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Abstract

Sparse linear regression is a central problem in high-dimensional statistics. We
study the correlated random design setting, where the covariates are drawn from a
multivariate Gaussian N (0, X)), and we seek an estimator with small excess risk.
If the true signal is t-sparse, information-theoretically, it is possible to achieve
strong recovery guarantees with only O(tlogn) samples. However, computa-
tionally efficient algorithms have sample complexity linear in (some variant of)
the condition number of . Classical algorithms such as the Lasso can require
significantly more samples than necessary even if there is only a single sparse
approximate dependency among the covariates.

We provide a polynomial-time algorithm that, given ¥, automatically adapts the
Lasso to tolerate a small number of approximate dependencies. In particular, we
achieve near-optimal sample complexity for constant sparsity and if ¥ has few
“outlier” eigenvalues. Our algorithm fits into a broader framework of feature
adaptation for sparse linear regression with ill-conditioned covariates. With this
framework, we additionally provide the first polynomial-factor improvement over
brute-force search for constant sparsity ¢ and arbitrary covariance X.

1 Introduction

Sparse linear regression is a fundamental problem in high-dimensional statistics. In a natural random
design formulation of this problem, we are given m independent and identically distributed samples
(Xi,v:)™, where each sample’s covariates are drawn from an n-dimensional Gaussian random
vector X; ~ N(0,Y), and each response is y; = (X;, v*) + &; for independent noise &; ~ N (0, o%)
and a t-sparse ground truth regressor v* € R", where t is much smaller than n. The goal® is to
output a vector © € R™ for which the excess risk

E((X0,) — y0)* = 0% = (0 —v") '5(0 —v") = [0 — "3
is as small as possible, where (X, yo) is an independent sample from the same model.

Without the sparsity assumption, the number of samples needed to achieve small excess risk (say,
O(0?)) is linear in the dimension; with O(n) samples, simple and computationally efficient algo-

rithms such as ordinary least squares achieve the statistically optimal excess risk O ("m—") . Sparsity
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allows for a significant statistical improvement: ignoring computational efficiency, it is well known
2

that there is an estimator ¢ with excess risk O(”t:nw)

Theorem 4.1 in [23]).

The catch is that computing this estimator involves a brute-force search over (?) possibilities (i.e.,
the possible supports for v*). At first glance, this combinatorial search may seem unavoidable if
we wish to take advantage of sparsity. Indeed, similar problems are notoriously difficult: the only
non-trivial algorithms for e.g., learning ¢-sparse parities with noise still require 7*(*) time [29, 37].
However, it is a celebrated fact that for sparse linear regression, computationally efficient methods
such as Lasso and Orthogonal Matching Pursuit can avoid this combinatorial search and still achieve
very strong theoretical guarantees under conditions such as the Restricted Isometry Property (see e.g.
[7, 10, 5, 4, 3, 1]). In the random design setting we consider, the Lasso is known to achieve optimal
statistical rates (up to constants) when the covariance matrix X is well-conditioned [32, 46].

as long as m = Q(tlogn) (see e.g. [13, 33];

What about when ¥ is ill-conditioned? In contrast with the statistically optimal estimator, Lasso and
its cousins provably require sample complexity scaling with (some variant of) the condition number
of X (see e.g. Theorem 14 in [38] or Theorem 6.5 in [23]). And with a few exceptions (e.g., in some
settings with special graphical structure [23]) there has been little progress on designing new efficient
algorithms for sparse linear regression with ill-conditioned X (see Section 4 for further discussion).
For a general covariance ¥, no algorithm is even known that can achieve sample complexity f(¢) -
n!~¢ (for an arbitrary function f) without brute-force search.

A computationally efficient algorithm that approaches the optimal statistical rate for arbitrary X
might be too much to hope for. While no computational lower bounds are known, even in restricted
computational models such as the Statistical Query model,® the related worst-case problem of find-
ing a t-sparse solution to a system of linear equations requires n°%() time under standard complexity
assumptions [15]. So it is plausible, though not certain, that some assumptions on X are neces-
sary. In this work — inspired by a long tradition (in random matrix theory, statistics, graph theory,
and other areas) of studying matrices with a spectrum that is split between a large “bulk” and a
small number of outlier “spike” eigenvalues [28, 39, 43] — we identify a broad generalization of the
standard well-conditionedness assumption, under which brute-force search can still be avoided.

1.1 Beyond well-conditioned X

Say that ¥ has eigenvalues A\; < --- < \,, and that the sparsity ¢ is a constant.” Then standard
bounds for Lasso require sample complexity (A, /A1) - O(logn). But if the covariates contain even
a single approximate linear dependency, then A, /A; may be arbitrarily large. Moreover, if the
dependency is sparse (e.g. two covariates are highly correlated), then there is a natural choice of
v* for which Lasso provably fails (see Theorem 6.5 of [23]). Indeed, this phenomenon is not just
a limitation of the analysis; Lasso fails empirically as well, even for very small ¢ (see Figure 2 in
Appendix H for a simple example with ¢ = 3).

Such dependencies arise in applications ranging from finance (e.g., where some pairs of stocks or
ETFs may be highly correlated, and an investor may be interested in the differences) to genomic
data (where functionally related genes may have highly correlated expression patterns). Two-sparse
dependencies can be directly identified by looking at the covariance matrix; see Section 4 for some
discussion of previous research in this direction. But as ¢ increases, naive methods for identifying ¢-
sparse dependencies quickly become computationally intractable. With domain knowledge, it may
be possible to manually identify and correct such dependencies, but this process would also be
time-consuming. Thus, we ask the following question: instead of assuming that \,, /A1 is bounded,
suppose that there are constants dy and dj, so that A\,,_4, /Ag,+1 is bounded, i.e. the spectrum of
3 has only dy outliers at the low end, and only d;, outliers at the high end. Can we still design an
algorithm that achieves sample complexity O(log n) without resorting to brute-force search?

Main result. We give a positive answer: an algorithm for sparse linear regression that is both
computationally and statistically efficient for covariance matrices with a small number of “outlier”

8There are lower bounds for a family of regression estimators with coordinate-separable regularization [44]
and a family of “preconditioned-Lasso” estimators [23, 24].

"Note that for moderate-sized datasets (e. g. n = 1000), brute-force search is infeasible even for ¢ as small
as four or five.



eigenvalues. In particular, this means we can handle a few approximate dependencies among the
covariates (quantified by the number of eigenvalues below a threshold). In comparison, Lasso and
other classical algorithms cannot tolerate even a single sparse approximate dependency. Our main
algorithmic result is the following:

Theorem 1.1. Let n,t,dy,dy, L € Nand 0,6 > 0. Let ¥ € R"*™ be a positive semi-definite
matrix with (non-negative) eigenvalues \; < --- < \,. Let v* € R" be any t-sparse vector. Let
(X, y:)™  be independent with X; ~ N(0,%) and y; = (X;,v*) + &, where & ~ N(0,0?).

Let ney = t(An—ay, /Ad,+1) log(nL/§) + t°Md, + dy,. Given X, t, dy, 6, and (Xi,yi)q, there is
an estimator v € R"™ that has excess risk

2
. 2 0N L _ 2
o= o713 <0 (2L ) w2t ol

with probability at least 1 — 6, so long as m > Q(n.zL). Moreover, 0 can be computed in time
poly(n).

Specifically, taking L ~ log(m ||v* ||22 /o?), the time complexity is dominated by L eigendecom-
positions and L calls to a Lasso program, for overall runtime O(n3) (see Algorithm 2). This is
substantially faster than the brute-force method (which takes O(n') time) even for small values of ¢.

The excess risk decays at rate O(02n./m) (hiding the logarithmic factor), which is near the statis-
tically optimal rate of 0(02t /m) so long as ne is small, i.e. ¢ is small and only a few eigenvalues
lie outside a constant-factor range. In our analysis, we prove that the standard Lasso estimator can
already tolerate a few large eigenvalues — the main algorithmic innovation is needed to tolerate a
few small eigenvalues, which turns out to be much trickier. Notice that when dy = d, = 0 we
recover standard Lasso guarantees up to the factor of L; thus, Theorem 1.1 morally represents a
generalization of classical results.

We also show how to achieve a different trade-off between time and samples, eliminating the depen-
dence on d; in sample complexity at the cost of larger runtime:

Theorem 1.2. In the setting of Theorem 1.1, let nlyy := t(An—a,, /Ad,+1) log(nL/8) 4% log(t) +dp.
Given 3, t, dy, 0, and (X;,y;)™,, there is an estimator 0 € R™ that has excess risk

2,/
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with probability at least 1 — §, so long as m > Q(n;ﬂL). Moreover, © can be computed in time

poly(n,m, dj, t*").

Discussion & limitations. We discuss two limitations of the above results. First, both results
incur exponential dependence on the sparsity ¢ (in the sample complexity for Theorem 1.1, and the
runtime for Theorem 1.2), which may be suboptimal. For Theorem 1.1, we remark that in practice
the algorithm may not suffer this dependence (see e.g. Figure 1), and it is possible that the analysis
can be tightened. For Theorem 1.2, we emphasize that the runtime is still fundamentally different
than brute-force search: in particular, it’s fixed-parameter tractable in t and dy.

Second, both results require that X is known. Thus, they are only applicable in settings where we
either have a priori knowledge, or can estimate X accurately because a large amount of unlabelled
data is available. At a high level, this limitation is due to the need to compute the eigendecomposition
of 3, which cannot be approximated from the empirical covariance of a small number of samples.

For simplicity, we have stated our results in terms of Gaussian covariates and noise, but this is not a
fundamental limitation. We expect it is possible to prove similar results in the sub-Gaussian case at
the cost of making the proof longer — for instance, by building upon the techniques from [25] and
related works.

Pseudocode & simulation. See Algorithm 1 for complete pseudocode of AdaptedBP (), a sim-
plification of the method for the noiseless setting ¢ = 0. In Figure 1 we show that AdaptedBP ()
significantly outperforms standard Basis Pursuit (i.e. Lasso for noiseless data [7]) on a simple ex-
ample with n = 1000 variables, d;, = 10 sparse approximate dependencies, and a ground truth



Algorithm 1: Adapted BP for sparse linear regression with few outlier eigenvalues

Procedure FindHeavyCoordinates ({v1,..., v },a)
/* GRAM-SCHMIDT computes an orthonormalization of wy,...,vx */
ai,...,ar < GRAM-SCHMIDT({vy,...,vx})

return {i € [n] : Y5, ((a;):)? > a2}
Procedure IterativePeeling (X, d,t)
Compute eigendecomposition X = Z:’L:l Py
P« Z;L:dﬂ i,
Ky« {ien]:P;<1-1/(9t*)}
for j =tto1do
Zp(K;) < FindHeavyCoordinates ({P; : i € K;},1/(6t))
Kj1 + K;UZp(K;)
return K
Procedure AdaptedBP (%, d, ¢, (X5, y;)i%)
S < IterativePeeling(X,d,t)
return 9 € argmin, cpnx,—y D _igs Vil
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Figure 1: Basis Pursuit (BP) versus Adapted BP in a simple synthetic example with n = 1000
covariates. The z-axis is the number of samples. The y-axis is the out-of-sample prediction error
(averaged over 10 independent runs, and error bars indicate the standard deviation).

regressor with sparsity ¢ = 13. The covariates X7.1900 are all independent N (0, 1) except for 10
disjoint triplets {(X;, X; 41, Xi+2) : ¢ = 1,4, ..., 28}, each of which has joint distribution

Xi, = 4y, X,’+1 = ZZ + O4ZZ+17 XH_Q = Zi+1 + 0-4Zi+2

where Z;, Z;11,Z;i1o ~ N(0,1) are independent. The (noiseless) responses are y = 6.25(X; —

Xo) +2.5X3 + \/%T) S0 X;. See Appendix I for implementation details.

1.2 Organization

In Section 2 we give an overview of the proofs of Theorem 1.1 and 1.2 (the complete proofs and full
algorithm pseudocode are given in Appendix C). In Section 3 we discuss our other results obtained
via feature adaptation. Section 4 covers related work.

2 Proof techniques

We obtain Theorems 1.1 and 1.2 as outcomes of a flexible algorithmic approach for tackling sparse
linear regression with ill-conditioned covariates: feature adaptation. As a pre-processing step, adapt



or augment the covariates with additional features (i.e. well-chosen linear combinations of the co-
variates). Then, to predict the responses, apply ¢;-regularized regression (Lasso) over the new set of
features rather than the original covariates. In other words, we algorithmically change the dictionary
(set of features) used in the Lasso regression. See Section 4 for a comparison to past approaches.

We start by explaining the goals of feature adaptation for general 32, and then show how we achieve
those desiderata when X has few outlier eigenvalues. More precisely, the main technical difficulty
is in dealing with the small eigenvalues, so in this proof overview we focus on the case where the
only outliers are small eigenvalues. Complete proofs of Theorems 1.1 and 1.2 are in Appendix C.

2.1 What makes a good dictionary: the view from weak learning

Obviously, the feature adaptation approach generalizes Lasso. Surprisingly, even though the sample
complexity of the standard Lasso estimator is thoroughly understood, the basic question of whether
for every covariate distribution (i.e. every X)) there exists a good dictionary remains wide-open. To
crystallize the power of feature adaptation, we introduce the following notion of a “good” dictionary.
We suggest considering the simplified setting of a-weak learning, where the goal is just to find some
¥ so that the predictions (X, 0) are a-correlated with the ground truth (X, v*) when X ~ N (0, X).
Moreover, we focus first on the existential question (rather than the algorithmic question of finding
the dictionary). We will return to the setting of Theorems 1.1 and 1.2 later. For now, in the weak
learning setting, a good dictionary (when the covariate distribution is NV (0, X)) is one that satisfies
the following covering property, but is not too large:

Definition 2.1. Let ¥ € R"™ ™ be a positive semi-definite matrix and let t,ac > 0. A set
{D1,...,Dy} C R™isa(t,«)-dictionary for X if for every t-sparse v € R", there is some 7 € [N]
with

(v, Di)s| = allvllg |Dillg

where we define (2, y)x, == 2" Xy and ||z := 2T Sa for any z,y € R™. Let N; (%) be the size
of the smallest (¢, «)-dictionary.

The relevance of the covering number NV, ,(X) is quite simple: given a (¢, a)-dictionary D for X,
and given samples (X;,y;)",, the weak learning algorithm can simply output the vector & € D
that maximizes the empirical correlation between the predictions (X;, ) and the responses y;. So
long as there are enough samples for empirical correlations to concentrate, Definition 2.1 guarantees
success. Formally, allowing for preprocessing time to compute the dictionary, O(«a)-weak learning
is possible in time N; () - poly(n), with O(a~2log N (X)) samples (Proposition A.5).

Hypothetically, bounding V; ,,(2) may not be necessary to develop an efficient sparse linear regres-
sion algorithm. However, all assumptions on X that are currently known to enable efficient sparse
linear regression also immediately imply bounds on NV, , (see Appendix G). For example, when ¥
is well-conditioned, the standard basis is a good dictionary of size n (Fact A.4).

In contrast, the only known bounds for arbitrary 3 (until the present work) are /\/t’1 / i) <t (?)
(the brute-force dictionary, which includes a >-orthonormal basis for every set of ¢ covariates) and
./\/;}1 / \/5(2) < n (a X-orthonormal basis for all n covariates, which doesn’t take advantage of
sparsity and corresponds to algorithms such as Ordinary Least Squares). Thus, the following basic
question — when can we improve upon these trivial bounds — seems central to understanding when
brute-force search can be avoided in sparse linear regression:

Question 2.2. How large is Ni o(X) for an arbitrary positive semi-definite ¥ € R"*"™? Are there
natural families of ill-conditioned 3 (and functions f, g) for which Ny 1, 5¢)(2) < g(t) - poly(n)?

2.2 Constructing a good dictionary when ¥ has few small eigenvalues

We now address Question 2.2 in the setting where 3 has a small number of eigenvalues that are
much smaller than \,,. In this setting, the standard basis may not be a good dictionary. For example,
if two covariates are highly correlated, their difference may not be correlated with any of them.
Nonetheless, we can prove the following covering number bound:

Theorem 2.3. Let n,t,d € N. Let ¥ € R"*™ be a positive semi-definite matrix with eigenvalues
2
A <o < N\ Then Ny o (B) < ¢(7)20 THd! + n, where oo = 7%/5\/ Ad+1/An-



In particular, when ¢ = O(1) and ¥ is well-conditioned except for O(1) outliers Aq,..., A\, we
get a linear-size dictionary just as in the case where Y is well-conditioned. In fact, the desired
(t, «)-dictionary can be constructed efficiently. Our key lemma shows that when ¥ has few small
eigenvalues, there is a small subset of covariates that “causes” all of the sparse approximate depen-
dencies — in the sense that the /5> norm of any sparse vector, excluding the mass on the subset, can be
upper bounded in terms of the ¥-norm of the vector. Moreover, there is an efficient algorithm that
finds a superset of these covariates. Formally, we prove the following:

Lemma 24. Let n,t,d € N. Let ¥ € R" "™ be a positive semi-definite matrix with eigenvalues
A < - < A\, Given 3, d, and t, there is a polynomial-time algorithm IterativePeeling()
producing a set S C [n] with the following guarantees:

(a) For every t-sparse v € R™, it holds that ||v[n]\5H2 < 3A;_¥2 V]|

(b) |S] < (Tt)2+1d.

Once this set S has been found, the dictionary is simply the standard basis {e1, ..., ey}, together
with a ¥-orthonormal basis for every set of ¢ covariates in S. By guarantee (a), we can prove that
every t-sparse vector correlates with some element of this dictionary under the ¥-inner product. By
guarantee (b), the dictionary is much smaller than the brute-force dictionary that contains a basis for
all (’z) sets of ¢ covariates. Together, this gives an algorithmic proof for Theorem 2.3.

Intuition for IterativePeeling(). We compute the set .S via a new iterative method which
leverages knowledge of the small eigenspaces of . See Algorithm 1 for the pseudocode. To com-
pute S, the algorithm IterativePeeling() first computes the orthogonal projection matrix P that
projects onto the subspace spanned by the top n — d eigenvectors of . Starting with the set of
coordinates that correlate with ker(P), the procedure then iteratively grows .S in such a way that at
each step, a new participant of each approximate sparse dependency is discovered, but .S does not
become too much larger.

The intuition is as follows: as a preliminary attempt, we could identify all O(d) coordinates that
correlate (with respect to the standard inner product) with the lowest d eigenspaces of X. If e.g. the
covariates have a sparse dependency

X1+ X0 =0,
then ker ¥ contains the vector e; + eg, so the coordinates {e1, ea} will be correctly discovered.
Unfortunately, if > contains a more complex sparse dependency such as

6_1(X1 - XQ) - X3 - X4 =0

where ¢ > 0 is very small, then this heuristic will discover {eq, e2} but miss {es,e4}. For this
example, the solution is to notice that es and e4 do correlate with the subspace spanned by ker(X) U
{e1,e2} (which contains e5 + e4). In general, if S is the set of coordinates discovered thus far,
then by finding basis vectors that correlate with an appropriate subspace (of dimension at most
|S]), we can efficiently augment S with at least one new coordinate from each ¢-sparse approximate
dependency, without making .S bigger by more than a factor of O(t). Iterating this augmentation ¢
times therefore provably identifies all problematic coordinates.

To formalize this intuition, the following lemma will be needed to bound how much S grows at each
iteration; it shows that the number of coordinates that correlate with a low-dimensional subspace is
not too large (proof deferred to Appendix B):

Lemma 2.5. Let V' C R” be a subspace with d := dim V. For some o > 0 define

S=4qi€n]: sup TSl
z€V\{0} ||$||2

Then |S| < d/a?. Moreover, given a set of vectors that span 'V, we can compute S in time poly(n).

We also define the set of vectors v that have unusually large norm outside a set S, compared to
VuT Pu, which is the distance from v to the subspace spanned by the bottom d eigenvectors of 3:

Definition 2.6. For any matrix P € R™*" and subset S C [n], define Wp s := {v € R™ : |[vge]|, >

3vuvT Pu}.



We then formalize the guarantee of each iteration of IterativePeeling() as follows:

Lemma 2.7. Let n,t € N and let P : n X n be an orthogonal projection matrix. Suppose T > 1
and K C [n] satisfy

(a) Py >1—1/(9%) foralli ¢ K,
(b) |supp(v) \ K| < 7 for every v € By(t) N Wp k.

Then there exists a set p(K ) with |Zp(K)| < 36t%| K| such that
[supp(v) \ (Zp(K)UK)| <7 —1
forallv € By(t) "\ Wp k. Moreover, given P, K, and t, we can compute Zp(K) in time poly(n).

Proof sketch. We define the set

Ip(K):= {ae[n]\K: sup 2l >1/(6t)}.

zespan{Pe;: i€ K }\{0} ||33H2

It is clear from Lemma B.2 (applied with parameters V' := span{Pe; : i € K} and o := 1/(6t))
that |Zp(K)| < 36t?| K|, and that Zp (K ) can be computed in time poly(n). It remains to show that
IGp(v) \ (Zp(K)UK)| <1 —1forallv € By(t).

Consider any v € By(t) N Wp, k. Then |vke|, > 3| Pv||,. It’s sufficient to show that Zp(K)
contains some j € supp(v) \ K, i.e. that there is some j € supp(v) \ K such that e; correlates with
span{P; : i € K}. We accomplish this by showing that vx- correlates with Pvg = ), o v: P;.

At a high level, the reason for this is that vi. is close to Pvge (since P; ~ e; for i € K°),
and Pv = Puvg + Puge. is much smaller than Pvge = vge, so Pvg and Pvg. must be highly
correlated. See Appendix B for the full proof. |

We can now complete the proof of Lemma 2.4 by repeatedly invoking Lemma B.4.

Proof of Lemma 2.4. Let ¥ = Y7 \u;u; be the eigendecomposition of ¥, and let P :=
Z?:dﬂ u;u; be the projection onto the top n — d eigenspaces of . Set K; = {i € [n] : P; <
1—1/(9t?)}. Because tr(P) = n —d and P; < 1 foralli € [n], it must be that | K;| < 9¢2d. Also,
for any v € By(t) N Wp,k, we have trivially by ¢-sparsity that | supp(v) \ K| < ¢t.

Define K;_1 to be K; UZp(K;) where Zp(K;) is as defined in Lemma B.4; we have the guarantees
that | K;—1| < (1+36t?)| K| and |Gp(v)\K:| < t—1forallv € Bo(t)NWp k, . Since K;—1 2 K1,
it holds that Wp i, |, € Wp k,, and thus |Gp(v) \ K| <t —1forallv € Bo(t) N Wpk, .
Moreover, since K; 1 2 Ky, it obviously holds that P;; > 1 — 1/(9¢?) for all i ¢ K;_ 1. This
means we can apply Lemma B.4 with 7 := ¢t — 1 and K := K,;_; and so iteratively define sets
Ki 2 C -+ C K; C Ky C [n] in the same way. In the end, we obtain the set Ky C [n] with
|Ko| < 9t2d(1 + 36t%)" and supp(v) C K forall v € By(t) N\ Wp k. The latter guarantee means
that in fact By(t) N Wp,k, = 0. So for any ¢-sparse v € R™ it holds that

, <3VuTPu < 3/\(;1{2\/ v 3o

where the last inequality holds since \g41 P < X. ]

[[ox

2.3 Beyond weak learning

So far, we have sketched a proof that if 3 has few outlier eigenvalues, then there is an efficient
algorithm to compute a good dictionary (as in Theorem 2.3). This gives an efficient a-weak learning
algorithm (via Proposition A.5). However, our ultimate goal is to find a regressor © with prediction
error going to 0 as the number of samples increases. Definition 2.1 is not strong enough to ensure
this.®> However, it turns out that the dictionary constructed in Theorem 2.3 in fact satisfies a stronger
guarantee” that is sufficient to achieve vanishing prediction error:

$Moreover, standard notions of boosting weak learners (e.g. in distribution-free classification) do not apply
in this setting.
“See Lemma A.3 for a proof that the £, -representation property implies the (¢, a)-dictionary property.



Definition 2.8. Let ¥ € R™ "™ be a positive semi-definite matrix and let t, B > 0. A set
{D1,...,Dny} C R™is a (t, B)-{1-representation for ¥ if for any ¢-sparse v € R™ there is some

ae RN withv = Y.L, a;D; and S0 || - | Dills; < B - [[oll;

With this definition in hand, we can actually prove the following strengthening of Theorem 2.3:

Lemma 2.9. Let n,t,d € N. Let ¥ € R" ™ be a positive semi-definite matrix with eigen-
values Ny < -+ < Ao Then ¥ has a (t,7v/t\/An/Nay1)-{1-representation D of size at most
n + t(7t)2°°+tdt. Moreover, D can be computed in time t°*)dt poly(n).

Proof sketch. Let S be the output of IterativePeeling(3,d,t). The dictionary D consists of
the standard basis, together with a X-orthogonal basis for each set of ¢ coordinates from S. The
bound on |D| comes from the guarantee |S| < (7¢)?**!d. For any t-sparse vector v € R", we
know that vge is efficiently represented by the standard basis (because Theorem B.1 guarantees that

vsell, < O(/\(;i{2 [lv]ls)), and vg is efficiently represented by one of the Y-orthonormal bases.

See Appendix B for the full proof. |

Why is the above guarantee useful? If each D; is normalized to unit X-norm, then the condition of
(t, B)-¢;-representability is equivalent to ||cr||; < B - ||v||y. That is, with respect to the new set of
features, the regressor « has bounded ¢; norm. Thus, if we apply the Lasso with a set of features that
is a (t, B)-¢1-representation for 3, then standard “slow rate” guarantees hold (proof in Section A):

Proposition 2.10. Letn,m,N,t € Nand B > 0. Let ¥ € R"*" be a positive semi-definite matrix
and let D be a (t, B)-{1-representation of size N for ¥, normalized so that ||v||x = 1 for all v € D.
Fix at-sparse vector v* € R", let X1, ..., X,;, ~ N(0,X) be independent and let y; = (X;, v*)+¢&;
where &; ~ N(0,02). For any R > 0, define

we  argmin || XDw — y||§
weRN:||w|, <BR

where D € R™ N is the matrix with columns comprising the elements of D, and X € R™*™ is the

matrix with rows X1, ..., X,,. So long as m = Q(log(n/d)) and ||w*||s, € [R/2, R], it holds with
probability at least 1 — ¢ that

log(2 ?log(4 B2 [lw* |51
”mﬂﬂﬁ@:O<BMﬂza og205) | o*loB(4/6) wnz%mv,

m m

Combining Proposition 2.10 with Lemma 2.9 shows that there is an algorithm with time complexity
o) gt poly(n) and sample complexity O(poly (t) (A, /Ad+1) log(n) log(d)) for finding a regressor
with squared prediction error o(c? + Hv*||22) This is a simplified version of Theorem 1.2. The
full proof involves additional technical details (e.g. more careful analysis to take care of large
eigenvalues, and to avoid needing an estimate R for ||w*||s;) but the above exposition contains the
central ideas. Theorem 1.1 similarly computes the set .S from Lemma 2.4 but uses it to construct a
different dictionary: the standard basis, plus a ¥-orthonormal basis for S.!” See Appendix C for the
full proofs and pseudocode.

3 Additional Results

We now return to Question 2.2 and ask whether there are other families of ill-conditioned ¥ for
which we can prove non-trivial bounds on N ., ().

First, we ask what can be shown for arbitrary covariance matrices. We prove that every covari-
ance matrix ¥ satisfies a non-trivial bound N; 1 /64372 10g n) () < O(n'71/2). In fact, building on
tools from computational geometry, we show the stronger result that X has a (¢, O(t%/% logn))-¢1-
representation that of size O(n'~1/2), that is computable from samples in time O(n'=*(1/%) for

"More precisely, the algorithm just skips regularizing S, which is morally equivalent. As it is simpler to
implement, that is shown in Algorithm 1, and analyzed for the proofs.



any constant ¢ > 1 (Theorem D.5). As a corollary, we provide the first sparse linear regression algo-
rithm with time complexity that is a polynomial-factor better than brute force, and with near-optimal
sample complexity, for any constant ¢ and arbitrary 3 (proof in Section D):

Theorem 3.1. Let n,m,t, B € Nand o > 0, and let > € R™"*™ be a positive-definite matrix. Let

w* € R™ be t-sparse, and suppose | w*||s, € [B/2, B]. Suppose m > Q(tlogn). Let (X;,y;)",

be independent samples where X; ~ N(0,%) and y; = (X;,w*) + N(0,02). Then there is an

O(mzntfl/2 +pt—(/Y) 1ogo(t) n)-time algorithm that, given (X;,y;)™,, B, and o?, produces an
estimate 1w € R"™ satisfying, with probability 1 — o(1),

a0 g w5

|| w||2§0<\/m+ m + - .

Second, one goal is to improve “sample complexity” (i.e. obtain a without dependence on condition
number) without paying too much in “time complexity” (i.e. retain bounds on N; , that are better
than n'). To this end, we prove that the dependence on & in the correlation level (see Fact A.4) can
actually be replaced by dependence on « in the dictionary size (proof in Appendix E):

Theorem 3.2. Let n,t € N. Let ¥ € R™*"™ be a positive-definite matrix with condition number k.
Then Ny 1 3041 (X) < 90(t?) L 2t4+1 ,

In particular, for any constant ¢ = 1/e, our result shows that there is a nearly-linear size dictionary
with constant correlations even for covariance matrices with polynomially-large condition number
x < n¢/100 While we are not currently aware of an efficient algorithm for computing the dictionary,
the above bound nonetheless raises the interesting possibility that there may be a sample-efficient
and computationally-efficient weak learning algorithm under a super-constant bound on x.

4 Related work

Dealing with correlated covariates. There is considerable work on improving the performance of
Lasso in situations where some clusters of covariates are highly correlated [47, 19, 2, 42,21, 12, 27].
These methods can work well for two-sparse dependencies, but generally do not work as well for
higher-order dependencies — hence they cannot be used to prove our main result. The approach
of [2] is perhaps the closest in spirit to ours. They perform agglomerative clustering of correlated
covariates, orthonormalize the clusters with respect to 3, and apply Lasso (or solve an essentially
equivalent group Lasso problem). This method fails, for example, when there is a single three-
sparse dependency, and the remaining covariates have some mild correlations. Depending on the
correlation threshold, their method will either aggressively merge all covariates into a single cluster,
or fail to merge the dependent covariates.

Feature adaptation and preconditioning. Generalizations of Lasso via a preliminary change-of-
basis (or explicitly altering the regularization term) have been studied in the past, but largely not to
solve sparse linear regression per se; instead the goal has been using ¢, regularization to encourage
other structural properties such as piecewise continuity (e.g. in the “fused lasso”, see [35, 36, 20, 8]
for some more examples). An exception is recent work showing that a “sparse preconditioning” step
can enable Lasso to be statistically efficient for sparse linear regression when the covariates have
a certain Markovian structure [23]. Our notion of feature adaptation via dictionaries generalizes
sparse preconditioning, which corresponds to choosing a non-standard basis in which 3 becomes
well-conditioned and the sparsity of the signal is preserved.

Statistical query (SQ) model; sparse halfspaces. From the complexity standpoint, NV; o () is a
covering number and therefore closely corresponds to a packing number Py (%) (see Section A.1
for the definition). This packing number is essentially the (correlational) statistical dimension,
which governs the complexity of sparse linear regression with covariates from N (0, ) in the (cor-
relational) SQ model (see e.g. [14] for exposition of this model). Whereas strong n(®) SQ lower
bounds are known for related problems such as sparse parities with noise [29], no non-trivial (i.e.
super-linear) lower bounds are known for sparse linear regression. Relatedly, in a COLT open prob-
lem, Feldman asked whether any non-trivial bounds can be shown for the complexity of weak learn-
ing sparse halfspaces in the SQ model [11]. Our results also yield improved bounds for weakly
SQ-learning sparse halfspaces over certain families of multivariate Gaussian distributions.



Improving brute-force for arbitrary >. Several prior works have suggested improvements on
brute-force search for variants of ¢-sparse linear regression [18, 16, 31, 6]. However, all of these
have limitations preventing their application to the general setting we address in Theorem 3.1.
Specifically, [18] requires Q(n') preprocessing time on the covariates; [16, 31] require noiseless
responses; and [6] has time complexity scaling with log™ n (since our random-design setting neces-
sitates m > Q(tlogn), their algorithm has time complexity much larger than n?).
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A Preliminaries

Throughout, we use the following standard notation. For positive integers n,m € N, we write
A : m x n to denote a matrix with m rows, n columns, and real-valued entries. The standard inner
product on R™ is denoted (u,v) := u ' v. For a positive semi-definite matrix ¥ : n x n we define
the X-inner product on R™ by (u, v)s: := u' Xv and the $-norm by ||ul|s, = \/(u, u)s. Forn € N
(made clear by context) we let ey, . .., e, € R™ be the standard basis vectors e;(j) := 1[j = ¢]. For
a vector v € R™ and set S C [n] we write vg to denote the restriction of v to coordinates in S. For
symmetric matrices A, B : n X n we write A =< B to denote that B — A is positive semi-definite.

A.1 Covering, packing, and /; -representability

We previously defined the covering number of ¢-sparse vectors with respect to a covariance matrix .
We next define the packing number (i.e. correlational statistical dimension) and ¢; -representability,
and discuss the connections between these quantities as well as their algorithmic implications.

Definition A.1. Let ¥ : n X n be a positive semi-definite matrix and let {,a > 0. A set
{v1,...,un} CR"is a (¢, a)-packing for ¥ if every v; is ¢-sparse, and

[(vi, v5)s| < allvills lvills

for all i,j € [N] with ¢ # j. The (correlational) statistical dimension of ¢-sparse vectors with
maximum correlation «, under the Y-inner product, is denoted P; o (%) and defined as the size of
the largest (¢, a)-packing.

We will make use of the following connections between packing, covering, and ¢ -representability.

Lemma A.2 (Covering < packing). For any positive semi-definite matrix ¥ : n X n and t, o > 0,
it holds that (0 /3)Py a2 /2(X) < Nio(Z) < Pra(X).

Proof. First inequality. Let {Dy,..., Dy} be any maximum-size (t,a?/2)-packing. Since the
D;’s are all ¢-sparse, each must be correlated with some element of a (¢, «)-dictionary. Thus, it
suffices to show that for any v € R™, the set S(v) := {i € [N] : [(D;,v)s| > a||Diy [|[v]/x} has
size |S(v)| < 3/a?. Indeed, for any i, j € S(v) with i # j, we have by the definition of a packing
that

D;, D;, Dy, v)5(D;,

p, - Pivx, 5o Div)s, :<Di,D->—< v)2(Dj, v)s
2 J 2 J 2

vl lolls /5 ol

2
«
<~ IDil5 ;115

For each i € S(v) define R; = D; — (D;,v)sv/ ||v|/%. Then

2
2

o< | S pE | Sjser Y eE ) js@lgswl -1 -2
Lo TRl e RS TR 2
i€S(v s i,JES (v):i#]

where the last inequality uses the bound || R; ||y, < || D; ||y Rearranging gives |S(v)| < 1+ (2/a?).

Second inequality. Let {D;,..., Dy} be any maximal (¢, «)-packing. Then for any ¢-sparse
v € R”, maximality implies that there must be some ¢ € [N] with [(D;,v)x| > o ||D;s ||v]ls.
So{Dy,...,Dn} is also a (¢, a)-dictionary. O

Lemma A.3 (/;-representation = covering). Let > : n X n be a positive semi-definite matrix
and let t,B > 0. If {D1,...,Dn} C R" is a (t, B)-{1-representation for %, then it is also a
(t,1/B)-dictionary for ¥..

13



Proof. Pick any t-sparse v € R"™. By /;-representability, there is some o € RY with v =
ity @Dy and Y.L il - | Dilly, < B - [[v]ly;. Hence

N
loll5; = Z a;(v, D)

i€V [lvlls D5l

D
< Bl - mae D8
e Tol 1D,

1=1
N
(v, D;)s)
<3 Jaul Jolls, |1 Dslls; - max 2o
=1

[{v,D;)s|
and thus mane[N] m Z 1/B O

We can now easily prove that the standard basis is a good dictionary for well-conditioned 3.

Fact A4. Let X be a positive definite matrix with condition number % < k. Under the X-inner

product, every t-sparse vector is at least 1/(\/kt)-correlated with some standard basis vector.

Proof. By Lemma A.3, it suffices to show that the standard basis {ej,...,e,} is a (¢, Vkt)-£1-
representation for 3. Indeed, for any ¢-sparse v € R™,

D luil - lleills < D loil - Ve (E) lleilly = v Anax(2) 1ol
1 =1

< VA Vi ol < 4| Ve ol
O

as desired.

A.2 Algorithmic implications

An existential proof that AV; o (%) is small unfortunately does not in general give an efficient algo-
rithm for constructing a concise dictionary. However, with the caveat that the dictionary must be
given to the algorithm as advice, bounds on N; ,, do imply weak learning algorithms with sample
complexity O(a~2log(n)):

Proposition A.5. Let X : nxn be a positive semi-definite matrix and let D be a (t, «)-dictionary for
Y, for somet € Nand o € (0,1). For m € N and t-sparse v* € R", let X1,..., X, ~ N(0,%)
be independent and let yj; = (X;,v*) + &; where & ~ N(0,0?). Define the estimator
¥ = argmin || fXv — yHg

veD

BER
where X : m X n is the matrix with rows X1, ..., X,,. Forany § > 0, if m > Ca~21og(32|D|/6)
for a sufficiently large absolute constant C, then with probability at least 1 — 6,
40002 log(4|D|/6)

a’m

B —w

*

2
* 12
L < (- a?/a) |+

Proof. Since D is a (t,a)-dictionary, we know that there is some ¢ € D with [{(0,v*)xn| >
a9y |[v*]|s; - We then apply Lemma F.4. O

The above guarantee is essentially of the form “at least 1% of the signal variance can be explained”.
Under the ¢;-representability condition, something much stronger is true:

Proposition A.6. Letn,m,N,t € Nand B > 0. Let ¥ : n X n be a positive semi-definite matrix
and let D be a (t, B)-{-representation of size N for ¥, normalized so that ||v||s, = 1 for all v € D.
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Fix at-sparse vector v* € R", let X1, ..., X,;, ~ N(0,X) be independent and let y; = (X;, v*)+¢&;
where &; ~ N(0,02). For any R > 0, define

we  argmin || XDw — y||§
weRN:||w|, <BR

where D : n x N is the matrix with columns comprising the elements of D, and X : m X n is
the matrix with rows X1,..., Xp. So long as m = Q(log(n/d)) and R > |[v*||s, it holds with
probability at least 1 — § that

2 2 p2
1D 7w*”22 _0 <BR0 log(2n/¢) L e log(4/9) n B*R 10g(n)> '

m m m

Proof. By {1-representability and normalization of D, there is some w* € R™ such that v* = Dw*
and |[w*||, < B||v*|ls; < BR. LetI' = DTXD. Also, by normalization, max; I';; = 1. Thus, we
can apply standard “slow rate” Lasso guarantees to the samples (D" X;, ;)™ to get the claimed
bound (see e.g. Theorem 14 of [22]). O

A.3 Optimizing the Lasso in near-linear time

Theorem A.7 (see e.g. Corollary 4 and Section 5.3 in [34]). Letn,m,B, H,T € Nand o > 0. Fix
Xi,..., Xy € R with || X;|| o, < H foralli, and fix w* € R™ with ||w*||, < B. Fori € [m] define
yi = (X;,w*) + & where & ~ N(0,0?%) are independent random variables. Given (X;,y;)™, as
well as B, T, and o2, there is an algorithm MirrorDescentLasso ((X;,y;)",, B, T, ), which
optimizes the Lasso objective via T iterations of mirror descent, that produces an estimate w € R"
satisfying ||w||, < B and, with probability 1 — o(1),

P | » ~(H?B> [H2B%2
— | X — — | Xw* — \/ .
—lIX@ =yl < 1 Xw y||2+0< 7+ T

Moreover; the time complexity of MirrorDescentLasso () is O(nmT).

Theorem A.8. Let n,m,B,H € Nand 0 > 0. Let ¥ : n X n be positive semi-definite with
maxep, Xj; < H2 Fixw* € R™ with ||w*||; < B. Let (X;, ;) be independent draws where
X; ~ N(0,%) and y; = (X;,w*) + N(0,0%). Then MirrorDescentLasso((X;,v;)™,, B, m,
02) computes, in time O(nm?2), an estimate W satisfying, with probability 1 — o(1),

o2 ocHB H2B2>

+

A *2<~ v
”w w||20<\/m+\/m m

Proof. Since max; ¥;; < H we have that max; || X;|| ., < O(H logn) with probability 1 — o(1).
Applying Theorem A.7 with this bound and with T = m, we obtain some @ € R with ||@|, < B
and, with probability 1 — o(1),

1 2 1 2
— D — < — ¥
Lyl < L jxur gl 4o

where ¢ = O(H?B?/m) + \/H2B202/m). By x?-concentration, we have L[ Xw* — y||§ <
o?(1 + O(1/+/m)) with probability 1 — o(1). Thus,

1X% = ylly < | Xw" —yll, + Vem < ov/m + O(om'/*) + vem

and
1Xt — g2 < | Xw" = ylI2 + me < o?m + O(a>/m) + em.
Next, since sup,,epn. ||, <p(w — w*,z) < 2B|z||,, < O(HBlogn) with probability 1 — o(1)
over x ~ N(0,X), we can apply Theorem C.1 to get that with probability 1 — o(1),
1+ 0(1/y/m)

N %112 ~ ~
[ — w*||g 4 0% < T(”XU} —yll, + O(HB))*.
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Substituting the bounds on || X @ — y||, and || X — yHg gives
| — w*||3, 4+ 0% < 0% + O(6?>m ™2 + €) + O(c HBm™ Y2 + HB\/e/m) + O(H?B?/m).
Substituting in the value of € and simplifying, we get
] e
T \Vm Vm m

as claimed. ]

B Iterative Peeling

In this section we give the complete proof of Lemma 2.4, restated below as Theorem B.1, which
describes the guarantees of IterativePeeling() (see Algorithm 1). This is a key ingredient in
the proofs of Theorems 1.1 and 1.2. We also use it to formally prove Theorem 2.3, as well as
Lemma 2.9.

Theorem B.1. Let n,t,d € N. Let 3 : n X n be a positive semi-definite matrix with eigenvalues
A < -+ < A\, Given 3, d, and t, there is a polynomial-time algorithm IterativePeeling()
producing a set S C [n] with the following guarantees:

* For every t-sparse v € R", it holds that Hv[n]\SH2 < 3)\(;{2 V]|

. [S] < ()2 F1d.

Essentially, the set S contains every coordinate ¢ € [n] that “participates” in an approximate sparse
dependency, in the sense that there is some sparse linear combination of the covariates with small
variance compared to the coefficient on i. To compute .5, the algorithm IterativePeeling() first
computes the orthogonal projection matrix P that projects onto the subspace spanned by the top n—d
eigenvectors of X.. Starting with the set of coordinates that correlate with ker(P), the procedure then
iteratively grows .S in such a way that at each step, a new participant of each approximate sparse
dependency is discovered, but S does not become too much larger.

The following lemma will be needed to bound how much S grows at each iteration:
Lemma B.2. Let V C R"” be a subspace with d := dim V. For some o > 0 define

S=<i€n]: sup Tisalb.
zeV\{0} ||x||2

Then |S| < d/a®. Moreover, given a set of vectors that span V., we can compute S in time poly(n).

Proof. Let k := |S| and without loss of generality suppose S = {1,...,k}. Define a matrix
A € R™™ as follows. For 1 < ¢ < k letrow A; € V be some vector such that || A;|, = 1

and A;; > a. Fork+1 < i < nlet A; = 0. Then tr(4) > ka and ||A||. = vk. However,
rank(A) < d, so the singular values o1 > 09 > -+ > 0, > 0 of A satisfy 0441 = 0. Thus,

ka <tr(A4) < Zai <Vd
i=1

Y ot =Vd|Alp = Vik
=1

where the second inequality is by e.g. Von Neumann’s trace inequality, and the third inequality is
by d-sparsity of the vector o. It follows that k < d/a? as claimed.

Let A be the matrix with columns consisting of the given spanning set for V. By Gram-Schmidt,
we may transform the spanning set into an orthonormal basis for V, so that A has d columns, and
ATA = I,. Fix i € [n]. Then sup,ev (o3 %i/ |zl > a if and only if (Av)? — o? ||A’UH§ > 0 for
some nonzero v € R?. Equivalently, (Av)? > a? for some unit vector v. This is possible if and
only if || A;]|, > a (where A; is the i-th row of A), which can be checked in polynomial time. [

For notational convenience, we also define the set Wp g of vectors v with unusually large norm
outside the set S.
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Definition B.3. For any matrix P : n x n and subset S C [n], define Wp s := {v € R" : |[vge]|, >

3vuT Pu}.

We then formalize the guarantee of each iteration of IterativePeeling() as follows:

Lemma B4. Let n,t € N and let P : n X n be an orthogonal projection matrix. Suppose T > 1
and K C [n] satisfy

(a) Py >1—1/(9t?) foralli ¢ K,
(b) |supp(v) \ K| < 7 for every v € By(t) N Wp k.
Then there exists a set Lp(K ) with |Zp(K)| < 36t|K| such that
[supp(v) \ (Zp(K)UK)| <7 —1
forallv € By(t) N\ Wp k. Moreover, given P, K, and t, we can compute Zp(K) in time poly(n).
Proof. We define the set

|Za|

sespan{ Pe;:ic K0} 1Z]l2

Ip(K) = {ae[n]\K: >1/(6t)}.

It is clear from Lemma B.2 (applied with parameters V' := span{Pe; : i € K} and o := 1/(6t))
that |Zp (K )| < 36t%| K|, and that Zp (K ) can be computed in time poly(n). It remains to show that
|supp(v) \ (Zp(K)U K)| <7 —1forallv € By(t) N Wp k.

Consider any v € By(t) N Wp k. Then ||vg<||, > 3VvT Pv. We have

2
Hch||2 T 2 -
TQ > v Pv=|Pv|} = Zuip,» (1)
=1 2
where the first equality uses the fact that P is a projection matrix. We also know that
S ouB-e)|| £ 3 WP el € = lokelly < i, @)
3Vt 3

i€[n]\K 9 i€[n]\K
by the triangle inequality, the bound || P; — ei||§ ={I—-P)yy=1—PF; <1/(9t) (sincei ¢ K),
and t-sparsity of v. Moreover, (2) implies that
4
S wp|| <| 3 w@—e| +loxelly < > lloxels - )

3
i€n]\K 9 i€n]\K 9

Combining (1) and (3), the triangle inequality gives

= 5
Z’Uz'Pi < Z v Pl + Zvipi Sg””K“HQ' “4)
€K 2 i€[n]\K 9 i=1 2
Next, observe that
vl -
KC
> | Db vkl (by (1))
=1 2
> <Z viPi7ch>‘ (by Cauchy-Schwarz)
i=1
> < Z viPi,ch> —‘<Z viPZ‘,ch>‘ (by triangle inequality)
i€[n)\K icK
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> < > UieiaUKC> - < > wlPi—e UKc> ‘<Z%va;{c>
i€[n]\K ien]\K €K
(by triangle inequality)
2
> |Jvke|ls — Z P —e)| |vkelly — <Z vlpz,ch>
i€[n] 9 €K
(by Cauchy-Schwarz)
1
> forcell; = 5 lloxells - |<ZPK>| (by (2)
iEK
and hence
1 a1
> wiPuke )| > 3 lvicelly = 3 lvorcelly || Y viPs
€K i€K 2

where the last inequality is by (4). On the other hand, observe that

‘<Z“ipi’“KC> < Z |vj|"<zvipi7€j>
€K

JE\K €K
Hence, there is some j € supp(v) \ K such that

(oo
i€EK

So the vector z(v) = >, viP; € span{P; : i € K} satisfies |z(v);| > |lz(v)], /(5V1).
Moreover, z(v) is nonzero since |z(v);| > 0. Thus, j € Zp(K). Since we chose j to be in
supp(v) \ K, it follows that

<Vt lugell, jeaEX

()]

§ ,Ul [

€K

2

|supp(v) \ (Zp(K) U K)| < |supp(v) \ K| -1 <7 -1

where the last inequality is by assumption (b) in the lemma statement. O

We can now complete the proof of Theorem B.1 by repeatedly invoking Lemma B.4 (this proof was
given in Section 2.2 and is duplicated here for completeness).

Proof of Theorem B.1. Let ¥ = Y " | Aiu;u; be the eigendecomposition of ¥, and let P :=
> il usu; be the projection onto the top n — d eigenspaces of X. Set K; = {i € [n] : P; <
1—1/(9t%)}. Because tr(P) = n —d and P; < 1 foralli € [n], it must be that | K;| < 9¢2d. Also,
for any v € By(t) N Wp i, we have trivially by ¢-sparsity that | supp(v) \ K| < t.

Define K;_; to be K; UZp(K;) where Zp(K:) is as defined in Lemma B.4; we have the guarantees
that | K;—1| < (1+36t?)|K;| and |Gp(v)\ K| < t—1forallv € Bo(t)N\Wp k,. Since K;—1 2 K,
it holds that Wp i, , € Wp k,, and thus |Gp(v) \ K| < t—1forallv € By(t) N Wpk,_,.
Moreover, since K; 1 O Ky, it obviously holds that P;; > 1 — 1/(9¢?) for all i ¢ K; 1. This
means we can apply Lemma B.4 with 7 := ¢t — 1 and K := K;_; and so iteratively define sets
Ki 2 C -+ C K; C Ky C [n] in the same way. In the end, we obtain the set Ky C [n] with
|Ko| < 9t2d(1 + 36t%)" and supp(v) C K forall v € By(t) N\ Wp k. The latter guarantee means
that in fact By(¢t) N Wp k, = (). So for any t-sparse v € R"™ it holds that

, <3V vl Py < 3/\5_&{2\/ A

where the last inequality holds since \g41 P < X. ]

[vres
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Proof of Lemma 2.9. By Theorem B.1, there is a polynomial-time computable set S C [n] such

that [Jvge ||, < 3\/19\;%2 lv|ls; forall v € By(t), and |S| < (7¢)?*1d. Let the dictionary D consist
of the standard basis {eq,...,e,} together with a 3-orthogonal basis for each subspace spanned

by ¢ vectors in {e; : i € S}. Let v € R™ be t-sparse. Let vg denote the restriction of v to S,
ie. vg == v — Zie[n]\ g Vie;. By construction of the dictionary, there is a 3-orthogonal basis for

{e; : i € SNsupp(v)}, so there are dy,...,d; € D and coefficients by, ...,bs, € R with vg =
St ba,d; and (d;, d;j)s = 0foralli, j € [t] withi # j. Note that [lus||s = S7_, b2 [|d;[5, so

t t
D lba | dills < VE D03 dills, = VEos]ls -
i=1 i=1

Now, we claim that the desired coefficient vector {cy : d € D} for v is defined by ag = bg +
2icn)\s Vil[d = €;]. We can check that 3 ;. ciad = S b, + 2 icn)\s Vi€i = v. Also,

lvslly < llvllg + l[vsells
< lolls; + v llvsel,
< (1 +3V A/ Aat1) vl
by the guarantee of set S.
It follows that

t
D 1balldills; < (14 3V A Aar)VE [0l VA a1
i=1

Thus,
> lealldlls < (14 3V An/Aar)VEIvlls + Y foil lleills
deD i€[n]\S
< (143 A/ Aar)VE vl + VElvselly VA
< (14 3V A Aar)VE [0l + 3V [0l VA A
< TVEV A/ Aair vl
which completes the proof. ]
Proof of Theorem 2.3. Immediate from Lemma 2.9 and Lemma A.3. [ |

C An efficient algorithm for handling outlier eigenvalues

In this section we describe and provide error guarantees for a novel sparse linear regression algo-
rithm BOAR-Lasso () (see Algorithm 2 for pseudocode), completing the proof of Theorem 1.1; in
Section C.1 we then analyze a modified algorithm to prove Theorem 1.2.

The key subroutine of BOAR-Lasso() is the procedure AdaptivelyRegularizedLasso(),
which (like the simplified procedure AdaptedBP() from Section 3) first invokes procedure
IterativePeeling() to compute the set of coordinates that participate in sparse approximate
dependencies, and second computes a modified Lasso estimate where those coordinates are not reg-
ularized.

We start with Theorem C.2, which shows that, in the setting where 3 has few outlier eigenvalues,
the procedure AdaptivelyRegularizedLasso () estimates the sparse ground truth regressor at the
“slow rate” (e.g. in the noiseless setting, the excess risk is at most O(||v* Hé et/ m)). Typical excess
risk analyses for Lasso proceed by applying some general-purpose machinery for generalization
bounds, such as the following result which only requires understanding (w — w*, X) for X ~
N(0,%).
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Algorithm 2: Solve sparse linear regression when covariate eigenspectrum has few outliers

Procedure AdaptivelyRegularizedLasso (X, (X, y;) 4, ¢, dj, )

Data: Covariance matrix X : n X n, samples (X;, y;)™,, sparsity ¢, small eigenvalue count
d,, failure probability &

Result: Estimate © of unknown sparse regressor, satisfying Theorem C.2

Dy A\iu;u; <+ eigendecomposition of

S  IterativePeeling(X,d;,t) /* See Algorithm 1 */

Return

¥ 4— argmin Z((Xi,u>—y)2+8)\n,dh log(12n/4) ||vsc|ﬁ+2\/2)\n,dh log(12n/9) ||lvse]; -

vER™ i—1

Procedure BOAR-Lasso (%, (Y;,v:)q, t, di, L, 9)

Data: Covariance matrix X : n X n, samples (X;, y; )", sparsity ¢, small eigenvalue count
d;, repetition count L, failure probability &

Result: Estimate ¢ of unknown sparse regressor, satisfying Theorem C.3

80 +—0eRrn

for0 < j < Ldo

Set

)y (3U)Tx

)
EU 0 (30T |

Set AU) :={mj +1,....m(j+1)}
wUFD < AdaptivelyRegularizedLasso(X(),

(X (X, 89)), y — (X3, 89 )se a0, t+ L dy + 1, 6 /L)
o0+ i 4 D 50)

U+ 50 4 50U+
L)

return §(

Theorem C.1 (Theorem 1 in [45]). Let n,m € Nand €,6,0 > 0. Let X : n X n be a positive
semi-definite matrix and fix w* € R™. Let X : m x n have i.i.d. rows X1,..., X, ~ N(0,%), and
let y = Xw* + & where ¢ ~ N(0,02L,,). Let F : R — [0, 00| be a continuous function such that

Pr sup (w —w*,z) — F(w) > 0] < 4.
$~N(01E)[UJ€HI§)"< > ( ) ]

Ifm > 196e=21og(12/6), then with probability at least 1 — 46 it holds that for all w € R,
|2 L+e 2

lw—w*||5 + 0% < - ([ Xw = ylly + F(w))”.
In classical settings, e.g. (a) where ||v*|| 1 1s bounded and max; ¥;; < 1 (see Proposition A.6) or (b)
where X satisfies the compatibility condition (see Definition G.1), the above result can be applied
together with the straightforward bound (v — v*, X) < |lv —v*||, || X||.. To prove Theorem C.2

we follow the same general recipe as (a), with several modifications.

First, since max; 3J;; could be arbitrarily large, we need to treat the (few) large eigenspaces of X
separately when bounding (v — v*, X'). Similarly, since Theorem B.1 only gives bounds on v*
for coordinates outside S, we separately bound ((v — v*)g, X) using that |S| is small. Second, to
achieve the optimal rate of o2 /m rather than 02/ Nt /m, we do not directly apply Theorem C.1
to the noisy samples (X, y;); instead, we derive a modification of that result (Lemma F.7) that only
invokes Theorem C.1 on the noiseless samples (X;, (X;, v*)), and separately bounds the in-sample
prediction error || X(v — v*)||,. A similar technique is used in [45] for constrained least-squares
programs (see their Lemma 15); our Lemma F.7 applies to a broad family of additively regular-
ized programs, which obviates the need to independently estimate ||v*||5; but otherwise achieves
comparable bounds.

Theorem C.2. Letn,t,d;,dn,m € Nand 0,0 > 0. Let X : n X n be a positive semi-definite matrix
with eigenvalues Ay < - -+ < A,. Let (X;,y;)™ be independent samples where X; ~ N(0,%) and
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yi = (X;,v*) + &, for & ~ N(0,02) and a fixed t-sparse vector v* € R". Let © be the output of
AdaptivelyRegularizedLasso(Z, (X;,vi)™,t,d;,0). Let nyy := (T¢)*' T d; + dj, + log(48/6)
and let rof = t(An—q, /Ad,+1)10g(12n/0). There are absolute constants ¢,C > 0 so that the
following holds. If m > Cn.p, then with probability at least 1 — 6,

) <02Wf L @) s v |v*||§nﬁ> |
m

~ 2
o — vy <

vm m

Proof. Define projection matrix P := 37" u;u], so that rank(PL) = dj, and Apax(PEP) <
An—d,,- Forany v € R" and X ~ N(0, E) we can bound
(v—0v*,X) = (v —0v")ge, PX) + (v = v*)ge, P X) + ((v — ") g, X)

= ((v = v")ge, PX) + (82 (0 = v*), STV2(P X)5e) + (V2 (v = 0%), 72 Xg)

< lw = o) selly IPX g + ||=2(0 = v*)

, UIZ15 +1Wl2)

where PX ~ N(0,PYP), Z ~ N(0,2°Y2(PLYP)geqeX"12), and W ~
N(0,571/2%g5%71/2). First, since max;(PXP)i; < Amax(PEP) < \,_g,, we have the Gaus-
sian tail bound

Pr [||PXHOO > Vna, -210g(12n/5)} < 6/12.
Second, since
Y2(PLEPY)gege T2 < 27/2(PLuPL)RY2 (by Cauchy Interlacing Theorem)

= pt (since P commutes with X)
we have that || Z ||§ is stochastically dominated by x3, , and thus
Pr [HZHQ > th} < et < §/12.

Third, similarly, since X~1/2% g% ~1/2 < I (again by Cauchy Interlacing Theorem) and also
rank(X71/2X 552 "1/2) < | S|, we have that HW||§ is stochastically dominated by X‘QS‘, and thus

Pr [||WH§ > 2|5|} <e ™t < /12,

Combining the above bounds, we have that with probability at least 1 — §/4 over X ~ N (0, X), for
allv € R,

(v—2v",X) <|[(v—2v")s¢; \/)\n—dh -2log(12n/6) + HZl/Q(v —o*

‘ 2d, + \/2[5)).

We can therefore apply Lemma F7 with covariance 3, seminorm ®(v) =
2v/2\—a,, log(12n/6) |[vse]|;, p := 4(dp + | S|), ground truth v*, samples (X;,y;)™,, and failure
probability /4. By the bound on |S| (Theorem B.1) we have |S| + dj, < (7t)%F1d; + dj, < negr,
so it holds that m > 16p + 196 log(48/4). Thus, with probability at least 1 — 26, we have

rinas 04 10 lg) Dol N OBOIRTD) [l Tos(120/0)
m vm m '

6 —v*|l3 <O

By the guarantee of S (Theorem B.1) and ¢-sparsity of v*, we have [[vg.[|, < 3>‘;L1+/12 [lv*||s;, and

thus [[vg. ||, < 3‘/)‘dz1+/12 [v*||; . Substituting into the previous bound, we get

2
o— | <0 <on L) [0l v ||v*||zreff>
m vm m

as claimed. O
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The limitation of AdaptlvelyRegularizedLasso() is that the excess risk bound depends on
[Jo* ||2 rather than just 0. We next show that by a boosting approach we can exponentially at-
tenuate that dependence, essentlally achieving the near-optimal rate of o>n.g/m. The key insight is
that after producing an estimate ¢ of v*, we can augment the set of covariates with the feature (X, 0),
and try to predict the response y — (X, ©), which is now a (¢ 4 1)-sparse combination of the features.
In standard settings, this is typically a bad idea because it introduces a sparse linear dependence.
However, by the Cauchy Interlacing Theorem it increases the number of outlier eigenvalues by at
most one — so our algorithms still apply. Thus, if we have enough samples that the excess risk bound
in Theorem C.2 is non-trivially smaller than |[v*| 22 then we can iteratively achieve better and better
estimates up to the noise limit. This is precisely what BOAR-Lasso () does; the precise guarantees
are stated in the following theorem, which completes the proof of Theorem 1.1.

Theorem C.3. Let n,t,d;,dp,m,L € Nand 0,6 > 0. Let ¥ : n X n be a positive semi-definite
matrix with eigenvalues Ay < --- < X\,. Let (X;,y;), be independent samples where X; ~
N(0,%) and y; = (X;,v*) + &, for & ~ N(0,0?) and a fixed t-sparse vector v* € R™.

Then, given %, (X;,y;) 1, t, di, and 9§, the algorithm BOAR-Lasso () outputs an estimator ¥ with
the following properties.

Let ngg == (7t)?"*1d; + dj, + 1og(48/6) and let vy = t(An—a,, /Aa;+1)log(12n/3). There are

absolute constants cy, Co > 0 such that the following holds. If m > CoL(n.s + rep), then with
probability at least 1 — ¢, it holds that

UQ(”etf + Tepr)

=L . lu*112. .
A

A w2
[0 — vl < <o
Moreover, BOAR-Lasso () has time complexity poly(n, m,t).

Proof. Let (Ag,..., A L—1) be an partition of [m] into L sets of size m/ L. The idea of the algorithm
is to compute vectors o1, ..., #(L) where each v(¥) is an estimate of v* — 23;11 9). Concretely,

fix some 0 < j < L — 1 and suppose that we have computed some vectors o1, ... 9(), Set
300 = oM 4 ... 4 90, Define a matrix ©U) : (n +1) x (n+ 1) by

A HOME
G .— | = (57) "%
V= »gl@) (g(j))Tz(g(j))

Thus, for example, %(°) has zeroes in the last row and last column. Now for each i € A;, define
(X7, y") by

z(j) =Y — <Xi>§(j)>'

By construction, the m/L samples (Xi(J ),yl(] )),e 4, are independent and distributed as Xi(j )~

N(0,5@)and 47 = (XY (07, 1)) + &. Let AV < - < Ag) be the eigenvalues of X(7).
Now we apply Theorem C.2 with covariance X, samples (ij ), yl(J ))ze A;» sparsity ¢t + 1, outlier

counts d; + 1 and dj, + 1, and failure probability 6/L; let ngf) and reff) be the induced parameters

defined in that theorem statement, and let ¢, C' be the constants. By the Cauchy Interlacing Theorem,

we have )\Eijl-Q > Ad,+1 and similarly >‘£z+1 (dnt1) < Ap—a,- Thus rgff) < 2re. Also n( 7) < Neft.
(4)

Thus, if the constant Cy is chosen appropriately large, then m/L > 16crgy; and also m/L > Cneff
Hence (by the error guarantee of Theorem C.2) with probability at least 1 — /L we obtain a vector
WU+ such that

Y

2. (J) () ()

2
S H < GO Mheft 2 T eff _ _ Teff
a0 — @) < TR 0 1) | 22 o 071 s | 22
N 2 N 2
< 200° Nefy + (v ’—1)”2(1) n | (v ,—1)”2(1) i 420 rer
- m/L 4 4 m/L
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< &)

e (e +rem) | (0", =[50
2 m/L 2

where the second inequality uses AM-GM to bound the third term, and the third inequality is by

choosing cq > 4c + 8¢2.

But now define 50U+ .= w[(gf” + ﬁ)ffjll)ﬁj). Then we observe that ||(v*, —1)|/%)
* ()12 ~ (7 * 2 ~(7 * a(g 2

vt — S(J)HE and ||wU+D — (v ’_1)H2<j> = ||oG+D — (v* — 5(]))HE = |

U+ = () ... 4 50U+ So (5) is equivalent to

|

Inductively, we conclude that

v — 3UHD||2 where

. 2 2 (N ” 1 112
sl < €0 0" (Metr + Terr) .
v T 2 m/L + 211" b

< ¢

. 2 o2 (Negr + 1
U**S(L)HE < ¢ (:Tflf/L eff) +27LH,U*||2E

as desired. The time complexity (see Algorithm 2 for full pseudocode) is dominated by L eigen-
decompositions of n x n Hermitian matrices (each of which takes time O(n?) by e.g. the QR

algorithm), as well as L convex optimizations (each of which takes time O(n?’) to solve to inverse-
polynomial accuracy [26], which is sufficient for the correctness proof). O

C.1 An alternative algorithm (proof of Theorem 1.2)

In this section we prove Theorem 1.2, which essentially states that the sample complexity depen-
dence on d; in BOAR-Lasso () can be removed at the cost of a time complexity depending on d;.
See Algorithm 3 for the pseudocode of how we modify AdaptivelyRegularizedLasso(): essen-
tially, we brute force search over all size-¢ subsets of the set S produced by IterativePeeling(),
construct an appropriate dictionary for each of these (lf ‘) subsets, and then perform a final model
selection step (with fresh samples) to pick the best dictionary/estimator. The boosting step is exactly
identical to that in BOAR-Lasso ().

Lemma C4. Let n,t,d € N. Let X : n X n be a positive semi-definite matrix with eigenvalues
A < --- < \n. Then there is a family D C R™ ("+1) of size |D| < (7t)2t2+t(2d)t, consisting
entirely of n X (n + t) matrices with the form

D = [In d1 e dt] s

with the following property. For any t-sparse v € R™, there is some D € D and w € R"* with
v = Dw and

7t1/2
ull, < ——— VTS,
V Ad+1

Proof. Let uy,...,u, € R™ be the eigenvectors of 3 corresponding to eigenvalues Ay, ..., A,
respectively, so that ¥ = 37 | A\juzu, . Define ¥ := A7}, Y7 min(A;, Ags1)usu, . Let S be the
output of IterativePeeling (X, d,t), and let D := {D(T) : T € (%)}, where forany T € (%),

we let {dy, ..., d;} be a X-orthonormal basis for span{e; : i € T'}, and let D(T') be the n x (n +1)
matrix with columns ey, ..., e,,ds,...,d: The bound on |D| follows from Theorem B.1.

For any t-sparse v € R"”, pick the matrix D € D indexed by any T" € (f) with S N supp(v) C T.
Let dy,...,d; € R" be the last ¢t columns of D. Then there are coefficients by, ..., b; so that we

can write vg = >.'_, b;d;. Since d] Xdy = 1[i = '] forall 4,7’ € [t], we have v§ Svg = S.F_, b?

=1 "1"
Hence, [|b]|, < v/1/vd Svg. But we can bound

T =[5

<[5, [
2

(by triangle inequality)
2



Algorithm 3: Alternative algorithm to solve sparse linear regression when covariate eigenspec-
trum has few outliers
Procedure AugmentedDictionaryLasso (3, (X;,y;)i, t, di, 6)
Data: Covariance matrix X : n x n, samples (X;, y;)™,, sparsity ¢, small eigenvalue count
d;, failure probability &
Result: Estimate © of unknown sparse regressor, satisfying Theorem C.5
Dy Aiu;u; <+ eigendecomposition of
S  IterativePeeling(X,d;,t) /* See Algorithm 1 */
¥ )\;z{l-l Z?:l min()\i, )\dlﬂ)uiuj
s
for TTG ([t]) doT B
dg ). ,dE ) Y -orthogonal basis for span{e; : i € T'}
T T
D(T) |1, &7 ... "]
Compute

m/2
w(T) + argmin [Z ((XZ-,D(T)w> — y1;m/2)2

wERN+ =1

+8Xn—alog(8n/8) [} +2v/2Xu—alog(8n/6) [|yr.m o], 1wl

Select best hypothesis

m

T + argmin Z (X, D(T)@(T)) — ;)
Te(3) i=m/2+1

return D(T)w(T)
<Al =2, + sl by S <AL, S and T < 1)
< /\Ji{Q HZl/QUHZ + 3/\;Jl42v v X (by Theorem B.1 and ¢-sparsity of v)

< 4/\;+1{2v vl Y.
We conclude that ||b]|; < 4\/f)\(;i{2\/v—r2v. Thus, if we define

t
w .= Z vie; + Z bien+i7
i€[n]\S i=1
where here e1,. .., e, refer to the standard basis vectors in R"**, then we have Dw = v\ s +
S bid; = v, and also
ol < 1ol + 3 ol < SRV 4+ Vil < oo
i€[n]\S o

as desired. -

Theorem C.5. Let n,t,d;,dp,m € Nand let ¥ : n x n be a positive semi-definite matrix with
eigenvalues Ay < --- < X,. Let (X;,y;)", be independent samples where X; ~ N(0,X) and
yi = (Xi,0*) + &, for & ~ N(0,02) and a fixed t-sparse vector v* € R™. Set k := t(7t)2" +d!
and let D be the family of matrices (of size at most k) guaranteed by Lemma C.4.

Let 6 > 0. For every D € D, define

2
XD Dw = Y| +8An-alog(8/0) [1]{+2/2X0-a108E0/3) [y1:m 2|, 0]
(©)

w(D) € argmin
weR™+t
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where X1 (m/2) x n is the matrix with rows X1, . .., X, /o, and define & = Di(D) where
. 2
D € argmin HX<2>Dw(D) — ym/2+1:mH
DeD 2

where X : (m/2) x n is the matrix with rows Xonj241s -+ X

Let nyy := t*log(t) + tlog(d;) + dp, +10g(48/6) and let 1oy := t(A—a,, /Ady+1) log(8n/5). There
are absolute constants ¢, C' > 0 so that the following holds. If m > Cn.y, then with probability at
least 1 — 36 it holds that

2
~ 2 O " Neff %112 Teff Teff * Teff
D —0* <c|—= v — — v — ].
o= ol < e ( T2 o1 (224 /22 ) 4 ol L)

Let D* € D and w* € R""* be the matrix and vector guaranteed by Lemma C.4 for the ¢-sparse
vector v*. Let I' = (D*) "X D* with eigenvalues y; < - -- < 7,,4+. We make the following claim:

Claim C.6. With probability at least 1 — §/4 over G ~ N(0,T), it holds uniformly in w € R™+*
that
(w—w*,G) < |lw—wl|; VA, - 2log(8n/8) + ||w — w*||p v/2(dn + t).

Proof. Since X is a principal submatrix of I', we have v,,_4, < Ap_g, (by the Cauchy Interlacing

Theorem). Suppose that I" has eigendecomposition I' = Zf:lt v:9ig; » and define projection matrix

P:(n+1t)x (n+t)by P:= 7™ ggl, so that rank(PL) = dj, + t and Apax (PTP) <
Y—dy, < An—ad,- Then for any w € R"** and G ~ N(0,T'), we can bound

(w—w*,G) = (w —w*, PG) + (w — w*, P*G)
< llw = w | | PGl + (2(w = w'),T7/2P4G)
= |[w = [}, | PG + (TV/2(w —w*), PAT/2G)
< flw = wl, [ PGl + || T2 (w = w1121,

‘ 2

where Z ~ N(0, P1). The second equality above uses that I'"'/2 and P are simultaneously
diagonalizable (and therefore commute). But now for any § > 0, we have the Gaussian tail bounds

Pr [|PG||OO > \/m?x(PI‘P)” - 210g(8n/5)} <6/8

Pr {||Z||2 > \/Qrank(Pi)] <e M/ <58

Thus, with probability at least 1 — 6/4 over G ~ N(0,T), for any w € R"*!, we have

‘2 y/2rank(PL)

‘2 2Wh+1) = F(w)

and

(w—w*,G) < [lw—w*|, \/max(PFP)ii “21og(8n/3) + Hr1/2(w —w¥)

< llw = w* |y v An—a, - 210g(8n/3) + [T/2(w - w")

which proves the claim. ]
We now proceed with proving the theorem.

Proof of Theorem C.5. Applying Claim C.6, we can now invoke Lemma F.7 with covariance matrix
I, seminorm ®(v) := 24/2X\,,_q, -log(8n/d) ||lv|;, p := 2(dj, + t), ground truth w*, samples

(DT X;, yi);i/f, and failure probability §/4. Since we chose m sufficiently large that m/2 >
16p + 1961og(12/4), we conclude that with probability at least 1 — 26 over the randomness of

(X:, )2, it holds that

2(dp, +t + [Jw* Iy vV An—a,, - log(8n/8 112 g, log(8n/8

\/m m
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Since v* = D*w* and ||w*||; < 7ﬁ1/2)\;ll+/12 [|v*||5; (the guarantees of Lemma C.4), it follows that

2 * * ® (|2
ID*O(D*) — o', < O (a (dn+ 1), (o 0" lp) o s e, [l ||Ereff> .
m vm m

To complete the proof of the theorem, condition on any values of (Xi,yi)zl/f for which the
above bound holds. By applying Lemma F.2 with covariance matrix Y, hypothesis set W :=
{Dw(D) : D € D}, and samples (Xi,9i)i™,, /241 (Which are independent of W), since m/2 >

3210g(2|D|/4), we have with probability at least 1 — 24 over the samples (X;,y;)™ /241 that

R N 2
Di(D) — v*

3202 log(2|D|/6)
s m '

. . )2

< —

< 6 min | Do(D) — o*[5 +
Hence, with probability at least 1 — 55 we have

2 _ o Pt t+1os2DI/S) (o0t lls) [0l vrer | oI5 rer
x = m vm m

which proves the theorem. n

’D@(D) _

We can use the above theorem (together with the previously discussed boosting approach) to get the
following result, which proves Theorem 1.2.

Theorem C.7. Let n,t,d;,dp,m,L € Nand 0,6 > 0. Let ¥ : n X n be a positive semi-definite
matrix with eigenvalues Ay < --- < X\,. Let (X;,y;), be independent samples where X; ~
N(0,%) and y; = (X;,v*) + &, for & ~ N(0,0?) and a fixed t-sparse vector v* € R™.

Then, given ¥, (X;,y;)"1, t, d;, and 6, there is an estimator © with the following properties.

Let njy, := t*log(t) + tlog(d;) + dp, + log(48L/d) and let iz := t(An—ay, /Ady11) log(8nL/9).
There are absolute constants co, Co > 0 such that the following holds. If m > CoL(nyz+1,q), then
with probability at least 1 — 0, it holds that

2(n! ’
~ * (12 g (neﬁ+reﬁ) —L * (12
_ <o I | oL, .
o= ol < 0L ot o
Moreover, 0 is computable in time (t + I)O(tQ)(dl + 1)1 . poly(n).

Proof. Identical to that of Theorem C.3, except using Theorem C.5 instead of Theorem C.2. O

D Faster sparse linear regression for arbitrary >

In this section we prove Theorem 3.1. The approach is via feature adaptation: in Theorem D.5, we
show that any covariance matrix X has a (t, O(t3/? log n)-¢; -representation of size O(n'~'/?) that
is computable in time n'~2(1/9 10g°® n_using O(tlogn) samples from N (0, ). The algorithm
for computing this representation is described in Algorithm 4. One of the key tools is the following
result from computational geometry:

Theorem D.1 ([30]). Let n,d,k € N and 6 > 0. Given points p1,...,pn € R%, query dimen-
sion k, and failure probability 0, there an algorithm DS((p1,...,pn),k,0) with time complexity
n**+1(logn)°® poly(d) log(1/8), that constructs a data structure N that answers queries of the
following form. Given a k-dimensional subspace F C R, the output N'(F) is some i* € [n]. With
probability at least 1 — §, the query time complexity is n' =/ (2¥) poly(d) log(1/6), and it holds that

ggg lpi- — qll, < O(logn) - 12[13] ggg lpi —dqll5 -

How do we use the above theorem to efficiently construct the ¢; -representation? The intuition is as
follows. Let X be the m x n matrix where each row is a sample from N (0, ). Then each column
is a vector p; representing a particular covariate. To find the /; -representation, it essentially suffices
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A v A W N

Algorithm 4: ¢, -representation for arbitrary %

Procedure FindOrthonormalization(py,...,p:)
Data: Nonzero vectors p1,...,p; € R™
Result: oV ... a® ¢ R? such that span{a®, ..., a®} = span{e;, ..., e;} and

(e, Yo a0 pe) = 0foralli # j

fori=1,...,tdo
al) «e;/ Ipill, € R
forj=1,...,i—1do
it >, a)p; # 0 then
(5 0fpe. 2o pe) ()

(1) (i) _
oo [ at7nd,

return oV, ... a®)

9 Procedure RepresentVectors ({p1,...,pn}t9)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

31
32

Data: Unit vectors p1, ..., p, € R™, sparsity parameter ¢, failure probability §
Result: Set D C R” of size O(n'~'/?), where all elements d € D are t-sparse (and
represented succinctly)

Compute partition I U --- U I 5 = [n] where |I;] < [\/n] for all i
Initialize D < ()
forj=1,...,y/ndo
Construct data structure N7 <— DS((p; : i € I;),t —1,8/n')  /* Theorem D.1 */
for T C (/") do
h(T,j) < Ni(span{p; : i € T}) /* Theorem D.1 */
Find v € R” such that Y, vip; = Projspan{p::ieT} Ph(T.j)
Write v as a sparse vector in R™ (supported on T")
Add Y — €n(T,j) to D
orT C (t[ﬁ]Q) do
for a,b c I; do
7M. ...,y < FindOrthonormalization((p; : i € T U {a,b}))
Write v(1) ..., 4(*) as sparse vectors in R” (supported on T'U {a, b})
Add D 4B oD

=]

return D

Procedure ComputeL1Representation({X1,..., X, }, 1)

Let X : m x n be the matrix with rows X1,...,X,,

Let q1,...,qn be the columns of X, and let p; := ¢;/ ||¢; ||, for i € [n]

D < RepresentVectors ({p1,...,pn},t,e”™)

D « diag(llq1lly - - - lgnll)

D+ {Dd:deD}

return D
to find a dictionary D of O(n'~'/2) sparse combinations of {pi,...,p,} so that every t-sparse
combination of {p1, ..., p,} can be written in terms of the chosen combinations, with a coefficient

vector that has bounded ¢; norm.

For notational ease, we define C(z) to be the “cost” of a particular linear combination 2 € R™ with
respect to the set D of chosen combinations:

Definition D.2. For a subset D C R", define Cp : R™ — [0, 0] by

Cp(x) := min Z lag] -

a€RP:Y , p agd=z D

> dipi
i=1

2
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With this notation, we want to construct a set D of size O(nt_l/ 2), consisting of ¢-sparse vectors,
such that

Cp(z) < poly(t,logn) - Hlepl

2
for all ¢-sparse © € R"™.

The construction is quite simple: divide the set {p1,...,p,} into v/n equal-sized groups. For each
set T'of t — 1 vectors and each of the v/n groups, find the closest vector in the group to the subspace
spanned by 7" (using Theorem D.1 to achieve sublinear time complexity). Then add the difference
between the vector and its projection (onto the subspace) to the dictionary. Finally, for each set of ¢
vectors where two of the vectors lie in the same group, add an orthonormal basis for those vectors
to the dictionary. See the procedure RepresentVectors () in Algorithm 5 for pseudocode.

By construction, the dictionary clearly has size O(n*~1/2). At a high level, the reason it satisfies the
representational property is the following. Consider some ¢-sparse combination, such as p; +- - -+p;.
If —p; is not very close to p; +- - -+ p;—_1, then we can bound C'(p; +- - -+p¢) by C(p1+-- -+ pr—1)
and C(p;), whichare O(V/t |[p1 + - - - + pi—1]|,) and O(\/t || p¢||,,) respectively, since the dictionary
contains an orthonormal basis for both terms. The only case where these bounds are not good enough
is when ||p1 + - - - + p¢||, is much smaller than ||p; + - - - 4+ py—1 ||, and ||p|,. In this case, p; is very

close to span{ps, ..., p:—1}. However, in the construction we found some (potentially different) p;
which is just as close to span{p1, ..., p;—1}, and moreover is in the same group as p;. Letting ¢ be
the projection of p; onto span{pi, ..., p;—1}, we have the crucial fact that ||p; — ¢||, is as small as
[pr+ -+ pello-

Now, bounding C'(py + - - - + p¢) proceeds as follows. We can subtract some appropriate (bounded)
multiple of p; — ¢ from p; + --- + p; to zero out at least one of the coefficients. This residual
then is a t-sparse combination of {p1,...,p:, p; } where two of the vectors {p;, p;} are in the same
group; thus it has small cost with respect to D. Moreover, p; — ¢ is contained in D and thus has
small cost (specifically, not much more than ||p; — ¢||,, which crucially is not much more than
lp1 + - - - + pel|5). It follows that p; + - - - 4 p; has small cost.

Formalizing this argument, we start by proving one of the facts that we freely used above: that the
cost function C satisfies the triangle inequality.

Fact D.3. Forany D C R" and x,y € R", it holds that C(x + y) < C(x) + C(y).

Proof. Forany a, 3 € RP with ", aqd = z and Y ; Bad = y, the vector a + f3 satisfies > ,(a +
B)ad = x +y. Applying the triangle inequality to ), |(a + B)a| - |, dipill, completes the
proof. O

We now prove the key lemma, formalizing the above intuition.

LemmaD4. Letn,m,t € N, witht > 2, and § > 0. Fix p1,...,p, € R™ with ||p;||, = 1 for all
i € [n]. Let D be the output of RepresentVectors ({p1,...,pn},t,0). Then |D| = O(n*~1/2),
and every element of D is t-sparse. Also, with probability at least 1 — 6, the following guarantees
hold. The time complexity of computing D is O(n*=1/%) (log n)°MmOW log(1/6)). Moreover,
for every t-sparse x € R™ it holds that

Cp(x) < 0(153/2 logn) - Hlepz

) .

Proof. Since the algorithm RepresentVectors () makes less than n? queries to the data structures
N7, and each query has failure probability at most &’ = §/n’, the probability that any query fails is
at most 1 — §. We henceforth assume that all queries succeed, i.e. satisfy the correctness guarantee
and time complexity bound stated in Theorem D.1.

Time complexity. We start by analyzing the time complexity of
RepresentVectors({p1,...,pn},t,0). For any fixed j € [y/n], the construction time of
N7 (with |I;| = O(y/n) points in R™, query dimension ¢ — 1, and failure probability §/n?) is
O(n/?(log n)°MmOW log(1/65)). We make (,",) + |;|*(,”,) = O(n'~') queries to N7, each
with time complexity n'/2=1/(4(t=1)mOM) 1og(1/5). Each projection step and each orthonor-
malization step has time complexity poly(¢,m). Thus, since ¢ > 2, the time complexity for any
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fixed j is bounded by nt=1/2=1/(89) (1og n)? M) mO1) Jog(1/§). Summing over 5, the overall time
complexity to compute D is at most n*~ /%) (log n)?OmOM) 1og(1/5) as claimed.

Correctness. The bound on |D| and the fact that all elements of D are ¢-sparse are immediate from
the algorithm definition. It remains to bound C'p(x) for ¢-sparse vectors . First, note that for any
(t — 1)-sparse y € R™, because of step (4), the dictionary contains vectors v!,...,v'~! that span

supp(y) and satisfy (37, vFp;, > i, vép;) = 0 for all k # £. Thus, letting a1, ..., ;—1 € Rbe
such that y = ayyt + -+ - + au_17* 1, we get

t—1 t—1
) <oyl SVUNDIC"
j=1 2 j=1

Ip; = (7)

Z ’Yfpi
=1 2

Now fix any nonzero t-sparse + € R". Fix any a € argmax;c(, |z;|, and let j € [\/n] be such
thata € I;. Let T = supp(x) \ {a}. Let ¢ := Projspantp..icr) Pr(r.j)- Then by the correctness
guarantee of N7 on query span{p; : i € T},

Pz —all, < OQlogn) - ||pa + > = ioi|| = Ollogn) ®)

z#a 9

Case I. Suppose that ||ph(T,j) — qH2 > 1/2. Then by (8), we have |z,| < O(logn) - ||, zip;
Thus, by the triangle inequality,

-

Zmipi < ‘xal + inpi < O IOgn ‘ iDi
i#a 9 i
It follows from Fact D.3 and (7) that
CD(]:) < CD(xaea) + CD(J: - xaea) < \/ilxa| + \/i inpi = \[logn ‘ iDi
i#a 9

as desired.

Case II. It remains to consider the case that th(TJ) — q||2 < 1/2. In this case we have ||g||, >
Pz, |l,—1/2 > 1/2. By step (3) of the algorithm, the dictionary contains some vector y—e(r. )
such that supp(y) € T'and ¢ = ), vipi. Fix any b € argmax, |y;|. Since ¢ = ) vip; we get
|ve| > % > 1/(2t). Now, by Fact D.3,

X X
Cp(r) <Cp (-V:(eh(T,j) - 7)) +Cp <93 + ,7:(611(1]') - 7)) .

By construction, ey, (r,;) — v is an element of the dictionary, so we can bound the first term as

Tp ||
C ——(e y— < — e N — Y)iDi
D( ’Yb( h(T,7) ’7)) = |’Yb| ( h(T,5) ,7) p ,
T
— I -

< 2t|xa| |Pherg) —dll,
n

> aip;
i=1 2

where the equality uses that g = >, ~;p;, the second inequality uses that |z;| < |z,| and || >
1/(2t), and the final inequality uses (8).

O(tlogn)
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Finally, observe that

Tp Ty TyYi
2=+ —(enry) — V) = Tala+ enry D (m - ) N
b Vb i€T\{a,b} b

since the coefficients on e, cancel out. Thus, z is a linear combination of two elements of {p; :
i € I;} together with t — 2 elements of {p; : ¢ € [n]}. Because of step (4) of the algorithm, the
dictionary contains vectors v, ...,~* that span supp(z) and satisfy (>0, vEp;, Y20 vipi) = 0
for all k # £. The same argument as for (7) gives that

Cp (I (eh(T] )

iDi + Ph T.5) — q)
Y (T.5)

Z ZiPi

=1

2

<Vt
|y Hmal

+ O(Vtlogn)

n
|zm

i=1

2

< O(t3/? log n)

Z T

i=1

2
where the second inequality uses the triangle inequality and (8), and the final inequality uses that
|xp] < |xo| and || > 1/(2t). Putting everything together, we conclude that

n
Z LipPi

i=1

Cp(x) < O(t3*logn)

2
as claimed. O

We now show that RepresentVectors() can be applied to the columns of the sample matrix to
obtain a ¢;-representation for 3 (procedure ComputeL1Representation() in Algorithm 5). Up
to an appropriate rescaling of the covariates, Lemma D.4 immediately implies that D gives a ¢;-
representation for the empirical covariance 3. The main result then follows from concentration of
> and sparsity of the elements of the dictionary.

Theorem D.5. Let n,m,t € N and let X : n x n be a positive-definite matrix. Suppose
m > Ctlogn for a sufficiently large constant C. Let Xy,...,X,, ~ N(0,%) be indepen-
dent samples, and let D be the output of ComputeL1Representation({Xy,...,X,,},t). Then
|D| < O(n*=1/?), and every element of D is t-sparse. Also, with probability at least 1 —e =™, the
time complexity of the algorithm is O(n'=*1/) (log n)OOmOW)) and D is a (t, Cjirept®? logn)-
{y-representation for X, for some universal constant C'rep.

Proof. Let 3 = %XTX. Let D denote the intermediary dictionary constructed by the algorithm
using RepresentVectors (). With probability at least 1 —e ™™, the successful event of Lemma D.4
holds. By standard concentration bounds (see e.g. Exercise 4.7.3 in [41]), it holds that § [|z]|y, <
[z]ls < 2|2y for all t-sparse = € R™, with probability at least 1 — e~
that both of these events hold.

™) Henceforth assume

Time complexity. The time complexity of the algorithm 1is dominated by the
call to RepresentVectors(). By the guarantee of Lemma D.4, this takes time
O(nt—ﬂ(l/t) (log n)O(t)mO(l)).

Correctness. The bounds on |D| and sparsity of elements of D follow from identical bounds for
D (see Lemma D.4), and the fact that every element of D is obtained by rescaling the coordinates of
some element of D. It remains to show that D is a (¢, O(t*/? log n))-¢; representation for ¥.

Fix any t-sparse v € R", and define v = Du. By the guarantee of Lemma D.4, since v is also
t-sparse, there is some o € R? such that o = 3 ;5 o;d and

Z lagl -

deD

Z

<O t3/21ogn

Iqullg
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3
4

5

Algorithm 5: Sparse linear regression for arbitrary >

Procedure SparseLinearRegression((X;,v;)",, t, B, 0%)
D < ComputeL1Representation({Xi,..., X100tlogn},t)
forj=m/2+41,...,mdo

for d € D do

XM<—< d/\/ 2/m) (X, d)? >

/* See Theorem A.7 for definition of MirrorDescentlLasso(), and
Theorem D.5 for definition of Ciirep */

B+ MirrorDescentLasso(( Ni,yi);."m/%_l, 2C/1,ept3/2B log(n), m/2, o2)

0 Yep Bad /) (2/m) ST (X, dy?

return w

But note that ¥; = Dj;v; = llgi||5 v; for all 4. Similarly, every deD corresponds to some d € D

with d; = |\g;||, d; for all i. Thus, reindexing o according to D in the natural way, we have that
V=) 4ep ®qd and

n

Z Viqi

=1

iqi t3/2 1Og TL)

> |Oéd\'

deD

2

But now let & = %XTX. For any ¢, j € [n] we have (g;, ¢;) = mY;;. Hence,

E Uivjzij = ’UTE’U

2 i,j€[n]
and similarly for |37 | d;qg; H2 Thus, we get
Y ladl - ldlls < O(**logn) - vl

deD

But as shown above, we know that 1 ||z||y; < ||z < 2||z|y; for all t-sparse z € R". Since v and
all d € D are t-sparse, we conclude that

> laal - lldlly, < O 10gn) - o]y
deD

as desired. O

We finally restate and prove Theorem 3.1, as a corollary of Theorem D.5 and the well-known fact
that standard “slow rate” guarantees for Lasso (i.e. based on the ¢; norm of the regressor) can be
achieved in near-linear time (Theorem A.8). The pseudocode for the main algorithm is given in
Algorithm 5.

Corollary D.6. Let n,m,t,B € Nand o > 0, and let ¥ : n X n be a positive-definite matrix. Let

w* € R™ be t-sparse with |w*||s, < B. Suppose m > Ctlogn for a sufficiently large constant C.

Let (X;,y;)™ be independent samples where X; ~ N(0,%) and y; = (X;,w*) + N(0,02). Then

there is an O(m?2n'=1/2 40t~/ 10g%®) 1) _time algorithm (Algorithm 5) that, given (X, y;)™,,
t, B, 02, produces an estimate 1 € R" satisfying, with probability 1 — o(1),

o -l <0 (S + 2+ EE)

2=\t m e )

Proof. By Theorem D.5 it holds with probability 1 — n~0% that D is a (¢, Ciirept>/? log n)-/1-
representation for .. Also, by standard concentration bounds (e.g. Exercise 4.7.3 in [41]), we have
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Lzllg < |lzllg < 2|2y for all t-sparse = € R™ (where & = 2 22/12 X;X,") with probability

at least 1 — exp(—£(m)). Suppose that both of these events occur.

For each of the remaining m /2 samples X;, compute X ; € RP where the entry X j,d correspond-
ingtod € Dis (X;,d/ ||d|s) (where 5= 2 Z;’;f X; X, is not explicitly computed; since d is
sparse, both (X, d) and ||d||s can be computed in poly(t,m) time). Let N(0,I") denote the distri-
bution of each X;. For each d € D, since d is t-sparse, we have that E,.. (o) (z,d/ ||d]s)? =

|d|| / ||d||Z < 4. Thus, T4q < 4 for all d.

IN

Moreover, since w* is t-sparse, there is some a € R? with w* = Y, aqd and Y, || [|d]
Ciirept®/? log(n) - |[w*||s;. Define 8 € R by B4 = a4 ||d|s- Then w* = Y, Bad/ ||d||s, and

> 1Bal <2 Jadl lldlly; < 2Citrept®* log(n) - [[w*y..
d d

But now for any of the remaining m /2 samples, we have that

<Xj7ﬁ> = Z<Xj’d/ ldllg)ea lldlls = <vazadd> = (Xj,w"),
d

d

and thus y — (X, ) ~ N(0,02). So we can apply Theorem A.8 to samples (X, yj)gn:m/2+1 to

compute an estimator B satisfying

N 2 . (o2 gBt3? B3
_ <02
Hﬂ BHF - (m * vm * m )

using that [|B], < 2Chrept®/?log(n) - |w*|ly < 2Citept>/?Blog(n), and using the bound

maxygq < 4. The time complexity of this step is O(|D|m?) = O(m?n*~1/2). Finally, com-

pute @ := >, de/ l|d||s,- We have that ||& — w*||s, = HB - ﬂ” , which completes the proof. []
r

E Fixed-parameter tractability in ~ and ¢

In this section we prove Theorem 3.2, which shows we can achieve upper bounds on NV, o (%) for «
independent of k and n, if we are willing to incur dependence on x in the resulting bound. In fact,
we actually prove an upper bound on the packing number P; . (X).

To achieve this, the first key idea is to consider the dual certificates for a packing. Suppose that
v1,...,vN are unit vectors (in the X-norm) with |(v;, v;)x| < « for all ¢ # j. Then |(v;, Lv;)| >
a~tmax;; (v, Xv;)], so D certifies that any linear combination v; = Y-, x;v; must have the
property that ||z||, > a~!. Thus, to show that there cannot be a large packing of sparse vectors in
the ¥-norm, it would suffice to prove that any large set of sparse vectors must have one vector that
can be written as a linear combination of the remaining vectors, where the coefficient vector has

small /1 norm. In fact, this would give an upper bound on NV, ,(X) for all 3.

We do not know if such a statement is true. However, we can prove an approximate analogue. The
following lemma shows that under a condition number bound on X, the dual certificate argument
can be generalized to require only a weaker property: that any large set of sparse vectors must have
one vector that can be approximately written as a linear combination of the remaining vectors, with
low ¢ cost. The approximation error determines how small the condition number must be:

Lemma E.1. Letn, N,t,T € Nand let § > 0. Suppose that for all t-sparse vectors vy, ...,vN €
R™, there exists some i € [N] and x € RN such that ||z||, < T and

U;*ZI'U' < § - max ||vill, .
=] <8 max ol
J#i 9

Then for every positive-definite matrix & : n x n with () < 1/(46%) it holds that Py 1 /(37)(2) <
Nlog, k(X).
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Proof. Fix a positive-definite matrix 3 : n x n and suppose that K := Py 1 /37 (X) > N logy (X).
By definition, there are nonzero t-sparse vectors vy, ..., Vg € RY such that

1
|<Uz‘,11j>2| < 3T ”UlHE ||Usz:

for all ¢ # j. Without loss of generality, assume that ||v; ||, = 1 for all ¢ € [K], so that
2
Amin(2) < [Jvil[5 < Amax (%)

So we can partition [K] into log, x(X) buckets such that max;cp ||117H§; /min;ep Hv1||2Z < 2 for
each bucket B C [K]. There must be some bucket B with |B| > N. By assumption, there is some
i € Band xz € R" such that ||z||; < T and

Vi — Z TjV; S(S

JEB:j#i 9

Now

(vi, Vi) = <E"ui, Z xjvj> + <Evi,vi — Z acjvj>

JEB:j#i JEB:j#i
= Z xj<viyvj>2+<2vivvi Z fj”j>
JEB:j#i JEB:j#i
T
< el s, Ioi, i)l + [0 -5

Iz
< e ol 10l + 8y Auas (9) - 0] T

< V2Iulls s )
< f + Hvi”E max( )

Simplifying, we get ||v;||y; < 264/ Amax(X). Since also [|v;|ls; > v/ Amin(Z), it follows that «(X) =
Amax (2)/Amin(2) > 1/(462). O

It remains to show that the precondition of Lemma E.1 can be satisfied for sub-constant § without
requiring N to scale with n*. We start by proving the desired property when the vectors are all
t-sparse and binary, i.e. vi,...,vny € {0,1}", and afterwards we will black-box extend the result
to the real-valued setting. Concretely, given sparse binary vectors vq,...,ux € {0,1}" (with
N > n), we want to find one that can be “efficiently” approximated (in {5 norm) by the rest, where
“efficient” means that the coefficients have small absolute sum. Thinking of each vector as the
indicator vector of a subset of [n], a first step towards an efficient approximation for v; = 1[- € ]
may be constructing an efficient approximation for a standard basis vector e; for some j € 5;.

Indeed, there is some j € [n] such that &7 := {i : v;; = 1} is large, i.e. |S7| > N/n. If the vectors
(vi)iess were in some sense random, then the average ﬁ > icsi Vi would be a good approximation
for e;. Itis also efficient, in that the absolute sum of coefficients is 1. But of course the vectors are
not random; it could be that many vectors in S also contain some other coordinate 4’. In this case
we restrict to the set of vectors containing both j and j’. Now we may hope to approximate the
vector 1[- € {j, j'}]. Completing this argument, we get the following lemma which states that there
exists a subset of [n] that is contained in many of the vectors, and that is well-approximated by the
average of those vectors.

For notational convenience, for vectors x,y € {0,1}" we say that x < y if x; < y; forall i € [n].

Lemma E.2. Ler n, N,t,s € Nwith sn < N, and let vy,...,vy € {0,1}" be nonzero t-sparse
binary vectors. Then there is some set S C [N] of size |S| > s and some nonzero vector u € {0,1}"

such that v < v; forall i € S, and
< y/t(sn/N)/t.

1
U—EZ’UZ
2
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Proof. For each J C [n], define 7 := {i € [N] : v;; =1 Vj € J}. Since all v; are nonzero,
there is some j* € [n] with |SU7"}| > N/n. We iteratively construct a set J C [n] as follows.
Initially, set J = {;j*}. While there exists some a € [n] \ J such that |S7“1e}| > (sn/N)'/t|S7|,
update J to J U {a} (if there are multiple such a, pick any one of them arbitrarily). At termination
of this process, we have |S’| > 0. Since every v; is t-sparse, it must be that |J| < ¢. Thus,
IS7| > (N/n) - (sn/N)t=1D/t > 5 Set S := S7 and u := 1; € {0,1}"™. By definition of S’, we
have that u < v; forall: € S.

Forany j € J, wehave u; = 1= 5 3

ISIZ K

i€S

ies Vij- Forany j ¢ J, we have u; = 0 and
_HieSrvy =1} [s7U

< (sn/N)'*
5] 871

by construction of J. Thus,

< (sn/N)'?,

] G

€S

o0

Additionally,

1
| S |me| sm s

By the inequality ||x||2 < |z||; ||| > we conclude that

u— EZUZ < y/t(sn/N)1/t

€S 2
as claimed. O

We now use Lemma E.2 to show that if N is sufficiently large, then at least one of the vectors v;
can be efficiently approximated by the rest. The proof is by induction on ¢. As a first attempt, one
might use Lemma E.2 to find some v € {0,1}" and some large set S C [N] such that u < v; for
all 7 € S, and the average of the v;’s approximates u. Then, restrict to the vectors in .S, and induct
on the (¢ — 1)-sparse residual vectors {v; — u : i € S}. If one of the v; — u’s can be efficiently
approximated by the other residuals, then since u can also be efficiently approximated, we can derive
an efficient approximation of v; by the remaining v;’s

This doesn’t quite work, since at each step of the induction the set of vectors will become smaller
by a factor of roughly n. However, instead of throwing away the vectors outside S =: S™") we can
iteratively re-apply Lemma E.2 to get disjoint sets S(1), S@ .. S where each S(*) has the
same property as S (for some potentially different vector u(*)). We can then induct on the residual
vectors Ug {v; — ul@ e S(“)}. This suffices to efficiently approximate some v;. Since we throw
away fewer vectors at each step of the induction, we do not need the initial number of vectors IV to
be as large.

We formalize the above ideas in the following theorem.

Theorem E.3. Letn, N,t € Nandletvy,...,vn € {0,1}"™ be t-sparse binary vectors. Then there
is some i € [N] and z € RY such that ||z||, < 3! and

fZ:cjvj < 4% /9t(tn/N)1/t,

J#i 2

Proof. We induct on ¢, observing that the case ¢ = 0 is immediate. Fix ¢ > 0 and ¢-sparse vectors
{v1,...,un} € {0,1}", and suppose that the theorem statement holds for ¢ — 1. If any v; is
identically zero, then the claim is trivially true with x = 0. If N < t3!T1n then the RHS of the
desired norm bound exceeds 4¢v/%, so the claim is trivially true with * = 0 and any i € [N].
Thus, we may assume that all v; are nonzero, and N > t3'+1n. Applying the previous lemma with
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s := 31 < N/n gives some S™") C [N] and nonzero u*) € {0, 1}" such that |S™)| > 3*+! and
u® <o, forall i € S, and

1
uV — —— Z vi|| < 4/9t(n/N)L/t.
2

1
|S( )| ieS)

If [IN| — |SM| > N/t > 3'*'n then we can reapply the lemma with vectors (vi)ieinp\ s and
s 1= 31 to get some S C [N]\S™ and u® € {0, 1}". Continuing this process so long as there
are at least N/t > 3'T'n remaining vectors, we can generate disjoint sets S(1), ... Ssm) C [N]
and vectors u(") ... u(™) € {0,1}" with the following properties:

@ [SPu---uSM™| >N~ N/t

(i) |S(@| > 3+ for every a € [m]
(iii) For every a € [m)], it holds that (@ is nonzero and u(®) < v, for all i € (@
(iv) For every a € [m],

ul® — L Zv- < \/9t(tn/N)L/t.

|S(a)| s |,

For each a € [m] and i € S(®), define v} := v; — u(®). By Property (iii) we have that v} € {0,1}"
and v} is (t — 1)-sparse. By the inductive hypothesis applied to vectors (v});c g u...ug0m)» there is
somei € SMU---US™ and 2’ € RN (supported on S U --- U S(™)) such that ||2'||, < 3171
and

o= a4 ot - (= D/l U U s
J#i 2

< 41 /9t(tn/N)L/t ©)

where the last inequality uses Property (i) and the bound N > tn. Of course, without loss of
generality 2/ = 0. Let a € [m] be the unique index such that i € S(®. We define z € {0,1}V
(supported on S U - .- U S(™)) as follows. For each b € [m] and each r € S®), set

1 1[b = a
T =Tl — T+ ——.
50 2 T 5w

Since ||2'||; < 3!, we can see that

ol < 'l + 30 3 15 b)| 2 lwl+ > g a>|

be[m] reS““) jes®) resS(a)
< 2|2’ +1
<2.37141.

Next, we use x to approximate v;. The following bound is almost what we want:

Claim E.4. ’

vi = e Tivi||, S 3- 471 V/9t(tn/N)V!

Proof of claim. We have

_war < u(a)_‘STlanzvr + ||v] + S’(“ Z’UT—ZIT’UT

r€[N] 9 res(e) 9 res<a> r€[N] 9
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1
Nyl - = _
i 3w e Tt ¥ X oy 3
res(a) 9 r€[N] be[m] reS<b) jes®)
1
< “(a)_WZUT +v§—2x;v;
| | res@ ||, rE[N] 5
— 2 2w X D ey X
be[m] res®) be[m]res<b> jesS®) 9
_u(a)_ﬁzm +’U—ZSCU
‘ | reS(a) 9 re[N] 9
> % (u gy 2
! S| '
be[m] j€S®) res®) 2

where the first and third inequalities use that v, = v/, + u(®) for all 7 € S(*), and throughout we use
that z, = z. = 0 forr & SM y...uS™  Applying Property (iv), equation (9), and the bound
l2'|l, <371, we get

= > || < A9(tn/N)VE 4 4T [ot(tn/N)YE 4 31 /9t (tn /N )L/
2

re[N]
< 3-471/ot(tn/N)1/t
as claimed. O
However, we wanted a bound on v; — 21 TiV5s and unfortunately x; # 0. Fortunately, it is enough
that z; is bounded away from 1. Since z; = 0, we have
/ t—1
1 Hx , +1 < 3 1

| z|— |S“)| Z | JH’ |Sa)| = |S(a)‘ = gt+1 *§'
jes(a)

Thus, by Claim E .4,

1
— > x| < 3 48719t (tn/N)VE < 414/ 9t(tn/N)1/t.

v —
J# 2
Finally, we have ||z/(1 — )|, < (9/8)(2-3""1 +1) < 3%, s0z/(1 — x;) satisfies all the desired
conditions. This completes the induction. O

Finally, we extend Theorem E.3 to real-valued sparse vectors via a discretization argument.

Lemma E.5. Let n, N,t € N and let vy,...,uvn € R™ be t-sparse vectors. Then there is some
i € [N]and x € R™ such that ||z||; < 3" and

_ ng% S 4t+2\/£(n/N)1/(4t) . HEI%VX] ||UJHOO
— J
Jj#i 9
Proof. Without loss of generality assume that max;c|n) [|vjl|,, = 1. Let k& € N be fixed later.
Define amap ¢ : [—1,1] — {0, 1}?k*! by

ek+1+LCkJ ifc<O
o) =< exy1 ifc=0.
ek+1+]'ck.| ifc>0
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Also let @ : R?**1 — R be the linear map that sends ®e; — (i — k — 1)/k for each i € [2k + 1].
Note that |®p(c) — ¢| < 1/k for all ¢ € [-1,1] and ®p(0) = 0. Define " : [—1,1]" —
{0,1}2EFD7 by w(cq, ... en) = (ple1), ..., p(cn)), and define ®E™ = {0, 1}2k+Dn 5 R™ by
9" (21,...,2p) = (P(x1),...,P(x,)). Forany i € [N], the vector p®™(v;) is t-sparse and lies
in {0, 1}(2*+Yn_ Thus, applying Theorem E.3 gives some i € [N] and € RY with ||z, < 3! and

o) — S o™ )| < 4'/9t(tn(2k + 1)/N)1,
j#i )

Since ®®" is a linear map and || ®®"||, = ||®||, < v/2k + 1, we then get

PO () = 3@, 85T )| < 41 /91(2k 4 1) (tn(2k + 1) /N)11,
J#i 9
But now for every j € [N], we know that
loj = 2= e® W)l = D7 (vja — Pe(vja))’ < 13-
a€supp(v;)
We conclude that

vi— Y wgvg|| <[ @FmeF(vy) = Y ;@O ()| + [Jor — @Fme® (v,

e 2 i )
+ ) il flog — 2F 6% (wy)
J#i
< 41\ /98(2k + 1)(tn(2k + 1)/N) /4 (143 %
< (2k+1) - 4" (n/N)V D %ﬁ,
Taking k = (N/n)/(4Y) gives the claimed bound. O

Combining Lemma E.5 with Lemma E.1 lets us prove Theorem 3.2.

Proof of Theorem 3.2. Set § := /1/(4x) and N = 4%(+3)42t,2tn By Lemma E.5, for any
t-sparse vectors vy, ..., vy € R”™ with |jv; ||, < 1foralli € [N], there is some ¢ € [N] and z € R”
such that ||z, < 3" and

1
Vi — Zmﬂ}j < 4t+2\/£(n/N)1/(4t) < m < 0.
i )

It follows from Lemma E.1 that P; ; /3e+1(X) < N logy . Finally, by Lemma A.2, we conclude
that Ny 1341 (2) < N log, k. ]

F Generalization bounds

F.1 Finite-class model selection

Lemma F.1. Let n, m,n.s € N and let 33 be a positive semi-definite matrix. Fix a vector w* € R"
and a closed set YW C R" and let (X;,y;)™ be independent draws X; ~ N(0,%) and y; =
(X;,w*) + & where & ~ N(0,02). Pick

W € argmin || Xw — yH;
wew

where X : m X n is the matrix with rows X1, ..., X,,. For any €,§ € (0,1), suppose that with
probability at least 1 — 0, the following bounds hold uniformly over w € W:
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2 2 2
1 &I = w3 = o = w3 < el —w |,

2 (e phemen)| < oy

Then with probability at least 1 — 0 it also holds that

N I+e . . 2nqy
[ — w*[lg < 1761325\;““’_“’ Hz+20\/7€'

Proof. Consider the event in which both bounds hold. Let wey € argmin, .y, ||w — w*||3,. Then
X (@ — w5 = K@ = yll5 + 206, X(d — w*)) — [€]l3
< [ Kawop = yll3 + 206, X( — w") ~ [I€]I3
= 11 (wope — w15 + 2(& X( — w")) = 28, X(wops — w"))
< X (wop — w13 + 2 (1K = w*)ly + X (wopt = ")) oy/err
Subtracting ||X(wep — w*) ||§ from both sides and dividing by [|X(w — w*) ||, + [|X(wepe — w*)]|,,

we get that
1K (@ = w)ly = [X(wopt = w) Iy < 20/ Netr.

o=l <y | G =g, X0 =l

+€)n,
M HX Wopt — ||2 +20 ( ) <
1+4+€ 2nefy

< T e — 0 5+ 202

as desired. O

It follows that

Lemma F.2. Let n,m € N and let ¥ be a positive semi-definite matrix. Fix a vector w* € R" and a
finite set W C R™ and let (X;,y;)7 be independent draws X; ~ N(0,X) and y; = (X;, w*) +&;
where &; ~ N (0,02). Pick

W € argmin | Xw — y||§ .
wew

Forany €,6 € (0,1), if m > 8¢2log(2|W)|/§), then with probability at least 1 — 26, we have
log(2)W[/9)
- :

1
RALY lw—w*|s, + 40

5l <
o =wls < 1 —ewew

Proof. For any fixed w € W, the random variables (X;,w — w*) ~ N(0, ||lw — w*H%) are inde-
pendent, and therefore || X(w — w*) Hg ~JJw — w* H; X2,. It follows that for any € > 0,

1
Pr{
m

By the union bound, if m > 8¢~2 log(2|W|/§), then with probability at least 1 — § it holds that for
allw e W,

2 2
5w — )2~ [l — w3

>dw—uﬂ@}§&f“”?

<ellw— w3 (10)

1 " *
'HMw—w)ﬁ—Hw—wﬂé

X(w—w™)
X (w—w*)ll,

N(0,0?). Thus, by a Gaussian tail bound and the union bound, we have for any ¢ > 0 that

(U}IU*)>‘ > t:| < 2/W| - —t2/2
(& et muor)| 2] <2t

(w —w*)

Also, for any fixed w € W, conditioned on X, the random variable (¢, ) has distribution

Pr |max
wew
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In particular, with probability at least 1 — § it holds that

<5|X(“’w)>’ < 01/2log(2]W]/5). (11)

wew (w —w)]|

wew

Using (10) and (11) we apply Lemma F.1 which gives the desired bound. O

F.2 Weak learning

Lemma F.3. Let n,m € Nand e, 6 > 0. Let ¥ : n X n be a positive semi-definite matrix and
let X : m X n have independent rows X1,...,X,, ~ N(0,%). For any fixed u,v € R", if
m > 8¢ 210g(8/6), then it holds with probability at least 1 — § that

T <1XTX - 2) v
m

Proof. Decompose u = av + w where (v, w)y, = 0, so that a = (u,v)s/ ||’UH; Since ||Xv|\§ ~
H1)||2E X2, and m > 8¢~ 21og(4/6) it holds with probability at least 1 — §,/2 that

< 2¢ullg [Jo]ls -

1 1 m
T T 2 2
—X'X-%)u|= 72 (X, v)? — < :
(m )v m v)” —[lvlg] <ellvly
Next,
wl (LxTx-n) o = |1 §m (X5, w)(X;,v)| = S §m Zi, SV 20\ (Z5, 5 )
Pt (3] (3] — (3

where we define independent random vectors Z1, . .., Z,, ~ N(0,I,) so that X; = »1/27,. Since
m > 8log(2/6), with probability at least 1 — §/4 we have "1 (Z;, 21/?v)? < 2m ||v||2E Condi-
tion on the value of this sum, and note that since ©/2v | ¥'/2, the random variables (Z;, ¥'/%w)
are still (independent and) distributed as N (0, ||w||22) Thus

m

1 1 — 5
= (2,5 Pw)(2:, 51 20) ~ N (07 — > llwlz (2, E”W) :
=1

i=1

When the variance is at most 2 Hw||2Z Hv||2E /m, we have with probability at least 1 — §/4 that the

sum is at most 2 ||w||y, [|v||s; v/21log(8/8)/m in magnitude. So, using m > 8¢~2log(8/4) it holds
unconditionally with probability at least 1 — §/2 that

<ellwlg ol -

lz Z 21/2 Z 21/2 >
m =1

In all, we have that

1
T (XTX — 2) v
m

using that |a| < [|ully; / [[o]ly; and [Jw]l < flu]ls. o

2
< lalelvlls +ellwllg [[vlly < 2¢Julls [vlls

Lemma F4. Let n,m € N and let 3 be a positive semi-definite matrix. Fix a vector w* € R™ and a
finite set W C R"™ and let (X;,y;)™ be independent draws X; ~ N(0,X) and y; = (X;, w*) +&;
where &; ~ N(0,02). Pick
(@, 3) € argmin || Xw —y]|;.
weW
BER

W) s

Suppose o = maxwewuuﬁﬁ’w > 0. Forany § > 0, if m > Ca~2log(32|)W|/9) for a
sufficiently large absolute constant C, then with probability at least 1 — 6,

2%+ 40002 log(4|W|/d)
= :

o?m

< (1-a?/4) Jw*

39



Proof. For any vectors u,v € R", define A(u,v) =u' (LXTX - %)

Claim F.5. With probability at least 1 — 6, the following bounds hold uniformly over w € W and
B eR:

1. ‘<£, MN < 0 /Tigg where ngy := 210g(32|W)|/9).
2. |A(Bw, w*)| < 155 |Bwlls [w*lls

3. |ABw, Bw)| < 135 [|Bwll5 -

Proof of claim. For item (1), fix w € W. Let ®®) : 2 x m be a matrix whose rows form an
orthonormal basis for span{Xw, Xw*} C R™. Then (denoting the unit Euclidean ball in R? by B>)
we have for all 8 € R that

wa—wﬂﬂ
‘<§’ Ko — ), /| = 2%

Since (®") ¢) ~ N(0,02), we have Pr[[(®™) ¢)| > o1/210g(4]W]/8)] < 6/(4W]). A union
bound over ¢ € [2] and w € W gives that condition (2) in Lemma F.1 is satisfied with probability at
least 1 — §/2.

For items (2) and (3), note that A is bilinear, so it suffices to take 8§ = 1. Applying Lemma F.3 and
the union bound, so long as m > Ca~2log(32|W|/§) for a sufficiently large constant C, items (2)
and (3) hold simultaneously with probability at least 1 — §/2. O

(&0 < [0], < vampie o1

Henceforth we assume that all of the events in the above claim hold. Let wg € W be such that
* * * 2
[(wo, w*)s| = alwolls, [w*||s. Let Bo = (wo, w")s/ w5 Then

* (12 * (12
1Bowo — w*|lz, = (1 = a?) w*[l5, -
Claim F.6. The excess empirical risk can be bounded as

(B~ w*)

S X (wo — )y + 20

Proof of claim. We have

(B — )| = ||%B0 — o] + 26 KB —w)) — e
< X Bowo — yll3 +2(& X (B —w")) ~ €]
= [IX(Bowo — w")|[5 + 2(¢, X(Bab — w")) — 2(¢, X(Bow — w*))
< IX(Bowo = w) | + 2 ([ X (B — )| + 1% (Bowo = w)ll,) o/
where the last bound is by item (1) of Claim E.5. Simplifying, we get the claimed bound. [

Now we have

R 2 R ) ) )
) m 9
1 N o *
< m (IX(Bowo — w*) ||y + 20\/@)2 — A(B — w*, i — w*)
1 : 1 2 (S A ~
< +O‘T/OO (oo — )+ (141000220 _ A, o — ')

2
0" Teff

(1+a?/100) || Bowo — w*||% + (1 + 100a~2)

. R 2
— A(Bi — w*, fib — w*) + (1 + 1aoo) A(Bowo — w*, Bowo — w™)
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2

< (1+ a2/100) || Bowo — w*||% + (1 + 1000~2) Zeft

+ | A (B, fib)| + 2| A (B, w*)]

+ (14 a®/100)|A(Bowo, Bowo)| + 2(1 + a? /100)| A(Bywo, w*)|

+ (a?/100)|A(w*, w*)|.
where the first inequality is by Claim F.6, the second inequality is by AM-GM, and the final in-
equality is expanding out the terms A(Sw — w*, f — w*) and A(SBowy — w*, Powy — w*) (via
bilinearity) and cancelling out the common term A(w™*,w*). Finally applying items (2) and (3) of
Claim FE.5, we get

2
O " Neff

< (14 a?/100) ||/30w0 —w*[[3 4 (1+100a72)

100 Hﬁ 50 ‘
=5 lIBowoll3, + 5 |Mwﬂgmnz+mouné
s<L4menmw;+5%%§ﬁ
+ o el (12)
where the second inequality uses the bounds Hﬁowo - w*H; =(1-a?) ||w*||2E and
ool = L=l — o .

But now on the other hand,
N 2 ” 2 ” ~
B = | = |||, + w13 = 208, w)s > | e

Comparing Wlth (12) gi\/es
( )

|3, < 40 lwrls +o
)

2
2 5

w* QaH wH W .

g Tllwlls + 20 || B llw”llx

S 12 10102 neg - i
al, < T + s Ba], huls

I «

and therefore

101neff
a’m

Substituting into (12) we finally get

B — w 2000 e

< (1-a?/2) |w*|?
< (-2 i+ =
as desired. O

*

F.3 Excess risk at optima of additively-regularized programs

Lemma E.7. Letn € N, and let X2 : n X n be a positive semi-definite matrix. For some seminorm
® : R™ — [0, 00) and some p, 6 > 0, assume that with probability at least 1 — § over G ~ N(0,X)
it holds uniformly over v € R" that

(v,G) < ( )+ vplvls-
Fix a vector v* € R". Foranym € Nand o > 0 let (X;,y;)" be independent samples distributed
as X; ~ N(0,%) and y; = (X;,v*) + & where & ~ N(0,0?). Define
0 € argmin [|Xv — ylls + @) + [lyll, ®(v)
VUG n
where X : m X n is the matrix with rows X1, ..., Xm. Then with probability at least 1 — 7§ over
(Xi,yi)™, solong as m > 16p + 196 log(12/0)), it holds that
12802p . 8(o + [|v*|) @ (v*) n 8P (w*)?
m Vm m

~ 2
[0 —v*[|p <
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Proof. For notational convenience, define F'(v) := (1/2)®(v —v*) + /p||lv — v*|5;. We apply the
lemma’s assumption twice:

« For any fixed £, the random variable X¢ has distribution N (0, ||€|| ). By the above claim,
with probability at least 1 — ¢ over X, we have ({, X(v — v*)) < ||{||y F/(v) uniformly in
v e R™

Since ||€]|2 ~ o2y2 and m > 8log(2/6), it holds with probability at least 1 — & that
2 m p y
\/% €]l, < V/20. Thus, with probability at least 1 — 25, we have

&, X(v—=2")) <V2moF(v) (13)
uniformly in v € R™.

* The assumption means that we can apply Theorem C.1 with (noiseless) samples
(X5, (Xi,v*)), to get the following: since m > 196 log(12/4), it holds with probability
at least 1 — 44 over the randomness of X that for all v € R",

* 2 . 2
lv —v*|f3, < —I1X(v—v )II§+EF(U)2. (14)

We also observe that the entries of y are independent and identically distributed as N (0, ||v* ||22+02),
so by a x? tail bound, since m > 321log(2/4), it holds with probability at least 1 — ¢ that

1 2 1. .2 3.1 wn2
—lyll3 € | 500" 1% + 02, S (U 1%+ 02)] as)

We now condition on the event (which occurs with probability at least 1 — 79) that the bounds (13),
(14), and (15) all hold. Specifying (14) to v := 0, we get that
21l — v}
5 v — "5
< [IX(0 — 0)|I3 + F(9)?
< IX(0 = 0*)|[5 = X0 — yll; — ©(9)* — |lyll, ()
+ [Xv* = yl5 + () + [lyll, (v*) + F(0)°
=2(Xv" — y, X(v — v¥))
—®(0)% — [lyll, D(0) + @(v*)? + [lyll, P(v*) + F(0)?
< V2moF(0) — ®(0)” — [lyll, ®(2) + 2(v*)* + [lyll, ®(v*) + F(0)?

where the first inequality is by (14), the second inequality is by optimality of v, and the third in-
equality is by (13). We now expand F'(?) in the above expression. If \/2mpo ||0 — v*||5, exceeds

20— v H; then the lemma immediately holds since

e 1280%
[0 —v"s < :

3

So we may assume that in fact \/2mpo [|0 — v* ||y, < B[]0 — v*||2E By the lemma assumptions,
we also know that m > 16p. Thus, expanding F'(0) and applying these bounds,

2o =13 < Vame (3060 - )+ vllo— ol
— 802 — lyl, ®(0) + 9(")? + ], 2(0")

1
+ 5 @0 =)+ 20— 5

</ oo —v)+ Lo -3

= 0(0)* = [lylly ®(0) + @(v")* + [lyll, ®(v")
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1
+ 5000 — )+ 2 o v

Simplifying, applying the triangle inequality ®(0 — v*) < ®(9) + ®(v*), and grouping terms, we
get

~ 2
16 = v™[Ip

m . m N .
(/5= o) 2661+ (| o+ Il ) @(07) + 220
< 2(0 + ") Vm®(v*) + 20 (v")?
where the last inequality uses both sides of the bound (15). O

A |3

G Covering bounds from classical assumptions

In this section, we further motivate the definition of our covering number N ,,(3) by showing that
in all settings where efficient SLR algorithms are known, there is a straightforward linear upper
bound on the covering number. This lends weight to the need for stronger upper bounds on N; ,, as
a stepping stone towards more efficient algorithms for sparse linear regression.

G.1 Compatibility condition

Definition G.1 (Compatibility Condition, see e.g. [40]). For a positive semidefinite matrix X : nxn,
L > 1,and set S C [n], we say X has S-restricted {1 -eigenvalue

’ wec(s)  |wsll?

where the cone C(.S) is defined as
C(8) = fw # 0 Jwsells < Lijuws])1}.

For t € N, the t-restricted /1 -eigenvalue ¢*(X, ¢) is the minimum over all S of size at most ¢.

max; E,,

It is well-known that an upper bound on 52 (5.0) is sufficient for the success of Lasso (as well as
nearly necessary; see e.g. the Weak Compatibility Condition defined in [23]):

Theorem G.2 (see e.g. Corollary 5 in [45]). Fixn,m,t € N, 0,0 > 0, and a positive semi-definite
matrix ¥ : n X n with max; X;; < 1. Fix a t-sparse vector v* € R" and let (X;,y;)™, be
independent samples distributed as X; ~ N(0,%) and y; = (X;,v*) + & where & ~ N(0,02).
Define
be  argmin [Xv—yl;
veER™: vl <[lv*ly

where X : m x n is the matrix with rows X1, ..., X, If m > 4¢2(3,t) - tlog(16n/6), then with
probability at least 1 — 6, it holds that

2
lo—v'3 <0 <0 tlog(lGn/6)> .

(X, t)m

Fact G.3. Letn,t € N. For any positive semi-definite Y : nxn with ¢ := ¢*(3,t) and max; 3;; <
1, it holds thatj\ft’(b/\/g(Z) < n.

Proof. The proof is essentially the same as that of Fact A.4. By Lemma A.3, it suffices to show that
the standard basis is a (¢, \/t/¢)-£1-representation for 3. Indeed, for any ¢-sparse v € R™, we have

n
> il - leills < vl -max /B <

i=1

_ Vilolly
¢
as claimed. O
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G.2 Submodularity ratio

Definition G.4 (see e.g. [9]). For a positive semi-definite matrix X : n x n and a set L C [n] define
the normalized residual covariance matrx 3(%) : n x n by

s .— (D2t (2 . ZZZTLLEL) (DY)t

where D i= diag (¥~ £] ¥}, %, ).

Definition G.5. Fix a positive semi-definite matrix > : n X n, a positive integer ¢ € N, and any
v* € R™. Define the t-submodularity ratio of ¥ with respect to v* by

(") ") (EH) 50"

¥, %) = i :
Y (2, 0") L.SCInl|L] 18] <t,LnS=0 () T(ZEN (D)L (BE) go*

In any ¢-sparse linear regression model with true regressor v*, when the above quantity vy :=
v (2, v*) is bounded away from zero, it can be shown that the standard Forward Regression al-
gorithm finds some ¢-sparse estimate ¢ € R™ such that |0 — U*H% <e? ||v*||2Z (see e.g. Theorem
3.2 in [9]; that result is for the model where the algorithm is given exact access to (v, v*)x for any
t-sparse v € R™, but analogous finite-sample bounds can be obtained with O(y~°M¢log(n)) sam-
ples by applying the theorem to the empirical covariance matrix and using concentration of ¢ x ¢
submatrices). A similar guarantee is also known for Orthogonal Matching Pursuit (Theorem 3.7 in

[9D.

Once again, it is simple to show that the standard basis is a good dictionary for matrices with a large
submodularity ratio.

Fact G.6. Let n,t € N. For any positive semi-definite > : n X n with v =
Miny,« crnnp(e) Ve(X, v*), it holds that/\/;5 m(Z) <n.

Proof. We show that the standard basis is a (t,/t)-dictionary for ¥.. Without loss of generality
assume that ¥;; = 1 for all i € [n]. Then ©(?) = . Fix any t-sparse v* € R™. Setting S :=
supp(v*), we have that

(e v)E = (09) B Bs0" 2 9(0") B (Bss) ' Bso” = 0"
ics
where the inequality is by definition of -, and the final equality uses that Y gv* = Y gg(v*)g (since
v* is supported on S). It follows that max;cs{(e;, v*)3 > (v/t) Hv*||; Since ||e;||y; = 1 for all 4,
we conclude that
max Hesvys] >*2| > /2
i€l fleills [lo*ls t

as claimed. ]

G.3 Sparse preconditioning

Recent work [23] showed that if  : n x n is a positive definite matrix and the support of © := ¥~}
is the adjacency matrix of a graph with low treewidth, then there is a polynomial-time, sample-
efficient algorithm for sparse linear regression with covariates drawn from N (0, X2). The key to this
result was a proof that such covariance matrices are sparsely preconditionable: i.e., there is a matrix
S :n x nsuchthat ¥ = SST and S has sparse rows. We claim that this property also immediately
enables succinct dictionaries.

Concretely, suppose that S has s-sparse rows. By a change-of-basis argument, any ¢-sparse vec-
tor in the standard basis is st-sparse in the basis {(ST);*,...,(ST),'}. Moreover these vec-
tors are orthonormal under . Thus, by the same argument as for Fact A.4, it’s easy to see that
{(STY, ..., (ST MY isa (t,1//st)-dictionary for X.
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H Supplementary figure
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Figure 2: Performance of Basis Pursuit in a synthetic example with n = 1000 covariates. The co-
variates X1.1000 are all independent N (0, 1) except for (X, X1, X2), which have joint distribution
Xo =2y, X1 = Zo+0.4Zy, and Xy = Zy + 0.475 where Zy, Z1, Zo ~ N(0, 1) are independent.
The noiseless responses are y = 6.25(X7 — X2) + 2.5X3, i.e. the ground truth is 3-sparse. The
z-axis is the number of samples. The y-axis is the out-of-sample prediction error (averaged over 10
independent runs, and error bars indicate the standard deviation).

I Experimental details
The simulations were done using Python 3.9 and the Gurobi library [17]. Each figure took several

minutes to generate using a standard laptop. See the file auglasso.py for code and execution
instructions.
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