be directly applied to the NC-SC setting since the PL
condition is weaker than strong-concavity. Our algorithm is the first work to reach sample
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Table 1: Complexity comparison of existing nonconvex federated minimax algorithms for finding
an ε-stationary point. Sample complexity is the total number of the First-order Oracle (IFO) to
reach an ε-stationary point. Communication complexity denotes the total number of back-and-
forth communication times between clients and the server. Here, N is the number of clients, and
κ = Lf/µ is the condition number.

Type Algorithm Reference Sample Communication
Nonconvex
concave

Local SGDA+ [50] O
(
N−1ε−8

)
O(ε−7)

FedSGDA+ Ours O
(
N−1ε−8

)
O
(
ε−6

)
Nonconvex
Strongly
Concave

Local SGDA [50] O
(
κ4N−1ε−4

)
O(κ3ε−3)

Momentum Local SGDA [50] O
(
κ4N−1ε−4

)
O(κ3ε−3)

FEDNEST [53] O
(
κ3ε−4

)
a O

(
κ2ε−4

)
FedSGDA Ours O

(
κ3N−1ε−3

)
O
(
κ2ε−2

)
Nonconvex
PL

Local SGDA [50] O
(
κ4N−1ε−4

)
O(κ3ε−3)

Momentum Local SGDA [50] O
(
κ4N−1ε−4

)
O(κ3ε−3)

SAGDA [63] O
(
N−1ε−4

)
O(ε−2) b

FedSGDA Ours O
(
κ3N−1ε−3

)
O
(
κ2ε−2

)
a Their theoretical analysis does not report the dependency on N.
b Their theoretical analysis does not report the dependency on κ.

complexity of O(ε−3) in federated learning. In addition, FedSGDA-M does not rely on a
large batch size to reach optimal sample complexity compared with single-machine minimax
algorithms [29, 42].

4) Extensive experimental results on fair classification and AUROC maximization confirm the
effectiveness of our proposed algorithm.

2 Related Work

2.1 Single-Machine Minimax

Nonconvex-Concave (NC-C) setting. [31, 46, 45, 54, 35] proposed various deterministic and
stochastic algorithms to solve the NC-C minimax problems. All of these algorithms, however, have a
double-loop structure and are thus relatively complicated to implement. They decouple the minimax
problem into a minimization problem and a maximization problem and use a nested loop to update
variable y while keeping variable x constant. Subsequently, [38] studied the complexity result of the
single-loop algorithm (SGDA) for the NC-C minimax problem and proves the stochastic algorithm
achieves O(ε−8) complexity. SGDA is a direct extension of SGD from minimization optimization
to minimax optimization problems. Recently, [43] providing a unified analysis for the convergence
of OGDA and EG methods in the nonconvex-strongly-concave (NC-SC) and nonconvex-concave
(NC-C) settings.

Nonconvex-Strongly-Concave (NC-SC) setting. [38] analyzed the stochastic gradient descent
ascent (SGDA) algorithm and proved that SGDA has O(κ3ε−4) stochastic gradient complexity.
To reduce the convergence rate, [42] proposed a stochastic GDA algorithm (i.e. SREDA) with a
double-loop structure based on the variance reduction technique of SPIDER [13] and reduce the
complexity to O(κ3ε−3). [29] used momentum-based variance reduction technique of STORM [7]
and proposed Acc-MDA. Acc-MDA is a single-loop algorithm, which gets the same convergence
result as SREDA. Furthermore, adaptive minimax algorithms are introduced [28, 30] to solve the
nonsmooth nonconvex-strongly-concave minimax problems based on dynamic mirror functions.
[65] used a nested adaptive framework to design parameter-agnostic nonconvex minimax algorithm.
[69] proves that VR-based SAPD+ has the complexity of O(κ2ε−3). However, whether the best
convergence result of O(ε−3) in single-machine methods can be achieved in the federated setting
is an open question. In addition, [23] conducts an in-depth investigation of limitations of GDA
algorithm (e.g., smaller learning rate, cycling/divergence issue) and gives a systematic analysis of
how to improve GDA dynamics.
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Nonconvex-Nonconcave (NC-NC) setting. There is extensive research on NC-NC problems [12]
and the Nonconvex-PL condition is a special class of functions that interests us the most. Polyak-
Łojasiewicz (PL) condition does not require the objective to be concave and recent works show
that the PL condition could hold in the training process of overparameterized neural networks with
random initialization [1, 5]. Recently, many deterministic methods [45, 64, 14] are proposed for
NC-NC problems under the NC-PL setting. [20] proposed a PDAda method for Nonconvex-PL
minimax optimization with the restriction of the concavity condition, and [6] focuses on the finite-sum
Nonconvex-PL minimax optimization. Stochastic alternating GDA and stochastic smoothed GDA
proposed in [66] achieve complexity of O(κ4ε−4) and O(κ2ε−4), respectively.

2.2 Distributed/Federated Minimax

Distributed training has rapid development in minimax optimization in recent years, driven by the need
to train large-scale datasets [40]. Under the serverless decentralized setting, algorithms for nonconvex
minimax have been studied extensively in nonconvex-strongly-concave setting [4, 62, 68, 41, 57] and
nonconvex-PL setting [27].

In the FL setting, some works analyzed algorithms for convex-concave problems [11, 37, 26, 52].
However, as nonconvex models (e.g., deep neural networks) being more and more prevalent, there
is a growing need for federated nonconvex minimax optimization, such as federated adversarial
training [49], federated deep AUROC maximization [19] and federated GAN [47]. [19] and [67]
focus on imbalanced data tasks. They reformulated the AUROC maximization problem as the min-
max problem under the FL setting. But their analysis relies on strict assumptions that deep models
satisfy the PL condition and only focuses on PL-strong-concave minimax. [49] converted the robust
federated learning into the minimax problem, where only model parameters, namely min variables,
are exchanged among clients via the server. [10] proposed Local SGDA and Local SGDA+. Local
SGDA is the local-update version of the SGDA algorithm in FL. Different from local SGDA, in local
SGDA+, max variable y is updated with a constant min variable x̃ and the snapshot x̃ updates every
S iteration. Afterward, [50] improves sample complexity and communication complexity of Local
SGDA for NC-SC and NC-PL settings, and Local SGDA+ for NC-C setting. [50] also proposes a
Momentum Local SGDA, which achieves the same theoretical results as Local SGDA for NC-PL and
NC-SC settings. In addition, [53] designs FEDNEST with two nested loops. Although FEDNEST
is composed of FEDINN (a federated stochastic variance reduction algorithm ), their convergence
complexity is not improved over vanilla Local SGDA. Afterward, [63] proposes SAGDA under
NC-PL setting, which yields a better communication complexity (i.e., O(ε−2)). However, its analysis
does not consider the effect of condition number κ. More recently, [51] considers federated minimax
optimization with Client Heterogeneity in nonconvex concave and nonconvex strongly-concave
settings.

Relation to Existing Works. We propose FedSGDA+ for NC-C setting and FedSGDA-M for NC-SC
and NC-PL settings. In NC-C setting, we discover that the addition of a global step size leads to better
communication complexity. Under this circumstance, theoretical analysis is more challenging as we
not only need to consider the complicated structure of the minimax problem but also need to handle
the local update and global update separately. For FedSGDA-M, we relax the requirement of step
size (specifically designed unnatural step size is often required in STORM-like approaches [7, 34]),
which requires novel proof techniques to obtain. Thus our result does not contain a logarithmic term
and provides a tighter convergence rate (Seen in contributions 1 in [34]). In addition, with different
theoretical frameworks, our better sample complexity doesn’t rely on a big batch size, while the
single-machine minimax algorithm with variance reduction (Acc-MDA) in [29] (Table 2) needs a
large batch to achieve the same sample complexity.

3 Algorithms and Convergence Analysis

Notation: ∥ · ∥ denotes the ℓ2 norm for vectors. a = O(b) denotes that a ≤ Cb for some constant
C > 0. Given the mini-batch samples B = {ξj}bj=1, we let ∇fi(x, y;B) = 1

b

∑b
j=1 ∇fi(x, y; ξi).

Assumption 3.1. (i) Unbiased Gradient. The gradient of each component function fi(x, y; ξ)
computed at each client is unbiased for all ξ(i) ∼ Di, i ∈ [N ]:

E[∇fi(x, y; ξ
(i))] = ∇fi(x, y),
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Algorithm 1 FedSGDA+ Algorithm
1: Input: T , local step sizes ĉ, c, global step sizes ηx, ηy, k = 0, numbers of inner updates Q and

outer update S, and mini-batch size b, N clients;
2: Initialize: xi

0 = x̃0 = x̄0, y
i
0 = ȳ0,

3: for t = 0, 1, . . . , T − 1 do
4: for i = 1, 2, . . . , N do
5: Local Update:
6: for q = 0, 1, . . . , Q− 1 do
7: Draw mini-batch samples Bi

t,q = {ξji }bj=1 with |Bi
t| = b from Di locally

8: xi
t,q+1 = xi

t,q − ĉ∇xfi(x
i
t,q, y

i
t,q;Bi

t,q)

9: yit,q+1 = yit,q + c∇yfi(x̃k, y
i
t,q;Bi

t,q)
10: end for
11: end for
12: xi

t+1,0 = x̄t+1 = x̄t + ηx
1
N

∑N
i=1(x

i
t,Q − x̄t)

13: yit+1,0 = ȳt+1 = ȳt + ηy
1
N

∑N
i=1(y

i
t,Q − ȳt)

14: if mod (t+ 1, S) = 0 then
15: k = k + 1
16: x̃k = x̄t+1

17: end if
18: end for
19: Output: x and y chosen uniformly random from {(x̄t, ȳt)}Tt=1.

(ii) Variance Bound. The following inequalities hold for all ξ(i) ∼ Di, i, j ∈ [N ]:

E∥∇fi(x, y; ξ
(i))−∇fi(x, y)∥2 ≤ σ2

1

N

N∑
i=1

∥∇fi(x, y)−∇F (x, y)∥2 ≤ ζ2 (2)

The Assumption 3.1 is a standard assumption in stochastic optimization, which will be used through-
out the rest of the paper. In FL algorithms, the Assumption 3.1 (ii) is frequently used to bound
the variance and data heterogeneity. The heterogeneity parameter, ζ, denotes the level of data
heterogeneity. In the homogeneous data configuration, ζ = 0.

3.1 Nonconvex Concave (NC-C) Problems

Assumption 3.2. (Concavity). The nonconvex function f(·, ·) is concave in y if for a fixed
x ∈ Rd1 , ∀y, y′ ∈ Rd2 , we have

f(x, y) ≤ f(x, y′) + ⟨∇f(x, y′), y − y′⟩ (3)

To solve the problem (1) under the NC-C setting and reduce the complexity, we propose FedSGDA+
(Seen in algorithm 1). Although local SGDA+ [50] achieves the same sample complexity as the single-
machine method (SGDA), its communication complexity is not optimal. This unsatisfactory result
is due to the fact that local SGDA+ simply extends the single-machine method into the distributed
setting, and does not consider the complicated local-server structure in FL.

In FedSGDA+, Line 5-10 are conducted in the local clients. The updates of variable x are similar
to the standard stochastic algorithm for minimization problems, such as FedAvg. We sample data
points and update the x locally with the current variable xi

t,q and yit,q. However, for the y-updates,
stochastic gradients are calculated with the latest snapshot of x(i.e., x̃k) and in each local iteration, y
updates with the constant x̃k as seen in Line 9 in Algorithm 1. The x̃k is updated every S rounds (
Line 14-16 in Algorithm 1).

In addition, we make use of the advantage of FL and introduce the global step size ηx, ηy, which
provides the flexibility of FL training (Seen in Line 12-13). Local SGDA+ could be regarded as a
special case of FedSGDA+. We now provide the convergence analysis of FedSGDA+ and introduce
the necessary assumptions. The details of the proofs are provided in the supplementary materials.
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Assumption 3.3. (Smoothness). Each local function fi(x, y) has a Lf -Lipschitz continuous gradients,
i.e., ∀x1, x2 and y1, y2, we have

∥∇fi(x1, y1)−∇fi(x2, y2)∥ ≤ Lf∥(x1, y1)− (x2, y2)∥ (4)

The Assumption 3.3 on the smoothness is a standard assumption in stochastic optimization [2, 17].
Assumption 3.4. (Lipschitz continuity in x). For the function F , there exists a constant Gx , such
that for each y ∈ Rd2 , and ∀x, x′ ∈ Rd1 , we have

∥F (x, y)− F (x′, y)∥ ≤ Gx∥x− x′∥

Under the NC-C setting, the function F (·, ·) is concave in y. Following [9], we define Φ(x) =
maxy F (x, y) and the Moreau envelope of Φ(·) is defined below:
Definition 3.5. (Moreau Envelope) A function Φλ(·) is the λ-Moreau envelope of Φ(·), for λ > 0, if
∀x ∈ Rd1 ,

Φλ(x) = min
z

Φ(z) +
1

2λ
∥z − x∥2

From [38], we know that when we have a point x that is an ε-stationary point of Φλ(x), then x is
close to a point x′ which is stationary for Φ(x). Hence, we focus on minimizing ∥∇Φλ(x)∥ under
the NC-C setting.
Theorem 3.6. Suppose Assumptions 3.1, 3.2, 3.3, 3.4 hold and the sequences {xt, yt} are generated
by Algorithm 1, max{cηy, c} ≤ 1

10QLf
and let ∥ȳt∥2 ≤ D following [10, 50],

1

T

T−1∑
t=0

E
∥∥∇Φ1/2Lf

(x̄t)
∥∥2 ≤ 8Lf ĉηx(QG2

x +
σ2

N
) + 8

E
[
Φ1/2Lf

(x0)
]
− E

[
Φ1/2Lf

(x̄T )
]

QĉηxT

+48L2
fQ[ĉ2 + c2](σ2 + 6Qζ2) + 288L2

fQ
2ĉ2G2

x

+576L3
fQ

2c2[
D

cηyQS
+

cηyσ
2

N
+ 6LfQ

2c2(σ2 + 6ζ2)]

+32LfGxηxĉSQ

√
G2

x +
σ2

N
+

16LfD

cηyQS
+

16Lf (cηy)σ
2

N
+ 96L2

fQ
2c2(σ2 + 6ζ2)]

Corollary 3.7. By setting c = ĉ = 1
10LfQT 1/3 , Q = T 1/3

N , ĉηx = N
10LfT

, cηy = 1
10LfQ

= N
10LfT 1/3 ,

S = T 1/3 , FedSGDA+ has the following convergence rate:

1

T

T−1∑
t=0

E
∥∥∇Φ1/2Lf

(x̄t)
∥∥2 ≤ 80Lf∆

T 1/3
+

4(G2
x + σ2)

5T 2/3
+

24(σ2 + 6ζ2)

25T 2/3
+

72G2
x

25T 2/3
+

24(σ2 + 6ζ2)

25T 2/3

+
144Lf

25T 2/3
[
10LfD

T 1/3
+

σ2

10LfT 1/3
+

3(σ2 + 6ζ2)

50LfT 2/3
] +

16Gx

5T 1/3

√
G2

x +
σ2

N
+

160L2
fD

T 1/3
+

8σ2

5T 1/3

Remark 3.8. (Complexity) Based on Corollary 3.7, to make 1
T

∑T−1
t=0 E

∥∥∇Φ1/2Lf
(x̄t)

∥∥2 ≤ ε2,
communication complexity T = O(ε−6). We choose b = O(1), then we have sample complexity
bQT = N−1ε−8. It also denotes that FedSGDA+ has linear speedup with respect to the number of
clients.

3.2 Nonconvex-PL (NC-PL) Problems

Assumption 3.9. (Polyak Łojasiewicz (PL) Condition in y). The function F (x, y) is µ-PL condition
in y(µ > 0), if ∀x: 1) y∗(x) = argmaxy F (x, y) has a nonempty solution set; 2) ∥∇yF (x, y)∥2 ≥
2µ(F (x, y∗(x))− F (x, y)), ∀y.

To solve problem (1) with better convergence complexity under nonconvex-PL, we propose federated
stochastic gradient ascent (FedSGDA-M) algorithm with the momentum-based variance reduction
technique (Seen in in algorithm 2).
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Algorithm 2 FedSGDA-M Algorithm
1: Input: T , step sizes ĉ, c, η; momentum coefficient α, β, the number of local updates Q, and

mini-batch size b and initial mini-batch size B;
2: Initialize: xi

0 = x̄0 = 1
N

∑N
i=1 x

i
0, y

i
0 = ȳ0 = 1

N

∑N
i=1 y

i
0, ui

1 = ∇xf(x
i
0, y

i
0;Bi

0) and
vi1 = ∇yf(x

i
0, y

i
0;Bi

0) where |Bi
0| = B are drawn from Di for i ∈ [N ].

3: for t = 1, 2, . . . , T do
4: for i = 1, 2, . . . , N do
5: if mod (t, Q) = 0 then
6: Sever Update:
7: ui

t = ūt =
1
N

∑N
j=1 u

j
t

8: vit = v̄t =
1
N

∑N
j=1 v

j
t

9: xi
t = x̄t =

1
N

∑N
j=1(x

j
t−1 − ĉηuj

t )

10: yit = ȳt =
1
N

∑N
j=1(y

j
t−1 + cηvjt )

11: else
12: xi

t = xi
t−1 − ĉηui

t

13: yit = yit−1 + cηvit
14: end if
15: Draw mini-batch samples Bi

t = {ξji }bj=1 with |Bi
t| = b from Di locally

16: ui
t+1 = ∇xfi(x

i
t, y

i
t;Bi

t) + (1− α)(ui
t −∇xfi(x

i
t−1, y

i
t−1;Bi

t))

17: vit+1 = ∇yfi(x
i
t, y

i
t;Bi

t) + (1− β)(vit −∇yfi(x
i
t−1, y

i
t−1;Bi

t))
18: end for
19: end for
20: Output: x and y chosen uniformly random from {x̄t, ȳt}Tt=1.

In FedSGDA-M, each client initializes the gradient estimators {ui
1, v

i
1} with stochastic gradient as

seen in line 2 of Algorithm 2. Following that, each client updates the model variables {xi
t, y

i
t} locally

as standard stochastic gradient descent ascent method (lines 12-13 of Algorithm 2). Compared with
local momentum SGDA [50], the key difference is that clients utilize variance reduction gradient
estimators {ui

t, v
i
t}, which are constructed in lines 15-17 of Algorithm 2. For the update step of

{ut, vt}, the coefficients should satisfy 0 < α < 1 and 0 < β < 1. In every Q iteration, clients
transmit model parameters and gradient estimators to the server, which computes {x̄t, ȳt, ūt, v̄t}.
Then the server sends averaged model variables and gradient estimators to each client to update the
local variables, as shown in lines 5-10 of Algorithm 2.
Definition 3.10. According to Assumption 3.9, there exists at least one solution to the problem
maxy F (x, y) for any x. Here we define Φ(x) = F (x, y∗(x)) = maxy F (x, y). We use ε-stationary
point of Φ(x), i.e. ∥∇Φ(x)∥ ≤ ε as the convergence metric.

We know Φ(x) is differentiable and (L + κL)-smooth and y∗(·) is κ-Lipschitz from [50]. Given
that ∇yF (x̄t, y

∗(xt)) = 0, we have ∇Φ (x̄t) = ∇xF (x̄t, y
∗(xt))+∇yF (x̄t, y

∗(xt)) · ∂y∗ (x̄t) =
∇xF (x̄t, y

∗(xt)) which is widely used in the analysis of nonconvex-PL [10] and nonconvex-strongly-
concave minimax optimization [62, 38]. Then we discuss the convergence analysis of FedSGDA-M.
The proofs are provided in the supplementary materials.
Assumption 3.11. (Lipschitz Smoothness) Each component function fi(x, y; ξ) has a Lf -Lipschitz
gradient, i.e., ∀x1, x2 and y1, y2, we have

E∥∇fi(x1, y1; ξ)−∇fi(x2, y2; ξ)∥ ≤ Lf∥(x1, y1)− (x2, y2)∥ (5)

F (x, y) has an Lf -Lipschitz gradient based on the convexity of norm and Assumption 3.11. We have

∥∇xF (x1, y1)−∇xF (x2, y2)∥ =

∥∥∥∥∥ 1

N

N∑
i=1

E
[
∇xfi(x1, y1; ξ)−∇xfi(x2, y2; ξ)]

∥∥∥∥∥
≤ 1

N

N∑
i=1

E∥∇xfi(x1, y1; ξ)−∇xfi(x2, y2; ξ)∥

≤ Lf∥(x1, y1)− (x2, y2)∥
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In optimization analysis, it is standard to use the Assumption 3.11. Several widely used single-
machine stochastic algorithms, such as SPIDER [13] and STORM [7], make use of this assumption.
It is also used by numerous FL algorithms, including MIME [32] Fed-GLOMO [8], STEM [34] and
FAFED [58].

Theorem 3.12. Suppose that sequence {x̄t, ȳt}Tt=0 is generated from Algorithm 2. Under the above
Assumptions (3.1,3.9,3.11), given η = 1

20QL , α = c1η
2, β = c2η

2, c1 = 30L2

bNκ1−ν , c2 = 30L2

bNκ2−2ν , c =
1

6κ1−ν , ĉ =
1

54κ3−ν where ν ∈ [0, 1] we have

1

T

T−1∑
t=0

E ∥∇Φ (x̄t)∥2 ≤ 2[Φ(x̄0)− Φ(x̄T )]

ĉηT
+

3σ2

αTBN
+

36L2
fσ

2

µ2βTBN
+

12L2
f

cηµ2T
[Φ(x̄0)− F (x̄0, ȳt)]

+
6ασ2

Nb
+

72βσ2L2
f

Nbµ2
+

[
σ2(c21 + c22)

30bL2
+

ζ2(c21 + c22)

12L2

]
κ2η2

Corollary 3.13. By setting b = O(κν) for ν ∈ [0, 1], c1 = 30L2

bNκ1−ν , c2 = 30L2

bNκ2−2ν , c =
1

6κ1−ν , ĉ =

1
54κ3−ν , T = κ3−νT0, Q =

T
1/3
0

N2/3 , η = 1
20QL = N2/3

20LT
1/3
0

, B =
T

1/3
0 bκ1−ν

N2/3 , we have α = c1η
2 =

3N1/3

40T
2/3
0 bκ1−ν

, β = c2η
2 = 3N1/3

40T
2/3
0 bκ2−2ν

.

1

T

T−1∑
t=0

E ∥∇Φ (x̄t)∥2 ≤ 2160L[Φ(x̄0)− Φ∗]

(NT0)2/3
+

40σ2

κ3−ν(NT0)2/3
+

480σ2

κ2(NT0)2/3

+
240Lf

(NT0)2/3
[Φ(x̄0)− F (x̄0, ȳ0)] +

9σ2

20bκ(NT0)2/3
+

27σ2

5(NT0)2/3
+

[
3σ2

20b
+

15ζ2

40

]
1

(NT0)2/3

where Φ∗ is the optimal.

Remark 3.14. (Complexity) To make the 1
T

∑T−1
t=0 E ∥∇Φ (x̄t)∥2 ≤ ε2, we get T0 = O(N−1ε−3)

and T = O(κ3−νN−1ε−3). Considering the b = κν , we have communication complexity T
Q =

κ3−ν(NT0)
2/3 = κ3−νε−2 and sample complexity bT = O(κ3N−1ε−3). When ν = 1, b = κ,

communication Complexity T
Q = κ2ε−2 for finding an ε-stationary point. Sample complexity

bT = O(κ3N−1ε−3) matches the complexity result achieved by the single-machine algorithms, such
as SREDA and Acc-MDA in [42, 29] but we do not require a large batch size b compared with these
algorithms. And O(κ3N−1ε−3) also exhibits a linear speed-up compared with the aforementioned
single-machine algorithms.

3.3 Nonconvex-Strongly-Concave (NC-SC) Problems

Assumption 3.15. Each local function function fi(x, y) is µ-strongly concave in y ∈ Y , i.e., ∀x ∈ X
and y1, y2 ∈ Y , we have

∥∇yfi(x, y1)−∇yfi(x, y2)∥ ≥ µ∥y1 − y2∥

When the function F (x, y) is strongly concave in y ∈ Y , there exists a unique solution to the problem
maxy∈Y f(x, y) for any x. Since PL condition is weaker than strong concavity, the convergence
result of FedSGDA-M in Algorithm 2 under NC-PL also apply to NC-SC problem and FedSGDA-M
has the sample complexity of O(κ3n−1ε−3) and the communication complexity of O(κ2ε−2) under
nonconvex-strongly-concave setting.

4 Experiments

We conduct experiments on AUROC maximization and fair classification tasks to verify the efficiency
of our algorithms under nonconvex-strongly-concave and nonconvex-concave settings. Experiments
are completed on the computer cluster with AMD EPYC 7513 Processors and NVIDIA RTX A6000.
The code is available ∗

∗https://github.com/xidongwu/Federated-Minimax-and-Conditional-Stochastic-Optimization
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Datasets and Models: We test the performance of algorithms on three typical datasets: Fashion-
MNIST dataset, CIFAR-10 dataset and Tiny-ImageNet. Fashion-MNIST dataset has 70, 000 28× 28
gray images (10 categories, 60, 000 training images and 10, 000 testing images). CIFAR-10 dataset
consists of 50, 000 training images and 10, 000 testing images. Each image is the 3× 32× 32 arrays
of color image. Tiny-ImageNet dataset has 200 classes of (64×64) colored images and each class has
500 training images, 50 validation images, and 50 test images. For Fashion MNIST and Cifar10 data
sets, we choose convolutional neural network from [28] (The details are shown in the supplementray
materials). For Tiny-ImageNet, we choose ResNet-18 [24] as the model.

4.1 Fair Classification

First, we follow [50, 28] and train fair classification networks by minimizing the maximum loss over
different categories.

min
x

max
y∈Y

1

N

N∑
i=1

C∑
c=1

ycLi
c(x) s.t.Y =

{
y | yi ≥ 0,

C∑
i=1

yi = 1
}

where Li
c denotes the cross-entropy loss functions corresponding to the class c in C different classes

and x denotes the CNN model parameters. Clearly, the problem in (6) is nonConvex in x (deep model
parameters), and Concave in y. We compare our algorithm (FedSGDA+) and local SGDA+ with
varying model, datasets, local update numbers, step size. Although the constraint is not considered in
the theoretical analysis of local SGDA+ and FedSGDA+, FedSGDA+ still shows better performance
compared with local SGDA+.

The network has 20 clients. The datasets are partitioned into disjoint sets across all clients and
each client holds part of the data from all the classes [34]. We initialize the renset18 with pre-
trained weights in PyTorch. In experiments, we run grid search for step size, and choose the step
size for primal variable in the set {0.01, 0.03, 0.05, 0.1, 0.3} and that for dual variable in the set
{0.001, 0.01, 0.1}. We choose the global step size in the set {0.1, 0.5, 1, 1.5, 2}. The batch-size b is
in 50 and the inner loop number Q is seleted from {20, 50, 100}, The outer loop number S is selected
from {1, 5, 10} for FedSGDA+ and {1, 5, 10, Q} for local SGDA+.

Figure 1 shows that FedSGDA+ has a better convergence rate than local SGDA+. This confirms that
our algorithm can effectively accelerate SGDA by using the structure of federated learning. Due to
the page limititation, the ablation analysis of step size is presented in the supplementary materials.

(a) Fashion-MNIST (b) CIFAR-10 (c) Tiny ImageNet

Figure 1: Test Accuracy vs the number of communication rounds during the training phase.

4.2 AUROC Maximization

[39] showed the AUROC maximization problem could be reformulated as the non-convex-strongly-
concave minimax optimization, as below:

min
m∈Rd

(a,b)∈R2

max
w∈R

1

N

N∑
i=1

Eξi∼Di
[fi (m, a, b, w; ξ)] (6)
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where

f (m, a, b, w; ξ) = (1− p) (h (m;x)− a)
2 I[y=1] + p (h (m;x)− b)

2 I[y=−1]

+ 2(1 + w)[ph (m;x) I[y=−1] − (1− p)h (m,x) I[y=1]]− p(1− p)w2

ξi = (x, y) ∼ Di denotes a random data point and x represents the data features and y ∈ Y =
{−1,+1} is the label. h(m;x) denotes the prediction score of the data point x calculated by a model
with parameter m. p = Pr(y = 1) = Ey[I[y=1]] denotes the prior probability of the positive data.

(a) Fashion-MNIST (b) CIFAR-10 (c) Tiny ImageNet

Figure 2: AUROC scores on the test datasets vs the number of communication rounds during the
training phase.

Following [19, 67], we constructed the imbalanced binary-class versions of datasets as follow: firstly,
the first half of the classes (0 - 4) in the original Fashion-MNIST, CIFAR10 and classes (0 - 99)
in Tiny-ImageNet datasets are converted into the negative class, and the rest half of classes are
considered to be a positive class. 80% of the negative data points are randomly dropped in each
dataset. Then the datasets are evenly divided into disjoint sets across 16 clients. In this case, each
clients share completely different imbalanced datasets. In the experiment, we use xavier normal
initialization to deep models.

We compare our algorithm (i.e., FedSGDA-M) with local SGDA [10, 50], CODA+ [19, 67], Mo-
mentum SGDA [50], CODASCA [67] and SAGDA [63] as baselines in AUROC maximization. In
experiments, we carefully tune hyperparameters for all methods. We run a grid search for step size,
and choose the step size for the primal variable in the set {0.001, 0.005, 0.01} and that for dual
variable in the set {0.0001, 0.001, 0.01}. We choose the global step size from {0.9, 1, 1.5, 2} for
CODASCA and SAGDA. We choose the momentum parameter in Local Momentum SGDA in the
set {0.1, 0.5, 0.9}. The α and β in FedSGDA-M are chosen from {0.1, 0.5, 0.9}. The batch-size b is
50 and the inner loop number Q ∈ {10, 20, 50}.

As shown in Figure 2, we compare the performance of FedSGDA-M and other baseline methods
against the number of communication rounds. Figure 2 shows that our algorithms consistently
outperform the other baseline algorithms on testing datasets, which validates the efficacy of our
algorithms. Due to space limitation, other test results are provided in the supplementary materials.

Limitation. Minimax optimization has many applications and a more comprehensive discussion of
our proposed algorithms on these tasks will be a future study because the theoretical analysis is the
main contribution of this paper.

5 Conclusion

In this paper, we study a class of federated nonconvex minimax optimization problems (1). We
consider the three most common settings (NC-SC, NC-PL, NC-C). Under the NC-C setting, we
propose FedSGDA+ and prove it has the best communication complexity of O(ε−6). It also achieves
a linear speedup to the number of clients. Under NC-PL and NC-PL settings, we propose FedSGDA-
M with variance reduction technique and we prove that our algorithm (FedSGDA-M ) has the best
sample complexity (O(κ3n−1ε−3)) and the best sample communication complexity (O(κ2ε−2)).
We prove that FedSGDA also enjoys linear speedup with respect to the number of clients. Therefore,
we reduce the existing complexity results for the most common nonconvex minimax optimization
problems under the federated learning setting.
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