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ABSTRACT

Federated learning (FL) is an emerging learning paradigm where a set of distributed
clients learns a task under the coordination of a server. The FedAvg algorithm is one
of the most widely used methods in FL. In FedAvg, the learning rate is a constant
rather than changing adaptively. Adaptive gradient methods have demonstrated
superior performance over the constant learning rate schedules in non-distributed
settings, and they have recently been adapted to FL. However, the majority of
these methods are designed for unconstrained settings. Meanwhile, many crucial
FL applications, like disease diagnosis and biomarker identification, often rely
on constrained formulations such as Lasso and group Lasso. It remains an open
question as to whether adaptive gradient methods can be effectively applied to FL
problems with constrains. In this work, we introduce FedDA, a novel adaptive
gradient framework for FL. This framework utilizes a restarted dual averaging tech-
nique and is compatible with a range of gradient estimation methods and adaptive
learning rate schedules. Specifically, an instantiation of our framework FedDA-
MVR achieves sample complexity Õ(K−1ϵ−1.5) and communication complexity
Õ(K−0.25ϵ−1.25) for finding a stationary point ϵ in the constrained setting with
K be the number of clients. We conduct experiments over both constrained and
unconstrained tasks to confirm the effectiveness of our approach.

1 INTRODUCTION

As an emerging machine learning technique, federated learning (FL) has recently been applied to
many important health and biomedicine applications (Moshawrab et al., 2023; Joshi et al., 2022;
Antunes et al., 2022; Xu et al., 2021a; Rahman et al., 2022). The FL enables big data analyses in
healthcare (especially for rare diseases) via allowing a set of distributed located hospitals, medical
centers, insurance companies, etc., to jointly perform a machine learning task under the coordination
of a central server over their privately-held data. For example, in a recent FL study, the data from
71 sites across 6 continents are used to generate an automatic tumor boundary detector for the
rare disease of glioblastoma (Pati et al., 2022). Among these FL healthcare applications, federated
biomarker identification (Sheller et al., 2020) is one of the most important learning tasks to help
researchers and clinicians detect informative biomarkers from distributed biomedical datasets to
understand the underlying disease mechanisms, diagnose disease earlier, and design drugs. Different
to prediction tasks, the federated biomarker identification often utilizes the constrained formulations,
such as Lasso and group Lasso, which often requires specific optimization solvers.

∗This work was partially supported by NSF IIS 2347592, 2347604, 2348159, 2348169, DBI 2405416, CCF
2348306, CNS 2347617.
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Table 1: Comparisons of representative Federated Learning algorithms for finding an ϵ-
stationary point of equation 1 i.e., ∥∇f(x)∥2 ≤ ϵ or its equivalent variants. Gc(f, ϵ) denotes the
number of gradient queries w.r.t. f (k)(x) for k ∈ [K]; Cc(f, ϵ) denotes the number of communication
rounds; State means what state the algorithm maintains locally (Primal/Dual); Local-Adaptive means
whether the algorithm performs adaptive gradient descent locally or not; Constrained means whether
the algorithm can solve both constrained and unconstrained problems or not.

Type Algorithm Gc(f, ϵ) Cc(f, ϵ) State Local-Adaptive Constrained

Non-adaptive

FedAvg McMahan et al. (2017) O(K−1ϵ−2) O(ϵ−1.5) Primal/Dual × ×
FedDualAvg Yuan et al. (2021) O(K−1ϵ−2) O(K−1ϵ−2) Dual × ✓

FedCM Xu et al. (2021b) Õ(K−1ϵ−2) Õ(K−1ϵ−2) Primal/Dual × ×
FedGLOMO Das et al. (2020) Õ(K−0.5ϵ−1.5) Õ(ϵ−1.5) Primal/Dual × ×
STEM Khanduri et al. (2021a) Õ(K−1ϵ−1.5) Õ(ϵ−1) Primal/Dual × ×

Adaptive

FedAdam Reddi et al. (2020) O(K−1ϵ−2) O(K−0.5ϵ−1) Primal × ×
Local-AMSGrad Chen et al. (2020b) O(K−1ϵ−2) O(K−1ϵ−2) Primal ✓ ×

MIME-MVR Karimireddy et al. (2020a) Õ(K−0.5ϵ−1.5) O(K−0.5ϵ−1.5) Primal ✓ ×
FAFED Wu et al. (2022) Õ(K−1ϵ−1.5) Õ(ϵ−1) Primal ✓ ×

FedDA-MVR(Ours) Õ(K−1ϵ−1.5) Õ(K−0.25ϵ−1.25) Dual ✓ ✓

A widely used method in Federated Learning (FL) is the FedAvg (Local-SGD) algorithm (McMahan
et al., 2017). As indicated by its name, FedAvg performs (stochastic) gradient descent steps on each
client and averages local states periodically. Recently, researchers incorporated adaptive gradient
methods to the FL setting (Reddi et al., 2020; Karimireddy et al., 2020a; Chen et al., 2020b) to
accelerate FedAvg. For instance, Reddi et al. (2016) introduced FedAdam, which incorporates the
Adam optimizer for server updates; Karimireddy et al. (2020a) proposed MIME, which supports
adaptive gradients in local updates. These adaptive gradient methods have demonstrated significant
performance enhancements compared to FedAvg. However, these methods are designed for the
unconstrained setting and cannot be directly applied over the constrained formulations as in the
biomarker identification tasks. In fact, FL problems with constraints remain under-explored in the
literature. In (Yuan et al., 2021), authors proposed FedDualAvg to solve FL problems with non-
smooth regularizers. In FedDualAvg, model parameters are transformed into a dual space using a
map determined by the regularizer. Averaging is then conducted in this dual space across all clients.
FedDualAvg can be used to solve federated constrained optimization problems when regularizers are
indicator functions defined over the constraints set. However, FedDualAvg uses constant learning
rate as FedAvg, thus suffers the same slow convergence rate. In fact, it is an open question if adaptive
learning rates can be used to accelerate the solving of federated constrained optimizations.

In this work, we propose the Federated Dual-averaging Adaptive-gradient (FedDA), a general
adaptive gradient framework for federated constrained optimization. FedDA is based on the dynamic
mirror descent view of adaptive gradients (Huang et al., 2021). In fact, suppose we have an adaptive
matrix H such that it is diagonal and its ith diagonal element represents the adaptive gradient for
the ith coordinate of the model parameter. Then if we view the parameter space as the primal space
and the matrix H as a linear mirror map, the adaptive gradient update step is equivalent to a mirror
descent update step. Since adaptive gradients are updated at each iteration, the mirror map H is also
dynamic. Our FedDA is inspired by this mirror descent view of adaptive gradients.

In FedDA, the server maintains the global adaptive matrix and the global model weight. In each
epoch, each client receives the current global adaptive matrix and global model weight. Then it
performs multiple steps of ’dual-averaging’ style mirror descent (Nesterov, 2009). More specifically,
the client aggregates dual states, and only recover model weight (primal states) through the adaptive
matrix (mirror map) when the gradient query is needed. Note that the adaptive matrix is fixed during
local updates. After local updates, the server averages the dual states and then updates the global
primal state and the adaptive matrix. There are two important characteristics of FedDA. Firstly, we
fix the adaptive matrix during local updates to makes sure that all clients share the same dual space.
Secondly, the aggregation and averaging is performed in the dual space instead of the primal space. In
fact, in the constrained case, the mapping from dual space to the primal space involves the non-linear
projection operation. Although averaging dual states leads to an unbiased estimate of the global
gradient, averaging primal states leads to biased estimation due to projection. In summary, FedDA
adopts the restarted dual-averaging strategy, where the adaptive matrix (mirror map) is refreshed at
each global epoch and clients perform dual averaging locally with a fixed mirror map. Our FedDA is
a general framework: it is flexible to the choices of adaptive gradient methods and also can combine
with various gradient estimation methods. Furthermore, although it is designed for the constrained
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case, FedDA works well in the unconstrained FL setting too. We highlight our contribution as
follows:

(i) We propose FedDA, a fast adaptive gradient framework for constrained federated opti-
mization problems. The framework is based on a restarted dual averaging technique and
incorporates a large family of adaptive gradient methods.

(ii) FedDA-MVR, an instantiation of our framework, obtains the sample complexity of
Õ(K−1ϵ−1.5) and communication complexity of Õ(K−0.25ϵ−1.25). The iteration com-
plexity matches the optimal rate of non-adaptive federated algorithms. FedDA-MVR
uses the momentum-based variance-reduction gradient estimation, and exponential moving
average of the gradient square as adaptive learning rates.

(iii) We empirically verify the efficacy of the FedDA in solving biomarker identification tasks:
the colorrectal cancer prediction task and the splice site detection task. Furthermore, we
also verify the efficacy of FedDA over non-constrained FL tasks through classification tasks
over CIFAR-10 and FEMNIST datasets.

Notations. ∇f(x) denotes the first-order derivatives of the function f(x) w.r.t. variable x. ξ denotes
a random sample and ∇f(x; ξ) is the stochastic estimate ∇f(x). O(·) is the big O notation, and
Õ(·) hides logarithmic terms. Id denotes a d-dimensional identity matrix. Diag(x) denotes the
matrix whose diagonal is the vector x. ∥ · ∥ denotes the ℓ2 norm for vectors and the spectral norm for
matrices, respectively. ⟨·, ·⟩ denotes the Euclidean inner product. [K] denotes the set of {1, 2, ...,K}.
For a random variable X , E[X] denotes its expectation.

2 RELATED WORKS

Federated Learning. Federated Learning (McMahan et al., 2017) defines the task to learn from a set
of distributed located clients under the coordination of a server. McMahan et al. (2017) proposed the
FedAvg algorithm where each client performs multiple steps of gradient descent with its local data and
then sends the updated model to the server for averaging. The FedAvg algorithm resembles the Local-
SGD algorithm, which is studied in a more general distributed setting for a longer time (Mangasarian
& Solodov, 1993). The convergence of the local-SGD method has been heavily analyzed in the
literature (Stich, 2018; Karimireddy et al., 2019; Dieuleveut & Patel, 2019; Khaled et al., 2020; Yu
et al., 2019; Woodworth et al., 2020; Woodworth, 2021; Glasgow et al., 2022). Various acceleration
methods of FedAvg are considered and we list a few representatives here. Karimireddy et al. (2020b)
adopted the idea of variance reduction technique for non-distributed finite sum problems: a ‘control
variate’ which contains historical full gradient information is used to correct the bias of local gradients.
Karimireddy et al. (2020a) proposed a general framework (MIME) to translate a centralized optimizer
into the FL setting, including adaptive gradient methods. In Das et al. (2020); Khanduri et al. (2021a),
momentum-based variance reduction is applied to the FL setting to control the noise of the stochastic
gradients. In Das et al. (2020), a server momentum state and a client momentum state are maintained,
while in Khanduri et al. (2021b), a momentum state and is matinained the momentum was averaged
periodically similar to the primal state.

Adaptive gradient methods are also studied in the FL setting. The ‘Adaptive Federated Optimiza-
tion’ (Reddi et al., 2020) method proposed to use adaptive gradients on the server side while the local
gradients are used to update the states of the adaptive gradient methods. Tong et al. (2020); Wang
et al. (2022) extend the method in Reddi et al. (2020) to include the AMSGrad method. In Chen
et al. (2020b), the authors first showed the divergence of a naive local AMSGrad method that directly
averages the primal states periodically. The authors then proposed Local-AMSGrad, a method in
which clients update adaptive learning rates locally and average at the synchronization step. At the
server average step, both primal states and local adaptive learning rates are averaged to replace the old
states. More recently, Chen et al. (2020b); Wu et al. (2022) proposed to use fixed adaptive learning
rates locally. Finally, another line of research Tang et al. (2020; 2021); Lu et al. (2022); Chen et al.
(2020a) considers federated adaptive learning rates through the compression approach, these methods
communicate local gradients at every step, but the compression techniques are used to reduce the
communication cost. All these methods study federated adaptive methods in the unconstrained case.
For solving problems with constraint in FL, a related work is (Yuan et al., 2021), where authors
propose a modified local-SGD method based on the dual-averaging, however, it does not support the
adaptive gradient methods.
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Adaptive Gradients in the Non-distributed Learning. Adaptive gradient methods are widely
used in the non-distributed machine learning setting. Adagrad Duchi et al. (2011) was one of the
the first adaptive gradient method proposed in literature, and was shown to outperform SGD in
the sparse gradient setting. Since Adagrad does not perform well under dense gradient setting and
non-convex setting, some of its variants are proposed, such as SC-Adagra (Mukkamala & Hein, 2017)
and SAdagrad (Chen et al., 2018b). Furthermore, Adam (Kingma & Ba, 2014) and YOGI (Zaheer
et al., 2018) proposed to use the exponential moving average instead of the arithmetic average used
in Adagrad. Adam/YOGI is widely used in deep learning applications; however, Adam diverges in
some settings and the gradient information quickly disappears, so AMSGrad (Reddi et al., 2018) is
proposed, and it applies an extra ‘long term memory’ variable to preserve the past gradient information
to handle the convergence issue of Adam. The convergence of Adam-type methods is also studied in
the literature (Chen et al., 2019; Zhou et al., 2018; Liu et al., 2019; Guo et al., 2021; Huang et al.,
2021). Adaptive gradient methods with good generalization performance are also proposed, such
as AdamW (Loshchilov & Hutter, 2018), Padam (Chen et al., 2018a), Adabound (Luo et al., 2019),
Adabelief (Zhuang et al., 2020) and AaGrad-Norm (Ward et al., 2019).

3 PRELIMINARIES

In this section, we introduce some preliminaries. We consider the following formulation of Federated
Learning (FL) with K clients:

min
x∈X⊂Rd

{
f(x) :=

1

K

K∑
k=1

{
f (k)(x) := Eξ(k)∼D(k) [f (k)(x; ξ(k))]

}}
. (1)

For the kth client, we optimize the loss objective f (k)(x) : X → R which is smooth and possibly
non-convex, and x denotes the variable of interest. X ⊂ Rd is a compact and convex set. ξ(k) ∼ D(k)

is a random example that follows an unknown data distribution D(k). The formulation in equation 1
includes both the homogeneous case i.e. f (k)(x) = f (j)(x) for any k, j ∈ [K], and the heterogeneous
case i.e. f (k)(x) ̸= f (j)(x) for some k, j ∈ [K].

Next, we introduce some basics of adaptive gradient methods from a mirror-descent perspective.
Generally, mirror descent is associated with a mirror map Φ(x). Given the objective f(x) and
the primal state xt ∈ X at tth step, we first map the primal state to the mirror space via the
mirror map yt = ∇Φ(xt), then we perform the gradient descent step in the mirror space: yt+1 =
yt − η∇f(xt), where η is the learning rate, finally, we map yt+1 back to the primal space as xt+1 =
argmin

x∈X
DΦ(x, x̂t+1), where yt+1 = ∇Φ(x̂t+1) and DΦ(x, y) denotes the Bregman Divergence

associated to Φ: DΦ(x, y) = Φ(x)− Φ(y)− ⟨∇Φ(y), x− y⟩. Equivalently, the mirror descent step
can also be written as a Bregman proximal gradient step as follows: xt+1 = argmin

x∈X
η⟨∇f(xt), x⟩+

DΦ(x, xt). For the adaptive gradient methods, we uses the following mirror map: Φ(x) = 1
2x

THx,
where H is a positive definite adaptive matrix. Many adaptive gradient methods can be written in the
following proximal gradient descent form:

xt+1 = argmin
x∈X

η⟨νt, x⟩+
1

2
(x− xt)

THt(x− xt), (2)

we replace the gradient ∇f(x) with the generalized gradient estimation νt, besides, we replace H
with Ht based on the fact that the adaptive matrix is updated at every step. Next, we show some
examples of adaptive gradients methods that can be phrased as the above formulation. For the
Adagrad (Duchi et al., 2011) method, we set

νt = ∇f(xt, ξt), Ht = Diag(
√
µt), µt =

1

t

t∑
i=1

ν2i (3)

For Adam (Kingma & Ba, 2014), we have:

ν̂t = (1− β1)∇f(xt, ξt) + β1ν̂t−1, µ̂t = (1− β2)∇f(xt, ξt)
2 + β2µ̂t−1

νt = ν̂t/(1− γt
1), µt = µ̂t/(1− γt

2), Ht = Diag(
√
µt + ϵ) (4)

where β1, β2, γ1, γ2 are some constants.
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Algorithm 1 FedDA-Server
1: Input: Number of global epochs E, size of the first mini-batch b1, tuning parameters {βτ}Ei=1;
2: Initialize: Choose x0 ∈ X and each client selects a mini-batch samples B(k)

0 of size b1 to
evaluate ∇f (j)(x0,B(k)

0 ) locally and the server averages local gradients to compute ν0;
3: for τ = 0 to E − 1 do
4: for the client k ∈ [K] in parallel do
5: (z(k)τ+1,I , ν(k)τ+1,I ) = FedDA-client(xτ , ντ , Hτ )
6: end for
7: Compute zτ+1 = 1

K

∑K
k=1 z

(k)
τ+1,I ;

8: Compute xτ+1 = argmin
x∈X

{−⟨x, zτ+1⟩+ 1
2 (x− xτ )

THτ (x− xτ ) };

9: Compute ντ+1 = 1
K

∑K
k=1 ν

(k)
τ+1,I , Hτ+1 = V(Hτ , zτ+1, βτ );

10: end for

Algorithm 2 FedDA-Client (xτ , ντ , Hτ )

1: Input: Number of local steps I , mini-batch size b, tuning parameters {ητ+1,i}I−1
i=0 , {ατ+1,i}Ii=1;

2: Initialize: x(k)
τ+1,0 = xτ ; ν(k)τ+1,0 = ντ ; z(k)τ+1,0 = 0;

3: for i = 0 to I − 1 do
4: Compute z

(k)
τ+1,i+1 = z

(k)
τ+1,i − ητ+1,iν

(k)
τ+1,i;

5: Compute x
(k)
τ+1,i+1 = argmin

x∈X
{−⟨x, z(k)τ+1,i+1⟩+ 1

2 (x− x
(k)
τ+1,0)

THτ (x− x
(k)
τ+1,0) };

6: Compute ν
(k)
τ+1,i+1 = U(ν(k)τ+1,i, x

(k)
τ+1,i+1, x

(k)
τ+1,i;ατ+1,i+1,B(k)

τ+1,i+1), where B(k)
τ+1,i+1 is a

minibatch of size b of random samples from the client k;
7: end for
8: Output: Send z

(k)
τ+1,I , ν(k)τ+1,I to the server.

4 LOCAL ADAPTIVE GRADIENTS VIA DUAL AVERAGING

In this section, we introduce FedDA, a fast adaptive gradient framework for federated constrainted
optimization problems. The procedure of FedDA is summarized in Algorithm 1. In Algorithm 1, we
perform E global steps and at each global step, every client runs Algorithm 2.

In Algorithm 2, clients receive the current model weight xτ , gradient estimation ντ and adaptive
gradient matrix Hτ . The clients then perform I local training steps: line 3- line 7 in Algorithm 2.
For each step, we first accumulate the dual state in the variable z

(k)
τ,i (line 4), then we calculate the

local primal state x
(k)
τ,i (line 5), which is a proximal gradient step similar to equation 2. The function

of this step is to map the aggregated dual state z
(k)
τ,i back to the primal space, and we use the primal

state to query the gradient to update the estimation of the gradient ν(k)τ,i (line 6). Note that we use a
fixed adaptive matrix Hτ during local steps, this makes the clients share the same dual space. In line
6 of Algorithm 2, we update the gradient estimation ν

(k)
τ,i . The update rule U(·) is general, e.g.,the

momentum-based variance reduction update equation 5 and the momentum update equation 6 as
follows (ατ,i is a momentum coefficient):

ν
(k)
τ+1,i+1 = ∇f (k)(x

(k)
τ+1,i+1,B

(k)
τ+1,i+1) + (1− ατ+1,i+1)(ν

(k)
τ+1,i −∇f (k)(x

(k)
τ+1,i,B

(k)
τ+1,i+1))

(5)

and

ν
(k)
τ+1,i+1 = ατ+1,i+1∇f (k)(x

(k)
τ+1,i+1,B

(k)
τ+1,i+1) + (1− ατ+1,i+1)ν

(k)
τ+1,i (6)

After the client finishes Algorithm 2, it returns the aggregated local dual states z(k)τ+1,I and the local

gradient estimation ν
(k)
τ+1,I to the server. The server first averages the local dual states (line 8 of
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Algorithm 1) to get zτ+1. We can average local dual states as all clients have a common dual space.
The server then calculates the new primal states xτ+1 as in line 9 of Algorithm 1. Next, the gradient
estimation ντ is also updated by averaging local gradient estimates (line 9 of Algorithm 1). Finally,
we update the adaptive matrix Hτ (line 9 of Algorithm 1). The update rule V is general, e.g.,

µτ+1 = βτ+1z
2
τ+1/η

2
τ+1,I−1 + (1− βτ+1)µτ , Hτ+1 = Diag(

√
µτ+1 + ϵ) (7)

and

µτ+1 = βτ+1||zτ+1||/ητ+1,I−1 + (1− βτ+1)µτ , Hτ+1 = (µτ+1 + ϵ)Id (8)

where we set µ0 = 0, ϵ is some constant. In summary, Algorithm 1 aggregates and averages dual
states at each global round. The adaptive matrix Hτ is fixed during local updates and is refreshed on
the server side at each global round. Since the algorithm uses a new mirror map (adaptive gradient
matrix) at each global round, we name the strategy as restarted dual averaging.
Remark 4.1. A notable characteristic of FedDA is the dual-averaging strategy in local updates, this
contrasts with the ’primal averaging’ strategy used by many existing adaptive FL algorithms (Karim-
ireddy et al., 2020a). In fact, dual-averaging is essential for FedDA to solve federated constrained
optimization problems, due to the fact that primal and dual states are connected through a non-linear
mapping (i.e. the projection operation).
Remark 4.2. By choosing different update rules U and V , we can create many variants of FedDA.
An representative is FedDA-MVR, in which we update ν

(k)
τ,i with momentum-based variance reduc-

tion ( equation 5) and the adaptive matrix Hτ with an exponential average of the gradient square
( equation 7).
Remark 4.3. The argmin operation in line 8 of Algorithm 1 (line 5 of Algorithm 2) does not lead to
extra computational cost. We solve it through two steps: solving the quadratic optimization problem
(a generalized adaptive gradient step) and projection. The projection is necessary to make the solution
feasible and for many constraints, the proximal operators are well defined.

5 THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis of our FedDA. More specifically, we focus on the
analysis of FedDA-MVR. We first state the assumptions we need in our analysis:

5.1 SOME MILD ASSUMPTIONS

Assumption 5.1 (Bounded Client Heterogeneity). The difference of gradients between different
workers are bounded: ∥∇f (k)(x)−∇f (ℓ)(x)∥2 ≤ ζ2, ∀k, ℓ ∈ [K].

We measure the heterogeneity of the clients in terms of gradient dissimilarity. The above assumption
or its similar form is also exploited in the analysis of other FL Algorithms, such as in Khanduri et al.
(2021a); Das et al. (2020).
Assumption 5.2. The function f(x) is bounded from below in X , i.e., f∗ = infx∈X f(x).
Assumption 5.3 (Unbiased and Bounded-variance Stochastic Gradient). The stochastic gradients
are unbiased with bounded variance, i.e. E[∇f (k)(x; ξ(k))] = ∇f (k)(x) and there exists a constant
σ such that E∥∇f (k)(x; ξ(k))−∇f (k)(x)∥2 ≤ σ2, ∀ ξ(k) ∼ D(k), ∀ k ∈ [K]

Assumption 5.2 guarantees the feasibility of the Federated Learning problem equation 1, and As-
sumption 5.3 is widely used in stochastic optimization analysis.
Assumption 5.4. The adaptive matrix Hτ is symmetric positive definite, i.e. there exists a constant
ρ > 0 such that Hτ ⪰ ρId ≻ 0, ∀t ≥ 1,

In our analysis, we assume the adaptive matrix is positive definite, and this requirement can be easily
satisfied by many adaptive gradient methods. Firstly, most adaptive gradient methods always have
non-negative adaptive learning rates, such as equation 3 and equation 4. To make it positive, we can
add a bias term ϵ such as in the Adam update rule equation 4.
Assumption 5.5 (Sample Gradient Lipschitz Smoothness). The stochastic functions f (k)(x, ξ(k))
with ξ(k) ∼ D(k) for all k ∈ [K], satisfy the mean squared smoothness property, i.e, we have
E∥∇f (k)(x; ξ(k))−∇f (k)(y; ξ(k))∥2 ≤ L2∥x− y∥2 for all x, y ∈ Rd
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The smoothness assumption above is a slightly stronger requirement than the standard smooth
condition, but this assumption is widely used in the analysis of variance reduction methods, such as
SPIDER Fang et al. (2018) and STORM Cutkosky & Orabona (2019).

5.2 CONVERGENCE PROPERTY OF FEDDA-MVR

In this subsection, we study the convergence property of our FedDA-MVR variant. For convenience
of discussion, we redefine the subscript t = τI + i, i.e. we denote the t step as the i local step in
the τ global round. Similarly, we denote the total number of running steps as T = EI . We analyze
our algorithm through the following measure:

Gt =
ρ2

η2t
||x̃t − x̃t+1||2 + ||ν̄t −∇f(x̃t)||2 (9)

where ν̄t denotes the average gradient estimation at the tth step and x̃t denotes the virtual global
primal state at the tth step (see Section B.2 in the appendix for formal definitions). In Remark B.18
of the appendix, we discuss the intuition of the measure Gt. In particular, in the unconstrained case
i.e. when X = Rd, the measure upper-bounds the square norm of the gradient. Therefore, the
convergence of our measure Gt means the convergence to a first-order stationary point. Now, we are
ready to provide the main result of our convergence theorem.

Theorem 5.6. In Algorithm 1, given the parameter κ = ρK2/3

L , c = 96L2

Kρ2 + ρ
72κ3LK0.5I2 , w =

max{2, 483I6K3.5}, b1 ≥ 1, b ≥ 1, β > 0 and choose learning rate ηt = κ
(wt+t+I)1/3

, the
momentum coefficient αt = cη2t , the adaptive gradient coefficient βt = β and the mini-batch size of
b1 for the first iteration and b for other iterations, then we have:

1

T

T−1∑
t=0

E[Gt] ≤
[
96LK0.5I2

T
+

2L

K2/3T 2/3

]
(f(x0)− f∗) +

[
72KI4

b1T
+

3K0.5I2

2b1K2/3T 2/3

]
σ2

+ 1922 ×
(
48K0.5I2

T
+

1

K2/3T 2/3

)
×
(
σ2

4b
+

2ζ2

21

)
log(T + 1).

Note, by choosing a proper value of local updates I and using a minibatch of samples for the first
iteration to decrease the noise, our result matches the best known convergence rate for stochastic
federated gradient methods (Khanduri et al., 2021a), i.e. our algorithms has sample complexity of
Õ(ϵ−1.5) with a linear speed up w.r.t the number of clients K. More formally, we have:

Corollary 5.7. Suppose in Algorithm 1, we set I = O((T/K3.5)1/6), and use sample minibatch

of size O(K0.5I2) in the initialization, then we have: 1
T

∑T
t=1

(
E[Gt]

)
= Õ(K−2/3T−2/3),

and to reach an ϵ-stationary point, we need to make Õ(K−1ϵ−1.5) number of steps and need
Õ(K−0.25ϵ−1.25) number of communication rounds.

As shown by Corollary 5.7, FedDA-MVR achieves iteration complexity O(K−1ϵ−1.5) which matches
the optimal rates of non-convex stochastic optimization (Arjevani et al., 2019). In contrast, FedDu-
alAvg (Yuan et al., 2021) shows the convergence rate of O(ϵ−2) for the general non-convex objective
under the strong bounded gradient assumption. Our FedDA-MVR achieves a faster convergence rate
and does not require the bounded gradient assumption. As for the communication complexity, we
reach Õ(K−0.25ϵ−1.25). Some methods achieve O(ϵ−1) communication rate such as STEM (Khan-
duri et al., 2021a) and FAFED (Wu et al., 2022). However, STEM does not consider the adaptive
gradient methods nor the constrained setting; FAFED considers the adaptive gradient methods, but it
requires the strong assumption of bounded gradient and only considers the unconstrained setting.

6 EXPERIMENTS

In this section, we perform experiments to verify the efficacy of our proposed FedDA on federated
biomarker identification task and the general classification tasks. More specifically, we consider the
variant of FedDA-MVR here, and defer experiments for other variants to Section A of the appendix.
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Figure 1: Results for the PATHMNIST Yang et al. (2021) dataset. Plots show the Train Accuracy,
Test Accuracy, Density of Model Parameters vs Number of Rounds (E in Algorithm 1) respectively.
The post-fix of L1 means the L1 constraints. Number of local steps I is chosen as 5.

Figure 2: Results for the MEMset Donar Dataset Meier et al. (2008). Plots show the Train Loss, Train
Accuracy and the Pearson Correlation Coefficient (between prediction and targets). The post-fix of
L1 means L1 constraints and GL means Group Lasso constraints. Number of local steps I is 5.

We consider three sets of experiments: Colorrectal Cancer Survival Prediction, Splice Site Detection
and a general multiclass image classification task. All experiments are run on a machine with an Intel
Xeon Gold 6248 CPU and 4 Nvidia Tesla V100 GPUs. The code is written in Pytorch. We simulate
the Federated Learning environment through the Pytorch.distributed package.

6.1 COLORRECTAL CANCER SURVIVAL PREDICTION WITH BIOMARKER IDENTIFICATION

In this subsection, we consider a colorrectal cancer prediction task on the PATHMNIST dataset (Yang
et al., 2021; Kather et al., 2019), which contains 9 different classes and 89996 training images. We
equally randomly split the training set into 10 clients. We use the original test set for the metric.
In this task, we impose the L1 sparsity constraint to identify biomarkers. We compare with the
following baselines: FedAvg (McMahan et al., 2017) and FedDualAvg (Yuan et al., 2021). For our
FedDA-MVR, we train with and without the L1 constraint.

The results are summarized in Figure 1, the plots are averaged over 5 independent runs and then
smoothed. In Figure 1, FedDualAvg and FedDA-MVR-L1 consider the L1 constraint, while FedAvg
and FedDA-MVR do not. We show results of Train/Test Accuracy and also the number of non-zero
(below a threshold) elements in the parameter (the rightmost plot in Figure 1). As shown in the plots,
FedDA-MVR-L1 outperforms unconstrained FedDA-MVR in all metrics, in particular, FedDA learns
a much sparser model and therefore can better identify important factors for cancer survival than
other methods. Furthermore, FedDA-MVR-L1 also outperforms FedAvg and FedDualAvg in all
metrics. This shows that our algorithm can effectively exploit adaptive gradient information in the
constrained case. For more details of this experiment, please refer to Section A.1 of the appendix.

6.2 SPLICE SITE DETECTION WITH BIOMARKER IDENTIFICATION

In this subsection, we consider a splice site detection task on the MEMset Donar Dataset (Meier et al.,
2008). Splice sites are the regions between coding (exons) and non-coding (introns) DNA segments.
Splice site detection plays an important role in gene finding. We follow the train/test split in (Meier
et al., 2008) and then randomly split the training set to 10 clients. Group Lasso is widely used to solve
the splice site detection problem, so we use FedDA-MVR with the Group Lasso constraint in the
experiments. For the baselines, we compare with FedAvg (McMahan et al., 2017), FedDualAvg Yuan
et al. (2021) and FedDA-MVR without constraints. For FedDualAvg, we consider the L1 constraint
and Group Lasso constraint.

The results are summarized in Figure 2, the plots are averaged over 5 independent runs and then
smoothed. As shown in the plots, FedDA-MVR-GL outperforms unconstrained FedDA-MVR and

8
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Figure 3: Results for (Homogeneous) CIFAR10 dataset (Top) and FEMNIST (Bottom). From left to
right, we show Train Loss, Train Accuracy, Test Loss, Test Accuracy w.r.t the number of rounds (E in
Algorithm 1), respectively. I is chosen as 5.

FedDA-MVR-L1. In fact, FedDA-MVR-GL gets better performance by identifying meaningful
feature groups. Furthermore, FedDA-MVR-GL also outperforms FedAvg and FedDualAvg-GL
(FedDualAvg-L1). This shows that our algorithm can effectively exploit acceleration of adaptive
gradients. For more details of this experiment, please refer to Section A.1 of the appendix.

6.3 IMAGE CLASSIFICATION TASK WITH CIFAR10 AND FEMNIST

FedDA is a general framework for FL and can also solve unconstrained tasks. In this subsection,
we consider an unconstrained image classification task. More specifically, we consider two datasets:
CIFAR10 (Krizhevsky et al., 2009) and FEMNIST (Caldas et al., 2018). We construct both homo-
geneous and heterogeneous cases based on CIFAR10. For the homogeneous case, we uniformly
randomly distribute them into 10 clients and for the heterogeneous case, we create imbalanced
class distribution among clients (please see Appendix A.3). FEMNIST is a Federated dataset of
hand-written digits; it contains hand-written digits of 3550 users. Data distribution of FEMNIST is
heterogeneous for different writing styles of people. We compare our method with following baselines:
non-adaptive methods: FedAvg (McMahan et al., 2017), FedCM (Xu et al., 2021b), STEM (Khanduri
et al., 2021a) and adaptive methods: FedAdam (Reddi et al., 2020), Local-Adapt (Wang et al., 2021),
Local-AMSGrad (Chen et al., 2020b), MIME-MVR (Karimireddy et al., 2020a).

For all methods, we tune their hyper-parameters to find the best setting. The results are summarized in
Figure 3, the plots are averaged over 5 runs and then smoothed. As shown in the figures, our FedDA-
MVR outperforms all baselines. We observe that adaptive methods in general get better train and
test performance. Finally, the superior performance of our method compared with the three adaptive
baselines shows that our method exploits adaptive information better; for example, MIME-MVR also
exploits the momentum-based variance reduction technique, but it fixes all optimizer states during
local updates, in contrast, we only fix the adaptive matrix but update the momentum ν

(k)
t , k ∈ [K] at

every step. For the full set of experiments, please refer to Section A.1 and A.2 of the appendix.

7 CONCLUSION

In this paper, we proposed FedDA, an adaptive gradient framework for federated constrained opti-
mization. FedDA incorporates various adaptive gradients and momentum-based acceleration methods.
More specifically, we adopt the Mirror Descent view of adaptive gradients and propose to maintain
and average the dual states in the training, meanwhile we fix the adaptive matrix during local training
such that the dual spaces are aligned among clients. We also analyze the convergence property of our
Framework: for the variant FedDA-MVR, we proved that it reaches an ϵ-optimal stationary point with
Õ(K−1ϵ−1.5) gradient queries and Õ(K−0.25ϵ−1.25) communication rounds. Finally, we validate
our algorithm for both biomarker identification tasks and general unconstrained image classification
tasks. The numerical results show the superior performance of our algorithm compared to various
baseline methods.
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