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A B S T R A C T

Alzheimer’s disease (AD) is a complex neurodegenerative disorder that has impacted
millions of people worldwide. The neuroanatomical heterogeneity of AD has made it
challenging to fully understand the disease mechanism. Identifying AD subtypes during
the prodromal stage and determining their genetic basis would be immensely valuable
for drug discovery and subsequent clinical treatment. Previous studies that clustered
subgroups typically used unsupervised learning techniques, neglecting the survival in-
formation and potentially limiting the insights gained. To address this problem, we
propose an interpretable survival analysis method called Deep Clustering Survival Ma-
chines (DCSM), which combines both discriminative and generative mechanisms. Sim-
ilar to mixture models, we assume that the timing information of survival data can be
generatively described by a mixture of parametric distributions, referred to as expert
distributions. We learn the weights of these expert distributions for individual instances
in a discriminative manner by leveraging their features. This allows us to character-
ize the survival information of each instance through a weighted combination of the
learned expert distributions. We demonstrate the superiority of the DCSM method by
applying this approach to cluster patients with mild cognitive impairment (MCI) into
subgroups with different risks of converting to AD. Conventional clustering measure-
ments for survival analysis along with genetic association studies successfully validate
the effectiveness of the proposed method and characterize our clustering findings.
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1. Introduction

According to the World Health Organization (WHO)4, de-
mentia has affected 55 million people worldwide in 2023. This
number could increase to 139 million by 2050 as more people
age. Alzheimer’s disease (AD) is the most common cause of de-
mentia, accounting for over two-thirds of the cases. However,
as a complex and heterogeneous brain disorder, AD remains
poorly understood. Finding subtypes of AD and their genetic
factors could help develop new drugs and guide treatments in
the prodromal stage for this critical condition.

Previous works usually use unsupervised learning methods
such as KMeans (Hartigan and Wong, 1979), GMM (Reynolds
et al., 2009), DBSCAN (Ester et al., 1996) etc. to stratify AD
patients into different clusters/subtypes (Alashwal et al., 2019;
Feng et al., 2022). They merely utilize the feature information
to find different groups with distinct characteristics. However,
these approaches ignore the fact that dementia patients often
visit the hospital multiple times to track their disease progres-
sion. These results in longitudinal trajectories that capture addi-
tional survival information about the patients such as the prob-
ability of conversion from mild cognitive impairment (MCI) to
AD. Thus, it would be valuable if we can leverage the survival
information to facilitate AD subtype discovery.

The goal of survival analysis (Flynn, 2012) is to learn a sur-
vival model to build the bridge between features and survival in-
formation. When given the feature of a subject, survival models
can predict the risk of death or occurrence of some event such as
MCI converting to AD. In this way, we have an opportunity to
utilize the predicted risk to stratify the MCI patients into differ-
ent subgroups with different risks of converting to AD. It would
thus enable customized treatment for different patients with dif-
ferent risks. In this study, we aim to conduct subtypes discovery
for Alzheimer’s disease from the survival analysis perspective,
which has the potential to improve clinical decision-making by
identifying high-risk MCI patients who may require more care
or early treatment. It is worth noting that a big challenge in sur-
vival analysis is censoring, which means the target event of a
subject is unobservable after a period of time or no event hap-
pens during the monitoring. Therefore, many subjects do not
possess complete survival information and we face the problem
of semi-supervised learning or weak supervised learning in-
stead of fully supervised learning. Given these circumstances, it
becomes impractical to directly employ survival information for
the purpose of subgroup stratification. Thus, the development
of an effective clustering technique that is capable of leveraging
partial survival information becomes imperative.

There are many survival models that have been proposed to
predict the risk of an event happening, also known as “time-
to-event prediction” (Kvamme et al., 2019). The most clas-
sic method is called the Cox PH model (Cox, 1972). It as-
sumes a constant hazard rate over time for every subject, known
as the proportional hazard (PH) assumption. There are other
methods that do not make any assumptions about the underly-
ing distribution of survival times, such as Kaplan-Meier (Bland

4https://www.who.int/news-room/fact-sheets/detail/dementia

and Altman, 1998), Nelson-Aalen (Klein, 1991), and Life-
Table (Tarone, 1975). However, these methods struggle with
high-dimensional data. Machine learning techniques can help
overcome this high-dimensional challenge and can learn the as-
sociation between features and survival outcomes efficiently.
For example, Deep Survival Machines (DSM) (Nagpal et al.,
2021) uses deep neural networks to learn the compact represen-
tation of the features and uses the negative log-likelihood as the
loss to learn all the parameters, showing promising results in
prediction accuracy. Deep Cox (Katzman et al., 2018) utilizes
the derived Cox PH loss to optimize the parameter learning of
deep neural networks.

Nevertheless, all the survival models aforementioned are not
specifically designed for clustering. They are mainly used to do
risk prediction. To leverage them to do clustering, we need to
set a threshold for the predicted risks to artificially cluster them
into subgroups, such as two groups where one is with high risk
and the other is with low risk. Survival Clustering Analysis
(SCA) (Chapfuwa et al., 2020) and Variational Deep Survival
Clustering (VaDeSC) (Manduchi et al., 2021) are two recent
works that can do both risk prediction and clustering. However,
SCA cannot control the number of clusters because it utilizes
the truncated Dirichlet process to realize the automatic identi-
fication of the cluster numbers., and VaDeSC as a fully gener-
ative method is restricted to a specific distribution of features.
Neural Survival Clustering (Jeanselme et al., 2022) is another
recent model developed to perform clustering and time-to-event
prediction simultaneously. It learns the survival probability for
each instance by learning fixed neural networks without any as-
sumptions in a thorough discriminative manner. However, the
model requires a considerable amount of training data to avoid
overfitting, which may not be feasible for small-scale datasets,
particularly in the medical field.

In this study, we propose a hybrid method that leverages both
the discriminative and generative strategies to perform cluster-
ing and risk prediction simultaneously. Specifically, we assume
that there are a certain number of expert distributions in a latent
space and each expert distribution can be modeled by parame-
terized distributions in a generative way. The survival function
for each instance is a weighted combination of all the expert
distributions and the weight for each instance is learned by a
multi-layer perceptron (MLP) directly from the features in a
discriminative manner. Consequently, we can naturally cluster
all the instances according to how the weights are allocated to
different expert distributions for each instance. We demonstrate
the advantage of our method by evaluating not only the con-
ventional clustering measurements for survival analysis but also
the genetic association discrepancies between different groups
of patients with different risks of converting from MCI to AD.
In summary, our contributions are five-fold:

• We propose a hybrid survival analysis method called Deep
Clustering Survival Machines (DCSM) that integrates the
advantages of the discriminative and generative ideas and
can perform both clustering and time-to-event prediction
simultaneously.

• We apply our method to Alzheimer’s imaging data to dis-
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cover AD subtypes. LogRank results and results on ge-
netic association discrepancy validate the effectiveness of
the proposed method.

• To further validate the effectiveness of the proposed
method, we also conduct experiments on several real-
world benchmark datasets. The results show promising
clustering results as well as competitive time-to-event pre-
diction performance.

• Our method is interpretable in that the expert distributions
are constant for all the instances. Different weightings sig-
nify different attention to the expert distributions and thus
we can easily tell which subgroup the instance belongs to.

• We perform feature importance for different regions of the
brain to interpret what regions the proposed model pays
more attention to when clustering the patients into low and
high risks. The identified important brain regions show a
strong relationship to AD.

2. Related Work

Clustering. Clustering is the most relevant topic to our paper.
Clustering is a concept from the machine learning commu-
nity that involves grouping similar data points together based
on certain characteristics. In the medical domain, people may
use stratification or subtype discovery to describe similar prob-
lems. These terms refer to the process of identifying subgroups
within a larger population that share similar characteristics or
traits. The paper will use these terms interchangeably. Tradi-
tional clustering methods such as KMeans (Hartigan and Wong,
1979), GMM (Reynolds et al., 2009), DBSCAN (Ester et al.,
1996) usually use the sample features only to calculate the
similarity or distance between samples to discover the subtype
among populations (Alashwal et al., 2019; Feng et al., 2022).
Considering that patients can visit hospitals several times and
thus render longitudinal information, we can also use survival
analysis techniques to predict the risk of getting AD for each
patient and stratify them using the predicted risk in a post-hoc
way. This risk prediction in survival analysis is also called
“time-to-event-prediction”.

Time-to-event Prediction. There are many time-to-event pre-
diction methods that have been proposed. One of the most
prevalent methods is the Cox proportional hazards regression
model (Cox PH) (Cox, 1972). It assumes that the relative pro-
portional hazard between subjects is constant over time. In
other words, if subject A has a higher risk of death or an-
other event at some time point than another subject B, then
A’s risk will always be higher than B’s. Although Cox PH has
achieved many successes in survival analysis, it still has a nar-
row application since its assumption of proportional hazard is
too strong to satisfy in reality. Traditional methods including
Kaplan-Meier (Bland and Altman, 1998), Nelson-Aalen (Klein,
1991), and Life-Table (Tarone, 1975) are also useful to do sur-
vival analysis. However, they can hardly scale to large dimen-
sionality. Recently, many machine learning methods, especially

deep learning methods, have been proposed to do survival anal-
ysis. Most of them are dedicated to improving upon Cox PH. A
common idea is to use deep neural networks to learn the non-
linear relationship between the explanatory variables and out-
come by optimizing the partial likelihood of Cox PH (Katzman
et al., 2018). However, this is still restricted to the strong as-
sumption of proportional hazard. Recently, a fully parametric
method utilizing deep learning called Deep Survival Machines
(DSM) (Nagpal et al., 2021) has attracted much attention. It
does not make the PH assumption and can achieve competitive
predictive performance compared to state-of-the-art methods.
However, DSM learns different base distributions for each in-
stance, making the model hard to interpret.

Clustering with Time-to-event Prediction. There are a few
other methods that perform both clustering and time-to-event
prediction simultaneously. For example, Survival Clustering
Analysis (SCA) (Chapfuwa et al., 2020) assumes that the la-
tent space is a mixture of distributions and uses the truncated
Dirichlet process to automatically identify the number of clus-
ters. However, SCA cannot control the number of clusters and
thus cannot validate its advantages compared to post-hoc meth-
ods. Variational deep survival clustering (VaDeSC) (Manduchi
et al., 2021), as a fully generative method, uses a Gaussian mix-
ture distribution to model the features in a latent space and uses
the Weibull distribution to model the survival timing informa-
tion. This builds a good bridge between the features and sur-
vival information by jointly optimizing both likelihoods. How-
ever, there is a trade-off between the discriminative and genera-
tive learning paradigms. A fully generative framework may not
be a good fit for all types of data since it is difficult to let both
the features and survival information obey the prior assumption
of their distributions at the same time. Neural Survival Cluster-
ing (Jeanselme et al., 2022) attempts to learn the survival proba-
bility for each instance by learning fixed neural networks. This
framework brings more flexibility due to the lack of assump-
tions. However, the model needs large amounts of training data
to prevent overfitting. Thus, the model may not be applicable
to small-scale data, especially in the medical domain.

3. Preliminaries

3.1. Basic Notation

Survival analysis aims to estimate the probability of an event
of interest happening after a certain time t based on the features
X of individual subjects (Flynn, 2012). This probability can be
modeled by a survival function S (·|X) = P(T > t|X). The data
we tackled are assumed to be right-censored. This means our
dataset D consists of tuples {xi, ti, δi}Ni=1 where xi is the feature
vector for the ith subject, ti is the last time we followed the ith
subject, δi is the event indicator, and N is the number of all
subjects. If δi = 1, the event will occur at time ti for the ith
subject (this means the ith subject is uncensored). If δi = 0, we
lose the ith subject at time ti, or the monitoring ended before the
occurrence of the event (this means the ith subject is censored).
We denoteDU as the uncensored subset andDC as the censored
subset.
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Fig. 1. Mechanism of DCSM.

3.2. Cox PH
Cox PH model (Cox, 1972) is the most popular and conven-

tional survival model. It assumes proportional hazards, mean-
ing the ratio of hazards of two subjects does not change over
time. Suppose the parameter of the Cox PH model is β, then
the hazard function at time t for the ith subject with feature vec-
tor xi is

λ(t|xi) = λ0(t) exp(xi · β), (1)

where λ0(t) is the baseline hazard that describes how the risk
of event per time unit changes over time at baseline level of
features. To estimate the parameter β, Cox PH model uses the
maximum likelihood estimation (MLE) to maximize the Cox
partial likelihood:

L(β) =
∏
i∈DU

exp(xi · β)∑
j:t j≥ti exp(x j · β)

. (2)

By calculating the first and second derivative of this partial like-
lihood function, β can be obtained using the Newton-Raphson
algorithm (Akram and Ann, 2015).

3.3. Deep Cox
The Deep Cox model (also called DeepSurv) (Katzman et al.,

2018) is another solution for the Cox PH idea. As opposed to
following the traditional solution of maximizing the partial like-
lihood mentioned above, Deep Cox attempts to leverage deep
neural networks to learn a nonlinear mapping ϕθ(·) parameter-
ized by θ for the features xi and try to get the optimal predictive
model by minimizing the negative logarithm of the partial like-
lihood as the loss function:

ℓ(β) = −
∑
i∈DU

ϕθ(xi) − log
∑
j:t j≥ti

exp(ϕθ(x j))

 . (3)

Fig. 2. Post-hoc clustering mechanism of Cox PH, Deep Cox, and DSM.

3.4. Clustering Mechanism
The clustering mechanism of post-hoc survival models is il-

lustrated in Fig. 2. Cox PH, Deep Cox and DSM are used as
post-hoc clustering methods in this paper. To cluster MCI pa-
tients, we first obtain their predicted risk scores, and then we
set a threshold (usually the median or the mean of the whole
risk scores) to get the subtypes. In our paper, it is important to
emphasize that we concentrate on two distinct clusters: one as-
sociated with low risk and the other with high risk. Our primary
objective is to provide valuable insights for patients and clini-
cians regarding the likelihood of developing AD (Alzheimer’s
disease). By identifying individuals at high risk, we can empha-
size the need for early intervention or more customized treat-
ment strategies. While high and low-risk clusters hold signifi-
cant relevance, including an additional cluster such as medium
risk would only introduce confusion for patients and clinicians,
thereby detracting from the overall clarity and effectiveness of
our findings.

4. Method

In Part 1 of Fig. 1, the deep clustering survival machines
(DCSM) is designed to learn a conditional distribution P(T |X =
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Table 1. Statistics of AD-related datasets used in the experiments. N refers to number of subjects. m refers to the number of brain regions. The time range
tmax is noted in days. Education is noted in years.

Dataset N m Event(%) tmax Age Gender(M/F) Education

AV45 466 116 33.52 2258 72.38±7.81 267/199 16.20±2.71
FDG 467 116 32.67 2254 72.36±7.81 266/201 16.18±2.71
VBM 462 116 32.00 2275 72.42±7.91 265/197 16.18±2.74

Table 2. Statistics of benchmark datasets used in the experiments. The
time range tmax in PBC is noted in years while others are noted in days.
“FRAM” refers to “FRAMINGHAM”.

Dataset SUPPORT PBC FRAM FLCHAIN

Events (%) 68.11 37.28 30.33 30.07
N 9105 1945 11627 6524
d (categorical) 44 (26) 25 (17) 18 (10) 8 (2)
tmax 2029 14.31 8766 5167

x) by optimizing the maximum likelihood estimation (MLE) of
the time T . Similar to the mixture model learning paradigm, the
conditional distribution P(T |X = x) is characterized by learning
a mixture over K well-defined parametric distributions, referred
to as expert distributions. In order to use gradient-based meth-
ods to optimize MLE, we choose the Weibull distributions as
the expert distributions that are flexible to fit various distribu-
tions and have closed-form solutions for the PDF and CDF:

PDF(t) =
µ

σ

( t
σ

)µ−1
e−(

t
σ )µ , CDF(t) = e−(

t
σ )µ , (4)

where µ and σ are the shape and scale parameters separately.

Part 1 of Fig. 1 indicates that we firstly need to learn an
encoder for the input features x to obtain a compact and in-
formative representation x̃. Here we use a multi-layer percep-
tron (MLP) ϕθ(·) parameterized by θ as the backbone model.
This representation will be multiplied by a parameter w with
softmax to obtain the mixture weight αk with respect to each
(kth) expert distribution that is parameterized by µk and σk.
The final survival distribution for the time T conditioned on
each instance is a weighted combination over all K constant
expert distributions. Eventually, we have a set of parameters
Θ = {θ,w, {µk, σk}

K
k=1} to learn during the training process. Be-

cause µk and σk are the same for different input instances, we
can cluster each instance/subject according to the weight αk that
is allocated to each expert distribution, as illustrated in Part 2 of
Fig. 1. Specifically, we assign an subgroup/cluster indicator i
to each instance when the instance’s corresponding weight αi is
the largest among all K weights.

According to the framework of MLE, our goal is to maximize
the likelihood with respect to the timing information T condi-
tioned on x. Given that the likelihood functions are different for
uncensored and censored data, we calculate them separately.
For the uncensored data, the log-likelihood of T is computed as
follows, where α is the hidden variable and ELBO is the lower

bound of the likelihood derived by Jensen’s Inequality:

lnP(DU |Θ) = ln
(
Π
|DU |

i=1 P(T = ti|X = xi,Θ)
)

=
∑|DU |

i=1
ln
(∑K

k=1
P(T = ti|α, µk, σk)P(α|X = xi,w)

)
=
∑|DU |

i=1
ln
(
Eα∼(·|xi,w)[P(T = ti|α, µk, σk)]

)
≥
∑|DU |

i=1

(
Eα∼(·|xi,w)[lnP(T = ti|α, µk, σk)]

)
=
∑|DU |

i=1

(
softmaxK(ln PDF(ti|µki , σki ))

)
= ELBOU(Θ).

(5)

Similarly, the log-likelihood of T for the censored data is:

lnP(DC |Θ) = ln
(
Π
|DC |

i=1 P(T > ti|X = xi,Θ)
)

≥
∑|DC |

i=1

(
Eα∼(·|xi,w)[lnP(T > ti|α, µk, σk)]

)
=
∑|DC |

i=1

(
softmaxK(ln CDF(ti|µki , σki ))

)
= ELBOC(Θ).

(6)

In addition, to stabilize the performance, we incorporate prior
knowledge for µk and σk. Specifically, we minimize the prior
loss Lprior to make them as close as possible to the prior µ and
σ that are determined by the MLE result for a single expert
distribution:

Lprior =
∑K

k=1
∥µk − µ∥

2
2 + ∥σk − σ∥

2
2. (7)

The final objective Lall is the sum of the negative of the log-
likelihoods of both the uncensored and censored data in addi-
tion to the prior loss where λ is a trade-off hyperparameter:

Lall = Lprior − ELBOU(Θ) − λ · ELBOC(Θ). (8)

5. Experiments

In this section, we first introduce the datasets we used in the
experiments. This includes three popular AD-related datasets,
four benchmark datasets, and a group of genotyping data rele-
vant to AD. Then, we introduce the metrics, baselines, and set-
tings in our experiments. Finally, we report and discuss the Lo-
gRank, C-index, genetic association analysis, and interpretabil-
ity results.

5.1. Datasets

The genotyping data, demographic data and imaging data
used in our experiments were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (Weiner
et al., 2017). ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner,
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MD. The primary goal of ADNI has been to test whether se-
rial magnetic resonance imaging (MRI), positron emission to-
mography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). Up-to-date information about the
ADNI database is available at www.adni-info.org.

We focused our analysis on three ADNI imaging modalities:

• AV45: Florbetapir PET (Jagust et al., 2015) that measures
amyloid burden.

• FDG: Fluorodeoxyglucose PET(Jagust et al., 2010) which
measures glucose metabolism.

• VBM: Structural magnetic resonance imaging (MRI)
(Jack et al., 2015) measuring brain morphometry.

Structural MRI scans were processed with voxel-based mor-
phometry (VBM) using the statistical parametric mapping soft-
ware tool (Ashburner and Friston, 2000). The MarsBaR region
of interest (ROI) toolbox (Tzourio-Mazoyer et al., 2002) was
used to extract mean gray matter density, amyloid, and FDG-
PET glucose utilization values for each ROI. After extraction,
there were 116 ROI-level measures for each modality. All the
MCI participants with no missing data were analyzed, and we
had N = 466 for AV45, N = 467 for FDG, and N = 462 for
VBM. Their characteristics are summarized in Table 1.

For the genetics data, we first downloaded genotyping data
from ADNI 1, GO, 2, and 3 studies from the ADNI database
(Shen et al., 2014; Saykin et al., 2015; Shen and Thompson,
2020). Then, McCarthy Group Tools (https://www.well.
ox.ac.uk/~wrayner/tools/) were used for alignment. We
aligned the genotyping data to the Homo Sapiens (human)
genome assembly NCBI37 (hg19) genome builder, according
to 1000 Genome phase 3 dataset (1000 Genomes Project Con-
sortium et al., 2015). To complement the missing data, we im-
puted those genotypes using the Michigan Imputation Server
(Das et al., 2016) with the 1000 Genome phase 3 reference
panel of European ancestry. We annotated our imputed geno-
typing data using ANNOVAR (Wang et al., 2010). After align-
ment and imputation, we performed the quality control (QC)
using the following criteria: genotyping call rate > 98%, minor
allele frequency > 0.1%, Hardy-Weinberg Equilibrium > 1e-6,
missingness per individual < 5%. All the QC was performed
using PLINK 1.9 (Chang et al., 2015).

To further validate the effectiveness of the proposed method,
we also conducted experiments on four public benchmark
datasets that are all real-world datasets:

• SUPPORT (Knaus et al., 1995): The SUPPORT dataset is
sourced from a study conducted by Vanderbilt University
that aims to estimate the survival rate of seriously ill adults
who are hospitalized.

• PBC (Fleming and Harrington, 2013): The dataset known
as Primary Biliary Cirrhosis is commonly used to assess
the performance of survival analysis models that incorpo-
rate time-dependent covariates.

Table 3. LogRank results comparison between KMeans, Cox, Deep Cox,
DSM, SCA, VaDeSC, NSC and DCSM on dataset AV45, FDG and VBM.
The best one in each block (for specific metric and dataset) is bold.

Methods AV45 FDG VBM

KMeans 66.96±1.75 28.84±1.36 16.17±1.01
Cox PH 133.60±3.65 117.80±1.88 89.07±3.97

Deep Cox 121.49±10.99 95.39±16.07 63.49±2.76
DSM 160.62±3.79 124.26±1.74 120.41±2.47
SCA 40.10±26.47 18.15±8.94 4.71±3.41

VaDeSC 108.43±131.86 133.69±203.21 282.08±157.12
NSC 160.88±52.13 213.61±82.60 65.52±27.65

DCSM 317.84±31.89 384.62±24.03 369.29±26.87

Table 4. C-Index results comparison between KMeans, Cox, Deep Cox,
DSM, SCA, VaDeSC, NSC and DCSM on dataset AV45, FDG and VBM.
The best one in each block (for specific metric and dataset) is bold.

Methods AV45 FDG VBM

Cox PH 0.6900±0.0349 0.6864±0.0552 0.6435±0.0602
Deep Cox 0.7683±0.0240 0.7659±0.0308 0.6688±0.0242

DSM 0.7845±0.0421 0.7518±0.0317 0.7181±0.0290
SCA 0.7166±0.0653 0.6609±0.1011 0.6049±0.0676

VaDeSC 0.4166±0.0315 0.4120±0.0314 0.5187±0.0366
NSC 0.7742±0.0239 0.7174±0.0529 0.6872±0.0219

DCSM 0.7708±0.0297 0.7764±0.0413 0.6801±0.0575

• FRAMINGHAM (Dawber et al., 1951): The Framingham
dataset consists of 4,434 participants from the well-known
and ongoing Framingham Heart study. This dataset is uti-
lized for studying the epidemiology of hypertensive and
arteriosclerotic cardiovascular disease.

• FLCHAIN (Kyle et al., 2006): This dataset is a mix of dif-
ferent people, and half of the subjects from a study analyz-
ing the correlation between serum free light chain (FLC)
and mortality. The original sample covers around two-
thirds of Olmsted County’s residents aged 50 or above.

The statistics of the four benchmark datasets are summarized in
Table 2.

5.2. Metrics, Baselines and Settings

We use “LogRank” to evaluate the clustering performance of
all the methods. LogRank is a statistical test that compares the
survival curves of two or more groups of subjects (Mantel et al.,
1966) and is popular and widely used for survival analysis. It
tests whether or not there is a significant difference in survival
between the groups. It is calculated by comparing the observed
and expected number of events in each group under the null hy-
pothesis of no difference. To further validate the efficacy of our
framework, we also use genetic association analysis to evaluate
the clustering results. We want to identify the genetic basis of
different AD subtypes to validate our subtype findings.

Rather than that, we also incorporate “Concordance Index”
(C-Index) (Harrell et al., 1982) as an additional metric to evalu-
ate the time-to-event prediction performance. The C-Index is a
widely used measure in survival analysis. It measures how well
the order of survival times matches with predictions made by

www.adni-info.org
https://www.well.ox.ac.uk/~wrayner/tools/
https://www.well.ox.ac.uk/~wrayner/tools/
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(a) KMeans (b) Cox PH (c) Deep Cox (d) DSM

(e) SCA (f) VaDeSC (g) NSC (h) DCSM (Ours)

Fig. 3. The Kaplan-Meier plots of KMeans, Cox PH, Deep Cox, DSM, DCSM, SCA, Vadesc on dataset VBM. The cross mark on the curve
means censoring. Cluster 0 means low-risk group while Cluster 1 means high-risk group.

models. Note that the time-to-event prediction is actually not
our goal. Our DCSM method is specifically designed for clus-
tering and it is sufficient if we our method can achieve state-of-
the-art clustering results and behave reasonably well regarding
time-to-event prediction.

For the clustering task, we compare our method with seven
baseline methods, which are either conventional or state-of-the-
art:

• KMeans (Hartigan and Wong, 1979): a traditional and
popular clustering method that iteratively updates the clus-
tering means and cluster assignments.

• Cox PH (Cox, 1972): a classic survival model for survival
risk prediction, which assumes that the hazard rate for each
instance, known as the proportional hazard (PH), is con-
stant over time.

• Deep Cox (Katzman et al., 2018): a deep learning variant
of Cox PH that uses Cox PH loss to optimize the parame-
ters of deep neural networks, also called DeepSurv.

• DSM (Nagpal et al., 2021): the Deep Survival Machines
model learns different base distributions for different in-
stances using specified prior distributions.

• SCA (Chapfuwa et al., 2020): the Survival Clustering
Analysis model assumes that the latent space is a mixture
of distributions and uses the truncated Dirichlet process to
realize the automatic identification of the number of clus-
ters.

• VaDeSC (Manduchi et al., 2021): the Variational Deep
Survival Clustering model uses a Gaussian mixture distri-
bution to model the features in a latent space and uses the
Weibull distribution to model the survival timing informa-
tion.

• NSC (Jeanselme et al., 2022): Neural Survival Clustering
is a discriminative variant of DSM that uses neural net-
works to model the base distributions for each instance.

For Cox PH, Deep Cox, and DSM, we use the mean of all the
risk scores as the threshold. In order to demonstrate the differ-
ence between the clustering effectiveness of unsupervised learn-
ing and semi-supervised learning methods, we also incorporate
KMeans (Hartigan and Wong, 1979) as the baseline besides the
six survival models to discover the subtypes. For the time-to-
event prediction task, we only report the results of all the sur-
vival models mentioned above without KMeans.

To obtain the clustering results, we follow the common prac-
tice of training and testing on the entire dataset, similar to how
other typical clustering methods operate. After training, we
down-sampled the testing data (95% are sampled randomly)
five times and obtained the average LogRank values along with
the standard deviation over the five runs. For time-to-event pre-
diction, we train on 70% data and test on the other 30% data.
All the hyperparameters are chosen through grid search. Specif-
ically, the trade-off parameter λ was chosen from [0.5, 0.75, 1],
and the learning parameter step size was chosen from [1e-2,
1e-3, 1e-4]. The layer setting of the multiple perceptron was
chosen from [[], [50], [50, 50]] where “50” is the number of
neurons in each hidden layer and “[]” means there are no hid-
den layers and the MLP will become a vanilla neural networks
with only input and output layers.

5.3. Results on ADNI

5.3.1. LogRank Results
Table 3 gives the LogRank comparison between KMeans,

Cox PH, Deep Cox, DSM, SCA, VaDeSC, NSC, and DCSM on
the AV45, FDG, and VBM datasets. We can see that KMeans,
which merely uses the feature information, achieves the lowest
LogRank compared to other survival models excluding SCA.



8 Given-name Surname et al. /Medical Image Analysis (2023)

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

AV45 FDG VBM

High
 ris

k v
s. 

Norm
al

High
 ris

k v
s. 

Lo
w ris

k

Lo
w ris

k v
s. 

Norm
al

MCI v
s. 

Norm
al

MCI(h
alf

) v
s. 

Norm
al

High
 ris

k v
s. 

Norm
al

High
 ris

k v
s. 

Lo
w ris

k

Lo
w ris

k v
s. 

Norm
al

MCI v
s. 

Norm
al

MCI(h
alf

) v
s. 

Norm
al

High
 ris

k v
s. 

Norm
al

High
 ris

k v
s. 

Lo
w ris

k

Lo
w ris

k v
s. 

Norm
al

MCI v
s. 

Norm
al

MCI(h
alf

) v
s. 

Norm
al

rs10947943 (UNC5CL)
rs11771145 (EPHA1−AS1)

rs12151021 (ABCA7)
rs1358782 (RBCK1)

rs2242595 (MYO15A)
rs4277405 (CYB561)

rs4985556 (IL34)
rs602602 (ADAM10)
rs6742 (SLC2A4RG)
rs6943429 (UMAD1)

rs7225151 (LOC100130950)
rs7384878 (PMS2P1)

rs871269 (TNIP1)
rs9304690 (SIGLEC11)

Comparison

SN
P

0

1

2

3

−log10(P)

Fig. 4. Targeted genetic association results of DCSM. In the parentheses of the vertical label is the name of the gene closest to the corresponding SNP. The
darkness of each blue patch represents the negative logarithm of p-value regarding each SNP. The darker the patch is, the more significant the SNP is.
“x” marker on the patch means the SNP is statistically significant after FDR correction. This figure indicates the discrepancy between the high-risk group
and the normal group is as large as the discrepancy between the high-risk group and the low-risk group, which reassures the performance of our DCSM
algorithm.

SCA cannot explicitly control the number of clusters. It usu-
ally sets the upper bound of the number of clusters as 25 and
uses the Dirichlet process to automatically identify the number
of clusters, which makes it difficult to compare to other base-
lines. To have a fair comparison, we set the upper bound of the
number of clusters as 2 for SCA which results in poor cluster-
ing performance. Overall, the results in Table 3 demonstrate
that incorporating partial survival information allows survival
models to better stratify the groups such that the survival differ-
ences between the subgroups are larger than their unsupervised
counterparts. DCSM, specifically designed for survival cluster-
ing, obtains the highest LogRank results out of all the baseline
methods.

To make the results more intuitive, we also provide the cor-
responding Kaplan-Meier (KM) plots that are shown in Fig. 3.
We only provide the KM plots on the VBM dataset. Other sim-
ilar results are deferred to the Appendix. In general, the smaller
the LogRank, the closer the two survival curves. From Fig. 3
we can see that the two survival curves of KMeans are closer to
each other compared to survival models. This shows that sur-
vival models can more effectively stratify individuals into dif-
ferent subgroups with respect to MCI converting to AD. Note
that the two curves of DCSM are farthest apart from each other
compared to the other methods with the exception of VaDeSC.
The two curves of VaDeSC are farther from each other than
DCSM, but the number of patients in Cluster 1 (with high risk)
is only 4 which means that the two clusters are very imbalanced
and thus not effectively stratified. In addition, the cross marks
on the curves indicate censoring, i.e., we do not observe the
event of MCI converting to AD. Thus it should be with high
probability that the censored samples have low risk to convert to
AD. Therefore, we expect that a good clustering results should
stratify more censored individuals to the low-risk group. We
can see that in the curve of Cluster 1 (with high risk) of DCSM,
the number of cross marks is small while most of the censored
samples are on the low-risk curve (Cluster 0). This validates the
effectiveness of DCSM.

5.3.2. C-Index Results
Our primary focus lies in clustering and subtype discovery,

but we also evaluate the time-to-event prediction performance
of DCSM in comparison to other methods with the exception of
KMeans which is not able to do time-to-event (risk) prediction.
To achieve this, we employ five-fold cross-validation, training
on 70% of the data and testing on the remaining 30%. The re-
sults are summarized in Table 4. Notably, our method demon-
strates superior performance compared to other approaches on
the FDG dataset, while maintaining competitive results on the
other datasets. It is important to emphasize that our method
is not specifically optimized for risk prediction; rather, our pri-
mary goal is to enhance clustering performance. In this context,
the observed outcome is considered acceptable.

5.3.3. Genetic Association Results
To biologically validate our clustering findings derived from

the proposed DCSM, we carried out targeted genetic associa-
tion analyses. Specifically, we first prioritized 57 single nu-
cleotide polymorphism (SNP) variants from ADNI 1, GO, 2,
3 studies using the list of AD loci with genetic evidence com-
piled by the Alzheimer’s Disease Sequencing Project (ADSP)
Gene Verification Committee.5 These genetic variants have
been well-studied and verified to affect AD risk. Then, we con-
ducted genetic association analyses on the subtypes of “High
risk vs. Normal”, “High risk vs. Low risk”, “Low risk vs. Nor-
mal”, “MCI vs. Normal”, and “MCI (half) vs. Normal”, where
we use half of the MCI subjects (randomly selected) to make
the comparison fairer, as the number of subjects in this group
is closer to the high-risk, low-risk, and normal groups. In our
approach, we employed univariate logistic regression models,
designating the risk of AD onset as the dependent variables and
individual autosomal SNP variants as independent variables. To
account for the potential confounding factors, we adjust our

5https://adsp.niagads.org/gvc-top-hits-list/
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Fig. 5. Brain heat map of AV45, FDG, and VBM using the coefficient of our DCSM model. Each dataset includes three slices to display the brain region
extensively. The heat maps in the first row showcase all the brain regions of interest, where darker colors represent greater importance for risk prediction.
The second row highlights the top ten significant brain regions in each dataset, which are annotated in the legends in the third row.

model with age, sex, and population structure captured by the
first 10 principal components obtained from genotyping data.
We use the false discovery rate (FDR) to correct the multiple
comparison problems. The software used to perform the asso-
ciation analyses was PLINK1.9 (Chang et al., 2015).

As shown in Fig. 4, we find more significant SNPs in the
first two columns than in the last three columns of each dataset.
This indicates that the discrepancy between the high-risk group
and the normal group is as large as the discrepancy between
the high-risk group and the low-risk group. In contrast, the dis-
crepancy between the low-risk group and the normal group, as
well as between the whole MCI group and the normal group,
is much smaller. This is reasonable since the high-risk group
should be significantly different from other groups such as the
low-risk group or the normal group, while the discrepancy be-
tween other groups should be small. These results validate the
efficacy of our DCSM clustering framework, where we success-
fully identified the high-risk group that should be treated more
carefully. Our study underscores the robustness of our clus-
tering findings and contributes to a better understanding of the
genetic foundations of AD risk subtypes.

We also showcase the targeted genetic association analysis
results of all the methods in Fig. B.9 for a comprehensive com-
parison in the Appendix. We expect to identify more significant
SNPs in the first two columns of each block for each dataset. To
clearly compare them, we sum up the number of “x” markers in
the first two columns for each method. Based on this, KMeans
has 24, Cox PH has 20, Deep Cox has 23, DSM has 22, SCA
has 16, Vadesc has 0, NSC has 29 and our DCSM has 30, which
demonstrates the superiority of the proposed method.

5.4. Interpretability Study

Fig. 5 shows the important brain regions that DCSM pays at-
tention to. The first row shows the AD risk importance of all
the regions, the darker the color is, the more important. The
second row highlights the top ten important regions for each
modality. For AV45 data, our method demonstrates high im-
portance for AD risk prediction on the left fusiform, medial

orbitofrontal, posterior cingulate, and precentral gyri. A sig-
nificant abnormality in amyloid levels has been observed in the
medial orbitofrontal cortex in AD patients (Collij et al., 2020).
This region is associated with the episodic memory and sim-
ulation network and is very susceptible to aging (Fjell et al.,
2014). Additionally, amyloid accumulation and gray matter
atrophy occur simultaneously in AD patients in the fusiform
gyrus (Chang et al., 2016). Furthermore, many studies have re-
ported a significantly increased amyloid level in posterior cin-
gulate Huang et al. (2013); Collij et al. (2020), and the amyloid
accumulation is related to the executive function and memory
decline Ali et al. (2022). It is evident from the FDG data that
the posterior cingulate and the precuneus gyri are two potential
AD biomarkers, which is consistent with prior studies show-
ing severe hypometabolism reductions in MCI and AD patients
Bailly et al. (2015). Moreover, the reduction of metabolism
caused by AD starts from the posterior cingulate cortex and
gradually spreads to the frontal lobe such as the orbitofrontal
gyrus Mosconi (2005); Bailly et al. (2015). For VBM data, the
right hippocampus demonstrates the highest importance, and
bilaterally hippocampus and amygdala regions all show a high
risk of AD. The hippocampal neurons register places and people
in memory, while the amygdala activates related cortical areas
to modulate recognition Petrovic et al. (2008). The atrophy of
the hippocampus is widely considered as the AD biomarker for
early detection citedhikav2011potential, and the study found
that amygdala atrophy is related to hippocampus atrophy and
global AD severity Poulin et al. (2011). These results also pro-
vide directions for discovering potential AD biomarkers.

The Kaplan-Meier plot of DCSM on the PBC benchmark
dataset is displayed in Fig. 6. The plot is accompanied by
CDF (Cumulative Density Function) curves for expert distribu-
tions, which demonstrate interpretability. Notably, the shapes
of the two expert distributions closely resemble the Kaplan-
Meier curves, offering an intuitive insight into how the expert
distributions within the DCSM model effectively steer the pa-
tient clustering process and validate the robustness of data strat-
ification. This alignment between the expert distributions and
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Table 5. C Index and LogRank results compared to Cox PH, Deep Cox, DSM, SCA, and VaDeSC. The best ones are bold.

Metric Method SUPPORT PBC FRAMINGHAM FLCHAIN

C Index

Cox PH 0.8401±0.0070 0.8476±0.0126 0.7580±0.0063 0.7984±0.0046
Deep Cox 0.8053±0.0058 0.8474±0.0181 0.7612±0.0057 0.7893±0.0063

DSM 0.8300±0.0045 0.8363±0.0133 0.7593±0.0050 0.8009±0.0036
SCA 0.8203±0.0121 0.8251±0.0258 0.5311±0.1235 0.7467±0.0091

VaDeSC 0.8419±0.0041 0.8278±0.0085 0.5802±0.0406 0.7886±0.0100
NSC 0.8146±0.0072 0.8178±0.0275 0.7396±0.0175 0.7980±0.0052

DCSM (Ours) 0.8305±0.0028 0.8359±0.0109 0.7530±0.0053 0.7916±0.0074

LogRank

Cox PH 500.3282±60.4977 198.2686±17.3940 576.1450±22.9621 399.0243±25.7657
Deep Cox 326.1931±54.7026 203.3091±22.8343 593.7317±14.4697 403.4643±35.8034

DSM 563.4841±0.0045 196.0912±0.0133 587.5718±0.0050 406.4549±0.0036
SCA 212.5712±26.2629 260.5682±67.4875 278.3525±51.1866 536.1056±109.1680

VaDeSC 196.8495±19.6887 118.9605±77.4716 348.5500±697.1000 95.5291±108.9488
NSC 416.4572±31.9528 300.5617±21.3671 313.3190±41.8324 713.7871±40.9787

DCSM (Ours) 1067.6184±271.6551 302.5395±30.1043 751.9770±48.9725 571.0441±99.0101

(a) KM plot of DCSM (b) Expert distribution of DCSM

Fig. 6. (a) The Kaplan-Meier plots of DCSM on data PBC. The cross mark
indicates censoring. The learned expert distributions are shown in (b). The
shape of the two expert distributions resembles our Kaplan-Meier curves,
facilitating effective data stratification.

the Kaplan-Meier curves further reinforces the efficacy of our
approach.

5.5. Results on Benchmark Datasets

Table 5 shows the C Index values on real data, including the
average results of five independent runs and their standard devi-
ations. These results indicate that our method achieves compet-
itive performance compared to other baselines. Although our
model’s performance was not the best on some datasets, the dif-
ference between the results of DCSM and the best-performing
model are not significant at a 95% confidence interval.

Table 5 also summarizes the results of the LogRank tests.
The LogRank statistic evaluates how well the clustering results
with regard to the survival information. A larger value indicates
better performance. The results demonstrate that our method
outperforms all the baselines on SUPPORT, PBC and FRAM-
INGHAM and secure the second position on FLCHAIN. This
could be more useful than the time-to-event prediction because
such information can facilitate personalized treatment planning.
Clinicians may not be able to decide how to provide customized
treatment merely based on the risk predictions. Instead, cluster-
ing results more intuitively differentiate the patients into groups,
enabling more informed clinical decision-making.

6. Discussion

Generative and discriminative approaches each have their
own strengths and weaknesses. Typically, a generative model
assumes that the data follows a specific distribution, like Gaus-
sian or Weibull distributions. This means that the model can be
trained effectively even with a relatively small amount of data,
as long as the data matches the assumed distribution. However,
if the actual data doesn’t match this assumption, the resulting
model could be biased and lose its ability to work well in dif-
ferent situations. For instance, consider the VaDeSC Manduchi
et al. (2021) model mentioned in our paper. It is a fully gen-
erative model that makes assumptions about both the features
and the survival information in the data. If either of these as-
sumptions is not satisfied, the model will be inferior. Discrimi-
native models, on the other hand, do not make any assumptions
about the data distribution. This means that they can learn the
true pattern from the data, even if the data is not well-behaved.
However, this approach often requires larger amounts of data
to find the right parameters for the model. An example of a
discriminative model is NSC Jeanselme et al. (2022). NSC is
a fully discriminative method that does not make any assump-
tions about the data. However, if the sample size is small, the
model may not be able to learn the true pattern from the data.

A combination of discriminative and generative mechanisms
can mitigate the drawbacks of both approaches. In our case, we
do not make any assumptions about the features, as we believe
that the distribution of features can vary from case to case. Mak-
ing assumptions about the features can limit the model’s capa-
bility. Instead, we assume that the survival information follows
the Weibull distribution, which is a commonly used distribution
for modeling survival timing data. The Weibull distribution is
flexible in that it can mimic different distributions with different
shapes and scales. For example, when the shape parameter is
close to 3, the Weibull distribution approximates a normal dis-
tribution. When the shape parameter is equal to 1, the Weibull
distribution is equivalent to a two-parameter exponential distri-
bution. Therefore, the Weibull distribution is a suitable choice
for modeling survival timing information. Our method also has
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its own limitations. For example, if the number of samples is
limited, the feature information may not be learned well. This
is a common problem in the medical domain, where data is of-
ten scarce. This may be the reason why DCSM does not out-
perform the baseline methods in time-to-event prediction tasks.
Additionally, if the survival timing data are too skewed to be
modeled by the Weibull distribution, the model’s performance
may also be degraded. There is no perfect method that can fit
all cases. However, by combining discriminative and genera-
tive mechanisms, we can develop more robust models that can
handle a wider range of data distributions.

Finally, we want to emphasize that we only focus on two
clusters for Alzheimer’s disease (AD) subtype discovery in this
study. One subtype is associated with a low risk of developing
AD, and the other is associated with a high risk. Our goal is
to help patients and clinicians understand their risk of devel-
oping AD. By identifying people who are at high risk, we can
emphasize the need for early intervention or more customized
treatment. While the high- and low-risk clusters are important,
adding a medium-risk cluster would only confuse patients and
clinicians. This would make our findings less clear and effec-
tive.

7. Conclusion

In this paper, we have proposed a deep hybrid method that
integrates the discriminative and generative strategies into one
framework. Assuming the survival function for each instance
is a weighted combination of constant expert distributions, our
method is capable of learning the weight for each expert distri-
bution discriminatively and the distribution of the survival in-
formation generatively. We demonstrate our method’s superi-
ority by applying it to Alzheimer’s disease subtype discovery.
Genetic association studies along with feature importance anal-
ysis further validate the effectiveness of our proposed method.
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Collij, L.E., Heeman, F., Salvadó, G., Ingala, S., Altomare, D., de Wilde, A.,
Konijnenberg, E., van Buchem, M., Yaqub, M., Markiewicz, P., et al., 2020.
Multitracer model for staging cortical amyloid deposition using pet imaging.
Neurology 95, e1538–e1553.

Cox, D.R., 1972. Regression models and life-tables. Journal of the Royal
Statistical Society: Series B (Methodological) 34, 187–202.

Das, S., Forer, L., Schonherr, S., Sidore, C., Locke, A.E., Kwong, A., Vrieze,
S.I., Chew, E.Y., Levy, S., McGue, M., Schlessinger, D., et al., 2016. Next-
generation genotype imputation service and methods. Nat Genet 48, 1284–
1287.

Dawber, T.R., Meadors, G.F., Moore Jr, F.E., 1951. Epidemiological ap-
proaches to heart disease: the framingham study. American Journal of Public
Health and the Nations Health 41, 279–286.

Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al., 1996. A density-based algo-
rithm for discovering clusters in large spatial databases with noise., in: kdd,
pp. 226–231.

Feng, Y., Kim, M., Yao, X., Liu, K., Long, Q., Shen, L., Alzheimer’s Dis-
ease Neuroimaging, I., 2022. Deep multiview learning to identify imaging-
driven subtypes in mild cognitive impairment. BMC Bioinformatics 23, 402.



12 Given-name Surname et al. /Medical Image Analysis (2023)

Fjell, A.M., McEvoy, L., Holland, D., Dale, A.M., Walhovd, K.B., Initiative,
A.D.N., et al., 2014. What is normal in normal aging? effects of aging,
amyloid and alzheimer’s disease on the cerebral cortex and the hippocam-
pus. Progress in neurobiology 117, 20–40.

Fleming, T.R., Harrington, D.P., 2013. Counting processes and survival analy-
sis. volume 625. John Wiley & Sons.

Flynn, R., 2012. Survival analysis. Journal of Clinical Nursing 21, 2789–2797.
Harrell, F.E., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A., 1982. Evaluat-

ing the yield of medical tests. Jama 247, 2543–2546.
Hartigan, J.A., Wong, M.A., 1979. Algorithm as 136: A k-means clustering

algorithm. Journal of the royal statistical society. series c (applied statistics)
28, 100–108.

Huang, K.L., Lin, K.J., Hsiao, I.T., Kuo, H.C., Hsu, W.C., Chuang, W.L., Kung,
M.P., Wey, S.P., Hsieh, C.J., Wai, Y.Y., et al., 2013. Regional amyloid depo-
sition in amnestic mild cognitive impairment and alzheimer’s disease eval-
uated by [18f] av-45 positron emission tomography in chinese population.
PloS one 8, e58974.

Jack, C. R., J., Barnes, J., Bernstein, M.A., Borowski, B.J., Brewer, J., Clegg,
S., Dale, A.M., Carmichael, O., Ching, C., DeCarli, C., Desikan, R.S.,
Fennema-Notestine, C., Fjell, A.M., Fletcher, E., Fox, N.C., Gunter, J.,
Gutman, B.A., Holland, D., Hua, X., Insel, P., Kantarci, K., Killiany, R.J.,
Krueger, G., Leung, K.K., Mackin, S., Maillard, P., Malone, I.B., Mattsson,
N., McEvoy, L., Modat, M., Mueller, S., Nosheny, R., Ourselin, S., Schuff,
N., Senjem, M.L., Simonson, A., Thompson, P.M., Rettmann, D., Vemuri,
P., Walhovd, K., Zhao, Y., Zuk, S., Weiner, M., 2015. Magnetic resonance
imaging in alzheimer’s disease neuroimaging initiative 2. Alzheimers De-
ment 11, 740–56.

Jagust, W.J., Bandy, D., Chen, K., Foster, N.L., Landau, S.M., Mathis, C.A.,
Price, J.C., Reiman, E.M., Skovronsky, D., Koeppe, R.A., et al., 2010. The
alzheimer’s disease neuroimaging initiative positron emission tomography
core. Alzheimer’s & Dementia 6, 221–229.

Jagust, W.J., Landau, S.M., Koeppe, R.A., Reiman, E.M., Chen, K., Mathis,
C.A., Price, J.C., Foster, N.L., Wang, A.Y., 2015. The alzheimer’s disease
neuroimaging initiative 2 pet core: 2015. Alzheimer’s & Dementia 11, 757–
771.

Jeanselme, V., Tom, B., Barrett, J., 2022. Neural survival clustering: Non-
parametric mixture of neural networks for survival clustering, in: Confer-
ence on Health, Inference, and Learning, PMLR. pp. 92–102.

Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y., 2018.
Deepsurv: personalized treatment recommender system using a cox propor-
tional hazards deep neural network. BMC medical research methodology
18, 1–12.

Klein, J.P., 1991. Small sample moments of some estimators of the variance
of the kaplan-meier and nelson-aalen estimators. Scandinavian Journal of
Statistics , 333–340.

Knaus, W.A., Harrell, F.E., Lynn, J., Goldman, L., Phillips, R.S., Connors, A.F.,
Dawson, N.V., Fulkerson, W.J., Califf, R.M., Desbiens, N., et al., 1995. The
support prognostic model: Objective estimates of survival for seriously ill
hospitalized adults. Annals of internal medicine 122, 191–203.

Kvamme, H., Borgan, Ø., Scheel, I., 2019. Time-to-event prediction with neural
networks and cox regression. arXiv preprint arXiv:1907.00825 .

Kyle, R.A., Therneau, T.M., Rajkumar, S.V., Larson, D.R., Plevak, M.F., Of-
ford, J.R., Dispenzieri, A., Katzmann, J.A., Melton III, L.J., 2006. Preva-
lence of monoclonal gammopathy of undetermined significance. New Eng-
land Journal of Medicine 354, 1362–1369.
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Appendix
In this appendix, we provide additional experimental results including the Kaplan-Meier plots for dataset AV45 and FDG. We also
exhibit the targeted genetic association analyses for all the methods on all the ADNI datasets. Finally, we provide the statistics of
low- and high-risk groups with respect to Age, Education and Gender and use histogram to illustrate the difference between low-
and high-risk groups.

Appendix A. KM Plot on AV45 and FDG

In Fig. A.7 and Fig. A.8 we provide the Kaplan-Meier (KM) plots that corresponds to Table 3. The smaller the LogRank, the
closer the two survival curves. As can be seen, the two survival curves of KMeans are closer to each other compared to survival
models. This shows that survival models can more effectively stratify people into different subgroups with respect to MCI converting
to AD. Especially, the two curves of DCSM are farthest apart from each other. You may notice that the two curves of VaDeSC are
farther to each other than ours, but the number of patients in cluster 1 is only 5 and 6 in Fig. A.7 and Fig. A.8 respectively, which
means that the two clusters are very imbalanced. In addition, the cross mark on the curve indicates censoring and it indicates that
we do not observe the event of MCI converting to AD happens. Thus it is with high probability that the censored samples have low
risk to convert to AD. We can see that in the curve of Cluster 1 of DCSM, the number of cross marks is small while most of the
censored samples are on the low risk data. This validates the effectiveness of DCSM as well.

(a) KMeans (b) Cox PH (c) Deep Cox (d) DSM

(e) SCA (f) VaDeSc (g) NSC (h) DCSM (ours)

Fig. A.7. The Kaplan-Meier plots of KMeans, Cox PH, Deep Cox, DSM, SCA, Vadesc, NSC and DCSM on dataset AV45 of one run. The cross mark on the
curve means censoring. Cluster 0 means low-risk group while Cluster 1 means high-risk group.

Appendix B. Targeted genetic association analyses for other clustering methods

In Fig. B.9, we provide the targeted genetic association analysis results of all the methods. We expect to identify more significant
SNPs in the first two columns of each block for each dataset. To clearly compare them, we sum up the number of “x” markers in
the first two columns for each method. Based on this, KMeans has 24, Cox PH has 20, Deep Cox has 23, DSM has 22, SCA has
16, Vadesc has 0, NSC has 29 and our DCSM has 30, which demonstrates the superiority of the proposed method.

Appendix C. Statistics Regarding Age, Education and Sex

We provide the statistics of high- and low-risk groups with respect to Age, Education and Gender and use histogram to illustrate
the difference between low- and high-risk groups. Table C.6 summarizes the subject characteristics of high- and low- risk group
clustered by all methods. Fig. C.10-C.12 shows the histogram of all methods. We find that the average age of subjects in high-risk
group are higher than that in low-risk group. This is reasonable since older people are more risky to have cognition impairment.
Besides, the cluster results indicates that more education time could reduce the risk to be diagnosed to be AD. Finally, for AV45
and FDG datasets, the ratio of high risk and low risk in female group are smaller than that in male group, while for VBM dataset,
the ratio of high risk and low risk in female group are larger than that in male group.
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(a) KMeans (b) Cox PH (c) Deep Cox (d) DSM

(e) SCA (f) VaDeSc (g) NSC (h) DCSM (ours)

Fig. A.8. The Kaplan-Meier plots of KMeans, Cox PH, Deep Cox, DSM, SCA, Vadesc, NSC and DCSM on dataset FDG of one run. The cross mark on the
curve means censoring. Cluster 0 means low-risk group while Cluster 1 means high-risk group.

Table C.6. Subject characteristics of high- and low-risk group clustered by all methods.

Dataset Method Age Education Gender (M / F)

Risk Group High risk Low risk High risk Low risk High risk Low risk

AV45

KMeans 73.67±6.78 70.82±7.71 16.03±2.84 16.28±2.63 126 / 69 140 / 129
Cox PH 73.03±7.15 70.99±7.64 16.06±2.86 16.29±2.57 140 / 93 126 / 105

Deep Cox 73.32±6.92 70.73±7.76 16.04±2.88 16.31±2.55 136 / 95 130 / 103
DSM 73.18±7.15 70.85±7.59 15.99±2.81 16.36±2.62 133 / 99 133 / 99
SCA 73.56±4.69 71.94±7.57 15.59±2.84 16.20±2.71 13 / 9 253 / 189

VaDeSC 73.96±5.53 71.99±7.48 16.80±1.10 16.16±2.74 4 / 1 262 / 197
NSC 72.98±7.42 71.31±7.43 16.04±2.82 16.27±2.65 114 / 83 152 / 115

DCSM 73.67±6.99 71.43±7.54 15.93±2.73 16.26±2.71 69 / 52 197 / 146

FDG

KMeans 74.67±6.69 68.85±7.09 15.86±2.83 16.50±2.55 154 / 99 111 / 101
Cox PH 73.67±7.25 70.35±7.30 15.97±2.89 16.33±2.54 134 / 99 131 / 101

Deep Cox 73.42±7.22 70.60±7.44 15.86±2.86 16.44±2.55 137 / 96 128 / 104
DSM 72.82±7.19 71.20±7.64 16.16±2.80 16.14±2.65 141 / 92 124 / 108
SCA 75.79±7.04 71.60±7.39 15.48±2.76 16.22±2.71 25 / 21 240 / 179

VaDeSC 73.82±7.87 71.99±7.46 16.67±1.03 16.14±2.74 5 / 1 260 / 199
NSC 71.51±7.41 72.23±7.48 16.31±2.68 16.08±2.74 78 / 61 187 / 139

DCSM 73.40±7.09 71.56±7.52 15.99±2.67 16.20±2.74 62 / 51 203 / 149

VBM

KMeans 75.33±6.60 69.01±6.90 15.91±2.85 16.37±2.66 136 / 78 128 / 118
Cox PH 73.46±7.29 70.44±7.32 16.19±2.76 16.12±2.77 138 / 92 126 / 104

Deep Cox 73.46±7.38 70.45±7.23 16.20±2.79 16.11±2.74 131 / 99 133 / 97
DSM 73.44±7.40 70.47±7.23 16.13±2.84 16.18±2.68 138 / 92 126 / 104
SCA 73.25±7.07 64.82±5.15 16.12±2.80 16.34±2.53 242 / 147 22 / 49

VaDeSC 74.45±9.38 71.93±7.45 17.50±1.91 16.14±2.76 1 / 3 263 / 193
NSC 71.24±7.02 72.41±7.70 16.07±2.70 16.21±2.80 103 / 76 161 / 120

DCSM 74.24±6.70 71.17±7.55 16.30±2.63 16.10±2.80 72 / 45 192 / 151
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(h) DCSM
Fig. B.9. Targeted genetic association results of Kmeans. In the parentheses of the vertical label is the name of the gene closest to the corresponding SNP.
The darkness of each blue patch represents the negative logarithm of p-value regarding each SNP. The darker the patch is, the more significant the SNP is.
“x” marker on the patch means the SNP is statistically significant after FDR correction.
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Fig. C.10. Distribution of (a) age, (b) education and (c) gender of high and low risk group. Dataset is AV45.
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Fig. C.11. Distribution of (a) age, (b) education and (c) gender of high and low risk group. Dataset is FDG.
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Fig. C.12. Distribution of (a) age, (b) education and (c) gender of high and low risk group. Dataset is VBM.
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