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Abstract

The ability to successfully predict the three-dimensional structure of a protein from its amino acid sequence
has made considerable progress in the recent past. The progress is propelled by the improved accuracy of
deep learning-based inter-residue contact map predictors coupled with the rising growth of protein
sequence databases. Contact map encodes interatomic interaction information that can be exploited for
highly accurate prediction of protein structures via contact map threading even for the query proteins that
are not amenable to direct homology modeling. As such, contact-assisted threading has garnered consider-
able research effort. In this chapter, we provide an overview of existing contact-assisted threading methods
while highlighting the recent advances and discussing some of the current limitations and future prospects
in the application of contact-assisted threading for improving the accuracy of low-homology protein
modeling.
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1 Introduction

The computational prediction of the three-dimensional
(3D) structure of a protein from its amino acid sequence remains
elusive [1–4]. Despite the encouraging recent progress in ab initio
protein structure prediction [5–12], template-based modeling
(TBM) [13] remains one of the most reliable approaches in protein
structure prediction [14–21], especially when homologous tem-
plates are available in the Protein Data Bank (PDB) [22]. TBM
approaches can be broadly classified into homology modeling and
protein threading based on the degree of homology. Homology
modeling or comparative modeling is the process of building a
structure of a query protein from a homologous template with a
high degree of sequence similarity [23], whereas threading or fold
recognition corresponds to an advanced template identification
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strategy where only distant homologs are available in the PDB but
are not easily identifiable [3, 24, 25]. The primary objective of
threading is to recognize one or more templates that are consistent
with the query sequence, that is, existing folds that might be
potentially analogous to the query sequence. Since its inception at
the beginning of the 1990s [3, 24], threading remains an active
area of research. The general principle behind protein threading is
that there exists a finite number of unique folds in nature and many
proteins (~90% [14]) share the same folds [26, 27], even though
their sequences differ, illustrating that in theory the structure of
most proteins can be successfully predicted by threading a query
protein sequence onto a library of structural templates [14].
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Current threading strategies are based on various techniques
ranging from dynamic programming to profile-profile comparison
based on hidden Markov models to more advanced machine
learning approaches [18, 21, 28–49]. Some of these methods use
only sequence-based features, while others [14, 18, 19, 31] use
sequence and structure-based features for calculating the fitness
score between the query and template. With the recent advances
in residue-residue contact prediction [50–61] driven by sequence
coevolution and deep learning, predicted contact information has
become an additional structural feature in protein threading, lead-
ing to the development of numerous contact-assisted threading
methods in the last few years [16, 20, 62–65]. The usefulness of
these cutting-edge contact-assisted threading methods are particu-
larly noteworthy in low-homology (see Note 1) protein modeling
scenarios [63, 64, 66]. Here, we provide an overview of existing
contact-assisted threading methods, highlighting some of the
recent advances in low-homology protein modeling. We also dis-
cuss some of the current limitations and future prospects in
contact-assisted threading.

2 Materials

Most threading methods have certain aspects in common. Here, we
provide a brief overview of the common methodologies used in
threading.

2.1 Template Library Template library is a collection of representative protein structures
(aka templates) from the PDB. A query protein sequence is
threaded (or aligned) across each template in the library. Therefore,
in order to minimize the time to search the whole template library,
it is a common practice to make the library nonredundant by
considering a small fraction of representative templates from a
group of highly similar templates [14].
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2.2 Query and

Template Feature Set

Threading approaches use different sequential and structural fea-
tures for the query protein and the templates. Below, we briefly
discuss various common features used in threading.

2.2.1 Sequence Profiles Sequence profile contains the evolutionary information as well as
the sequence diversity among homologous sequences of the query
protein. A sequence profile is considered as a rich source of infor-
mation in threading because homologous proteins tend to have
similar sequence profiles. Programs such as PSI-BLAST [17] and
HHblits [67] can be used to generate sequence profiles.

2.2.2 Secondary

Structures

A protein’s local conformation may be defined in terms of its
secondary structure and using the secondary structure as a feature
in threading has attracted much attention since the early days of
threading approaches. The secondary structure of a query protein
can be predicted using secondary structure predictors such as
PSIPRED [68], SPIDER3 [69], and RaptorX Property
[70]. Most of these methods predict the likelihood of various
secondary structure types. Most popular secondary structure pre-
dictors [16, 18, 71] use the three-class secondary structures (alpha
helices, beta strands, and loop), even though some of the recent
threading methods [72] use both three-class and eight-class sec-
ondary structure types. While the secondary structure of a query
protein is typically predicted from its sequence information, the
secondary structures of the template proteins are calculated directly
from the PDB structures using programs such as DSSP [73] and
STRIDE [74].

2.2.3 Solvent

Accessibility

Solvent accessibility is related to the spatial organization and pack-
ing of residues and is therefore considered as an important feature
for threading. Solvent accessibility can be categorized using binary
classification (buried or exposed) or using a three-class classification
(buried, intermediate, and exposed). While solvent accessibility
predictors such as PSIPRED, SPIDER3, and RaptorX Property
are typically used to predict the solvent accessibility of each residue
in the query protein, DSSP and STRIDE can be used for calculating
that of the template.

2.2.4 Backbone Dihedral

Angles

A protein’s dihedral angle is the angle of the polypeptide backbone
where two neighboring planes meet. The dihedral angles for the
query protein can be predicted using predictors such as PSIPRED
and SPIDER3.

2.2.5 Additional Features In addition to these features, structure profiles, hydrophobicity,
and amino acid substitution matrix such as BLOSUM are also
considered as features for threading [71, 72]. Contact-assisted
threading methods use the pairwise predicted (or native) contact
information for a query (or template) protein because contact



information is considered as a rich source of information for thread-
ing. Contact-assisted threading methods use contact information
either implicitly such as in PROSPECT [46], PROSPECTOR
[75, 76], and RAPTOR [14] or explicitly such as in EigenTHREA-
DER [20], map_align [62], CEthreader [63], CATHER [64],
ThreaderAI [65], and our in-house threading method [16].
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2.3 Threading

Performance Measure

Measuring the structural similarity between the predicted and the
native protein 3D structure is critically important for objectively
evaluating the performance of a threading method. Some most
commonly used scores are the template modeling score
(TM-score) [77], the root-mean-square deviation (RMSD) [78],
the global distance test (GDT) [79], and the local distance differ-
ence test (lDDT) [80]. TM-score is one of the most widely used
scoring metrics having scores in the range (0, 1) with higher scores
indicating better similarities. A TM-score >0.5 typically indicates
the correct overall fold [81].

3 Methods

3.1 Overview of

Protein Threading

The goal of protein threading is to optimally align a query sequence
to a known structural template [82]. This requires identifying the
correct or best-fit template from a library of templates and the
optimal query-template alignment from the space of all possible
query-template alignments. The query-template alignment repre-
sents a correspondence between each query residue and the spatial
positioning of the aligned template residues. Overall, protein
threading can be mainly considered to involving three components:
(1) a threading scoring function that evaluates the fitness of query-
template alignments, (2) identification of the best-fit structural
template from the library of templates, and (3) an optimal align-
ment of the query sequence to the template. In the following, we
discuss each component in more details.

3.1.1 Threading Scoring

Function

The scoring function plays an important role to quantitatively assess
the fitness of query-template alignments [14]. The scoring function
normally consists of the profile similarity score, the structural con-
sistency score, and the gap penalty. The profile similarity score can
be calculated by comparing the query and template profiles. It
quantifies how the query is evolutionary related to the template.
The structural consistency score contains two components: consis-
tency of local structures such as secondary structure and solvent
accessibility compatibility and consistency of global structures or
pairwise interatomic interactions. Weights can be used in the scor-
ing function to control the relative importance of different scoring
terms.
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3.1.2 Template Selection Identifying the best-fit template inevitably requires using the align-
ment score of query-template alignments. The raw query-template
alignment score cannot be directly used to rank templates due to
the biases introduced by the protein length [14]. Both machine
learning-based methods and Z-score are used to mitigate the bias.
Several protein threading methods [40, 46, 83–85] use machine
learning models such as the neural network for the template rank-
ing by formulating the template selection as a classification prob-
lem, even though a majority of the threading methods [18, 63, 64]
rely on Z-score for the template selection. Z-scores of the query-
template pair are computed from the means and standard devia-
tions of the scores of the query sequence with all templates of the
template library. However, it cannot cancel out all the biases intro-
duced by the protein length. A large protein appears to have a high
Z-score. It is also difficult to interpret the Z-score, particularly
when the scoring function is the weighted sum of different scoring
terms [14].

3.1.3 Optimal Query-

Template Alignment

The optimal query-template alignment is the alignment that opti-
mally aligns residues in the query sequence homologous to residues
in the template. It is often the case that a threading scoring function
is effective in selecting the homologous template, but the query-
template alignment is significantly weak [25, 86]. In such cases, the
alignment may be suboptimal, which might result in less accurate
template-based models built from such an alignment, that is, the
sensitivity of query-template alignment directly affects the overall
performance of template-based modeling.

3.2 Contact-Assisted

Protein Threading

A contact map of a protein is a binary, square, symmetric matrix
with vertices corresponding to residues of the protein, and a con-
tact edge indicates that the distance between a residue pair is smaller
than a given threshold. Typically, this distance threshold is consid-
ered 8 Å between the Cα and Cβ atoms of the residue pairs
[16, 20]. Here, the set of contacts between residue pair (i, j) i
defined as:

3.2.1 Residue-Residue

Contact Map

C i, jð Þ= 1 if dij ≤8 Å
0 otherwise

n

where dij is the distance between the residue pair (i, j). Figure 1
shows a representative protein 3D structure and its corresponding
2D residue-residue contact map.

3.2.2 Contact Map

Alignment

Contact map alignment is a way of measuring the similarity
between two contact maps. The maximum contact map overlap
problem tries to evaluate the similarity of the two proteins by
calculating the maximum overlap between their contact maps
while preserving the ordering of residues of both sequences, lead-
ing to a pairwise sequence alignment as illustrated in Fig. 2. Since



direct contact map alignment is computationally expensive [63],
several approximation algorithms [62, 87–92] have been developed
to address the contact map alignment problem including the
eigendecomposition-based strategy, graphlet degree-based
approach, and iterative double dynamic programming-based
approach. Eigendecomposition decomposes a contact map into
eigenvectors and corresponding eigenvalues. This approach com-
pares two proteins by comparing their contact map eigenvectors,
which can be performed in polynomial time. For example,
approaches such as EIGAs [87], SABERTOOTH [89], and
Al-Eigen [90] use the eigendecomposition to approximate contact
maps using the top eigenvectors and use the global alignment of
key eigenvectors to find the similarity between two contact maps.
GR-Align [92] is a fast contact map alignment approach based on
graphlet degree distribution. Moreover, [93] proposes a contact
map alignment algorithm C-Align based on Cα atoms using
dynamic programming. Recent methods such as map_align [62]
employ iterative double dynamic programming to calculate contact
map alignment, with the goal of optimizing the number of contact
overlaps while minimizing the number of gaps.
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Fig. 1 A representative protein 3D structure and its corresponding 2D binary contact map. (a) 3D structure of a
representative protein (PDB ID 1cc8A), (b) the corresponding 2D residue-residue contact map, considering Cα
atoms and a distance threshold of 8 Å

3.3 Overview of

Existing Contact-

Assisted Threading

Methods

Table 1 shows several publicly available contact-assisted threading
methods. These approaches can be broadly subdivided into two
classes: (1) methods that implicitly use contact information via
pairwise contact potential such as PROSPECT [46], PROSPEC-
TOR [75, 76], and RAPTOR [14]; and (2) methods that explicitly
use contact information via predicted residue-residue contacts
including the current state-of-the-art contact-assisted threading
methods such as EigenTHREADER [20], map_align [62],
CEthreader [63], CATHER [64], ThreaderAI [65], and our
in-house threading method [16]. We briefly discuss them below.
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Fig. 2 Contact map alignment. (a) contact map of a representative protein (PDB ID 1cc8A), (b) contact map of
another representative protein (PDB ID 1wvnA), (c) sequence alignment of 1cc8A and 1wvnA using Al-Eigen. In
both cases, Cα atoms and the distance threshold of 8 Å are considered. (d) 1wvnA (in rainbow) is structurally
superimposed on 1cc8A (in gray)

3.3.1 Threading Methods

That Implicitly Use Contact

Information via Pairwise

Contact Potential

PROSPECT (PROtein Structure Prediction and Evaluation Com-
puter Toolkit) [46] is one of the earliest protein threading meth-
ods, which makes use of pairwise contact potential by introducing a
contact term into its scoring function. This study considers that
pairwise contact potentials are measured only between core second-
ary structures. The contact cutoff is set at 7 Å between the Cβ

atoms. Additionally, the method uses a divide-and-conquer



algorithm for the alignment searching procedure. Another
method, PROSPECTOR (PROtein Structure Predictor Employ-
ing Combined Threading to Optimize Results) [75, 76], uses a
“partly thawed” technique to assess the contact potential based on
the previous alignment iterations. RAPTOR (RApid Protein
Threading by Operation Research technique) [14] is another pro-
tein threading method that introduces contact capacity score. It
considers only contacts between two core residues where the spatial
distance betweenCα atoms is 7Åwith a sequence separation of 4. It
addresses threading as a problem of wide-scale integer program-
ming, relaxes it to a problem of linear programming, and uses a
branch-and-bound approach to solve the integer program. How-
ever, the performance contribution of pairwise contact potential in
the above methods is not significant compared to that of sequence
profile, particularly for distantly related proteins. The underlying
reason may be noisy contacts that do not hold any extra signal,
yielding just modest improvement.
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Table 1
Selected publicly accessible threading methods that implicitly or explicitly use contact information

Name (reference) Method Availability

PROSPECT (Xu and
coworkers [46])

Divide-and-conquer algorithm http://compbio.ornl.gov/structure/
prospect/

PROSPECTOR (Skolnick
and coworkers [75, 76])

Hierarchical approach http://bioinformatics.
danforthceneter.org/services/
threading.html

RAPTOR (Xu and
coworkers [14])

Linear programming http://www.cs.uwaterloo.ca/~j3xu/
RAPTOR_form.htm

EigenTHREADER (Jones
and coworkers [20])

Dynamic programming and
eigendecomposition

http://bioinfadmin.cs.ucl.ac.uk/
downloads/eigenTHREADER/

map_align (Baker and
coworkers [62])

Iterative double dynamic
programming

https://github.com/sokrypton/
map_align

CEthreader (Zhang and
coworkers [63])

Dynamic programming and
eigendecomposition

https://zhanglab.ccmb.med.umich.
edu/CEthreader/

CATHER (Yang and
coworkers [64])

Iterative double dynamic
programming

https://yanglab.nankai.edu.cn/
CATHER/

ThreaderAI (Shen and
coworkers [65])

Deep residual neural network
and dynamic programming

https://github.com/ShenLab/
ThreaderAI

3.3.2 Threading Methods

That Explicitly Use Contact

Information via Predicted

Residue-Residue Contacts

Recent successful applications of deep learning have resulted in
significantly improved inter-residue contact prediction methods
[53, 56, 60, 94]. As such, the newest contact-assisted threading
methods have been explicitly integrating predicted residue-residue

http://compbio.ornl.gov/structure/prospect/
http://compbio.ornl.gov/structure/prospect/
http://bioinformatics.danforthceneter.org/services/threading.html
http://bioinformatics.danforthceneter.org/services/threading.html
http://bioinformatics.danforthceneter.org/services/threading.html
http://www.cs.uwaterloo.ca/~j3xu/RAPTOR_form.htm
http://www.cs.uwaterloo.ca/~j3xu/RAPTOR_form.htm
http://bioinfadmin.cs.ucl.ac.uk/downloads/eigenTHREADER/
http://bioinfadmin.cs.ucl.ac.uk/downloads/eigenTHREADER/
https://github.com/sokrypton/map_align
https://github.com/sokrypton/map_align
https://zhanglab.ccmb.med.umich.edu/CEthreader/
https://zhanglab.ccmb.med.umich.edu/CEthreader/
https://yanglab.nankai.edu.cn/CATHER/
https://yanglab.nankai.edu.cn/CATHER/
https://github.com/ShenLab/ThreaderAI
https://github.com/ShenLab/ThreaderAI


contact information to improve threading performance. Eigen-
THREADER [20], developed in 2017, extends Al-Eigen [90] to
enable threading by predicting a protein’s contact map using classi-
cal neural network-based predictor MetaPSICOV [53] and then
searching a library of templates’ contact maps. Despite the superior
performance of EigenTHREADER over other profile-based
threading methods for low-homology threading, it can be further
improved by integrating other linear features such as sequence
profiles along with inter-residue contact maps. map_align [62],
developed in 2017, proposes an iterative double dynamic program-
ming algorithm [95] that aligns contact maps, predicted by pure
coevolutionary-based predictor GREMLIN [96], in combination
with metagenomic sequences of microbial DNA [97]. The elevated
performance of map_align can be attributed to the contribution of
contact maps in low-homology threading. However, considering
that the outcomes rely on the initial estimate of the similarity
matrix, which is not always optimal, this approach does not neces-
sarily guarantee optimal solutions. CEthreader [63] (Contact
Eigenvector-based threader), developed in 2019, uses contact
maps predicted from deep residual neural-network-based predictor
ResPRE [94]. Similar to Al-Eigen, this work uses the eigendecom-
position technique to approximate contact maps by the cross prod-
uct of single-body eigenvectors. CEthreader introduces a
dot-product scoring function by incorporating contact information
along with secondary structures and sequence profiles to align
contact eigenvectors and uses dynamic programming to generate
the query-template alignments. However, the method can be fur-
ther strengthened by considering negative eigenvalues in addition
to positive eigenvalues, since the incorporation of both positive and
negative eigenvalues restores the contact map. Another new
contact-assisted threading algorithm CATHER [64] (contact-
assisted THreadER), developed in 2020, uses both conventional
sequential profiles and contact maps predicted by a deep learning-
based method MapPred [98]. A very recent method ThreaderAI
[65] integrates deep learning-based contact information with tra-
ditional sequential and structural features by formulating the task of
threading as the classical computer vision’s classification problem.
This work introduces a deep residual neural network to predict
query-template alignments. Based on the reported results of the
above methods, contact-assisted threading methods significantly
outperform profile-based threading methods by a large margin,
particularly for low-homology targets.
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Our in-house threading method [16], developed in 2019,
integrates the standard threading technique along with inter-
residue contact information predicted by the state-of-the-art
ultra-deep learning-based method RaptorX [56]. First, our method



applies the standard threading technique to select the top templates
based on the Z-score and then applies the contact map overlap
score using Al-Eigen along with the Z-score to calculate the final
score for selecting the best-fit template. Based on large-scale bench-
marking results, this method outperforms profile-based threading
methodMUSTER as well as other contact-assisted threading meth-
ods EigenTHREADER and map_align.
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3.4 Significance of

Contact Maps Quality

in Threading

While incorporating contact information into threading is highly
effective, our recent study [99] shows the impact of diverse quality
of contact maps on contact-assisted threading performance in that
integrating high-quality contacts having the Matthews correlation
coefficient (MCC) ≥0.5 results in improved threading performance
for ~30% of the cases, while low-quality contacts having MCC
<0.35 degrade the threading performance for 50% of the cases.
The results reveal the reciprocal coupling between the quality of
predicted contact maps and contact-assisted threading performance
and indicate that the rapid advancement in contact prediction
methods powered by deep learning can synergistically assist
contact-assisted threading, leading to improved low-homology
protein modeling.

3.5 Growth of Protein

Sequence Databases

and Its Implication in

Threading

Since most contact map predictions, secondary structure predic-
tions, and sequence profiles depend on the evolutionary signal
derived from multiple sequence alignments (MSA) (see Note 2),
the adequate number of homologous sequences is critical to the
success of these approaches. This limitation can be largely over-
come by taking advantage of the fast-paced growth of whole-
genome sequence databases such as the nr database compiled by
the National Center for Biotechnology Information (NCBI), Uni-
Ref [100], UniProt [101], Uniclust [102], as well as metagenome
databases from the European Bioinformatics Institute (EBI) Meta-
genomics [103, 104] and Metaclust [105]. For instance, with the
addition of two billion metagenomic protein sequences, there is a
significant increase in the number of families of unknown struc-
tures, which can now be reliably modeled by using the coevolution-
ary information [62]. A recent paper [106] demonstrates improved
protein structure prediction through marine metagenomics for
low-homology proteins, illustrating the potential usefulness of
growing sequence databases on protein structure prediction. Two
newest emerging sequence databases, BFD [107] and MGnify
[108], may further enrich the evolutionary information. Recently,
DeepMSA [109] method for generating multiple sequence align-
ment information shows the benefit of generating deep multiple
sequence alignment by combining the multiple sequence databases
for threading as well as contact predictions.
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3.6 Discussion The improved performance of contact-assisted threading methods
is attributed to successfully integrating inter-residue contact infor-
mation along with traditional linear and nonlinear threading fea-
tures. Although contact-assisted threading approaches have
witnessed promising progress so far, but there is still room for
improvement with the advancement of deep learning-based inter-
residue distance prediction [6, 7, 110–113] instead of binary con-
tacts (see Note 3). A protein can be represented by a 2D inter-
residue distance map, where a distance map is a square, symmetric
matrix with vertices corresponding to residues of the protein and an
edge indicates the distance between a residue pair. As distances
carry more information than contacts [85], recent distance-based
threading method DeepThreader [85] shows further improve-
ment, particularly for low-homology threading, by outperforming
existing contact-assisted threading approaches. Inspired by the
promising results, CEthreader method is extended to distance-
guided threading method DEthreader in the recently concluded
14th critical assessment of protein structure prediction (CASP14)
experiment (see Note 4) by adding a distance map-based energy
term in the threading scoring function. Similarly, CATHER has also
replaced contacts with distances in CASP14. Our most recent
threading method DisCovER [71] (distance- and orientation-
based Covariational threadER) goes one step further by effectively
integrating information from inter-residue distance and orientation
along with the topological network neighborhood (seeNote 5) of a
query-template alignment. DisCovER shows the usefulness of
incorporating inter-residue orientation along with distance infor-
mation together with the neighborhood effect induced by the
query-template alignment, leading to improved threading
performance.

While no single-template threading method works well for all
types of targets [13], multiple-template approaches as well as meta-
approaches work better in protein structure prediction [41, 45,
66]. For instance, previous multiple-template approaches
[45, 114–119] demonstrate their superior performance over the
best single-template threading method by attaining better align-
ments. Moreover, meta-approaches [41, 66, 120] show promising
results over individual approaches, particularly for distantly homol-
ogous proteins. In the case of meta-servers, there is a need to select
the top model based on various scoring functions by scoring pre-
dicted 3D models using model quality assessment programs
(MQAPs), including single-model [121–130] and consensus
[131–134] methods. Furthermore, even when using the most
advanced template-based modeling pipeline, predicted models
often fail to reach near-native accuracy. Protein structure refine-
ment methods [135–144] are needed to bring these moderately
accurate predicted models closer to the native state.
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4 Notes

1. Low homology refers to the lack of available sufficient homol-
ogous information for the query sequence.

2. Multiple sequence alignment refers to the alignment of
evolutionary-related protein sequences.

3. A binary contact indicates that the distance between a residue
pair is smaller than a given distance threshold, typically 8 Å.

4. CASP is a community-wide blind assessment of protein struc-
ture prediction, taking place in each alternative year since 1994.

5. Network neighborhood attempts to capture the similarity
between the neighboring residues. It works on the assumption
that a pair of query-template residues are likely to be aligned if
their adjacent residues are also aligned.
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92. Malod-Dognin N, Pržulj N (2014) GR-align:
fast and flexible alignment of protein 3D
structures using graphlet degree similarity.
Bioinformatics 30:1259–1265. https://doi.
org/10.1093/bioinformatics/btu020

93. Skolnick J, Zhou H (2017) Why is there a
glass ceiling for threading based protein struc-
ture prediction methods? J Phys Chem B 121:
3546–3554. https://doi.org/10.1021/acs.
jpcb.6b09517

94. Li Y, Hu J, Zhang C, Yu D-J, Zhang Y (2019)
ResPRE: high-accuracy protein contact pre-
diction by coupling precision matrix with
deep residual neural networks. Bioinformatics
35:4647–4655. https://doi.org/10.1093/
bioinformatics/btz291

95. Taylor WR (1999) Protein structure compari-
son using iterated double dynamic program-
ming. Protein Sci 8:654–665. https://doi.
org/10.1110/ps.8.3.654

96. Kamisetty H, Ovchinnikov S, Baker D (2013)
Assessing the utility of coevolution-based
residue–residue contact predictions in a
sequence- and structure-rich era. PNAS 110:
15674–15679. https://doi.org/10.1073/
pnas.1314045110
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