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Abstract

It is well-known that the statistical performance of Lasso can suffer significantly when the co-
variates of interest have strong correlations. In particular, the prediction error of Lasso becomes
much worse than computationally inefficient alternatives like Best Subset Selection. Due to a large
conjectured computational-statistical tradeoff in the problem of sparse linear regression, it may be
impossible to close this gap in general.

In this work, we propose a natural sparse linear regression setting where strong correlations
between covariates arise from unobserved latent variables. In this setting, we analyze the problem
caused by strong correlations and design a surprisingly simple fix. While Lasso with standard
normalization of covariates fails, there exists a heterogeneous scaling of the covariates with which
Lasso will suddenly obtain strong provable guarantees for estimation. Moreover, we design a
simple, efficient procedure for computing such a “smart scaling.”

The sample complexity of the resulting “rescaled Lasso” algorithm incurs (in the worst case)
quadratic dependence on the sparsity of the underlying signal. While this dependence is not
information-theoretically necessary, we give evidence that it is optimal among the class of polynomial-
time algorithms, via the method of low-degree polynomials. This argument reveals a new connec-
tion between sparse linear regression and a special version of sparse PCA with a near-critical
negative spike. The latter problem can be thought of as a real-valued analogue of learning a sparse
parity. Using it, we also establish the first computational-statistical gap for the closely related
problem of learning a Gaussian Graphical Model.

1. Introduction

Sparse linear regression (SLR) is one of the most fundamental problems in high-dimensional statis-
tics. In this paper, we study algorithmic aspects of the problem. For simplicity, we focus on the
following setting with Gaussian random design (though our results should be generalizable to e.g.,
sub-Gaussian data, misspecification via oracle inequalities, etc.):

Definition 1 Ler > € R™*" be positive semi-definite, w* € R" be k-sparse, and o > 0. We define
SLRx , (w*) to be the distribution of (X,y) where X ~ N(0,%) and y ~ N((X,w*),?).
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Given m independent samples (X /), (7)) 7t from SLRy; »(w*), the goal of sparse linear regression
is to produce an estimate w with low out-of-sample (clean) prediction error, defined as:

E((XV, %) — (X, 0")? = (@ —w*) 2@ —w*) = |[d — w5

where (X (9 () is a fresh sample from SLRy; , (w*).

Despite significant effort, there is a vast gap in our understanding of the computational com-
plexity of sparse linear regression — and, in particular, how computational efficiency interplays with
sample efficiency. On the one hand, the natural Best Subset Selection estimator (Hocking and Leslie,
1967) achieves prediction error O(o?k(logn)/m) with m samples, so long as m = Q(klogn).
Note that the sample complexity scales only logarithmically with the ambient dimension n, and no
further assumptions on ¥ or w* are needed. Unfortunately, this estimator is computationally in-
tractable. On the other hand, classical estimators such as Lasso (Tibshirani, 1996) can be computed
in polynomial time. However, they are known to have poor statistical performance (e.g., sample
complexity linear in n) in many settings where the covariates have strong correlations. In partic-
ular, Lasso is only statistically efficient when 3 satisfies a restricted condition-number assumption
such as the compatibility condition (Van De Geer et al., 2009). While there are several special cases
where Lasso fails but other polynomial-time algorithms are known to succeed, these are (thus far)
the exceptions to the rule.! See Section 3.1 for further discussion about Lasso and other estimators.

Given the dearth of strong algorithmic guarantees for SLR, it’s natural to speculate that some
choices of ¥ make SLR computationally hard for any sample complexity m = o(n). But proving
such a lower bound via average-case reduction or in any standard restricted computational model
(e.g., low-degree polynomials or statistical queries) seems out of reach at present (see Section 3.2
for discussion of prior attempts). We lack even a conjecture about which families of 3 might induce
computational hardness: obviously, > must be ill-conditioned, but little else is clear.

In this paper, we make progress on this problem by identifying the fundamental computational
limits for a subclass of SLR problems. Informally, the subclass captures common situations where
strong correlations are due to the existence of a few latent confounders or a few directions of un-
usually small variance in the data; see below for more details. For this subclass, we give math-
ematical evidence that no efficient estimator can succeed with significantly less than O(k?logn)
samples (even though O(klogn) samples suffice information-theoretically), and we design a new
polynomial-time algorithm that matches the lower bound. Our efficient algorithm is based on a
simple but surprisingly powerful smart scaling procedure that we use as a preprocessing step to
“fix” the Lasso. Our lower bound is based on a new connection between SLR and what we call the
near-critical regime of negatively spiked sparse principal component analysis (PCA).

1.1. Upper bounds

We start by describing two natural settings where > may be arbitrarily ill-conditioned (and Lasso has
poor sample complexity and performs poorly empirically), but the degeneracies among covariates
are sufficiently few or structured so that one may still hope for an efficient SLR algorithm.

Setting 1 (Latent variable models) Correlations are often induced via latent confounders. Thus,
as is common in econometrics, causal inference, and other fields (see e.g. Hoyle (1995); Pearl

1. Note that even if > were known, it’s not clear whether the problem would become any easier. One could precon-
dition the covariates by ¥ ~1/2, but this typically destroys the sparsity guarantee. While preconditioning is a useful
algorithmic tool, finding the right preconditioner is often challenging (whether 3 is known or unknown).
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Figure 1: (a) Example graphical model with X1, ..., X, observed and H;, Ho latent. (b) Example
eigenspectrum that is well-conditioned aside from a few “outliers” (displayed in red).

(2009)), we can posit that covariates follow a Structural Equation Model (SEM) with h < n latent
variables. Formally, we suppose that each observed covariate vector X @) can be written as X ) :=
AHY + 70U) where A is an unknown, fixed n X h matrix, H () is an unobserved Gaussian random
vector, and independently ZU) ~ N (0, D) is Gaussian noise where D 0 is diagonal. Thus, there
is a rank-h matrix L = 0 such that each X () is a multivariate Gaussian with covariance matrix

Y=EXX' =L+ D. (1)

Setting 2 (Eigenspectrum with outliers) Alternatively, we may restrict the degeneracies in 3.
by explicitly controlling the eigenspectrum. In this setting, originally introduced by Kelner et al.
(2023), we assume that the spectrum of . is well-concentrated, aside from a small number of “out-
lier” eigenvalues. That is, suppose that the eigenvalues of 2 are \1 > --- > \,,, and there is some
d < n such that N1/ n—q is small (see Figure 1 for a depiction). Unlike in Kelner et al. (2023),
we do not assume that 3. is known.

Note that the latter setting generalizes the classical, well-conditioned setting (where A;/\, =
O(1)). Both settings allow for a small number of approximate linear dependencies among the co-
variates, which is a natural case where Lasso may provably fail, requiring as many as {2(n) samples
to achieve non-trivial prediction error (Kelner et al., 2021, Theorem 6.5).

Challenge: adapting to unknown structure. In both settings, the covariates are drawn from a
highly structured distribution, but one of the main challenges is that the structure is unknown. In the
latent variable model setting, 3. has a “low-rank plus diagonal” decomposition. However, even if X
is known, efficiently computing such a decomposition is a well-studied open problem (Saunderson
et al., 2012; Bertsimas et al., 2017; Wu et al., 2020) with some evidence of intractability (Tuncel
etal., 2023). In the outlier setting, note that the eigendecomposition of X isn’t even identifiable from
a sublinear number of samples. Thus, efficient sparse linear regression in these settings requires
exploiting unknown structure without completely learning it.

1.1.1. AN EFFICIENT ALGORITHM VIA SMART SCALING

Conventional wisdom when applying the Lasso (and in statistics and machine learning more broadly)
is to scale all covariates to unit variance (Ahrens et al., 2020). While this is a good idea in many
cases, it is not always the optimal choice! In fact, in both settings described above, even if Lasso
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has poor performance with the standard scaling, there always exists a clever rescaling after which
Lasso would achieve near-optimal sample complexity. We formalize this existence criterion via the
following notion of («v, h)-rescalability. It essentially states that after rescaling by some diagonal
matrix, covariates from N (0, X) satisfy a restricted eigenvalue condition (similar to Raskutti et al.
(2010)) modulo a low-rank subspace span(L).

Definition 2 Foranyn € Nand~y > 1, let Cp () := {x € R" : ||z||; < v||z| o} be the set of
~-quantitatively sparse vectors.

Definition 3 Lern € N, and let > € R™ " be a positive semi-definite matrix. For k,h € N and
a > 0, we say that ¥ is («, h)-rescalable at sparsity k if there are matrices D, L € R"*" such that
D = 0is diagonal, L > 0 has rank at most h, and

Iy Z¢,@oxy) D7V*SD7V? < al, + L )

where I, =¢, (32k) D725 D=2 means that v'v < v D=V22D=2y for all v € C,(32k). If
Equation (2) holds for all k, then we simply say that ¥ is (c, h)-rescalable.

In Setting 1 (the latent variable model with h latent variables), it’s immediate from Definition 3 that
Y is (1, h)-rescalable. In Setting 2, the implication is less obvious, but we are able to show that ¥ is
(v, h)-rescalable at sparsity k with o = O(k*\g11/An_q) and h = O(k?d) (see Lemma 29). Thus,
the notion of rescalability unifies both settings.

If D were known, then one could simply rescale each sample via X — D~/2X . By standard
analyses, Lasso with this “oracle rescaling” would have sample complexity O((ak + h)logn),
which is information-theoretically optimal for o, h = O(1). However, as discussed above, it is
unreasonable to assume access to D, which in Setting 1 consists of the conditional variances of the
covariates with respect to the unknown latent variables. Our first main result is a computationally
efficient SLR algorithm RescaledLasso () that doesn’t need to know D (or X), and nonetheless
matches the sample complexity of the “oracle rescaled” Lasso up to a factor of k:

Theorem 4 Letn,m,k,h € Nand o, 9,0, X > 0. Suppose that ¥ € R™*" is («, h)-rescalable at
sparsity k, and w* € R™ is k-sparse. Let (XU), yU ))2”:1 ~ SLRy. ;(w*) be independent samples,

and define W := RescaledLasso ((X(j),y(j));ﬁzl, k,\) (see Algorithm 1).

Ifm = Q((ak? + h)log(n/d)) and X = Q(o+/(ak? + h)log(n/5)/(k?m)), then with proba-
bility at least 1—§ it holds that || — w*||% < O(k*A2). Moreover, the algorithm’s time complexity

is poly(n, log max; %ﬂ ), where D is the (unknown) matrix in Definition 3.

In particular, for the optimal choice of )\, the algorithm achieves prediction error O(o?(ak? +
h)log(n)/m) with high probability. Note that the time complexity depends on max; >;;/D;;, but
only logarithmically; hence, the algorithm runs in poly(n) time even if this ratio is exponentially
large. Applying Theorem 4 to Setting 1 is immediate using Equation (1); simply set « = 1, and
take h to be the number of latent variables:

Corollary 5 Letn,m,k,h € Nandd,0,\ > 0. Let ¥ := D+ L € R™*™ for some diagonal matrix
D = 0 and rank-h matrix L > 0, and let w* € R™ be k-sparse. Let (X9, y(j));”:1 ~ SLRy, »(w*)

be independent samples, and define w0 := RescaledLasso ((X(j),y(j))Tzl,k,A). Ifm =

Q((k?* + h)log(n/d)) and X = Q(o+/(k%+ h)log(n/8)/(k?m)), then with probability at least

1—0 it holds that ||w — w*||% < O(k2\2). Moreover, the time complexity is poly(n, log max; ?)Z ).
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Note the quadratic dependence on k above and in Theorem 4. While not information-theoretically
necessary, we give evidence in Section 1.2 that it is the optimal dependence for efficient algorithms.

The more involved application is to Setting 2, where proving rescalability is non-trivial (see
Lemma 29). Combining Theorem 4 with Lemma 29 yields the following result.

Corollary 6 Let n,m,k € N and d,0,A > 0. Suppose that > € R™ ™ is positive definite
with eigenvalues \1 > --- > A, and that w* € R" is k-sparse. Let (X(j),y(j))j:1 be i.i.d.
samples from SLRy, ,(w*), and define w := RescaledLasso ((X(j),y(j))gnzl,k, AN Ifm =

Q(ming<gen (k4 {EL +42d) log(n/0)) and kX = Qo ming<gen (k2 321 +k+/d) /log(n/8) /m),
then with probability at least 1 — § it holds that || — w* sz < O(k?)\2). Moreover, the algorithm’s
time complexity is poly(n,log i‘—i)

Hence for the optimal choice of ), the algorithm achieves prediction error O (o2 ming<q<n (K :\\th +

k%d)log(n/d)/m). If the spectrum of ¥ has few outliers, in the sense that there is some d = O(1)
with Az 1/An_q = O(1), then this simplifies to O(c?k*log(n)/m). This significantly improves
upon the main result of Kelner et al. (2023), which requires knowledge of X and incurs exponential
dependence on k; see Section 3.1 for more detailed comparison.

1.2. Lower bounds

In light of Theorem 4, («, h)-rescalable matrices > (for small «, h) are likely not the “hardest” co-
variance matrices, for which one might expect that no computationally efficient algorithm achieves
non-trivial prediction error with o(n) samples. However, there is still a polynomial gap between
the sample complexity of RescaledLasso () and the information-theoretic optimum: even for
constant o and h, the sample complexity of RescaledLasso () is O(k? logn) (to achieve predic-
tion error O(c?)), whereas the inefficient Best Subset Selection estimator only requires O(k log n)
samples. It is natural to ask whether this gap is inherent.

We prove that, under a plausible conjecture about the power of low-degree polynomials, the
quadratic dependence on k incurred by RescaledLasso () may indeed be necessary for any
computationally efficient algorithm. While lower bounds have previously been shown for specific
algorithms (such as Lasso and some generalizations), the below result is, to our knowledge, the first
broad evidence for a (super-constant) computational-statistical tradeoff in sparse linear regression;
see Section 3.2 for further discussion.

Theorem 7 Let ¢,C > 0 with e < 2. Let A be a polynomial-time algorithm. Suppose that for
any n,k € N, 0 > 0, positive semi-definite, (1, k)-rescalable matrix > € R"*", k-sparse vector
w* € R™, and m > Ck*~€logn, the output 1 < A((X(j),y(j))gnzl) satisfies

Prffl — w3 < 0%/10] > 1 - o(1)

where the probability is over the randomness of A and m independent samples (X (7) 4 ))2”:1 from
SLRy. o (w*). Then Conjecture 33 is false.

Conjecture 33 is an instantiation of the Low-Degree Hypothesis: it asserts that low-degree polyno-
mials have optimal power among polynomial-time algorithms for a natural hypothesis testing prob-
lem called negative-spike sparse PCA. Informally, this is the problem of distinguishing samples
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from the standard multivariate Gaussian N (0, I,,) versus samples from the spiked Wishart model
N(0, I, + Bww "), where w is a random sparse unit vector, and 3 € (—1,0) is the spike strength.

The proof of Theorem 7 has two components. First, we analyze the low-degree likelihood ratio
for negative spike k-sparse PCA — thereby showing that low-degree polynomials require €2(k?)
samples to solve the testing problem. We give additional evidence for the hardness of this problem
by proving a lower bound for a natural SDP formulation. Second, we given an efficient reduction
from this testing problem (in the near-critical regime where 3 is close to —1) to sparse linear
regression with a (1, k)-rescalable covariance matrix 3.2

Our analysis of near-critical negative spike PCA also yields the first computational-statistical
gap for learning Gaussian Graphical Models (GGMs). While it’s information-theoretically possible
to learn any k-nondegenerate, degree-d GGM with only O(dlog(n)/x?) samples (Misra et al.,
2017), the low-degree analysis implies (under Conjecture 33) that any computationally efficient
algorithm requires at least 2(d>~“log(n)) samples, for any constant ¢ > 0 and even when x =
(1). See Remark 43 for details. We do not know if this lower bound is tight for learning GGMs
(the true computational-statistical gap may be much larger), but it is in fact tight for a natural testing
problem: testing between an empty graphical model and a sparse graphical model with at least one
nonnegligible edge. The matching (computationally efficient) upper bound is given in Section D.

Independent work. In independent and concurrent work, Buhai, Ding, and Tiegel also gave ev-
idence that sparse linear regression exhibits a k-to-k? computational-statistical gap Buhai et al.
(2024). Their proof proceeds along the same lines as ours (via reduction from negative-spike sparse
PCA and analysis of the low-degree likelihood ratio).

1.3. Outline

In Section 2 we sketch the proofs of our main results. In Section 3 we survey related work on
algorithms and lower bounds for sparse linear regression and sparse PCA. In Section A, Section B,
and Section C we formally prove Theorem 4, Corollary 6, and Theorem 7 respectively. In Section D,
we analyze testing between empty and non-empty GGMs, and in Section E we show the results of
applying RescaledLasso () to a simple simulated dataset.

2. Proof Overview

In this section we give overviews of the proof of Theorem 4 (via a new variable normalization
procedure) and Theorem 7 (via a new connection with negative spike sparse PCA).

Throughout the paper, we adopt the following notation. For n x n symmetric matrices A, B, we
write A < B to denote that B — A is positive semi-definite; for a set S C R", we write A <g B to
denote that v Av < v" Bu for all v € S. For a matrix A € R"*", we write diag(A) to denote the
matrix D € R™*" defined by D;; = A;;1[i = j]. We write I,, to denote the n x n identity matrix.
For a positive semi-definite matrix A € R"*" and vector v € R", ||v|| , denotes Vv T Av.

2. To contrast, Bresler et al. (2018) studied solving positive-spike sparse PCA in the computationally easy regime by
solving well-conditioned SLR problems where the LASSO is statistically optimal up to constants. Our hardness
reduction is crucially based upon the special properties of sparse PCA with a large (near-critical) negative spike.
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2.1. Upper bounds

Informally, Theorem 4 states that there is a computationally efficient and sample-efficient algo-
rithm for sparse linear regression (as modelled in Definition 1) whenever the covariance matrix X is
rescalable (see Definition 3). To reiterate, the main algorithmic difficulty is that the diagonal matrix
D in Definition 3 is unknown and potentially even unidentifiable, so we cannot simply perform the
“oracle rescaling” X — D~/2X_ In particular, in Setting 1, where X = D + L, the diagonal entry
D,;; measures the conditional variance of the covariate X; with respect to the latent variables. Even
in very simple examples, these conditional variances are unidentifiable:

Example 1 Consider a model with latent variable Hy ~ N (0,1 — €2), and independent covariates
X1 = Hy + N(0,€%) and X5 ~ N(0,1). Then X1 has conditional variance ¢*, whereas Xo has
conditional variance 1. However, from the observed data it is impossible to tell which of X1 or Xs
is connected to the latent, since either way the joint law is X ~ N (0, I2).

Fortunately, we are happy with any good rescaling matrix D, even if it’s not the oracle one. Based on
our mathematical understanding of the Lasso, a rescaling should be “good” if the rescaled covariates
admit no (quantitatively) sparse approximate dependencies — and these are identifiable, even from a
small number of samples. This motivates the algorithm described below.

Algorithm description. The procedure SmartScaling() takes as input the covariate data
(X (J)) * , and the sparsny level k, and then initializes D to be the diagonal of the empirical covari-

ance matrix 3. = E S =1 XU ( XU )) . Note that this initialization corresponds to the “standard”
covariate normalization, which may be highly sub-optimal in the presence of strong correlations.

To fix this, the procedure iteratively decreases entries of D until it can certify that the resulting
scaling is good. At each step, for each covariate X, the procedure solves the following program to
compute how much of the (empirical) variance of X; cannot be explained by quantitatively sparse
combinations of the other covariates:*

1 m
min =N (X p)2 (3)
|92 <168 4
veR™:N 1 J=
(Dl/ZU)iil
If (3) is at least a constant for all i € [n], then SmartScaling () returns D. Otherwise, the
procedure picks some ¢ for which (3) is small, and then halves D;; and repeats.
After SmartScaling () returns D, the main algorithm RescaledLasso () simply applies
the rescaling X ) — D~1/2X () to each sample covariate, solves Lasso, and unscales the solution

(equivalently, it uses a coordinatewise penalty Hﬁ” 2w||1). See Algorithm 1 for pseudocode.

Example 2 Consider a model where two covariates X;, X are highly correlated, and the remain-
ing covariates are mdependent Concretely, suppose all covariates have unit variance, but X; ]X
has conditional variance € Then SmartScaling () will keep alternately halving Dy; and D] j
until both entries are roughly €2 > 0. At this point, the procedure will terminate. This example also
illustrates why the time complexity depends on the log condition number (theorem 4).

3. We remark that this program is similar in spirit to a natural convex relaxation for detecting the sparsest vector in a
subspace — c.f. Demanet and Hand (2014); Spielman et al. (2012). See also our related work section.
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Algorithm 1: Adaptive variable rescaling

Procedure SmartScaling (X, k)

DIV + 2; B « 16k; Y + %XTX; DW diag(X)
fort=1,2,3,... do

For every 1 < ¢ < n, compute

. 1
vt argmin — |IXw]|3. 4)
(D<t))1/2UH1§B m
(DMWY 2v);=1

veER™: ’

. . 112
Tmin argmmi%[n] % HXU(“)HQ
if L |[Xo(timio)||” < 1 then DD « DO DD o pletl ppy

R Zmin?min Tmin?min
else return D)
Procedure RescaledlLasso ((X(j), y(j))gnzl’ k, M)
Define X € R™*" by X « [X1  x@ . x(m)]".

D« SmartScaling (X k).
Compute and return w, the solution to the modified Lasso:

1 .
weargmin—||Xw—y|\§+)\HD1/2wH . 5)
weRn M 1

Why does this work? In the above example, the rescaling is “good” because (a) all eigenvalues of
the covariance matrix of the rescaled covariates are 2(1), and (b) there are not many super-constant
eigenvalues (in fact there is only one, in direction X; + X); in such situations it can be shown
that Lasso succeeds. More generally, the heart of our analysis is the following guarantee about the
output D of SmartScaling (). It states that if the empirical covariance matrix S is spectrally
lower bounded (on quantitatively sparse vectors) after the “oracle rescaling” D~1/2, then it’s also
lower bounded after the estimated rescaling D=2 and moreover D is an approximate lower bound
onD.* Connecting to the above example, the former fact implies a restricted version of (a), and the
latter fact, together with the upper bound in eq. (2), implies (b).

Lemma8 Let n,m,k € N. Let X € R™*™. Suppose that I,, =c, 32k D128 D12 where
D > 0is a diagonal matrix, and 3= %XTX. Then the algorithm D + smartScal ing (X, k)

terminates after at most T' := n log maxe ] Zg”

repetitions, and moreover the output satisfies:

7

1. D= 1D.
2. %HXZA)*I/%H% > 1 forall v € R™ with ||v||, = 1 and ||v||; < 16k.

For any rescalable ¥, the spectral lower bound needed to apply Lemma 8 to samples from N (0, X)
is inherited (with high probability) from the assumed lower bound on > (Lemma 22). This crucially

4. Note however that the guarantee with D~1/2 s qualitatively weaker than the guarantee with the oracle rescaling: in

Lemma 8, -- [XD~1/2y||3 is lower bounded in terms of ||v|| o Tather than [|v||,. From a technical perspective, this
discrepancy is the source of the quadratic dependence on k in the sample complexity of RescaledLasso ().
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uses a generalization bound derived from the upper bound D~Y/2%D~1/2 < oI, + L. Next, let us
explain why RescaledLasso () has low prediction error assuming Lemma 8.

It is simplest to consider the special case of sparse linear regression where ¢ = 0 (i.e. the
responses are noiseless). In this setting, instead of solving the rescaled Lasso program (5), one
would solve the rescaled basis pursuit:

W e argmin ||DY?w];,
weR™:Xw=y

where X € R"*" is the matrix with rows X1 ... X(™) When does this program fail to return
the true solution w*? Since y = Xw*, the program only fails when there is some alternative
W € R" with X(&0 — w*) = 0 and ||DY2w@|); < ||DY?w*||;. By a standard manipulation, the
second inequality (together with k-sparsity of w*) implies that the error vector e := W — w* is
O(k)-quantitatively sparse with respect to D, i.e.

ID*2e]ly < O(k) - [|D2¢]|oc.

By the second guarantee of Lemma 8 with v := D1/2¢ (and the fact that e # 0), it follows that
% HX@H% > 0. This is a contradiction, so in fact the rescaled basis pursuit must return w*. Extending
this argument to the general, noisy setting follows a similar rough blueprint; we defer the details to
Section A. We now sketch the proof of the key Lemma 8 (see Section A for the full proof).

Proof [Proof sketch for Lemma 8] The second guarantee is immediate from the termination con-
dition of SmartScaling (). The bound on the number of repetitions in SmartScaling()
will be immediate once we show that the output satisfies D = %D, since at every repetition, the
algorithm halves at least one entry of D.

The only non-obvious claim (and the heart of the result) is that D > %D at termination. For
intuition, in this sketch we’ll only consider the latent variable model setting (i.e. ¥ = D+ L) and the
large sample limit S &~ %, but the proof generalizes. Say that each covariate has variance 1, so the
algorithm has initialized D := I,,. Since D measures the conditional variances of the covariates, it’s
clear that D < D holds initially. Now suppose there is some vector v with v; = 1 and [|v||y, < 1.
Then v describes an approximate dependency involving covariate X;, so the conditional variance of
X; (which is exactly D;;) must be small: formally,

Dy = Dy} < |v||p < |lvlly, < 1 = Dy

Thus, the algorithm can safely set Dy < Dy /2 while preserving the invariant D+ %D. At each
subsequent step, similar logic applies, so at termination D= %D still holds. |

2.2. Lower bounds

Theorem 7 asserts that RescaledLasso (), which requires only O(k? logn) samples to achieve
prediction error O(c0?) whenever ¥ is (1, k)-rescalable (and w* is k-sparse), is essentially optimal
among polynomial-time algorithms, under a conjecture about the power of low-degree polynomi-
als. We prove the theorem by studying negative-spike sparse PCA in a “near-critical” regime. Con-
cretely, this refers to a distribution testing problem between a spiked Wishart distribution P, 1. 5.,
and a null distribution Q,, ,,, defined below, in the regime where (3 is negative and close to —1.
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Definition 9 Let n,k € N with k < n. The fixed-size sparse Rademacher prior W, i, is the
distribution on R"™ where w ~ W,, 1, is drawn by: 1. sampling a subset S C [n] of size k uniformly
at random, and 2. setting w; ~ Unif({1/Vk, —1/Vk}) for each i € S and w; = 0 otherwise.

Definition 10 Ler n,k,m € N with k < nand f € (—1,00). The k-sparse spiked Wishart
distribution P, . 3.1y, is the distribution of (Z (G ))’j“:1 where first we sample w ~ W, 1. (Definition 9),
and then (ZU))" | ~ N (0,1, + Bww")®™. The null distribution Qy, ,,, is defined as N (0, I,)*"™.

For the hardness of negative-spike sparse PCA, we show that for any spike strength 8 € (—1,1),
degree-log® M (n) polynomials require sample complexity m > Q(k?) to test between Prk,gm
and Qy, ,,, (Theorem 41). This result largely follows similar bounds for positive-spike sparse PCA
(Bandeira et al., 2020; Ding et al., 2023). To give further evidence of hardness, we also prove a
lower bound for a natural semidefinite programming relaxation (Theorem 45) — this is inspired by
analogous results in the positive spike setting (Krauthgamer et al., 2015), although we need to use a
different construction since we are minimizing, rather than maximizing, the SDP objective.

We then show that an improved algorithm for sparse linear regression (with rescalable covari-
ances) would yield an improved tester for negative spike sparse PCA when 3 is close to —1:

Theorem 11 Let msir : N X N — N be a function, and suppose that there is a polynomial-
time algorithm A with the following property. For any n,k € N, o > 0, positive semi-definite
(1, k)-rescalable matrix ¥ € R"*", k-sparse vector w* € R", and m > mg r(n, k), the estimate
< A((XV), y(j));ﬂ:l) satisfies

Prffl — w3 < 0%/10] = 1 - o(1)

where the probability is over the randomness of A and i.i.d. samples (X7 () )7Ly from SLRy o (w*).
Then there is a polynomial-time algorithm A’ with the following property. For any n,m,k € N
and B € (—1,—14 1/(2k)], if m > ms r(n, k) + 1600 log(n), then

ST @ =1 Pr A(Z)=1]|=1-0(0). ©)

The idea behind the reduction is to check (using the sparse linear regression algorithm .4) whether
any covariate in the given sparse PCA data can be explained by the other covariates better than one
would expect under the null distribution. Concretely, for a sample Z ~ N (0, I,, + fww ), for any
i in the support of w, it can be observed that E[Z; | Z.;] is a (k — 1)-sparse linear combination of
the remaining covariates, and Z; has conditional variance

1
0'2 = Var(Zi | ZNZ) = M

In the near-critical regime 8 € (—1,—1 + 1/(2k)], we have 02 < 1/2. Hence, using A, we
can distinguish from the null hypothesis that our samples are drawn from N (0, [,,). If A were as
statistically efficient as Best Subset Selection, then we could also solve the distinguishing problem
with only O(k log n) samples. See Section C.2 for the full proof.
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Remark 12 [t remains unknown whether an analogue of Theorem 7 can be proven under the
Planted Clique Hypothesis (or any other standard average-case complexity hypothesis). One could
hope to achieve such a result by reducing positive-spike sparse PCA to sparse linear regression.
But in the above reduction, if 5 > 0 then the conditional variance of any i in the support of the
spike is within [1,1 + 1/Q(k)], so even using the (computationally inefficient) guarantees for best
subset selection, we would need Q)(k?) samples to distinguish from the null hypothesis (c.f. Bresler
et al. (2018)). Only in the near-critical negative spike regime do we get a sufficiently large gap in
conditional variance for the hardness reduction to go through.

Informally, the reason such a reduction fails to establish hardness is that the information-
theoretically optimal algorithms for positive spike sparse PCA need to optimize simultaneously
over both a sparsity and low rank constraint on the covariance. Surprisingly, when we have a near-
critical negative spike, using Best Subset Selection (which only enforces sparsity and has no explicit
notion of low-rank structure) actually achieves the information-theoretic threshold.

Remark 13 The negative spike sparse PCA problem can be viewed as a real-valued analogue of
the celebrated sparse parities with noise (SPN) problem. See Remark 30 for explanation.

3. Related work
3.1. Algorithms

Sparse linear regression has been widely studied throughout fields such as statistics, theoretical
computer science, and signal processing, see e.g. (Candes et al., 2006; Raskutti et al., 2010; Donoho
and Stark, 1989; Donoho et al., 2005; Zhang et al., 2017), and (Wainwright, 2019, Section 7.7) for
additional historical context. In the random-design model (Definition 1) we consider throughout the
paper, it is well-known that the Best Subset Selection estimator (Hocking and Leslie, 1967) achieves
prediction error O(a%k log(n)/m) with high probability (Foster and George, 1994). However, this
requires O(n*) time, and thus is prohibitively costly even for small k.

Celebrated estimators based on £ -regularization (e.g. Lasso (Tibshirani, 1996) and the Dantzig
Selector (Candes et al., 2007)) and greedy variable selection (e.g. Orthogonal Matching Pursuit
(Cai and Wang, 2011)) are highly practical alternatives that can be computed in polynomial time.
But the analyses of these estimators all require some additional assumption on 3 in order to achieve
optimal sample complexity. The archetypal guarantee is the following: if Apax(2)/Amin(X) < K,
then the Lasso program

A R :
b argmin — » (XU, w) —y0)? + X u], )

m
weR™ j=1

achieves prediction error O(o2kr log(n)/m) (Wainwright, 2019, Theorems 7.16 + 7.20) with high
probability over samples (X (), (7 ));77“:1 ~ SLRy, ,(w*), for an appropriate choice of A > 0.
Significant efforts have gone into establishing guarantees for Lasso under the weakest assump-
tions possible, leading to more general assumptions such as the Restricted Eigenvalue Condition
(Bickel et al., 2009) and the compatibility condition (Van De Geer et al., 2009); see also the sub-
modularity condition for Orthogonal Matching Pursuit (Das and Kempe, 2011). All of these as-
sumptions boil down to some variant of a condition number bound. This is an inherent limitation of

5. The benefits of best subset selection have motivated major integer programming efforts, see e.g. Bertsimas et al.
(2016); Hastie et al. (2020); in the worst case, it likely requires ' ~°)* time (Gupte and Vaikuntanathan, 2021).
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Lasso and other classical estimators, which provably fail (i.e. have poor sample complexity) in the
presence of strong, sparse linear dependencies among covariates (see Section 3.2 for more details
and references). Such dependencies may easily occur in the settings that we study in this paper.

Preconditioned Lasso. Most closely related to this paper are the recent works (Kelner et al.,
2021, 2023), which also identify natural structural assumptions on > under which Lasso may fail,
but a more clever algorithm succeeds. In particular, Kelner et al. (2021) studied the setting where
the covariates are drawn from a Gaussian Graphical Model with low treewidth. In this setting,
they showed that there is a preconditioned Lasso program — namely, a modification of Equation (7)
where the regularization term ||w||, is replaced by ||STw||, for some matrix S — with near-optimal
statistical performance, and that, given the graphical structure (i.e. the support of the precision
matrix ¥~ 1), the preconditioner S can be efficiently computed. Setting 1 is incomparable to the low
treewidth assumption, and our algorithm does not assume any knowledge about the ground truth.

Kelner et al. (2023) introduced the setting where the spectrum of > may have a small number
of outliers (which we refer to as Setting 2 above). Their main result is a polynomial-time algorithm
that achieves prediction error (kXgy1/A—q+ k?®)d) log(n)/m with high probability, where A; >
-+« > )\, are the eigenvalues of ¥, and d € {1,...,n — 1}. Note the exponential dependence on k,
so the previous result is essentially vacuous for £ = Q(logn). In contrast, Corollary 6 incurs only
polynomial dependence on k. Additionally, unlike the prior work, our algorithm does not need to
be given 3, which is a significant advantage in applications where the sample complexity is likely
sublinear in n, and thus, the empirical covariance is a poor approximation for >.. As one caveat, we
remark that our algorithm does incur an additional factor of log(\1/A,) in the time complexity; we
leave it as an interesting open problem whether this dependence can be removed.

3.2. Lower bounds

There is a long line of work studying lower bounds on the sample complexity of specific algorithms
for sparse linear regression: see e.g. Van De Geer (2018), which shows that the sample complexity
of Lasso can be lower bounded in terms of the compatibility constant (in the fixed-design setting
where X(1, ..., X (™) may be arbitrary), and precise high-dimensional asymptotics for the exact
performance of the Lasso (e.g. Bayati and Montanari (2011); Stojnic (2013); Amelunxen et al.
(2014)). There are very simple covariate distributions where Lasso (with standard normalization)
fails for some sparse signal: e.g., if two covariates are approximately equal, and the remaining
n — 2 covariates are independent, then even with zero noise, Lasso provably requires 2(n) samples
to learn the difference between the first two covariates (see the “weak compatibility condition” of
(Kelner et al., 2021)). Of course, in these simple examples, while the Lasso algorithm may fail,
there is no inherent computational obstruction (e.g., detecting two correlated covariates is straight-
forward).

Efforts to prove sample complexity lower bounds have been extended to parametric algorithm
families like Lasso with coordinate-wise additively separable regularization (Zhang et al., 2017),
and preconditioned Lasso programs (Kelner et al., 2021, 2022). It can be shown that SLR is NP-
hard if the algorithm is forced to output a k-sparse estimate of the ground truth (note: when X
is rank degenerate, this can be a much stronger requirement than achieving zero prediction error),
see e.g. Natarajan (1995); Zhang et al. (2014); Gupte and Lu (2020); Gupte and Vaikuntanathan
(2021); Foster et al. (2015) — but hardness of improper learning probably cannot be based on
NP-hardness (see e.g. Applebaum et al. (2008)). Evidence has also been given that Gaussian
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SLR with > = I, exhibits a constant-factor gap between the information-theoretic and algorithmic
sample complexities, see e.g. Gamarnik and Zadik (2017); Arpino and Venkataramanan (2023). All
together, the known lower bounds seem fundamentally different from the likely exponential gap in
random-design, general-covariance sparse linear regression. Although our lower bound (Theorem 7)
does not establish the anticipated exponential gap, it introduces the first polynomial gap for sparse
linear regression under a reasonable computational assumption, and pins down the correct gap in
our setting of latent variable models.

Sparse PCA. In the classical, positive-spike, sparse PCA detection problem, we are given inde-
pendent samples from either N (0, I,, + Bxx ") or N(0, I,,) for a random k-sparse unit vector = and
some 3 > 0. The goal is to distinguish between these two settings. Negative-spike sparse PCA is
the variant where 8 € [—1, 0); see Section 2.2 for a formal definition. We write “near-critical” as an
informal term to denote the regime where [ is very close to —1, because the problem is no longer
well-defined when 8 < —1.

There is considerable evidence that any computationally efficient algorithm requires Q(k?) sam-
ples to solve the the positive-spike sparse PCA detection problem, with constant signal strength
B = ©O(1) (Berthet and Rigollet, 2013a; Krauthgamer et al., 2015; Ma and Wigderson, 2015;
Gao et al., 2017; Lu et al., 2018; Brennan and Bresler, 2019; Ding et al., 2023), even though the
information-theoretic limit is only ©(klogn) samples (Berthet and Rigollet, 2013b). More gen-
erally, it’s widely believed that computationally efficient algorithms with access to m samples can
only perform detection for signal strength 8 = Q(+/k?/m).

In the negative-spike setting, the same computational/statistical tradeoff is conjectured to hold
(where signal strength is now measured by — ). But this has only been rigorously proven (under a
variant of the Planted Clique conjecture) for sparsity k = o(m'/%), or equivalently —3 = o(m~/3)
(Brennan and Bresler, 2020). On the one hand, there appear to be considerable technical chal-
lenges in proving reduction-based hardness of near-critical negative-spike sparse PCA (Brennan
and Bresler, 2020). On the other hand, understanding the complexity of negative-spike sparse PCA
seems to be an important problem in the theory of average-case hardness — besides the new re-
duction in this work, previous work has connected the hardness of negative-spike sparse PCA to
conjectured computational-statistical gaps in phase retrieval, mixed linear regression, and in certi-
fying the RIP property (Brennan and Bresler, 2020; Ding et al., 2021). As discussed earlier, some
known hardness results for positive-spike sparse PCA in restricted classes of algorithms can be
adapted to the negative-spike setting — see Ding et al. (2021) for previous work away from the
critical threshold, discussed further below, and our new results in Section C for low-degree and SDP
hardness near the critical threshold.

Related problems: planted sparse vector and certifying RIP. A long line of works have studied
both upper and lower bounds for the problem of finding a planted sparse vector in a random subspace
— see Ding and Hua (2023); Barak et al. (2014); Demanet and Hand (2014); Mao and Wein (2021);
Hopkins et al. (2016); Qu et al. (2014). As we mentioned when we introduced Algorithm 1, the
convex program we solve in the inner loop of SMARTSCALING is similar to the convex relaxations
used in Demanet and Hand (2014) and Spielman et al. (2012) to search for sparse vectors in a
subspace. Such a program is also similar in spirit to pseudolikelihood methods used for learning
sparse graphical models, see e.g. Besag (1977); Meinshausen et al. (2006); Kelner et al. (2020).
The idea of solving such a program iteratively seems new to this work.

13
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The most relevant lower bound in this line of work to us is the low-degree hardness result of
Ding et al. (2021). They phrased their lower bound as one for the problem of certifying the RIP
property® in the average case (c.f. Wang et al. (2016)), but as they discuss in their Remark II.4,
their lower bound can also be interpreted as evidence for the optimality of the Demanet and Hand
(2014) linear program among computationally efficient algorithms, in the setting where the random
subspace has small codimension. Their hardness result for certifying RIP is established by proving
a low-degree lower bound for a version of the negatively-spiked sparse PCA problem. The crucial
difference between our setting and theirs is that they use a version of negatively-spiked sparse PCA
where 5 € (—1,0) is a fixed constant as the sparsity k of the spike goes to infinity, whereas for
us it is crucial to consider the “near-critical” regime where 5 — —1 as k goes to infinity. More
precisely, our reduction to SLR operates in the regime 5 < —1 + 1/Q(k); see the discussion
around Remark 12. It is necessary that we take § — —1, because when [ is a fixed constant, the
SLR problems arising in our reduction are all well-conditioned, so they can actually be solved with
nearly-optimal sample complexity in polynomial time using Lasso (Raskutti et al., 2010) and cannot
be the basis of a hardness result. At a technical level, taking 5 — —1 also leads to a difference in
the low-degree analysis — Ding et al. (2021) use that when f is fixed, an i.i.d. prior for the spike
will satisfy 3||z||?> < 1 with high probability, but in the near-critical regime this is not true (see
Remark 37).

Acknowledgments. We thank the reviewers for their helpful comments.
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Appendix A. The rescaled Lasso
In this section we prove Theorem 4. We start by analyzing the procedure SmartScaling ().
Lemma 14 (Restatement of Lemma 8) Letn,m, k € N. Let X € R™*™, Suppose that

I, Z¢, 3ox) D7/?*2D7Y2 3)

where D 0 is a diagonal matrix, and 3= %XTX. Then the algorithm SmartScaling (X, k)

terminates after at most T' := nlog max;cy % repetitions, and moreover the output D e R
is a diagonal matrix satisfying the following properties:

a 1

. 1 |Xv||3 > 1 forall v € R™ with Hﬁl/QUH = 1and H]_A)l/Qle < 16k.

o0

Proof For notational convenience, let ¢, be the step at which the algorithm returns the precondi-
tioner.

Spectral lower bound. First, we show by induction that for each 1 < ¢ < 4,4, the intermediate
result D) satisfies D) = %D. From Definition 2, note that C,,(32k) contains the standard basis
vectors. Thus, we get from Equation (8) that 1 < 3;/D;; forall i € [n]. Hence, D) = diag(3) =
D. This proves the base case of the induction.

Now fix any 1 < ¢t < t5na and suppose that DO = 1D We want to prove that ) >

Lmintmin
D; Suppose for the sake of contradiction that in fact

Tmin%min *
Dgr?inimin < Diminimin (9)
Then
HDl/zv(tﬂ:min) . Z llnfilmm ‘,Ul(::iimin)|

1/2 (timin)

Z ( (t)>7fm|n1m|n‘ 74mnl1 ’

> — H 1/2 (tsimin)

- 16k

> D1/2 tvimin)

= 32k H Y ;

where the second inequality uses the assumption Equation (9), the third inequality uses the con-
straints in the program that defines p(imin) (Equation (4)), and the fourth inequality uses the in-
duction hypothesis. It follows that D1/2y(timin) - ¢ Cn(32k). So by Equation (8), we get that

Hv(t’imi") 2 < % HXU(t’imi") 3 Moreover since t # tfnal, We have that % HXU(tvimin) ; < 1.
Thus,
. 1 2 2 A
t min 2 ytmin stmin . . stmin 2
D (0, = 12 i) [ i) [ Dy - @

(t Zm|n

By Equation (4) we know that v; ° # 0. Simplifying the above display therefore gives that

Dz(:,).nzm.n > D; ... This contradlcts the assumption that D( : i < Diiinin» 80 in fact D(m).nzm.n >
D;, i, holds unconditionally. By definition of D(+1) and the induction hypothesis, we get

D(t+1) > %D, which completes the induction.
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Repetition bound. Note that by definition we have det(D®)) = 2!~ det(DM) forall 1 < t <
tfinal- Suppose that the algorithm requires more than 7' repetitions, i.e. tfna > 1"+ 1. Then

det (DT = 27T det(DW) < <mﬁ ;;) det(DW)

by definition of 7'. But we have already seen that DT+ %D, so on the other hand

det(DT+D “r D i\
MZ27"H? 2<minl? > .
det(D(l)) -1 Yii i€[n] 23,

This is a contradiction, so in fact the algorithm terminates after at most " repetitions.

Restricted eigenvalue bound. The output of the algorithm is D := D) Fix any v € R”
with Hﬁl/%H = 1 and HDI/QUH1 < 16k. Since tfiny is the final step of the algorithm, by
(0.9}

the termination condition it must be that % HXU(tf'"a'vlm'") 5 > 1 and thus, since v is feasible for

Equation (4) for some i € [n], X [Xvl|5 > 1 as well. [ |

Notation. For the remainder of Section A, we fix the following notation. Let n,m, k, h € N and
a > 0. Let ¥ € R™" be a positive semi-definite matrix. We make the assumption that 3 is
(c, h)-rescalable at sparsity & (Definition 3), i.e.

I, Z¢, oy D7V*ED7V2 < al, + L (10)

where D > 0 is some diagonal matrix, and L > 0 is some rank-h matrix.
Let o > 0, and let w* € R™ be k-sparse with support S. Let (X, yU ))9”:1 be m independent

samples from SLRy ,(w*). Let X be the m x n matrix with rows XMW, X0 and let 3 =
LT

=X'X.

m

A.1. The good event: generalization, concentration, and noise bounds

The following definition states the event £15(6) under which we will show that RescaledLasso ()
(deterministically) has low prediction error. The event consists of three conditions, of which the first
states that the covariates have accurate sample variances, the second is a uniform generalization
bound, and the third bounds the bias of the noise term.

Definition 15 Ler § > 0. Let E15(0) be the event (over the samples (X(j),y(j));?”;l) that the
following properties hold:

» Foralli € [n],
S < By < 2% (11a)

N

e Forallw e R™,
16alog(48n/0) HDI/QU’HQ ‘

2 2
< 16 2
] < 16 u]f + =25 1

(11b)
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e Forallw e R™,

(w, X" (y — Xw"))

(2|| D20, Valog(2an/8) + uwlls v/2Crhlog(2475))

(11c)

1 < C
m ~Vm

Our first step is to show that £15(0) holds with probability at least 1 — §. The first property
(11a) is standard and requires no additional assumptions on 3., but the second and third properties
both crucially use the spectral upper bound D~/22D~1/2 < a1, + L guaranteed by rescalabil-
ity. In particular, this upper bound implies (by Weyl’s inequality and the fact that L is low-rank)
that D~1/22.D~1/2 has at most h eigenvalues larger than a. We can bound the corresponding
eigenspaces separately to obtain the desired generalization bounds, a technique also applied in Kel-
ner et al. (2023) to deal with large outlier eigenvalues (and previously in other contexts — see the
discussion in Zhou et al. (2021) on “covariance splitting”).

Concretely, the following theorem due to Zhou et al. (2021) shows that to prove a uniform
generalization bound (e.g. of the form (11b)), it suffices to provide a uniform high-probability bound
on sup,,crn (w, ) for X ~ N(0,%). In Lemma 17, we use the technique of covariance splitting to

derive such a bound for the rescalable setting. In Lemma 18, we then invoke Theorem 16 to prove
(11b).

Theorem 16 (Theorem 1 in Zhou et al. (2021)) Letn,m € Nand e, 6 > 0. Let ¥ € R™*" be
a positive semi-definite matrix. Let X € R™*™ have i.id. rows Xi,...,X,;, ~ N(0,%). Let
F :R™ — [0, 0] be a continuous function such that

Pr sup {(w, z) — F(w) > 0] < 4.
Pr s (uwa) = Fuw) >0

If m > 196e2log(12/6), then with probability at least 1 — 46 it holds that for all w € R™,

1+¢€
w3 < —— ([ Xwlly + F(w))?.

Lemma 17 There is a constant Cy7 with the following property. Let n,h € N and o > 0, and let
3 € R™ ™ be a positive semi-definite matrix. Suppose that 3 = aD + L for some D, L € R™*"
where D > 0 is diagonal and L > O has rank at most h. Then

Pr [VweR": (w,G) < HDl/Qle V2a10g(16n/3) + ||wlx /Ch 1og(16/5)] >1-4.

G~N(0,3)

Proof Define the eigendecomposition of D~/2-D~1/2 as %" | Nju;u, where Ay > --- > \,,. By
assumption we have D 12x.D"1/2 < oI,+D 2L D~'/2 and thus D_l/Q(E—L)D_l/2 < al,.
Since rank(D~Y/2LD~1/2) < h, Weyl’s inequality (Lemma 54) gives Ay, < a.

Define the orthogonal projection matrix P := ) " , 11 uZuZT Let G ~ N(0,%). By the
Gaussian maximal inequality, with probability at least 1 — /2 over the draw G, we have

|ppi26) < Vnax(PD=12ED=1/2P) - 210g(4n/5)

< /241 log(4n/6)
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< /2alog(4n/d)

where the first inequality follows from the definition of P. Next, by Corollary 53, if C'17 is chosen
to be a sufficiently large constant, then with probability at least 1 — 6/2,

H271/2Dl/2PLD71/2GH2 < \/tr(2—1/2D1/2PJ_D—1/22D—1/2PJ_D1/2E—1/2) - Cy7log(4/6)

— \Jtx(Z12D-12PLD125-112) . Oy log (4/5)

— \Jtr(PL) - iy log(4/s)
= y/Ci7hlog(4/0)
where the first equality uses the fact that P+ = I,, — P commutes with D~1/22D~1/2  and the

second equality uses the cyclic property of trace. Consider the event (which occurs with probability
at least 1 — ¢ over the draw G) that both of the above bounds hold. Then for any w € R", we have

(w,G) = (D?w, D7'2@)

=
= (DY?w, PD™V2G) + (DY?w, P-D712@)

_ (Dl/Qw,PD_1/2G> + <Z1/2w’2—1/2D1/2PLD—1/2G>
<|

(Dlﬂle V2alog(4n/8) + |[wlly v/Ci7hlog(4/5).

as needed. |

Lemma 18 Let 3 € R™ " satisfy ¥ < aD + L for some diagonal matrix D = 0 and rank-h
matrix L. Let X € R™*" have i.i.d. rows X1,..., Xp; ~ N(0,X). If m > C(h + 1)log(96/9) for
a sufficiently large constant C, then with probability at least 1 — 6, it holds that for all w € R",

1 2
Hw||% < —6 <\Xw”§ +« HDl/Zwullog(wn/é)) )
m

Proof By Lemma 17 and the fact that m > 196 log(48/9), the hypothesis of Theorem 16 is satisfied
e := 1, error probability ¢ /4, and the functional F' defined as

F(w) := HDI/Qle V2alog(16n/6) + ||w||s; /Ci7hlog(16/0).

The conclusion of Theorem 16 gives that with probability at least 1 — d, the following holds. For all
w e R”,
2
il < = (IXwly + | DY2w|| v/2alog(16n/3) + wlly /Cirhlog(16/5) )
2 12, |I? 2
< (y\waQ ta HD le log(16n/8) + [|w]| - Cl7hlog(16/5)>

<

3|5 Sl 3w

(HXUJH% +a HDl/Qij log(16n/6))
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where the last inequality holds by rearranging terms and using the fact that m > 16C7h log(16/0)
(so long as C' is chosen sufficiently large). |

We now prove that £15(5) holds with probability at least 1 — 0, observing that Lemma 17 is
exactly what is needed to prove the third property (11c¢).

Lemma 19 There is a constant Cg so that the following holds. Let § > 0, and suppose that
m > Cig(h + 1)1og(288n/5). Then Pr[€15(0)] > 1 — 4.

Proof Since m > 32log(6n/d), we have by Lemma 51 and a union bound that Equation (11a)
holds for all i € [n], with probability at least 1 — 0/3. By Lemma 18, so long as C9 is a sufficiently
large constant, we have that Equation (11b) holds for all w € R", with probability at least 1 — §/3.

It remains to prove Equation (11c). Define the random variable ¢ := y — Xw*. Since ||£]|3 ~
o2x2,, and m > 8log(12/4), it holds with probability at least 1 — §/6 that \/% 1]l < oV/2.
Condition on ¢ and suppose that this event holds. Since £ is, by construction, independent of X, the
random variable X' ¢ has distribution N (0, ||| ). Thus, by Lemma 17, we have with probability
at least 1 — 0/6 over the randomness of X that for all w € R",

t
(1. 758 ) <[00 V2aTon@in/o) + full VCulos 2 )

Substituting in the bound on ||£
all w € R",

L (w,XT¢) < 20|02 \/m T o wly \/2017h10g(24/5) a2
m 1 m -

which proves Equation (11c). By the union bound, £;5(0) holds with probability at least 1 — 6. W

5, we get that with probability at least 1 — 6/3 (over X and &), for

A.2. Bounding the ¢/; norm of the error

Next, we assume that &;5(5) holds, and that the rescaling matrix D is (approximately) lower
bounded by the oracle rescaling matrix D. Under these conditions, we derive a win-win (Lemma 21)
where either D'/2(1 — w*) has small £; norm (where 1 is the rescaled Lasso solution) or 1 — w*
is a violation to the second guarantee of Lemma 14.

Why is this a win-win? Ultimately, we need to bound the population variance ||el|y;, of the
error e := 1 — w* in terms of the empirical variance | ¢||s,, and also bound the empirical variance
(which would be trivially zero in the noiseless setting, but not in general). The first goal is partially
accomplished by the generalization bound Equation (11b), but it remains to bound || D'/?e||;. The
second goal also requires bounding || D/2¢||; in terms of le||s, (to bound the bias induced by the
regularization term of the Lasso program). Lemma 21 will allow us to achieve both of these goals.

We first need the following technical lemma, which should be thought of as a cone condi-
tion for the error e (compare to the noiseless case, where the analogous inequality is || D/2e||; <
2DV 2es]|y < 2K] D1/2e]|o0):
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Lemma 20 Let §, A\ > 0. Let D € R™" be a positive-definite diagonal matrix, and let W be a
solution to the modified Lasso program

1 .
W € argmin — ||Xw—y|!g+)\HD1/2wH . (13)
weRn M 1

If A > 640 M, event £15(0) holds, and D < 64b, then e := W — w* satisfies

m

b 2 - 2C17hlog(24/5
AHD1/26H1+merug34AHD1/265H1+40H6\|E\/ i ff( /),

Proof First observe that

1 A 1 .
— 50— I3+ A [ D2 — wt)se | = %0 — )3 + A || DY 2
m m

1 1

1 . . .
< —|[Xw* — y5 + A || DY ?w* —AHDV%H +)\HD1/212;SC
m 1 1 1
1 . )
= = [Xw* — ]+ A|[DV2wr| A D1/21Z)5H
m 1 1
1 “1m
< — Xt = yll3+ A [ D2 —w)s | (14)

where the first inequality is by optimality of w in Equation (13) and the second inequality is by
reverse triangle inequality. It follows that

A[Brre], = A £ %es |+ x|

1
1 1 . .

< Xwt — yl3 - - [Xa -yl + 23 || D3¢ |
m m 1

1 , 2
e X —
— el

— (Xe, Xw* — y) + 2\ Hbl/QeSH
m 1

where the first inequality uses Equation (14), and the second equality expands ||Xw — yHS =
IIXe + (Xw* — y) ||§ Now since the event £15(d) was assumed to hold, we can apply Equation (11c)
with vector e to get that

_£<X€,Xw*_y> S4O_HD1/26H M+2UH€HE \/2017h10g(24/5)
m 1 m m

<5 02|, + 20 el \/ 2C17h log(24/9)

m

where the second inequality uses the lemma assumptions that A > 640 % and D < 64D

(and D, D are diagonal). Substituting into the previous display and rearranging terms gives that

2C7hlog(24/9)
m

Al o~ 1 .
Mpre]| + L el < on 12| 42 ¢
1972, + — Ixell3 < es|), +20 lels

which completes the proof. |
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Lemma 21 Let §, A > 0. Let D € R™" pe q positive-definite diagonal matrix, and let W be a
solution to the modified Lasso program Equation (13). Suppose that event E19(9) holds, that D <

64D, that m > 128C47hlog(24/0), and that A > max <640\/Odog(fn/‘S , 320\/20,;\7/@%(24/6))

Then e := w — w* satisfies at least one of the following properties:

(a) Hf)lﬂe , < \2/0—% | Xel|, , or
(b) L |Xel? < HDW H and D¢ € C,(9k).

Proof By Lemma 20 (dropping the second term on the left-hand side), we have

A D12 < an|[D2es| + 40 el \/2017“0?5(24/5)
1 1 m

4 Lo 2CTMOBCY) (1, 1 |p2e]| aTogtasne))

160/2C7hlog(24/0
. 160/2C7h log /)HXeH2+HD”26H
0 m 32 1

< 4kA Hbl/%

[e.9]

< AkA Hf)l/%

where the second inequality uses k-sparsity of eg to bound Hﬁl/ 265“ , and Equation (11b) (along
1

with the inequality va + b < \/a + v/b) to bound | ¢|

assumptions that A > 6404/ w and m > 128C47hlog(24/6). Since D =< 64D and D,

D are diagonal, we have H DY/ 26” L <8 Hf)l/ QeH - Substituting this bound above and rearranging

51> and the third inequality uses the lemma

terms gives

N 320+/2C17hlog(24/9)
m

)\Hf)l/zeHl < 8k)\Hf)1/2eH el

< 8k Hfﬂ/?eHOO + \]j% IXelly (15)

. o . v/
where the second inequality is by the lemma assumption that A > 320 zclir/}%ogm/ %) . Now suppose
that property (a) of the lemma statement fails to hold, i.e.

1
\F

IXell, < —— ‘DI/Q H .

20k

Substituting into the right-hand side of Equation (15) and rearranging terms gives A Hf)l/ 26” <

1
9k Hf)lme’ . As aresult, we have D'/2e € C,,(9%) and also

[e.e]

Il < o [0 < [[07%] -
o IXellz < 55075

o

Thus, property (b) of the lemma statement holds. |
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A.3. Putting everything together

The following lemma shows that under the good event £15(d) (which, as we’ve shown, occurs with
high probability), the assumed spectral lower bound on ¥ in Equation (10) transfers to a lower
bound on the empirical covariance 3.

Lemma 22 Let § > 0 and suppose that m > 2% ak?log(48n/d). In the event E15(65), we have
that
I, =¢, 3on) 32D7/?ED71/2, (16)

Proof Fix v € C,,(32k). Applying Equation (11b) to the vector w := D~'/21, we have

2 2
[z} <16 |z} + 08B0
> > m

2 n 21 ak? log(48n/6)
by m
2

< 16||D~1/2 A+1HD—1/%H
s 2

<16 || D2y v]|3

2

by

where the second inequality uses that v € C,(32k) (along with |-, < ||-||5), and the third in-
equality uses the assumption on m together with Equation (10). Simplifying and once again using
Equation (10), we get

2 2
< oo <o
by by
as needed. |

Note that (16) is exactly the condition needed to apply Lemma 14. We now have all the pieces
needed to bound the prediction error of RescaledLasso () under the rescalability assumption.
We restate the notation for completeness.

Theorem 23 (Restatement of Theorem 4) Let n,m,k,h € Nand a,0,0,\ > 0. Let . € R™*™
be a positive definite matrix that is (c, h)-rescalable at sparsity k (Definition 3), and let w* € R™
be a k-sparse vector. Let (XU, y(j));?"”:1 be m independent samples from SLRy. ,(w*), and define

the estimator W = RescaledLasso ((X(j),y(j))gnzl, k, \). Suppose that

A > max (640 /alog(48n/6), 320\/2017h10g(24/5)>
m kv/m

and m > Cas(h + ak?)1og(288n/9) for a sufficiently-large constant Co3. Then

Pr[||i — w*|| < 318kA] > 1 — 6.

Moreover; the time complexity of RescaledLasso () is poly(n,log max; %?? ), where D = 0 is

the diagonal matrix guaranteed by Definition 3.

Proof As before, let X be the m x n random matrix with rows X, ... X and let & :=
% Z;n:l X (j)(X Y ))—r be the empirical covariance matrix. By Definition 3, there is a diagonal
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matrix D > 0 and a rank-h matrix L = 0 such that I,, ¢, 305y D~Y/?SD~V? < al,, + L. By
Lemma 19 and choice of m, the event £;5(0) occurs with probability at least 1 — . From now on,
let us condition on this event. By Lemma 22 and choice of m, we have that

I, =¢, 3on) 32D~ ?ED71/2,

Thus, we can apply Lemma 14 with the sample matrix X, sparsity k, and rescaling matrix 3—12D.

We get that the time complexity of SmartScaling (X k) is poly(n,log max; 2“’) (using that
S < Xy foralli € [n] under event £15(d)); this implies the claimed time complexity bound
for RescaledLasso (). Moreover, the output D satisfies D < 64D and also L ”X'UH2

. 2

Dl/%H for all v € R™ with D'/20 € C,,(16k).

o0

We now apply Lemma 21 with this choice of D, using the bound D = 64D as well as the
assumptions on m and A. Note that property (b) of Lemma 21 contradicts our previously-derived

guarantee on D. Thus, property (a) must hold, i.e. Hf)l/QeH < % |Xe|y, where e := @ — w* is
1

the error of the output of the algorithm. We now apply Equation (11b) to the vector e, which yields

1 16 log(4 1) 2
HeH% < 16 HXeH§ + 16arlog(48n/6) HD1/2€H
m m

16 209 10g(48n/6) || 2
< 20 e 4 2B | g
m m
16 2% log(48n/4) 400k
< — |Xely + —— xell3
32
< = |Xell3 (17)

where the second inequality uses the bound D =< 64D (together with the fact that D, D are diago-
nal), and the final inequality is by choice of m. But by Lemma 20 (this time, dropping the first term
of the left-hand side), we can conversely bound % HXeHg as

2 A 2C17hlog(24/6
2 1 Rel} < a7 | D%es]| + o e 20T 12E A/
m 1 m

_ 80kA 320/Cirhlog(24/3)
ell, + - [ Xell,

X
< e el
112k
< I%el,

where the second inequality again uses the bound Hf?l/ 2e H . < \2/0—% | Xel|,, as well as Equation (17),

Ci7hlog(24/9)
2

and the third inequality uses the assumption that A > ¢ . Hence, dividing out by

k2m
% || Xel|,, and combining with Equation (17), we see that
4f
ells < |Xell, < 318kA
Z \/* 2
as claimed. -
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Appendix B. Rescalability of covariance with few outlier eigenvalues

In this section we prove Corollary 6, restated (in slightly greater generality) below. It asserts that
RescaledLasso () is sample-efficient for sparse linear regression when the covariance matrix
has few outlier eigenvalues (and runs in polynomial time under the mild assumption that the condi-
tion number of ¥ is at most exponential in n).

Theorem 24 (Restatement of Corollary 6) There is a constant Cyy so that the following holds.
Let n,m, k, diow, dhigh € N with dioy + dhigh < n. Let 0,0,A > 0. Let ¥ € R™™" be a pos-

itive definite matrix with eigenvalues A1 > --- > A, and let w* € R" be a k-sparse vec-
tor. Let (X (j),y(j));-”:l be m independent samples from SLRy, ,(w*), and define the estimator

W := RescaledLasso ((X(j),y(j));":l, k, \). Suppose that

Couo 2 Adpigh+1
kX > oy —2— + kv/diow dhi log(4 1)
= Jm < . + kv diow + +/dhigh | /10g(48n/6)

Ad, -
and m > C’24(k:4% + k2 djow + dhigh) log(288n/8). Then

n—djow

Pr(||w — w*|ly, < 318kA] > 1 —4.
Moreover, the time complexity of RescaledLasso () is poly(n,log(A,/A1)).

Note that d),,, quantifies the number of outlier eigenvalues at the “low” end of the eigenspec-
trum, and dpgn quantifies the number of outliers at the “high” end; moreover, RescaledLasso ()
is agnostic to these parameters, meaning that it automatically achieves the statistical accuracy guar-
anteed by the optimal choice of do, and dy;gn above (so long as A is chosen appropriately, which
is also important for the standard Lasso). For simplicity, we stated Corollary 6 only for the special
case djow = dhigh = d (that nonetheless captures the essence of the result).

This theorem will follow immediately from our generic analysis of RescaledLasso () (The-
orem 23) once we prove that any covariance matrix with few outlier eigenvalues is («, h)-rescalable
(Definition 3) with appropriate parameters v and h. Towards this end, the following lemma is key.
Essentially, it states that if > is a covariance matrix with at most d “small” eigenvalues, then there
is a rescaling D that touches only O(dk?) coordinates, but makes every approximate linear depen-
dency among the covariates §2(k)-quantitatively dense. The matrix D needed for Definition 3 will
then be an appropriate scalar multiple of D, and the existence of a low-rank matrix L satisfying the
upper bound in Definition 3 will use the fact that most entries of D are equal to one.

Lemma 25 Letn,k € N, and let d be an integer with 0 < d < n. Let ¥ € R”Xf be a positive-
definite matrix with eigenvalues A1 > -+ > An. Then there is a diagonal matrix D € R™™™ with
0 < D X I, satisfying the following properties:
o« |{i: Dy # 1}| < 128dk?
* Foreveryv € R" with Hf)l/%Hg < (k/2) Hf)l/QUH , it holds that HDI/QUHQ < 4k:)\;i22 lvlls; -
o
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Remark 26 (Comparison to Kelner et al. (2023)) It is useful to compare Lemma 25 with (Kelner
et al., 2023, Lemma 2.4), the main structural lemma underlying the prior algorithm for sparse
linear regression in Setting 2. Their lemma may be interpreted as constructing a rescaling matrix
with binary entries, such that all but kOR) d entries are equal to one, and there are no sparse
approximate linear dependencies. Lemma 25 relaxes the binary assumption, and thereby achieves
a much stronger guarantee both quantitatively — in the number of entries not equal to one — and
qualitatively — in that it rules out quantitatively sparse dependencies, not just algebraically sparse
dependencies. The first improvement is the source of our improved sample complexity, but the
second improvement is even more crucial: rescalability requires a spectral lower bound that holds
for all quantitatively sparse vectors. Thus, (Kelner et al., 2023, Lemma 2.4) does not have any direct
implication for rescalability.

The proof of Lemma 25 is constructive, and looks quite similar to an “oracle” version of
SmartScaling () where the procedure is given access to X, and thus can compute an eigen-
decomposition (but of course, this is only within the analysis). The intuition is as follows. Drawing
on the proof technique of Kelner et al. (2023), one might hope that there is a good binary rescaling
matrix D (and that it can be constructed by iteratively zeroing out “bad” coordinates). Unfortu-
nately, the following example shows that this is false:

Example3 Letv := (1,1/2,1/4,...,1/2" 1) e R", and let > := I,, — (1 — ¢) ﬁ”’HQ, so that ¥

has a single small eigenvalue, with eigenvector v. Note that v is O(1)-quantitatively sparse, and
|vllg, < |[vlly. Thus, D := I,, does not satisfy the conditions of Lemma 25. Moreover, if any t
diagonal entries of D are set to zero, the vector DY/?v will still be O(1)-quantitatively sparse, and
|DY/20|)3 > 27t whereas ||v||x, = €. So the conditions can’t be satisfied unless t > O(log(1/e)).

In particular, Example 3 shows that if Dis s required to be binary, then we cannot avoid depen-
dence on log(\/\,) in the bound on |{i : D; # 1}|, which will show up in the final sample
complexity bound for RescaledLasso (). The workaround for Example 3 is to set D;; = 2¢—%
for each 1 < ¢ < k: at this point, D'/2y is Q(k)-quantitatively dense, so v no longer violates
the guarantee of Lemma 25. More generally, the idea is to iteratively rescale large coordinates (of
each approximate dependency vector, like v above) by a constant factor, rather than zeroing them
out. This discourages quantitative sparsity, as formalized in Lemma 27: after enough iterations, any
vector will either be quantitatively dense or have small /> norm (with respect to the rescaling). We
bound the number of rescaled coordinates using Lemma 28.

Having discussed the high-level plan, we now proceed to the formal proof of Lemma 25.

Proof of Lemma 25 Let X = Z" by uluT be an eigendecomposition of ¥ with Ay > --- > A,
and let P = > " <y u; . Set T = [logy(M1/An)]. We will iteratively define diagonal matrices
DO D@ D(T+1) and set D := DT+ In particular, set D) := I,,. Foreach 1 < ¢t < T,

define the set 12
DWWy < g, 1
SO .=2ien]: sup # > — 5. (18)
{ " seker(P)\{0} || (D®)12a]|, ~ 8k

Then we let D*FY be the n x n diagonal matrix defined by

D) {Dg)/z ifi e S®

i Dl(f ) otherwise
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This defines D := DT+ From the definition it is clear that 0 < D = I,,. We start by bounding
|{i : Dy; # 1}, which is exactly | Uthr S®)|. By applying Lemma 28 to each set S*) individually,
we could get a straightforward bound of O(dk*T). But we would like to avoid the factor of 7T,
which we can do as follows. Define V := {D'/?z : & € ker(P)} and define

: Yi 1
S = 1€ n|: sup >\
{ . yev\{o} 1yll Sﬂk}

We claim that | J[_; S® C S. Indeed, for any i € |J[_, S, let f(i) := argmax{t € [T] : i €
S®}. Then D;; = Dgif(l))/Q, and Dj; < D%(l)) for all j € [n]. Also, since i € SU(), there is
some z € ker(P) \ {0} such that (D(f(i)))zlz/%i > [[(DY@N/24]|, /(8K). It follows that

[z, [0
8v/2k — 8V2k

and thus y = D2z € V\ {0} satisfies y;/ ||yll, > 1/(8V2k), soi € S. As claimed, we get
U/, S C S. But now since V is a d-dimensional subspace, Lemma 28 gives that |S| < 128dk?.
This proves the first part of the lemma.

Next, fix any v € R™ with Hf)l/%H > 4k\
2

2

i

- 1 )
D% = WDM)?/ “a; >

172 4 llvlls. Since A\, _gP =< X, it follows that

HD1/2UH2 > 4k ||v|| p. For any ¢ € [T, we have D® = D and thus
H(D(t))l/%HQ > dk||v]lp . (19)

We claim that the vectors (D1)1/2y, . (DT+1))1/2 evolve according to the procedure de-
scribed in Lemma 27. Indeed, fix t € [ ] and suppose that || (DW)1/2p]|, < k[[(DW)Y2y||_.

Pick any i € [n] such that |(D®)Y/?v;| > |(D@)1/2p||__ /2. We need to show that i € S®).
Define v = a + b where b € ker(P) and a € span(P), so that ||a||, = ||v|| . Then

(43

(DY) > (D)0 — (D)

3o o,
)
> o [0,

> i (DO

where the first inequality is by reverse triangle inequality, the second inequality uses the choice of
i, the fourth inequality uses that D) < D() = [, and the fifth inequality uses Equation (19)
together with the fact that ||a||, = ||v|| . But now

o = o, o], < ] <2,
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again using the triangle inequality, the fact that DY) < I,,, and Equation (19). Combining the above
two displays, we get that 2 = (D®)1/2p satisfies |;| > ||z||, /(8k). Since b € ker(P) (and b # 0)
we conclude by definition of S® that i € S®). Thus, the vectors (DW)1/2y, ... (DT+1))1/2
indeed evolve according to the procedure described in Lemma 27. Since DT+ = D and D) =
I, it follows from that lemma that at least one of the following occurs:

‘Dl/QvHQ > (k/2) HDUQUH , or

oo

‘Dl/%H < 27Tk ||(DD) 20| < 27Tk [o]l,.

2

In the former case, we are done. In the latter case, by choice of 7" and the fact that > > A\, [, we
~ An . . .

have HDI/%HQ < /32K llly < % o]l < \/% ||v||s; which contradicts the assumption we

made about v. We conclude that for any v € R", either HDI/ZUHQ < 4k)\;i{12 ||lv|ls; or HDI/ZUHQ >

(k/2) HDI/% LO. n

Lemma 27 Let v € R™ be an arbitrary vector with £, norm at most 1. Consider the following
procedure that we repeat T’ times:

(a) If |v|ly < k||v||o, then let S C [n] be a set of indices containing {i € [n] : |v;| > ||v]|, /2}.
Halve v; foralli € S.

(b) Otherwise, let S C [n] be arbitrary. Halve v; for all i € S.

After this procedure, the final value of v satisfies either ||v||, > (k/2) ||v]|y, or [|v], < 27Tk.

Proof At any step where case (a) occurs, note that ||v||, decreases by a factor of at most 2, whereas
|lv]| ., decreases by a factor of at least 2, so the ratio ||v||, /||v||,, cannot decrease. Moreover,
when case (b) occurs, ||v||, decreases by a factor of at most 2, and ||v|| is non-increasing, so the
ratio ||vl|, /||v]|,, can decrease by at most a factor of 2. Thus, if at any step we have [[v[|, >
k||v] ., inductively we have at all subsequent steps (and in particular after the final step) that
[olly > (k/2) 0]

It remains to consider the case that ||v||, < & [Jv]|, atall steps. Then ||v|| . decreases by a factor
of at least 2 at every step. Since initially we had ||v||, < 1, at the end we must have |[v]|, < 27T
and thus ||v]|, < 27Tk. [

Above, we used the following simple bound on the number of basis vectors that can be correlated
with a low-dimensional subspace.

Lemma 28 (Kelner et al. (2023)) Let V' C R"™ be a subspace with d := dim V. For some o > 0

define
S=<i€[n]: sup Ti >ap.
zev\{o} [17]]2

Then |S| < d/a?.
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We now use Lemma 25 to prove that any covariance matrix Y with few outlier eigenvalues is
rescalable, in the following quantitative sense.

Lemma 29 There is a constant Cag with the following property. Let n, k, dow, dhigh € N and let
Y € R™ " be a positive semi-definite matrix with eigenvalues \y > --- > \,. Then ¥ is (o, h)-

Ad, -
rescalable at sparsity k, where o := ngkQM and h := Cogdiowk® + dhigh- Moreover, the

"= dlow

. . .. . . g 22
diagonal matrix D realizing the rescaling satisfies max; g?? < C’gng/\—g.
kX% 1

As previously discussed, the diagonal matrix D witnessing the rescalability is an appropriate
scalar multiple of the matrix D constructed in Lemma 25. The spectral lower bound needed for
rescalability follows from the second guarantee of Lemma 25. Proving the spectral upper bound
requires choosing the low-rank matrix L to handle both the coordinates ¢ for which Dj; % 1 (of
which there are not many, by the first guarantee of Lemma 25), as well as the “high” end of the
eigenspectrum of 3.

Proof Let ¥ = )" | )\ZuzuzT be an eigendecomposition of 3. Let D be the matrix guaranteed by

Anfdlow

T2I6k2
. Also define

Lemma 25 with parameters d|o,, and 64k, and define D := D. By construction it is clear

. ~ . 21712 )2
that min; Dj; > A\ /(2)1), so max; 5t < =51

dhigh

A ~
L= c*Qgif’A’A“'#;+1 (D7 = L)+ Y N
T —0low i=1

By the first guarantee of Lemma 25 we have |{i : Dy # 1}| < O(diowk?), and thus rank(L) <
O(diowk?*) + dhigh. It remains to check that

A—d
In Zc,(32k) D72y p1/2 < 029]{72%[71 + L
Iow+

1/2

when Cyg is a sufficiently large constant. Pick any w € C,(32k) and set v := D~/2y. We know

that HD1/21)H2 < HD1/21)H1 < 32k HDI/ZUH . So by the second guarantee of Lemma 25, we have
o0
H[)l/ 21)H2 < 256]@)\;i{liw ||v||5; (recall that we are taking the parameter k in Lemma 25 to be 64k).

Hence,

wl = [ D72 < 2%k20. 1w DYPSD 2w = w DPED
2

n—djow

This proves the first inequality. To prove the second inequality, note that

dhigh
Ad. A, - €
@yﬂ%D +DV2LDY? = 029#%191/20*11)1/2 + 3 Nugul
n—djon n—djow =1
dhigh
= Adygh+11n + Z A
i—1

=X

so long as Cog > 216, Applying D~/ on the left and right yields the second claimed inequality. Il
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Proof of Theorem 24. Immediate from Theorem 23 and Lemma 29. [ |

Appendix C. Hardness evidence via sparse PCA with a near-critical negative spike

In this section we prove Theorem 7, which asserts (under Conjecture 33, defined below) that no
polynomial-time algorithm for sparse linear regression can achieve prediction error o2 /10 with sig-
nificantly less than O(k? log n) samples, even when X is (1, k)-rescalable. Since RescaledLasso ()
has sample complexity O(k? logn) in Setting 1 with up to O(k?) latent variables, it follows under
the same conjecture that RescaledLasso () is essentially optimal in that setting.

Section outline. In Section C.1, we introduce Conjecture 33 and other necessary background.
In Section C.2, we formally prove Theorem 11, which states that negative-spike k-sparse PCA
can be reduced to k-sparse linear regression with (1, k)-rescalable covariance. In Section C.3, we
show that low-degree polynomials cannot solve near-critical negative spike sparse PCA with o(k?)
samples, adapting an argument from Bandeira et al. (2020). Combined with Theorem 11, this yields
Theorem 7. In Section C.4, we give additional evidence of a statistical/computational tradeoff for
negative spike sparse PCA, by showing that a natural semidefinite program also requires Q(k2)
samples.

Remark 30 The negative spiked sparse PCA testing problem can be thought of as a real-valued
analogue of the foundational Sparse Parities with Noise (SPN) problem (Feldman et al., 2009),
where the task is to distinguish between m independent samples from the null distribution Unif {£+1}",
and m samples from a random planted distribution on {+1}" defined as follows. First, a set S C [n]
of size k is sampled uniformly at random. Then, the constraint xg = 0 is noisily “planted” in each
of the m samples. Formally, conditioned on S, each of the m samples is i.i.d. with distribution

X ~ (1 —¢€) Unif {m : le =0 (mod 2)} —i—eUnif{x : le =1 (mod 2)} .
€S €S

This problem is solvable via Gaussian elimination when € = 0 but is conjectured to require nSik)
time when € > 0 is fixed. See e.g. Valiant (2012) and references within for a history of this well-
known problem. When € is close to zero, we can informally view the planted measure as the result
of conditioning on ) ;g X; = 0 (where the approximation is in the sense of L?).

The negative spike sparse PCA problem can similarly be viewed as testing between N (0, 1) and
a planted distribution where for a random set S (corresponding to the support of the spike vector
w in Definition 10), we condition a standard Gaussian vector X on the event that Zie g X; has
smaller variance than in the null measure. In the near-critical case, we are essentially conditioning
ony ..qXi~0.

In both cases, the information-theoretic limit is at O(kj) samples. Of course, the computational
limits are somewhat different, since SPN is believed to be computationally intractable even with
poly(n) samples.

C.1. Preliminaries

Recall the definition of the sparse spike prior W, . (Definition 9), the sparse spiked Wishart distri-
bution IP,, ;. 3., and the null distribution Q,, ;,, (Definition 10) from Section 2.2. We formally define
the testing problem associated with these distributions, and the induced likelihood ratio.
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Definition 31 Fix functions k,m : N — Nwithk(n) < n, and  : N — (=1, 00). An algorithm A
solves the strong detection problem for the k-sparse spiked Wishart model (with parameter functions
k, m, and ) if it distinguishes Py, ;) 8(n)m(n) Jrom Qp mn) with probability 1 — o(1), i.e.

Pr [A(Z)=1]— Pr [AZ) =1]|=1-o).
ZNPn,k(n),B(n),m(n) ZNQn,m(n)

Definition 32 Let n,k,m € Nwith k < nand € (—1,00). We define the likelihood ratio as

dPn,k, ,m
L k,gm = dQ 2

n,m

For a planted distribution P and a null distribution Q, the (degree-D) low-degree likelihood ratio
(LDLR) ||L=P]| (g is the norm under L?(Q) of the likelihood ratio L = dP/dQ after orthogonal
projection onto the space of multivariate polynomials of degree at most D. For a family of planted
distributions (P,)nen and null distributions (Qy,)nen, if the low-degree likelihood ratio between
P,, and Q,, can be bounded above by a constant as n — oo, then it can be seen that no degree-D
polynomial can distinguish P,, from @Q,, with error o(1) as n — oo (see e.g. Proposition 1.15 in
Kunisky et al. (2019) and references).

Moreover, it has been conjectured that for any “natural” statistical hypothesis testing problem,
the best degree-log* "¢ n polynomial (for any constant ¢ > 0) is at least as good a distinguisher as
the best polynomial-time algorithm. Informally, this is known as the Low Degree Conjecture. There
are concrete, formal statements of this conjecture (see e.g. Hopkins (2018)) for broad classes of
statistical problems, although these do not specifically capture the spiked Wishart model. See also
Holmgren and Wein (2020); Koehler and Mossel (2022) for further discussion about the settings
where low-degree polynomials are good proxies for polynomial time algorithms. Below we for-
malize the precise conjecture that needs to hold for our purposes (i.e. to prove non-existence of an
efficient algorithm for negative-spike sparse PCA via a low-degree likelihood ratio bound).

Conjecture 33 (Hardness thresholds for spiked Wishart match Low-Degree) Fix functions k, m :
N — Nwith k(n) < n,and § : N — (=1,0) with 1 + 3(n) > 1/ poly(n). If there exists some

D : N — Nwith D(?’L) = 10g1+Q(1) n and HLi?((:))WB(an(n) 120 ) = O(]_), then there is no
n,m(n)

randomized polynomial-time algorithm A that solves strong detection (Definition 31) for the spiked
Wishart model with parameter functions k, m, and (.

Remark 34 [n this conjecture, we do not allow [ to equal —1 (or to converge to —1 more than
polynomially fast). In part, this is because low-degree hardness is only expected to be a good
heuristic when there is at least a small amount of noise in the underlying problem. If the underlying
signal is binary valued and there is extremely little noise, algebraic methods like the LLL algorithm
can sometimes be used to solve regression tasks with very few samples, see Zadik and Gamarnik
(2018).

C.2. Reduction from negative-spike sparse PCA to sparse linear regression

We start by reducing (near-critical) negative-spike sparse PCA to sparse linear regression — with a
covariance matrix that satisfies (1, k)-rescalability. As was explained in Section 2.2, the idea is to
check whether any covariate in the given sparse PCA data can be explained by the other covariates
better than one would expect under the null distribution.
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Theorem 35 (Restatement of Theorem 11) Let ms r(n, k) be a function. Suppose that there is
a polynomial-time sparse linear regression algorithm A with the following property. For any n, k €
N, o > 0, positive semi-definite (1, k)-rescalable matrix ¥ € R™*", k-sparse vector w* € R", and
m > msr(n, k), the output i +— A((X), y(j));”:l) satisfies

Prffl — w3 < 0%/10] > 1 - o(1)

where the probability is over the randomness of A and m independent samples (X @), y(j ));”:1 from
SLRZJ (w*).

Then there is a polynomial-time algorithm A’ with the following property. For any n,m,k € N
and p € (=1, =1+ 1/(2k)], if m > ms r(n, k) + 1600log(n), then

P "Z)=1- P "(Z)=1]| =1-0(1). 20

ST @) =1 Pr (A(2)=1] = 1-0(1) 0)

To be precise, the asymptotics here (as elsewhere in this section) are in terms of n. That is, each

term o(1) represents a function of n (that of course depends on the algorithm A, but not the other

parameters) that goes to 0 as n — oo.

Proof The algorithm A’ on input Z = (Z (j));ﬂzl has the following behavior. Let m’ = m —

1600 log(n). For each i € [n], compute
W@ = A((Z(j) Z(j));nz’l)

and
. 1 m , , N2
(1) . Z(]) o Z(J) ~ (1)
e 160010gn_Z ( A >>
Jj=m’'+1
The output of A is then ‘
1[3i € [n] : n¥ < 9/10].

Analysis. It’s clear that the time complexity of A’ is dominated by the time complexity of A
(multiplied by n), which is by assumption polynomial in n. It remains to check Equation (20).
First, suppose that Z ~ P, 1 3.,,,. Recall that Z is sampled by first drawing a spike vector
from W, ;. Let us condition on this vector being some w € R", which by definition of W,,
(Definition 9) is k-sparse. Fix any ¢ € arg maxc(, |w;|. We will show that n® < 9/10 with high
probability. By definition, the random variables Z(), ... Z(™) are independent and identically
distributed (after conditioning on w). Fix any j € [m]. Then Z) ~ N(0, I,, + fww ). Thus, the
marginal distribution of Z(fi) is N(0, 1,1 + Bw_;w’,), and for any = € R™, Zi(j)|Z(ji) = x has

distribution
v {(( s T o)
T4+ —wd) /14801 —wd))

Define ¥ = I,,_1 + 5w_l-wL and 0 := w_; and 02 = — 4B Then the tuple

Bw;
1+4(1-wy) 1+8(1—w3)
(Z(fi), ZZ-(J)) is distributed according to SLRy; ,(6). Since w_; is (k — 1)-sparse, we get that § is
(k — 1)-sparse.

Let S := supp(w_;) C [n — 1] and let D € R*~1*"~! be the diagonal matrix defined by
Dgq := 1[a ¢ supp(w)] for a € [n — 1]. Then for any v € R"1,

2 2 2 2 2
lolls; = Ilvll; + 8w, w—i)* = [lvll; = [Jopa-1psly = vl
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where the inequality is by Cauchy-Schwarz, the assumption 5 > —1, and the bound |[w_;||, <
|wll, = 1. Thus, D < ¥ < I,,. Since I, — D has rank at most k, it follows that > is (1, k)-
rescalable.

We can now apply the theorem hypothesis. Since m' > msg r(n, k), it holds with probability

1 — o(1) that w® « A((Z(_ji), Zi(j))ﬁl) satisfies

) 2
@ — 0”2 < 0?/10 < 1/20. @1

where the last inequality uses that

9 1+p 1+p 1+ 06
g 1+ B(1—w?) = 1+B—ﬂ/kS 1+ 8+1/(2k) <1/2

(since |w;| > 1/v/k and 1 + 8 < 1/(2k)). Condition on the event that Equation (21) holds. Then
for any m’ < j < m, since Z\9) is independent of (), we have
i

E (29 - (2Y) w<i>>>2 = o2 4 [[w® - aHi < 3/5.

By concentration of x? random variables, it follows that n® <9 /10 (and hence A outputs 1) with
probability 1 — o(1) over Z ~ Py, 1, g m.
On the other hand, suppose that Z ~ Q,, ,,,. Again, (Z Y ))9”:1 are independent. Fix i € [n] and

condition on the first m’ samples, which fixes w®, For any m’ < j < m, we know that ZZ-(j ) 18
independent of (Z\), w(®), so

E (27 - (29),0) > E(z7)? = 1.

Concentration of 2 random variables gives that n(i) > 9/10 with probability at least 1 — 2n=2. A
union bound over ¢ € [n] implies that A’ outputs 0 with probability 1 — o(1). This completes the
proof of Equation (20). |

C.3. Statistical efficiency of low-degree polynomials

We next show that in the low-sample regime m = O(k?/D), the degree-D likelihood ratio for the
spiked Wishart model with parameter functions k, 3, and m (see Section C.1) is indeed bounded.
Together with Theorem 35, this proves a tight statistical/computational tradeoff for sparse linear
regression with (1, k)-rescalable covariance, conditional on Conjecture 33.

Our starting point for bounding the low-degree likelihood ratio is the following instantiation of
a general calculation due to Bandeira et al. (2020):

Lemma 36 Letn,k,m,D € Nwithk <nand g € (—1,00). Then

’ L

LD/2]

2 _ B2 (w1, wa) \ * " 9d;
L2(Qn,m) B wlanE’;Wn,k ;) < 4 ) Z H <d2 >

d1 ey =1
S di=d

<D
n7k7187m
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Proof We apply Lemma 5.9 from Bandeira et al. (2020). We only need to check that W, ;. is a
B-good normalized spike prior (see Definitions 2.9 and 2.11 in Bandeira et al. (2020)), but this is
immediate from the fact that 8 > —1 and Pryw, , [[|w]l, < 1] = 1. [

We now roughly follow the proof of (Ding et al., 2023, Theorem 2.14(b)), which gives a low-
degree bound in the closely related setting where 5 > 0 and the sparse spike prior has independent
entries.

Remark 37 (Inapplicability of previous bounds) Note that the above expression is an even func-
tion of B, so for any given well-defined spike prior, the low-degree computation in the negative-spike
case is identical to that in the positive-spike case. Unfortunately, the spike prior with independent
entries is only well-defined in the positive-spike case, since it’s possible for the spike vector to have
norm larger than one. If this degeneracy occurred only with vanishing probability, then one could
hope to perform a truncation argument (Bandeira et al., 2020; Ding et al., 2021), but in the near-
critical regime that we care about (i.e. § € (=1, —1+1/(2k))), a spike prior with i.i.d. entries and
expected sparsity k will have norm exceeding one with constant probability.

Thus, the fixed-size sparse spike prior YV, . (Definition 9) seems crucial to the proof. We are
not aware of a previous low-degree analysis with this prior, so we have to do it ourselves.

We start by bounding the moments of (w;, wo) for independent w1, wa ~ W, 1.
Lemma 38 Letn,k,d € Nwithk < \/n/(4e). Then
Appa = EE(wy, we)?? < 2 (2d)*
where the expectation is over independent draws w1, wa ~ Wi, .

Remark 39 Note that the trivial bound (from Cauchy-Schwarz) is Apjqa < k21 However; for
d < k this is very loose. We improve it by using the fact that the supports of w1, wo are unlikely to
have large overlap.

Proof Define the (random) set
S := supp(w1) Nsupp(wz) C [n].

Let Rad(1/2) denote the Rademacher distribution Unif ({—1,1}). Observe that after conditioning
on any realization of S with S| = ¢, the random variable (w;, w) has the distribution of Zle a;
where a1, . ..,ay ~ Rad(1/2) are independent. Thus,

k ) 2d
Aprd = P =/ - E i
ok,d % I'HS’ ] at,...,ag~Rad(1/2) (; “ )

k
<> Pr[|S| =4 -

/=0
k
<(@d)*+ ) PrfS| =4
(=2d+1
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Define g(¢) := Pr[|S| = £] - £2¢. Then for any 2d < ¢ < k, we have

k n—k
e+ 1) = )y

(%)

k—¢ k— ¢ 1\
= . 14+ = gl
(+1 n_2kte+1 < * e) 9(0)
2
n
)
Since g(2d) < (2d)?4, it follows that
k
Appa < (2d)% + Z (2d)%(1/2)721 < 2. (2d)*
(=2d+1
as claimed. [ |

We also use the following bound from Ding et al. (2023):

Lemma 40 (Lemma 4.7 in Ding et al. (2023)) There are constants c1,cs > 0 with the following
property. Let m, D : N — N be functions with D = o(m). Then for all sufficiently large n € N, for
all 1 <d < D(n), it holds that

m(n) d

2d; 3/2 cad? /m(n) (2M(1))

5] (1) <o zmtat

di,...,dm>0 =1
S dmd

Combining the above pieces, we get the following bound on the low-degree likelihood ratio.

Theorem 41 Let k,m, D : N — N be functions with 2er/m(n)D(n) < k(n) < \/n/(4e) for suf-

ficiently largen € N, and D(n) = o(m(n)). Let f : N — (—1,1). Then HL?,?(%)B(”) m(”)HL2(Q : <
’ ’ ’ n,m(n)
O(1).

Proof For notational simplicity, we write k& = k(n), D = D(n), and m = m(n). Applying
Lemma 36 and the definition of A,, ;. 4 (Lemma 38), we have that for all sufficiently large 7,

2 |D/2] /82 d m 24,
252 B % <4’f2> Ania 3. 1 <di>

diyeeosdm i=1
S di=d
1D/2] ; o\ d a
B 2 m(2m)
<1420 Y <W (2d)* /e

LD/2] / Sed?m d
3/2
<1+42c¢ dE:1 d (4k2(d!)1/d>

39



KELNER KOEHLER MEKA ROHATGI

[D/2] 9 d
<142 Z 43/? <86dm>

4k2
d=1
[D/2]
<1420 Yy d¥?(1/2)°
d=1

where the first inequality applies Lemma 38 (using that £ < /n/(4e)) and Lemma 40 (using that
D = o(m)); the second inequality uses the bounds 52 < 1 and ec2d?/m < ec2dD/m < el (which
holds for sufficiently large n, since D = o(m)); the third inequality uses Stirling’s approximation;
and the fourth inequality uses the assumption that k2 > 2e?m.D. It’s clear that the final summation
is upper bounded by an absolute constant, which completes the proof. |

Corollary 42 (Restatement of Theorem 7) Let ¢,C > 0 with ¢ < 2. Suppose that there is a
polynomial-time algorithm A satisfying the following property. For any n,k € N, o > 0, positive
semi-definite, (1, k)-rescalable matrix ¥ € R™*™, k-sparse vector w* € R"™, and m > Ck2e log n,
the output 1 +— A((X1), y(j));ﬁ:l) satisfies

Prffl — w3 < 0%/10] > 1 - o(1)

where the probability is over the randomness of A and m independent samples (X (7) 4 ))5”:1 from
SLRy. o (w*). Then Conjecture 33 is false.

Proof Define functions m, k,D : N — Nand 8 : N — (—1,0) by k(n) := log'"“n, m(n) :=
Ck(n)*¢log3n + 16001log(n), D(n) := (2¢)~2log?n, and B(n) = —1 + 1/(2k(n)). By Theo-
rem 35, there is a polynomial-time algorithm A’ that solves strong detection for the spiked Wishart
model with parameter functions k, m, and 5. But now

2ey/m(m)D(n) < \/(C +1600)k(n)>~log®n < \/ (C+1600)k()* _ 1y

log®n

for sufficiently large n € N. Also, k(n) = log'®“n < \/n/(4e) for sufficiently large n. Fi-
nally, m(n) = Q(log®n), so D(n) = o(m(n)). We can therefore apply Theorem 41, which gives
that HLSD(”)

n,k(n),B(n),m(n) LQ(Qn,’rn(n))
Conjecture 33. |

< O(1). Together with the guarantee on A’, this contradicts

Remark 43 Theorem 41 also implies a computational-statistical gap for learning Gaussian Graph-
ical Models, under Conjecture 33. In particular, for any B € (—1,—1+ 1/k) and any k-sparse
w € R”, define ¥ := I, + Bww . Suppose that w lies in the support of Wi, i, so that every nonzero
entry of w lies in {—1/\'k,1/v/k}. Then it can be checked that the Gaussian Graphical Model with
distribution N(0,Y) is k-nondegenerate for some . = Q(1), i.e. the precision matrix © := ¥~}
satisfies |©;;| > O(1) - \/©40;; forall i, j € [n] with ©;; # 0.

For any k-nondegenerate Gaussian Graphical Model N(0,3) with maximum degree k, the
Markov structure (i.e. the support of ¥ 1) can be information-theoretically learned with O (k log(n) /k?)
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samples (Misra et al., 2017). But for any € > 0, if there were a computationally efficient algo-
rithm for learning such models with O(k*~¢log(n)/k?) samples, then by taking  to be a con-
stant, there would be a computationally efficient algorithm for distinguishing the spiked Wishart
distribution Py, . 3 m from the null distribution Qy, ,, for some m = O(k*=€log(n)), so long as
B € (=1,—1+ 1/k): simply learn the underlying structure and check if it is the empty graph or
not. But such an algorithm would contradict Theorem 41, assuming that Conjecture 33 holds.

Finally, we observe that this lower bound actually holds for the natural testing problem of
distinguishing between an empty GGM and a sparse GGM with at least one nondegenerate edge.
We establish upper bound with matching dependence on k later in Section D.

C.4. Statistical efficiency of semi-definite programming

We now give a second piece of evidence that negative-spike sparse PCA may exhibits a statisti-
cal/computational tradeoff, based on the failure of a natural semi-definite program for solving the
detection problem. Given samples Z(), ..., Z(™) ¢ R™, one can solve the following program in
polynomial time:

Vi(D) = AERglxiRAEO@J,A) s.t. tr(A) =1 and ]2:31 |Aij| < k (22)

where 3 = 1 i Z (@) (Z2U)T is the empirical covariance of the samples (Z (j))?“:r This is the
same as the standard semi-definite programming relaxation suggested for positive spike sparse PCA
d’Aspremont et al. (2004); Krauthgamer et al. (2013) except that the program minimizes rather than
maximizing.’

Since the matrix A := ww ' is feasible for (22), the value of the program is at most O(1 + 3)
with high probability over (X(j))g’";l ~ P, 1 3,m (so long as m = Q(klogn)). One would hope
that under the null hypothesis (ZU ));71:1 ~ Qp.m» the program value V;, () is with high probability
concentrated near one, in which case (22) would solve the strong detection problem. However,
we show that this is not the case when m < k?: in this regime, the value of the program is in
fact zero with high probability under the null hypothesis (Theorem 45). Since the value is always
nonnegative, it follows that the natural, computationally efficient test based on this program — reject
the null hypothesis if Vk(i) is below some threshold — fails to solve the strong detection problem if
the number of samples m is significantly less than O(k?).

We prove Theorem 45 by taking A in the above program to be (an appropriate rescaling of)
the orthogonal projection onto ker(3). It’s clear that (3, A) = 0, so it remains to check that A is
feasible for (22) with high probability, when rescaled to have trace one.

Quantitatively, if ) is an orthogonal projection matrix onto a random (n — m)-dimensional
subspace of R” (as span(3) indeed is), we would like to bound >t j=11Qij| by roughly ny/m.
Since I,, — @ has the same sum of entries up to O(n), we can equivalently consider an orthogo-
nal projection matrix P onto a random m-dimensional subspace. The following lemma gives the
desired bound on the sum of entries of P (essentially as an application of Johnson-Lindenstrauss
concentration).

7. This difference means that we need a different construction than they use to establish the SDP lower bound — ours
is based on looking at the kernel of the empirical covariance.
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Lemmad44 Letn,m € Nwithm < n, and let V C R" be a uniformly random m-dimensional
subspace. Let P € R"™™ be the orthogonal projection matrix onto V. Then for any § > 0,

n
Pr Z |Pij| > 11ny/mlog(n/é)| <.
ij=1
Proof For any fixed unit vector v € R", it is known (Dasgupta and Gupta, 2003, Lemma 2.2) that

Pr(|loll} = 2| > <] < exp(—ke?/12).

Define S := {(e; + €;)/vV2:i,j € [n] Ai# j}U{e; 14 € [n]} and € := \/12log(n2/5)/m. By
a union bound, we get that | ||v||% — m/n| < em/n for all v € S, with probability at least 1 — §.
Henceforth we condition on this event.

First, """ | | Pi;| = tr(P) = m. Next, fix any ¢, j € [n] with ¢ # j. Then

1
T 2 2 2
Py = el Pej = 3 (Iles + esl13 = lleslB = lles 7).

Thus,

2m

1 9 1 9 m 1 AL 2em
1Pl < 5 {llei + 515 = =2+ 5 [lleals = [+ 5 gl - 2 < =2

Substituting in the choice of €, we get that

Z |Pij| < n+2emn < n+ 2ny/12mlog(n?/d) < 11ny/mlog(n/é)

ij=1
as claimed. |

We can now prove the claimed result that (22) has value zero with high probability under the
null hypothesis.

Theorem 45 There is a constant ¢ > 0 with the following property. Let n,m,k € N, and let
(Z(j))}n:1 ~ Qpm. Let ¥ := L1 > i ZU(ZUNT, Forany§ > 0, ifm < min(ck?/log(n/8),n/2),
then

Pr[Vi(X) > 0] <.

Proof Let P € R™ " be the orthogonal projection onto span(3) and let A = %. Note
that tr(P) = rank(X) = m almost surely, so tr(A) = 1 almost surely. Moreover I, — P =

N

S wgw; where wy, ..., wy_y, form an orthonormal basis for ker(3). Hence, (3, A) =
LS w Sw; = 0. Thus, if > i j=114ij| < k, then Vi,(¥) = 0. It only remains to bound
the probability that 1., |A;;| > k. By Lemma 44 and the fact that span(X) is a uniformly

random m-dimensional subspace of R", with probability at least 1 — § we have ) | P <

11n4/mlog(n/d). In this event,

DAl < ——+—— > |Py]

i,j=1 4,j=1

n
ij=1
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_ 12ny/mlog(n/5)
n—m

< 24+/mlog(n/d)

<k

where the third inequality uses the assumption that m < n/2, and the fourth inequality holds so
long as ¢ > 576. |

Appendix D. Testing between an empty and non-empty GGM

In this section, we give a polynomial-time algorithm for testing between an empty and sparse non-
empty Gaussian Graphical Model (GGM). Interestingly, this is possible to do with polynomial de-
pendence on the sparsity and strength of the strongest edge in the graphical model, even though it
is not known how to learn the entire graphical structure in the same setting in polynomial time (see
e.g. discussion in Anandkumar et al. (2012); Misra et al. (2017); Kelner et al. (2020)). The sample
complexity of this algorithm is suboptimal information-theoretically. In particular, it has a quadratic
dependence on the sparsity k& even though information-theoretically, it is possible to learn the entire
model with sample complexity only linear in k. However, our lower bound based on negatively
spiked sparse PCA (see Section C and Remark 43 for the connection with GGMs) suggests that it
is optimal among polynomial-time algorithms.

The test that we use is very simple — we simply estimate all of the correlation coefficients
between the variables in our model and check if any of them are significantly different from zero.
The fact that such a test is possible to construct was alluded to in Remark 10 of Kelner et al. (2020)
without a proof or precise statement of the sample complexity, both of which we provide here. In
particular, we show here that the test obtains the conjecturally sharp quadratic dependence on k
among efficient algorithms.

Lemma 46 Let ¥ € R™" be positive-definite and let © := X~ be the corresponding precision
matrix. Let X ~ N(0,X). For any indices i # j, we have

1
O Var(X; | Xaij) = ————7
(4 r( 7 ’ 7’7]) 1 . @7)2‘7/6“9]‘7
Proof Define S = {i,j}. Conditional on any fixing of X g = =g, the conditional density of Xg
is proportional to exp(—(xg, Osszs)/2 + (h,zs)) where h, the coefficient of the linear term, is
determined by x..g. This is the pdf of a Gaussian distribution with precision matrix ©gg, so using
the explicit formula for 2 X 2 matrix inversion yields

Oj;
@ii@jj — 02

ij

which is equivalent to the claim. |

The following crucial lemma says that if we invert a sparse matrix containing a nonnegligible oft-
diagonal entry, then its inverse contains a nonnegligible off-diagonal entry as well.
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Lemma 47 Let © € R™™™ be a positive-definite matrix with at most k + 1 nonzero entries in each
row, and define . := ©~. Then there exist indices i, € [n] such that i # { and

————— > —max o

VEiXe — 2k a#b ©4aOp

Proof Since the statement of the lemma is invariant to rescaling (i.e. replacing © by DO D for any

positive-definite diagonal matrix D), we may assume without loss of generality that ©;; = 1 for

all i € [n]. Since © is positive definite, it follows that @?j < ©40,; = 1 for any indices i # j.

Furthermore, by Lemma 46 and the law of total variance (where we define X ~ N(0, X)), we have
1

Eii > EV&I‘(XZ‘ ’ XNZ‘J') = (23)

Since I,, = X0, we have for any coordinate i € [n] that

n
1= 0uSi =i+ Y Oy,
=1 06
and thus
Yi—1=— Z@iézié < [1@iill1 max [Zi| < kf?;izx |Zie

01
where the final inequality uses that ©; .; has at most k£ nonzero entries, each with magnitude at
most one. If we define £*(i) := arg max,; ||, then the above display implies that

i —1

Y| >
|z€(z)‘— L

(24)

‘We now consider two cases:

1. If max; ¥3;; > 2, define i* := arg max ;. Then by (24) and choice of i*, we have

Spepe maAX{ Djejr, Lpn(iryor(in) }
E'* * (4% > — .
| 0% (1 )| = ok 2k

2. Otherwise we have max; ¥;; < 2, so by (24) and (23) we have for any i, j € [n] withi # j
that

Yi—1 S 1/(1—@%)—1 - 1/(1—@%)_1
koo k - 2k

In particular, this bound holds when ¢ and j are chosen to maximize |©;;|.

|Ei€* (%) ‘ > max{Eii, Ypwpx }
Therefore in either case, there exists some i € [n] such that

it (i) > — min {1 : - 1}
maX{Eii, EE*(i)ﬁ*(i)} - 2k ’ 1-— maXa7gb @gb ’

Finally, using the inequality 1/(1 — z) — 1 > x which is valid for all z < 1, we obtain

i (i)
max{Eii, EZ*

1 1
> — min{ 1, max ©?2 }:max@g.
(z)Z*(z)} — 2k { a#b b 2k a#b b
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Using the fact that max{X;;, YXpx 5+ (i) } = \/2iiXex(i)e+ (i) Proves the result. |

This structural result yields a tester because we can directly estimate correlations from data. Very
precise results about the sample correlation coefficient were obtained by Hotelling (1953). Below,
we give a simple argument which yields easy-to-use nonasymptotic bounds.

We recall the following basic fact about Gaussians. See e.g. Lemma 2 of Kelner et al. (2020)
for an explicit proof.

Lemma 48 (classical) If X,Y are jointly Gaussian random variables with Var(Y') > 0, then

Cov(X,Y)?

Var(Y) — Var(Y | X) = Var(Y)

For convenience, we use the following lemma. It is a special case of a general statement about
testing for changes in conditional variance, which is closely related to classical results about non-
central F-statistics and Wishart matrices (see e.g. Keener (2010)).

Lemma 49 (Special case of Lemma 12 of Kelner et al. (2020)) For jointly Gaussian random vari-
ables X, Y with Var(Y|X) > 0, define

~ Var(Y) — Var(Y | X)

Y;X):=
Y3 X) Var(Y | X)
There exists an efficiently computable (i.e. polynomial time) statistic 7 of m i.i.d. copies (X1,Y1), ..., (Xm, Ym)
of (X,Y) such that
n 4log(4/6
VA - va| < /28D | e

Theorem 50 Suppose that X ~ N(0,%), & > 0,0 > 0 and consider the following two hypotheses.
The null hypothesis Hy is that X is a diagonal matrix. The alternative hypothesis H is that > =
O~ 1 where © has (k + 1)-sparse rows, and where

T a#b /Ou, O ,
i.e. the maximal partial correlation coefficient is at least k. Then provided m = Q(k?log(n/d)/k?)
i.i.d. copies of X, we can distinguish in polynomial time between Hy and Hy with sum of probability
of type I and type II errors at most d.

Proof We test the maximal correlation of X; and X over all ,j € [n] with ¢ # j. Under the
null hypothesis the true correlation v(.X;; X;) equals zero no matter the choice of ¢, j. Under the
alternative hypothesis, let i, j be the indices given by Lemma 47 and without loss of generality
suppose Var(X;) < Var(X;). Then v = v(X;; X;) can be lower bounded as

Var(X;) = Var(X; | X;) | Cov(Xi, X;)* _ Cov(XiX;)? (1 63 2
= — max
Var(Xi|Xj) B Var(XZ-)Q B Var(Xl) Var(Xj) T \ 2k a#b OuOn
where the first inequality uses Lemma 48 and the fact that Var(X;|X;) < Var(Xj;). Thus, by the
theorem assumption, it holds that y(X;; X;) > «*/(4k?). By Lemma 49 and a union bound over

all choices of 1, j, given
m = Q(k?log(4n/d) /kb)
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Sparse recovery from negative spiked covariance

1.2 4 Method
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Figure 2: Standardized Lasso vs RescaledLasso in a simple example with varying number of
samples. For each datapoint, the covariates were drawn i.i.d. from the negatively spiked
sparse PCA model with ambient dimension n = 300 and with § = —0.99. For covariate

vector X, the ground truth response Y is generated as Y = O%B)k (lg, X) where S is

the set of coordinates of size £ = 5 where the spike is supported. As we expect from the
theory, RescaledLasso recovers the signal from fewer samples than Lasso applied
with the usual standardization/normalization of covariates.

samples we can distinguish between the two hypotheses with the sum of probability of type I and
type II error at most 4. |

Appendix E. Simulation

As a simple example, we ran RescaledLasso () in a simple simulation on synthetic data where
covariates follow negatively spiked sparse PCA (Figure 2) and verified that it indeed had improved
prediction error compared to usual standardization of covariates. We used the glmnet package in R
and optimized the regularization hyperparameter using a validation set.

When we ran the algorithm in the simulation, we changed the value of the hyperparameters DIV
to 1.1 and of B to 2k — generally speaking, we expect setting the value of DIV closer to 1 will
not significantly hurt the statistical performance (and may help a bit in some cases) although it may
make the algorithm run a bit slower, and the proof does not depend on the particular value of DIV
chosen in the original pseudocode (which was only chosen for mathematical convenience). Also,
instead of updating the scale only of ¢,,;5, in each pass we we update the scale of all indices ¢ such
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that % |[Xvt9) |2 < 1 — this significantly reduces the number of iterations and thus the runtime of
the algorithm (it can be checked that the theoretical guarantees also hold with this modification).

Appendix F. Technical lemmas

Lemma 51 Let 3 € R™ "™ be a positive semi-definite matrix and fix w € R™. Let X € R™*" have
iid rows X1,...,Xm ~ N(0,%). If m > 32log(2/9), then

Lo _ 1 9 9
Prigllwlly < —[IXw]; < 2[lwlls| 21 -4

Proof By a change of variables, it suffices to consider the case ¥ = I,,. But then ||Xw||§ / Hw||§ is
distributed as a y-squared random variable with m degrees of freedom. The statement follows from
concentration of y-squared random variables. |

Lemma 52 (Hanson-Wright inequality (Rudelson and Vershynin, 2013)) Ler > € R™*" be a
positive semi-definite matrix. Let X ~ N (0,X). Then for any t > 0,

t2 t
Pr| || X5 — tr(2)] > t] < 2exp | —cmin | ——, r—
i 1SI12 15 ]op
where ¢ > 0 is a universal constant.

In particular we will use the following simplification of the Hanson-Wright inequality.

Corollary 53 Let > € R™ ™ be a positive semi-definite matrix. Let X ~ N(0,X). Let § €
(0,1/4). Then
Pr(|X|5 > Ctr(X)log(2/6)] < &

where C > 0 is a universal constant.

Proof Observe that || X[, < ||| < tr(X) (since [|X]|,, is the £o norm of the eigenvalues of X,
whereas ||X|| - is the #2 norm and tr(X) is the ¢; norm). Thus, Lemma 52 gives that for any ¢ > 0,

Pf] XI5 — (D) > ] < 2exp (i (t&) )

Taking ¢ := max(1, 1/c) tr(X) log(2/6) gives the claimed result. [

For a symmetric matrix A, let A\;(A) > --- > \,,(A) denote the eigenvalues of A. The following
inequality is well-known.

Lemma 54 (Weyl’s inequality) Let N, R € R"*" be symmetric matrices. Suppose that rank(R) =
r. Then
Ar+1(N + R) < A(N).
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