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Abstract. We introduce an informative metric, called morphometric
correlation, as a measure of shared neuroanatomic similarity between
two cognitive traits. Traditional estimates of trait correlations can be
confounded by factors beyond brain morphology. To exclude these con-
founding factors, we adopt a Gaussian kernel to measure the morpho-
logical similarity between individuals and compare pure neuroanatomic
correlations among cognitive traits. In our empirical study, we employ a
multiscale strategy. Given a set of cognitive traits, we first perform mor-
phometric correlation analysis for each pair of traits to reveal their shared
neuroanatomic correlation at the whole brain (or global) level. After that,
we extend our whole brain concept to regional morphometric correla-
tion and estimate shared neuroanatomic similarity between two cognitive
traits at the regional (or local) level. Our results demonstrate that mor-
phometric correlation can provide insights into shared neuroanatomic
architecture between cognitive traits. Furthermore, we also estimate the
morphometricity of each cognitive trait at both global and local levels,
which can be used to better understand how neuroanatomic changes
influence individuals’ cognitive status.
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1 Introduction

To date, magnetic resonance imaging (MRI) scans have been widely used in many
anatomical studies of the human brain [12,13,15]. In brain disorder studies, it is
an important research topic to identify pathological changes in the brain. Most
neurodegenerative diseases, such as Alzheimer’s Disease (AD), together with
cognitive impairments can be detected through brain atrophy patterns captured
by structural MRI (sMRI). Several automated techniques have been developed
to assess brain atrophy. Voxel-based morphometry (VBM) [1,20] is one of the
widely used techniques that provide biologically plausible results by voxel-wise
statistical tests to identify brain anatomy differences between different popula-
tions.

Recently, substantial attention has been given to mapping associations
between neuroanatomic features and complex behavioral or cognitive traits in
the field of brain image analysis [15-17,21]. The concept of “morphometricity”
[11] was first proposed to measure the proportion of a trait variance explained by
neuroanatomic features in the brain. Grey-matter correlation [3] was introduced
to capture the shared morphometricity of two quantitative traits. Both in the
morphometricity [11] study and the grey-matter correlation [3] study, the whole
brain morphology measurements were used and detailed ROI-level signatures
were ignored. Thus, in this work, we propose an informative metric, named
“morphometric correlation” and construct the morphological similarity matrix
using the Gaussian kernel to measure and reveal the shared neuroanatomic sig-
natures across cognitive traits. Furthermore, we employ a multiscale strategy
and extend the concept of morphometricity and morphometric correlation from
its original definitions at the whole brain (or global) level to a more focal (or
local) level based on a region of interest (ROI).

Our contributions can be summarized as follows.

1. Traditional estimates of correlations between two cognitive traits are con-
founded by factors beyond the brain morphology. We introduce morphomet-
ric correlation, as a measure of shared neuroanatomic similarity between two
cognitive traits.

2. We propose a non-linear (Gaussian) kernel to construct the similarity rela-
tionship matrix. The Gaussian kernel can better capture nonlinear and mul-
tivariate associations between genes and traits [9]. We demonstrate in our
empirical study that the proposed Gaussian kernel can capture more neu-
roanatomic signatures than the traditional linear kernel used in grey-matter
correlation [3].

3. The previous studies [2,3,11] only applied region of interest (ROI) analysis
on the study of morphometricity. In this work, we perform a multiscale mor-
phometric correlation analysis. Specifically, we extend the whole brain mor-
phometric correlation to the local level and estimate shared neuroanatomic
similarity between two cognitive traits at the regional (or local) level.

4. Our empirical study has yielded multiple interesting findings. We have
observed that the estimated morphometric correlations are stronger than the



Multiscale Morphometric Correlation Analysis 229

direct phenotypic correlations between most cognitive trait pairs, except for
the morphometric correlation between MMSE and ADAS13. The ROI-based
morphometric correlation between MMSE and ADAS13 using our multiscale
strategy can identify multiple ROIs that capture more shared morphological
signatures than the whole brain. At the same time, we also compute the whole
brain and ROI-based morphometricity. It suggests cognitive traits MMSE and
ADASI13 are most associated with the human brain.

Our study can quantify statistical associations between neuroanatomic fea-
tures and cognitive phenotypes at the population level. The algorithm we use is
computationally efficient in the way that it estimates the (co)variance param-
eters without cross-validation. Our study provides new insights to investigate
the associations between the cognition and brain morphology. Whole brain mor-
phometricity and morphometric correlation are biologically interpretable, and
could be used to conduct morphological and cognitive studies in the future. Fur-
thermore, our proposed multiscale strategy can better discover the ROI-level
imaging cognition associations and reveal the correlation between two cognitive
measurements captured by ROI-level brain morphology.

2 Methods

We summarize our overall experimental pipeline in Fig.1. The pipeline is
designed to identify brain imaging cognition associations at multiple scales: one
revealed by the whole brain (global) measurements and the other revealed by the
ROI-based (local) measurements. First, we use Statistical Parametric Mapping
[1,20] to automatically process sMRI scans and obtain the volumetric summary
statistics of each voxel. Voxel-based morphometry (VBM) constitutes a compre-
hensive measurement of the structural anatomy. Next, we use Gaussian kernel
[9] to calculate the pairwise morphological similarity between individuals and
obtain a morphological relationship matrix (MRM). First of all, we construct
the MRM using all the voxels within the whole brain. After that, we construct
the MRM using all the multivariate voxel measures within each ROI. Finally,
based on global MRM (or local MRM), we estimate whole brain (or ROI-based)
morphometricity and morphometric correlation using the average information
restricted maximum likelihood (REML) algorithm. Our simulation experiment
demonstrates that applying the Gaussian kernel can be less confounded by fac-
tors beyond brain morphology. In the real data experiment, 185,405 voxels are
used to analyze the whole-brain morphometricity and morphometric correlation
across seven clinical cognitive assessment scores in ADNI [18,19] dataset. Then,
we extend our method to explore morphometric patterns at the ROI level instead
of the global neuroanatomy by estimating the ROI-based morphometricties and
morphometric correlations. Our results demonstrate the promise of our proposed
method in offering a unique perspective to reveal the underlying neuroanatomic
relationship among cognitive traits.
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Fig. 1. Morphometric Correlation Analysis Pipeline. Structural MRI scans are pro-
cessed to obtain voxel-based morphometry (VBM). We first construct a morphological
relationship matrix (MRM) using voxels within whole brain. Then, we use this MRM to
obtain global morphometricity and morphometric correlation via average information
REML algorithm. After that, we construct several morphological relationship matri-
ces using voxels within each ROI. Then, we obtain ROI-based morphometricity and
morphometric correlation based on these MRMs

2.1 Bivariate Linear Mixed Effect Model

The morphometricity and morphometric correlation are grounded in the follow-
ing bivariate linear mixed effect (LME) model [7]:

Y1 = Xb1+a1+51,
yo = Xby + as + €9,

(1)
where y; is an n x 1 vector of a quantitative phenotype trait ¢ with n being the
number of subjects, b; is a s x 1 vector of fixed effect, X is an n x s matrix of
confounding variables with s being the number of confounding variables, a; is
an n x 1 vector of random effects with a; ~ N(0,A402)) and ¢; ~ N(0,102)
is the error term. A is interpreted as the morphological relationship matrix
(MRM). MRM quantifies the morphological similarity between two individu-
als using brain morphology measurements. We use the Gaussian-type similarity
metric to accurately measure the similarity from sMRI scan morphometry. The
(k,j)-th entry of MRM [9,11] is defined as

2
Z — Z;
Ay =exp [~ 3 B E)T) @
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where zy; is the (k,1)-th elements of imaging measurements matrix Z, refers to
the morphometry of I-th voxel of k-th subjects, s; is the sample standard error
of the I-th voxel and m is the number of voxels.

The difference between the morphological relationship matrix and brain relat-
edness matrix (BRM) used in grey-matter correlation [3] is the method to con-
struct the relationship matrix. Brain relatedness matrix B use linear kernel to
quantify the similarities between individuals, which is defined as B = %Z VA
where m is the number of measurements, in this case, m is the number of voxels
and Z is a standardized brain imaging measurement matrix.

Formally, the morphometricity of a given trait [11] is the proportion of its
phenotypic variation that can be explained by brain morphology, the variation
of which is captured by MRM. The morphometricity for trait ¢ can be defined

as

o2

2 aq
m; = O,gi + a,gi ’ (3)
where Ugi is the phenotypic variance explained by brain morphology, and Ugi —l—a?i
is the total phenotypic variance.
Morphometric correlation then measures the degree of brain morphology sim-
ilarity to which two traits have in common, the correlation of which is captured
by MRM. We define the morphometric correlation as

= ()

0a,0a,
where p is the covariance between the brain voxels associations with each trait.
We can therefore obtain morphometricity and morphometric correlation by
estimating variance and covariance parameters § = (02,02 ,02 ,0Z2,,p). The

a1’ €1 ay?
estimators are usually obtained by maximizing a log-likelihood function.

2.2 Efficient Average Information REML Algorithm

The average information restricted maximum likelihood (REML) algorithm has
been widely used in estimating variance and covariance parameters [3,8,22]. The
average information matrix has been proved [8,23] much more computationally
efficient than the observed information matrix [5,10] and Fisher information
matrix [5,6]. By assuming bivariate normality of two traits y;, y2, the joint dis-
tribution of two traits can be written as

)G e)

The variance matrix V() is defined as

_ [Ao2 + Io? Ap
V(Q)—|: lAp ! A0'22+10'32 9
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where A is the morphological relationship matrix defined in Eq. (2), and I is
an n X n identity matrix. o7, and o2, are morphometric variance and residual
variance of trait ¢, respectively, and p is the morphometric covariance.

We obtain the estimators by maximizing the restricted log-likelihood function
of Eq. (5) (ignoring the constant), | = —1(log |V ()| + log | XTV(0)7'X| +
yT Py), where | - | refers to the determinant of the matrices. And the matrix P
is defined as

P=V@O) ' -VvO ' XXTVEO X)) XTV(e) (7)

We use restricted maximum likelihood (REML) rather than maximum likelihood

(ML) due to the unbiasedness of REML estimation of (co)variance parameters
é\REML = argmaxal

Next, the score function S(6) is defined as S(6;) = 88[ = w
where tr( ) is the trace of the matrix and the (4, j)-th entry of average 1nformat10n

matrix [4] is defined as

R
y' PV, PV;Py
AI(G)ij = fj, (8)

where V; = 8V(9)_
The 1n1t1a1 guess of parameters is given by arbitrary values. In the first step,
we update the parameters using the expected maximization (EM) algorithm,

051) — 950) i@f(O)S(O(O ). Then, our method switches to the average infor-

mation REML algorithm, 80+ — () 4 AI(G(t))_ls(G(t)), updating param-
eters until the log-likelihood function satisfies the criteria [+ @ < 1074,
In the iteration process, if any parameters 02 or 02 escape from the param-

eter space, ie. if 02 or o2 is less than 0, it will be set to 1076 x o2 . For
parameter p, if its absolute value |p| larger than /o2 o2 , it will be set to

p = sign(Cov (y1,¥2))\/02,04,, where sign(-) is the signum function.

Significance testing of morphometricity estimates m? can be obtained via
the likelihood ratio test (LRT) Under the null hypothesis (02, = 0), the LRT
statistic follows 2 x3+2x?, where x? is one degree of freedom x? distribution and
X2 is x? distribution with all probability mass at zero. Similarly, the significance

testing for correlation coefficient p can also be obtained via LRT.

3 Experimental Results

3.1 Materials

The neuroimaging, demographic, and clinical cognitive assessment data used in
the preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (http://adni.loni.usc.edu) [18,19]. The
ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
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whether serial magnetic resonance imaging (MRI), positron emission tomogra-
phy (PET), other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). Up-to-date information about the
ADNI is available at www.adni-info.org.

Structural MRI scans were processed with voxel-based morphometry (VBM)
using the Statistical Parametric Mapping (SPM) software tool [1]. All scans were
aligned to a T1-weighted template image, segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) maps, normalized to the
standard Montreal Neurological Institute (MNI) space as 2 x 2 x 2 mm? voxels.
The GM maps were extracted and smoothed with an 8 mm FWHM kernel, and
analyzed in this study. A total of 185,405 non-background voxels, covering corti-
cal, sub-cortical, and cerebellar regions and measuring GM density, were studied
in this work as whole brain morphology measurements. Based on the AAL atlas
[14], 116 ROI-based morphology measurements are constructed by selecting the
voxel-level measurements within each ROI.

Age and gender were used as covariates, following a prior study [11]. Our
analysis included seven clinical cognitive assessment scores from the QT-PAD
project (http://www.pidcs.org/qt-pad-challenge). These cognitive scores are
Alzheimer’s Disease Assessment Scale (ADAS13), Clinical Dementia Rating Sum
of Boxes (CDRSB), Rey Auditory Verbal Learning Test (RAVLT .learning), Rey
Auditory Verbal Immediate Test (RAVLT.immediate), Rey Auditory Verbal For-
getting Test (RAVLT .forgetting), Mini-Mental State Exam (MMSE), and Func-
tional Activities Questionnaire (FAQ). All subjects with no missing cognitive
measures and sMRI measures of the first visit were included in this study. After
data preprocessing, there are 1,451 participants (n = 1,451) left, including 821
males and 630 females. The average age of participants is 73.9, and the standard
deviation of age is 7.1.

3.2 Simulation Results

To show the superior performance of the Gaussian kernel, we also implement
the linear kernel for comparison on the simulated data. We first generate 100
pairs of synthetic quantitative traits with joint distribution as shown in Eq. (5).
The brain morphometry matrix Z used in the simulation experiment is the left
hippocampus voxel-based morphometry. Then the Gaussian kernel MRM A can
be obtained by Eq. (2), and the linear kernel BRM B can be obtained by doing
the inner product of normalized Z and Z7. To meet the normality assumption
of the model, we first uniformly simulate 2, from [0,1], then let 02, =1 — 02,
we also uniformly simulate p from [0,1]. Then we could obtain ground truth
morphometricity and morphometric correlation based on Eq. (3) and Eq. (4)
respectively. Next, pair (a1, as) is simulated from bivariate normal distribution

ai N 0] [02 A pA
az 0] | pA 02,A| )"


www.adni-info.org
http://www.pi4cs.org/qt-pad-challenge

234 7. Wen et al.

g; is simulated from normal distribution N (0, (1 — Ugi)Ian), where I,,x,, is the
n by n identity matrix. The confounding variables we select are age and gender
variables. Finally, we have the two traits y; and ys by Eq. (1). We then estimate
the variance and covariance parameters of synthetic quantitative traits using
the average information REML algorithm. Once we obtain the estimated Ugi,
agi and p, the estimated morphometricity and morphometric correlation can be
obtained by Eq. (3) and Eq. (4) respectively.

Figure 2A and Fig. 2B show the comparisons between estimated morphome-
tricities using MRM and BRM (3] respectively. The estimated morphometricity
using our method shows better concordance with the synthetic morphometric-
ity, in which the correlation between synthetic and estimated morphometricty
is 0.99 (Fig.2A). The correlation between synthetic and estimated morphomet-
ricty using the linear kernel is 0.96 (Fig. 2B), which indicates linear kernel is also
reliable in practice. The simulation comparison of morphometricity estimations
suggests our method is more accurate than the linear kernel method.

Comparisons of estimated morphometric correlations using different relation-
ship matrices are shown in Fig. 2C (MRM) and Fig. 2D (BRM) [3] respectively.
Most of the Gaussian-based estimated morphometric correlations are concor-
dance with the synthetic morphometric correlations (the correlation is 0.95
in Fig. 2C). It indicates that the estimated morphometric correlation is approxi-
mately the same as the truth morphometric correlation. However, Fig. 2D reveals
the correlation between ground truth and estimated morphometric correlation
is only 0.89, which is less accurate. These two figures show that the Gaussian
kernel is more reliable and accurate in the morphometric correlation analysis.
Estimated morphometric correlation also suggests that morphometric correla-
tion between two traits is not reliable when the morphometricity of either trait
is small.
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Fig. 2. Comparison of true and estimated morphometricities using different similar-
ity matrix A. MRM and B. BRM. Comparison of true and estimated morphometric
correlation using different similarity matrix C. MRM and D. BRM.

3.3 Whole Brain Morphometric Correlation and Morphometricity

The traditional phenotypic correlation can be confounded by factors beyond
brain morphology. Simulation results indicate that MRM is much more accu-
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Fig. 3. (a) Morphometric correlation among seven cognitive traits. Upper triangle
shows the morphometric correlation between two traits, while lower triangle is the
phenotypic correlation between pairs of traits. An asterisk indicates significance with
p < 0.05, two asterisks indicate significance with p < 0.01, three asterisks indicates
significance with p < 0.001. (b) Morphometricity estimations of seven cognitive traits
using Gaussian and linear kernel. Error bars indicate SE of the estimates.

rate than BRM when estimating the morphometric correlation. Besides, the
grey-matter correlation strategy [3] failed to estimate the brain morphometric
correlation between two given cognitive traits in our real experiment. Thus, we
present our estimated pairwise morphometric correlations in Fig.3(a), which
reveal the shared neuroanatomic similarity between two cognitive traits. The
lower triangle shows the phenotypic correlation between two traits, which is the
Pearson correlation between two traits. The upper triangle is our estimated mor-
phometric correlation. The morphometric correlation and phenotypic correlation
among seven cognitive traits have the same direction, except for the correlation
between MMSE and RAVLT .forgetting. Most of the morphometric correlation
and phenotypic correlation are significant (p < 0.005). The largest positive mor-
phometric correlation is 72 = 0.98, which is presented between ADAS13 and
CDRSB, as well as between FAQ and CDRSB. Besides, both the morphome-
tric correlation between ADAS13 and FAQ and the morphometric correlation
between RAVLT learning and RAVLT.immediate are large (with 72 = 0.97).
They are larger than their underlying phenotypic correlation. The largest neg-
ative correlation is founded between FAQ and RAVLT.learning (7% = —0.85),
whose corresponding phenotypic correlation is only —0.44.

The morphometric correlation between ADAS13 and MMSE (—0.4) is not
as strong as their phenotypic correlation (—0.74). First note that, the negative
correlation is reasonable, since the lower scores of MMSE indicating of poorer
performance and greater cognitive impairment, while higher scores of ADAS13
reflect poorer performance. Next, this result indicates that the shared brain
morphology variants of two traits are able to weaker than their shared phenotypic
variants. Finally, we notice that the detailed regional associations can be ignored
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when using whole brain morphology. This evidence motivates our ROI-based
morphometric correlation study.

Simulation results indicate the Gaussian kernel is slightly more accurate than
the linear kernel. The results of whole brain morphometricity estimations again
demonstrate that the Gaussian kernel can capture more neuroanatomic signa-
tures than the linear kernel. We compare brain morphometricity of seven cog-
nitive traits using Gaussian kernel or linear kernel in Fig. 3(b). These cognitive
traits are widely used in measuring cognition impairment and memory loss. The
morphometricity results estimated by the Gaussian kernel are much higher than
that used by the linear kernel, especially for traits MMSE and ADAS13. All the
cognitive traits are statistically significantly associated with whole brain mor-
phology (all the p-value are less than 0.005). The Gaussian-based MRM results
reveal that MMSE and ADAS13 are substantially morphometric (with point
estimates of 0.98 and 0.91 respectively), suggesting that these two cognitive
traits are associated with substantial anatomical signatures. However, morpho-
metricity values of CDRSB, RAVLT.immediate, FAQ, and RAVLT .learning are
moderate, all greater than 0.4. Finally, the estimated morphometricity value
of RAVLT forgetting is only 0.18, which indicates only 18% of variation of
RAVLT forgetting traits could be explained by brain morphometry.

In practice, the MMSE score is frequently used for Alzheimer’s disease drug
studies and the ADAS13 score evaluates memory, reasoning, and language. Our
method also reveals that these two traits are associated with substantial anatom-
ical signatures.
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Fig. 4. ROI-based morphometric correlation between ADAS13 and MMSE. The ROIs
are those most related to AD.

3.4 Brain ROI-Based Morphometric Correlation
and Morphometricity

To reveal ignored morphometric correlations at the regional level, we apply the
multiscale strategy by using the voxels within each ROI instead of the whole
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brain as morphology measurements. Then, we calculate the local (regional) MRM
and the variation that could be captured by the local MRM. The extension is
important since the spatial association between brain morphology and cogni-
tive traits can not be revealed when using whole brain morphometry. We choose
and analyze 14 regions that are most related to AD and reveal the ROI-based
morphometric correlation between MMSE and ADAS13. Figure 4 shows the spa-
tial map and values of ROI level morphometric correlation between MMSE and
ADAS13. The ROI level morphometric correlation can be larger than that using
whole brain morphometry. The shared morphological architectures captured by
all AD related regions (except region Amygdala_R) are larger than that captured
by the whole brain (—0.40). Especially, regions Lingual_R, Temporal_Inf_R,
Temporal_Inf_L, and Lingual_L show the morphometric correlation between
two traits are even larger than their phenotypic correlation (—0.74). This find-
ing suggests that some regions are stronger to capture the association between
two cognitive traits than the whole brain. Figure 4 also indicates most regions
in the right brain can capture more similarity of two traits than regions in the
left brain. This evidence is promising and has an important impact on revealing
structure changes within ROIs from an evolutionary morphological perspective.

Fig. 5. ROI-based morphometricity of A. ADAS13 and B. MMSE.

We have shown in Fig.3(b), MMSE and ADAS13 have substantial neu-
roanatomic signatures associated with brain morphology. Then, we extend our
analysis to the ROI-level morphometricity of ADAS13 and MMSE using mul-
tiscale strategy. At this time, we estimate associations between 116 regions
and cognitive traits. The regional level morphometricity of these two cogni-
tive traits is shown as spatial morphometricity heatmap in Fig.5. In con-
trast to the whole brain morphometricity of ADAS13 cognitive trait (0.91),
the top 5 ROIs which are identified as having substantial association with
the ADAS13 are Pallidum_R (0.67), Hippocampus_L (0.66), Amygdala_L (0.65),
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ParaHippocampal_L (0.61), Hippocampus_R (0.55). For MMSE, the top 5 ROIs
are Vermis_1_2 (0.93), Pallidum_R (0.93), Vermis_10 (0.91), Hippocampus_R
(0.91), Amygdala_L (0.90). Both ADAS13 and MMSE are highly associated with
regions Hippocampus and Amygdala, which suggests our multiscale strategy can
provide strong evidence in prioritizing regions that are more related to the given
phenotype. Thus, our regional morphometricity strategy bridges the gap that
regional information is ignored by whole brain morphometricity.

The spatial morphometricity map also reveals the nonsymmetric distributed
morphometricity, suggesting that the variation of cognitive scores captured by
ROIs are not equal for left and right regions. The ROI level morphometricity
analysis is able to identify relevant neuroimaging biomarkers and to explain brain
structure variants related to cognitive variants.

4 Conclusion and Discussions

In this study, we have introduced a novel concept “morphometric correlation” as
a measure of the morphological signatures shared by complex traits. To exclude
the effect caused by factors other than brain morphology, we have adopted a
Gaussian kernel to construct the relationship matrix and average information
REML algorithm to obtain unbiased estimates of the morphometric correlation.
The estimated morphometric correlation is able to quantify the neuroanatomic
aggregate features of pairs of quantitative traits. The superiority of our method
has been demonstrated by both simulation results and the applications of esti-
mating morphometric correlations among cognitive traits. We then use a multi-
scale strategy to extend the concept to the local level by using the voxels within
each ROL.

We have observed that the estimated morphometric correlations are stronger
than the pure phenotypic correlations between most pairs of cognitive traits.
Both the morphometric correlation of ADAS13 and CDRSB and the morphome-
tric correlation of CDRSB and FAQ are significantly high (72 = 0.97, p < 0.001).
The morphometric correlation of FAQ and RAVLT.learning is significantly low
(72 = —0.85, p < 0.001). Although the whole brain morphometric correlation
between MMSE and ADAS13 is not as strong as the corresponding phenotypic
correlations, the ROI-based morphometric correlation identifies some ROIs that
capture more shared morphological signatures than the whole brain. The priori-
tized ROIs may provide new insights for future brain morphology and cognition
studies.

We have also estimated the morphometricity of cognitive traits, which is the
proportion of the phenotypic variation captured by the brain morphology. In the
application to the whole brain morphometricity analysis, our method was able
to accurately reveal the variation explained by brain morphology. The cognitive
traits MMSE and ADAS13 are substantially morphometric. However, the ROI-
based morphometricity of MMSE is moderate, while the ROI-based morphome-
tricity of ADAS13 is modest. The ROI level morphometricity analysis provides
important information for understanding brain structural variation related to
cognitive variation and can potentially help characterize the progression of AD.
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