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ABSTRACT
To address the big data challenges, serverless multi-party collabo-

rative training has recently attracted attention in the data mining

community, since they can cut down the communications cost by

avoiding the server node bottleneck. However, traditional serverless

multi-party collaborative training algorithms were mainly designed

for balanced data mining tasks and are intended to optimize accu-

racy (e.g., cross-entropy). The data distribution in many real-world

applications is skewed and classifiers, which are trained to improve

accuracy, perform poorly when applied to imbalanced data tasks

since models could be significantly biased toward the primary class.

Therefore, the Area Under Precision-Recall Curve (AUPRC) was in-

troduced as an effective metric. Although multiple single-machine

methods have been designed to train models for AUPRC maxi-

mization, the algorithm for multi-party collaborative training has

never been studied. The change from the single-machine to the

multi-party setting poses critical challenges. For example, existing

single-machine-based AUPRC maximization algorithms maintain

an inner state for local each data point, thus these methods are not

applicable to large-scale multi-party collaborative training due to

the dependence on each local data point.

To address the above challenge, in this paper, we reformulate

the serverless multi-party collaborative AUPRC maximization prob-

lem as a conditional stochastic optimization problem in a server-

less multi-party collaborative learning setting and propose a new

ServerLess biAsed sTochastic gradiEnt (SLATE) algorithm to di-

rectly optimize the AUPRC. After that, we use the variance reduc-

tion technique and propose ServerLess biAsed sTochastic gradiEnt

with Momentum-based variance reduction (SLATE-M) algorithm to
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improve the convergence rate, which matches the best theoretical

convergence result reached by the single-machine online method.

To the best of our knowledge, this is the first work to solve the

multi-party collaborative AUPRC maximization problem. Finally,

extensive experiments show the advantages of directly optimizing

the AUPRC with distributed learning methods and also verify the

efficiency of our new algorithms (i.e., SLATE and SLATE-M).
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1 INTRODUCTION
Multi-party collaborative learning, such as distributed learning

[2, 9, 19] (typically focus on IID data and train learning model using

the gradients from different parties) and federated learning [24]

(focus on non-IID data and train model via periodically averaging

model parameters from different parties coordinated by the server),

have been actively studied at past decades to train large-scale deep

learning models in a variety of real-world applications, such as

computer vision [11, 37], natural language processing [10], gen-

erative modeling [4], etc. In literature, multi-party collaborative

learning is also often called decentralized learning (compared to

centralized learning in the single-machine setting). With different

network topology, serverless algorithms could be converted into

different multi-party collaborative algorithms (seen in 3.1). On the

other hand, although there are many ground-breaking studies with

DNN in data classification [11, 27, 32, 36], most works focus on

balanced data sets, optimize the cross entropy, and use accuracy to
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measure model performance. From the viewpoint of optimization,

the cross entropy between the estimated probability distribution

based on the output of deep learning models and encoding ground-

truth labels is a surrogate loss function of the misclassification

rate/accuracy. However, in many real-world applications, such as

healthcare and biomedicine [8, 18, 47], where patients make up a far

smaller percentage of the population than healthy individuals, the

data distribution is frequently skewed due to the scarce occurrence

of positive samples. The data from the majority class essentially

define the result, and the accuracy fails to be an appropriate met-

ric to assess classifiers’ performance. As a result, areas under the

curves (AUC), including area under the receiver operating curve

(AUROC) and area under precision-recall curves (AUPRC) are given

much attention since it excels at discovering models with strong

predictive power in imbalanced binary classification [6, 16].

The prediction performance of models, which are trained with

cross entropy as the surrogate loss for imbalanced binary classifi-

cation, may be subpar because cross-entropy is not the surrogate

function of AUC, which call for the study of AUC maximization.

Recent works have achieved remarkable progress in directly opti-

mizing AUROC with single-machine and multi-party training algo-

rithms [21, 48]. Liu et al. [21] constructed deep AUC as a minimax

problem and resolved the stochastic AUC maximization problem

with a deep neural network as the classifier. Recently, Yuan et al.

[43] and Guo et al. [13] extended the single-machine training to

federated learning and proposed a PL-strongly-concave minimax

optimization method to maximize AUROC.

However, AUROC is not suitable for data with a much larger

number of negative examples than positive examples, and AUPRC

can address this issue because it doesn’t rely on true negatives.

Given that an algorithm that maximizes AUROC does not neces-

sarily maximize AUPRC [8], the design of AUPRC maximization

algorithms has attracted attention [17, 26, 30, 31, 35]. Nonetheless,

the multi-party algorithm for AUPRC maximization problems has

not been studied. Existing AUPRC optimization methods cannot

be directly applied to multi-party collaborative training, since they

mainly focus on the finite-sum problem and maintain an inner state

for each positive data point, which is not permitted in a multi-party

online environment. In addition, to improve communication effi-

ciency, serverless multi-party collaborative learning algorithms are

needed to avoid the server node bottleneck in deep learning training.

Therefore, it is desired to develop efficient stochastic optimization

algorithms for serverless multi-party AUPRC maximization for

deep learning to meet the challenge of data mining on large-scale

imbalanced data sets.

The challenges to design serverless multi-party collaborative

AUPRC maximization algorithm are three-fold. The first difficulty

lies in the complicated integral definition. To overcome the problem

of the continuous integral, we can use some point estimators. Sev-

eral estimators of AUPRC have been presented in previous works

[3, 5]. The average precision (AP) estimator is one of the most pop-

ularly used estimators. AP can be directly calculated based on the

sample prediction scores and is not subject to sampling bias. It is

ideally suited to be used in stochastic optimization problems due

to these advantages.

The second difficulty lies in the nested structure and the non-

differential ranking functions in the AP. Traditional gradient-based

gradient descent techniques cannot directly be used with the origi-

nal concept of AP. Most existing optimization works use the surro-

gate function to replace the ranking function in the AP function

[13, 17, 21, 26, 31, 35]. We can follow these works and substitute a

surrogate loss for the ranking function in the AP function.

The third difficulty is that existing algorithms only focus on

finite-sum settings and maintain the inner estimators 𝑢𝑡 for each

positive data point, which is not permitted in multi-party collabo-

rative online learning. Therefore, despite recent developments, it

is still unclear if there is a strategy to optimize AUPRC for multi-

party collaborative imbalanced data mining. It is natural to ask the

following question:

Can we design serverless multi-party stochastic op-
timization algorithms to directly maximize AUPRC
with guaranteed convergence?

In this paper, we provide an affirmative answer to the aforemen-

tioned question. We propose the new algorithms for multi-party

collaborative AUPRCmaximization and provide systematic analysis.

Our main contributions can be summarized as follows:

• We cast the AUPRC maximization problem into non-convex

conditional stochastic optimization problem by substituting a

surrogate loss for the indicator function in the definition of AP.

Unlike existing methods that just focus on finite-sum settings,

we consider the stochastic online setting.

• We propose the first multi-party collaborative learning algo-

rithm, ServerLess biAsed sTochastic gradiEnt (SLATE), to solve

our new objective. It can be used in an online environment and

has no reliance on specific local data points. In addition, with

different network topologies, our algorithm can also be used

for distributed learning and federated learning.

• Furthermore, we propose a stochastic method (i.e., SLATE-M)

based on the momentum-based variance-reduced technique

to reduce the convergence complexity in multi-party collab-

orative learning. Our method can reach iteration complexity

of 𝑂
(
1/𝜖5

)
, which matches the lower bound proposed in the

single-machine conditional stochastic optimization.

• We conduct extensive experiments on various datasets com-

pared with previous stochastic multi-party optimization algo-

rithms to verify the effectiveness of our methods.

2 RELATED WORK
2.1 AUROC Maximization
There is a long line of research that investigated the imbalanced data

mining with AUROC metric [13, 21, 40, 43, 48], which highlight the

value of the AUC metric in imbalanced data mining. Earlier works

about AUROC focused on linear models with pairwise surrogate

losses [18]. Furthermore, Ying et al. [40] solved the AUC square sur-

rogate loss using a stochastic gradient descent ascending approach

and provided a minimax reformulation of the loss to address the

scaling problem of AUC optimization. Later, Liu et al. [21] stud-

ied the application of AUROC in deep learning and reconstructed

deep AUC as a minimax problem, which offers a strategy to resolve

the stochastic AUC maximization problem with a deep neural net-

work as the predictive model. Furthermore, some methods were
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proposed for multi-party AUROC maximization. Yuan et al. [43]

and Guo et al. [13] reformulated the federated deep AUROC maxi-

mization as non-convex-strongly-concave problem in the federated

setting. However, the analyses of methods in [43] and [13] rely on

the assumption of PL condition on the deep models. Recently, [42]

developed the compositional deep AUROC maximization model

and [46] extend it to federated learning.

2.2 AUPRC Maximization
Early works about AUPRC optimization mainly depend on tradi-

tional optimization techniques. Recently, Qi et al. [26] analyzed

AUPRC maximization with deep models in the finite-sum setting.

They use a surrogate loss to replace the ranking function in the AP

function and maintain biased estimators of the surrogate ranking

functions for each positive data point. They proposed the algorithm

to directly optimize AUPRC and show a guaranteed convergence.

Afterward, Wang et al. [31] presented adaptive and non-adaptive

methods (i.e. ADAP and MOAP) with a new strategy to update

the biased estimators for each data point. The momentum average

is applied to both the outer and inner estimators to track indi-

vidual ranking scores. More recently, algorithms proposed in [30]

reduce convergence complexity with the parallel speed-up and

Jiang et al. [17], Wu et al. [35] introduced the momentum-based

variance-reduction technology into AUPRC maximization to re-

duce the convergence complexity. While we developed distributed

AUPRC optimization concurrently with [12], they pay attention

to X-Risk Optimization in federated learning. Because X-Risk opti-

mization is a sub-problem in conditional stochastic optimization

and federated learning could be regarded as decentralized learning

with a specific network topology (seen 3.1), our methods could also

be applied to their problem.

Overall, existing methods mainly focus on finite-sum single-

machine setting [17, 26, 30, 31, 35]. To solve the biased stochastic

gradient, they maintain an inner state for local each data point.

However, this strategy limits methods to be applied to real-world

big data applications because we cannot store an inner state for

each data sample in the online environment. In addition, we cannot

extend them directly from the single-machine setting to multi-party

setting, because under non-IID assumption, the data point on each

machine is different and this inner state can only contain the local

data information and make it difficult to train a global model.

In the perspective of theoretical analysis, Hu et al. [15] studied

the general condition stochastic optimization and proposed two

single-machine algorithms with and without using the variance-

reduction technique (SpiderBoost) named BSGD and BSpiderboost,

and established the lower bound at 𝜀−5 in the online setting.

AUPRC is widely utilized in binary classification tasks. It is

simple to adapt it for multi-class classifications. If a task hasmultiple

classes, we can assume that each class has a binary classification

task and adopt the one vs. the rest classification strategy. We can

then calculate average precision based on all classification results.

2.3 Serverless Multi-Party Collaborative
Learning

Distributed learning has wide applications in data mining and ma-

chine learning problems. Multi-party collaborative learning in this

paper has a more general definition that does not rely on the IID

assumption of data to guarantee the convergence analysis. In the

last years, many serverless multi-party collaborative learning ap-

proaches have been put out because they avoid the communica-

tion bottlenecks or constrained bandwidth between each worker

node and the central server, and also provide some level of data

privacy [41]. Lian et al. [20] offered the first theoretical backing

for serverless multi-party collaborative training. Then serverless

multi-party collaborative training attracts attention [22, 23, 29, 39]

and the convergence rate has been improved using many differ-

ent strategies, including variance extension [29], variance reduc-

tion [25, 44], gradient tracking [23], and many more. In addition,

serverless multi-party collaborative learning has been applied to

various applications, such as reinforcement learning [45], robust

training [38], generative adversarial nets (GAN) [22], robust princi-

pal component analysis [33] etc. However, none of them focus on

imbalanced data mining. The serverless multi-party collaborative

learning setting in this paper is different to federated learning [24]

which uses server with different communication mechanism to

periodically average the model parameters and is mainly designed

for indirectly aggregating data from numerous devices, such as in

IoT applications, not for training large-scale deep learning models

with big data.

3 PRELIMINARY
3.1 Serverless Multi-Party Collaborative

Learning
Notations: We use x to denote a collection of all local model pa-

rameters x𝑛 , where 𝑛 ∈ [𝑁 ], i.e., x = [𝑥⊤
1
, 𝑥⊤

2
, . . . , 𝑥⊤

𝑁
]⊤ ∈ R𝑁𝑑

.

Similarly, we define u, v as the concatenation of u𝑛, v𝑛 for 𝑛 ∈ [𝑁 ].
In addition, ⊗ denotes the Kronecker product, and ∥ · ∥ denotes the
ℓ2 norm for vectors, respectively. D+

𝑛 denotes the positive dataset

on the 𝑁 worker nodes and D denotes the whole dataset on the 𝑛

worker nodes. The network system of N worker nodes G = (V, E)
is represented by double stochastic matrix W = {𝑤𝑖 𝑗 } ∈ R𝑁×𝑁

,

which is defined as follows: (1) if there exists a link between node i

and node j, then 𝑤𝑖 𝑗 > 0, otherwise 𝑤𝑖 𝑗 = 0, (2) W = W⊤
and (3)

W1 = 1 and 1⊤W = 1⊤. We define the second-largest eigenvalue

of W as 𝜆 and W := W ⊗ I𝑑 . We denote the exact averaging matrix

as J = 1

𝑁
(1𝑛1⊤𝑛 ) ⊗ I𝑑 and 𝜆 = ∥W − J∥. Taking ring network topol-

ogy as an example. In the ring network, where each node can only

exchange information with its two neighbors. The corresponding

W is in the form of

W =

©­­­­­­­­­«

1/3 1/3 1/3
1/3 1/3 1/3

1/3 1/3
. . .

. . .
. . . 1/3
1/3 1/3 1/3

1/3 1/3 1/3

ª®®®®®®®®®¬
∈ R𝑁×𝑁

If we change the network topology, serverless multi-Party collabo-

rative learning could become different types of multi-party collabo-

rative training. IfW is
1

𝑁
11⊤, it is converted to distributed learning

with the average operation in each iteration. If we chooseW as the

Identity matrix and change it to
1

𝑁
11⊤ every q iteration, it would

be federated learning.
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3.2 AUPRC
AUPRC can be defined as the following integral problem [1]:

AUPRC =

∫ ∞

−∞
Pr(𝑦 = 1 | ℎ(x; z) ≥ 𝑐)𝑑 Pr(ℎ(x; z) ≤ 𝑐 | 𝑦 = 1)

where ℎ(x; z) is the prediction score function, x is the model pa-

rameter, 𝜉 = (z, 𝑦) is the data point, and 𝑃𝑟 (𝑦 = 1|ℎ(x; z) ≥ 𝑐) is
the precision at the threshold value of c.

To overcome the problem of the continuous integral, we use AP

as the estimator to approximate AUPRC, which is given by [3]:

AP = E𝜉∼D+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (ℎ (x; z)) = E𝜉∼D+
r
+ (x)
r (x) , (1)

where D+
denotes the positive dataset, and samples 𝜉 = (z, 𝑦) are

drawn from positive dataset D+
where z ∈ Z represents the data

features and 𝑦 = +1 is the positive label. r+ denotes the positive

data rank ratio of prediction score (i.e., the number of positive

data points with no less prediction score than that of 𝜉 including

itself over total data number) and r denotes its prediction score

rank among all data points (i.e., the number of data points with

no less prediction score than that of 𝜉 including itself over total

data number). D denotes the whole datasets and 𝜉 ′ = (z′, 𝑦′) ∼ D
denote a random data drawn from an unknown distribution D,

where z′ ∈ Z represents the data features and 𝑦′ ∈ Y = {−1, +1}.
Therefore, (1) is the same as:

AP = E𝜉∼D+
E𝜉 ′∼D I(ℎ(x; z′) ≥ ℎ(x; z)) · I (𝑦′ = 1)

E𝜉 ′∼D I(ℎ(x; z′) ≥ ℎ(x; z))
We employ the following squared hinge loss:

ℓ
(
x; z, z′

)
= (𝑚𝑎𝑥{𝑠 − ℎ(x; z) + ℎ(x; z′), 0})2 (2)

as the surrogate for the indicator function I(ℎ(x; z′) ≥ ℎ(x; z)),
where 𝑠 is a margin parameter, that is a common choice used by

previous studies [17, 26, 31]. As a result, the AUPRC maximization

problem can be formulated as:

𝐴𝑃 = E𝜉∼D+
E𝜉 ′∼D I (𝑦′ = 1) ℓ (x; z, z′)
E𝜉 ′∼D ℓ (x; z, z′)

In the finite-sum setting, it is defined as :

𝐴𝑃 =
1

|D+ |
∑︁

𝜉∼D+

1

|D |
∑
𝜉∼D I (𝑦′ = 1) ℓ (x; z, z′)

1

|D |
∑
𝜉∼D ℓ (x; z, z′)

For convenience, we define the elements in 𝑔(x) as the surrogates
of the two prediction score ranking function r

+ (x) and r (x) re-
spectively. Define the following equation:

𝑔
(
x; 𝜉, 𝜉 ′

)
=

[
𝑔1 (x; 𝜉, 𝜉 ′)
𝑔2 (x; 𝜉, 𝜉 ′)

]
=

[
ℓ (x; z, z′) I (𝑦′ = 1)

ℓ (x; z, z′)

]
and 𝑔(x; 𝜉) = E𝜉 ′∼D𝑔 (x; 𝜉, 𝜉 ′) ∈ R2, and assume 𝑓 (u) = −𝑢1

𝑢2

:

R2 ↦→ R for any u = [𝑢1, 𝑢2]⊤ ∈ R2. Then, we could reformulate the

optimization objective into the following stochastic optimization

problem:

min

x
𝐹 (x) = E𝜉∼D+ [𝑓 (𝑔(x; 𝜉)]

= E𝜉∼D+
[
𝑓 (E𝜉 ′∼D𝑔(x; 𝜉, 𝜉 ′))

]
(3)

It is similar to the two-level conditional stochastic optimization

[15], where the inner layer function depends on the data points

sampled from both inner and outer layer functions. Given that 𝑓 (·)
is a nonconvex function, problem (3) is a noncvonex optimiztion

problem. In this paper, we considers serverless multi-party collabo-

rative non-convex optimization where N worker nodes cooperate

to solve the following problem:

min

x
𝐹 (x) = min

x

1

𝑁

𝑛∑︁
𝑛=1

𝐹𝑛 (x) (4)

where 𝐹𝑛 (x) = E𝜉𝑛∼D+
𝑛
𝑓 (E𝜉 ′𝑛∼D𝑛

𝑔𝑛 (x; 𝜉𝑛)) and 𝜉 ′𝑛 = (z′𝑛, 𝑦′𝑛) ∼
D𝑛 and 𝜉𝑛 = (z𝑛, 𝑦𝑛) ∼ D+

We consider heterogeneous data

setting in this paper, which refers to a situation where D𝑖 and D𝑗

are different (𝑖 ≠ 𝑗 ) on different worker nodes.

In order to design the method, we first consider how to compute

the gradient of 𝐹 (x).
∇𝐹𝑛 (x) =E𝜉𝑛∼D+

𝑛
∇𝑔𝑛 (x; 𝜉𝑛)⊤∇𝑓 (𝑔𝑛 (x; 𝜉𝑛))

=E𝜉𝑛∼D+
𝑛
∇𝑔𝑛 (x; 𝜉𝑛)⊤

(
−1

𝑔2𝑛 (x; 𝜉𝑛)
,

𝑔1𝑛 (x; 𝜉𝑛)(
𝑔2𝑛 (x; 𝜉𝑛)

)
2

)⊤
where

∇𝑔𝑛 (x; 𝜉𝑛) =
[
∇𝑔1𝑛 (x; 𝜉𝑛)
∇𝑔2𝑛 (x; 𝜉𝑛)

]
=

[
E𝜉 ′𝑛∼D𝑛

I
(
𝑦′𝑛 = 1

)
∇ℓ

(
x; z𝑛, z′𝑛

)
E𝜉 ′𝑛∼D𝑛

∇ℓ
(
x; z𝑛, z′𝑛

) ]
We can notice that it is different from the standard gradient

since there are two levels of functions and the inner function also

depends on the sample data from the outer layer. Therefore, the

stochastic gradient estimator is not an unbiased estimation for

the full gradient. Instead of constructing an unbiased stochastic

estimator of the gradient [28], we consider a biased estimator of

∇𝐹𝑛 (𝑥) using one sample 𝜉 from D+
𝑛 and𝑚 sample 𝜉 ′ from D𝑛 as

B𝑛 in the following form:

∇𝐹𝑛 (x; 𝜉𝑛,B𝑛) (5)

=( 1
𝑚

∑︁
𝜉 ′∈B𝑛

∇𝑔𝑛 (x; 𝜉𝑛, 𝜉 ′𝑛))⊤∇𝑓 (
1

𝑚

∑︁
𝜉 ′𝑛∈B𝑛

𝑔𝑛 (x; 𝜉𝑛, 𝜉 ′𝑛))

where B𝑛 =
{
𝜉 ′𝑗

}𝑚
𝑗=1

. It is observed that ∇𝐹𝑛 (x; 𝜉𝑛,B𝑛) is the
gradient of an empirical objective such that

𝐹𝑛 (x; 𝜉𝑛,B𝑛) := 𝑓𝑛
©­« 1

𝑚

∑︁
𝜉 ′𝑛∈B𝑛

𝑔𝑛 (x; 𝜉𝑛, 𝜉 ′𝑛)
ª®¬ .

4 ALGORITHMS
In this section, we propose the new serverless multi-party collabo-

rative learning algorithms for solving the problem (4). Specifically,

we use the gradient tracking technique ( which could be ignored

in practice) and propose a ServerLess biAsed sTochastic gradiEnt

(SLATE). We further propose an accelerated version of SLATE with

momentum-based variance reduction [7] technology (SLATE-M).

4.1 Serverless Biased Stochastic Gradient
(SLATE)

Based on the above analysis, we design a serverless multi-party

collaborative algorithms with biased stochastic gradient and is
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Algorithm 1 SLATE Algorithm

1: Input: 𝑇 , step size 𝜂 inner batch size𝑚 and mini-batch size 𝑏;

u𝑛,0 = 0 and v𝑛,0 = 0 for 𝑛 ∈ {1, · · · , 𝑁 }
2: Initialize: 𝑥𝑛,0 = 1

𝑁

∑𝑁
𝑘=1

𝑥𝑛,0.

3: for 𝑡 = 0, 1, . . . ,𝑇 do
4: for 𝑛 = 1, 2, . . . , 𝑁 do
5: Draw 𝑏 samples B+

𝑛,𝑡 = {𝜉𝑖𝑛,𝑡 }𝑏𝑖=1 from D+
𝑛

6: Draw𝑚 samples B𝑛,𝑡 =

{
𝜉
′𝑗
𝑛,𝑡

}𝑚
𝑗=1

from D𝑛 ,

7: u𝑛,𝑡 = 1

𝑏

∑𝑏
𝑖=1 ∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ) as in (6)

8: v𝑛,𝑡 =
∑𝑁
𝑟=1𝑤𝑛𝑟 (v𝑟𝑡−1 + u𝑟𝑡 − u𝑟

𝑡−1)
9: x𝑛,𝑡+1 =

∑𝑁
𝑟=1𝑤𝑛𝑟 (x𝑛𝑡 − 𝜂v𝑛,𝑡 )

10: end for
11: end for
12: Output: 𝑥 chosen uniformly random from {x̄𝑡 }𝑇𝑡=1.

named SLATE. Algorithm 1 shows the algorithmic framework of

the SLATE. Step 8 could be ignored in practice.

At the beginning of Algorithm 1, one simply initializes local

model parameters x for all worker nodes. Given the couple structure
of problem (4). We can assign the value of gradient estimator u𝑛,0
and gradient tracker v𝑛,0 as 0.

At the Lines 5-6 of Algorithm 1, we draw 𝑏 samples as B+
𝑛,𝑡 from

positive dataset D+
𝑛 and𝑚 samples as B𝑛,𝑡 from full data sets D𝑛

on each node, respectively. We use a biased stochastic gradient to

update the gradient estimator u𝑛,𝑡 according to the (6).

u𝑛,𝑡 = (6)∑︁
𝜉∈B+

𝑛,𝑡

∑︁
𝜉 ′∈B𝑛,𝑡

(
𝑔1

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

)
− 𝑔2

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

)
I (y′ = 1)

)
∇ℓ

(
x𝑛,𝑡 ; z, z′

)
𝑏𝑚

(
𝑔2

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

) )
2

where 𝜉 = (z, 𝑦) and 𝜉 ′ = (z′, 𝑦′)
Afterward, at the Line 8 of Algorithm 1, we adopt the gradient

tracking technique [23] to reduce network consensus error, where

we update the v𝑛,𝑡 and then do the consensus step with double

stochastic matrix W as:

v𝑛,𝑡 =
𝑁∑︁
𝑟=1

𝑤𝑛𝑟 (v
𝑟
𝑡−1 + u𝑟𝑡 − u𝑟𝑡−1)

Finally, at the Line 9 of Algorithm 1, we update the model with

gradient tracker v𝑛,𝑡 , following the consensus step among worker

nodes with double stochastic matrix W:

x𝑛,𝑡+1 =
𝑁∑︁
𝑟=1

𝑤𝑛𝑟 (x𝑟,𝑡 − 𝜂v𝑟,𝑡 )

The output x̄𝑡 is defined as: x̄𝑡 = 1

𝑁

∑𝑁
𝑛=1 x𝑛,𝑡 .

4.2 SLATE-M
Furthermore, we further propose an accelerated version of SLATE

(SLATE-M) based on the momentum-based variance reduced tech-

nique, which has the better convergence complexity. The details of

the algorithm are shown in Algorithm 2. Step 11 could be ignored

in practice.

At the beginning, similar to the SLATE, one initialize local model

parameters x for all worker nodes, as seen in Lines 1-2 in Algo-

rithm 2.

Algorithm 2 SLATE-M Algorithm

1: Input:𝑇 , step size 𝜂, momentum coefficient 𝛼 , inner batch size

𝑚 and mini-batch size 𝑏, and initial batch size 𝐵;

2: Initialize: x𝑛,0 = 1

𝑁

∑𝑁
𝑘=1

x𝑛,0
3: Draw 𝐵 samples of {𝜉𝑖

𝑛,0
}𝐵
𝑖=1

from D+
𝑛 , and draw

𝑚 samples B𝑛,0 =

{
𝜉
′𝑗
𝑛,0

}𝑚
𝑗=1

from D𝑛 , u𝑛,0 =

1

𝐵

∑𝐵
𝑖=1 ∇𝐹𝑛 (x𝑛,0; 𝜉𝑖𝑛,0,B𝑛,0)∀𝑛 ∈ [𝑁 ]

4: v𝑛,0 =
∑𝑁
𝑟=1𝑤𝑛𝑟u𝑟,0∀𝑛 ∈ [𝑁 ]

5: x𝑛,1 =
∑𝑁
𝑟=1𝑤𝑛𝑟 (x𝑛,0 − 𝜂v𝑛,0)∀𝑛 ∈ [𝑁 ]

6: for 𝑡 = 1, 2, . . . ,𝑇 do
7: for 𝑛 = 1, 2, . . . , 𝑁 do
8: Draw 𝑏 samples of {𝜉0

𝑛,1
, · · · , 𝜉𝑏

𝑛,1
} from D+

𝑛

9: Draw𝑚 samples B𝑛 =
{
𝜉 ′𝑗

}𝑚
𝑗=1

from D𝑛 ,

10: u𝑛,𝑡 = 1

𝑏

∑𝑏
𝑖=1 ∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ) + (1 − 𝛼) (u𝑛,𝑡−1 −

1

𝑏

∑𝑏
𝑖=1 ∇𝐹𝑛 (x𝑛,𝑡−1; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ))

11: v𝑛,𝑡 =
∑𝑁
𝑟=1𝑤𝑛𝑟 (v𝑟𝑡−1 + u𝑟𝑡 − u𝑟

𝑡−1)
12: x𝑛,𝑡+1 =

∑𝑁
𝑟=1𝑤𝑛𝑟 (x𝑛𝑡 − 𝜂v𝑛,𝑡 )

13: end for
14: end for
15: Output: 𝑥 chosen uniformly random from {x̄𝑡 }𝑇𝑡=1.

Different from SLATE, we initialize the u𝑛,0 with initial batch size
𝐵 and v𝑛,0∀𝑛 ∈ [𝑁 ], which can be seen in Lines 3-4 in Algorithm 2.

Then we do the consensus step to update the model parameters x𝑛 .
The definition of 𝐹𝑛 (x𝑛,0; 𝜉𝑖𝑛,0,B𝑛,0) is similar to (6) as below:

1

|B𝑛,𝑡 |
𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ) = (7)∑︁

𝜉∈B+
𝑛,𝑡

∑︁
𝜉 ′∈B𝑛,𝑡

(
𝑔1

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

)
− 𝑔2

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

)
I (y′ = 1)

)
∇ℓ

(
x𝑛,𝑡 ; z, z′

)
|B𝑛,𝑡 |𝑚

(
𝑔2

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

) )
2

where |B𝑛,𝑡 | denotes the size of batch B𝑛,𝑡 and 𝜉 = (z, 𝑦) and
𝜉 ′ = (z′, 𝑦′).

Afterwards, similar to SLATE, each iteration, we draw 𝑏 samples

from positive dataset D+
𝑛 and𝑚 samples from full data sets D𝑛 on

each worker node, respectively to construct the biased stochastic

gradient, seen in Line 8-9 of Algorithm 2.

The key different between SLATE and SLATE-M is that we up-

date gradient estimator u𝑛,𝑡 in SLATE-M with the following vari-

ance reduction method:

u𝑛,𝑡 =
1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ) + (1 − 𝛼) (u𝑛,𝑡−1

− 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡−1; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ))

where
1

𝑏

∑𝑏
𝑖=1 ∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ) and 1

𝑏

∑𝑏
𝑖=1 ∇𝐹𝑛 (x𝑛,𝑡−1; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 )

are defined in (7)

Finally, we update gradient tracker v𝑛,𝑡 and model parameters

x𝑛,𝑡 as in Lines 11-12 in Algorithm 2.

5 THEORETICAL ANALYSIS
Wewill discuss somemild assumptions and present the convergence

results of our algorithms (SLATE and SLATE-M).
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5.1 Assumptions
In this section, we introduce some basic assumptions used for theo-

retical analysis.

Assumption 1. ∀𝑛 ∈ [𝑁 ], we assume (i) there is 𝐶 (> 0) that
ℓ (𝑥 ; 𝑧𝑛, 𝑧𝑛) > 𝐶 ; (ii) there is𝑀 (> 0) that 0 < ℓ (𝑥 ; 𝑧𝑛, 𝑧′𝑛) < 𝑀 ; (iii)
ℓ (𝑥 ; 𝑧𝑛, 𝑧′𝑛) is Lipschitz continuous and smooth with respect to model
x for any 𝜉𝑛 = (𝑧𝑛, 𝑦𝑛) ∼ D+, 𝜉 ′𝑛 = (𝑧′𝑛, 𝑦′𝑛) ∼ D.

Assumption 2. ∀𝑛 ∈ [𝑁 ], we assume there exists a positive constant
𝜎 , such that ∥∇𝑔(x; 𝜉, 𝜉 ′)∥2 ≤ 𝜎2∀𝜉 ∼ D+

𝑛 , 𝜉
′ ∼ D𝑛 .

Assumptions 1 and 2 are a widely used assumption in optimiza-

tion analysis of AUPRC maximization [17, 26, 31]. They can be

easily satisfied when we choose a smooth surrogate loss function

ℓ (x; z, z′) and a bounded score function model ℎ(x; ·).
Furthermore, based on Assumptions 1 and 2, we can build the

smoothness and lipschitz continuity of objective function in the

problem (4).

Lemma 1. (Lemma 1 in [31]) Suppose Assumptions 1 and 2 hold,
then ∀x, ∥𝑔𝑛 (x; 𝜉)∥2 ≤ 𝜎2𝑔 , 𝑔𝑛 (x; 𝜉) is 𝐿𝑔-Lipschitz and 𝑆𝑔-smooth for
xi ∼ D+

𝑛 , and ∀𝑢 ∈ Ω, 𝑓 (𝑢) is 𝐿𝑓 -Lipschitz and 𝑆𝑓 -smooth. ∀x, 𝐹𝑛 (x)
is 𝐿𝐹 -Lipschiz and 𝑆𝐹 -smooth.

From the Lemma 1, we have 𝑓𝑛 and 𝑔𝑛 are 𝑆𝑓 -smooth and 𝑆ℎ-

smooth. This implies that for an samgle 𝜉𝑛 ∼ D+
𝑛 there exist 𝑆𝑓 > 0

and 𝑆𝑔 > 0 such that

E∥∇𝑓𝑛 (𝑥1) − ∇𝑓𝑛 (𝑥2)∥ ≤ 𝑆𝑓 ∥𝑥1 − 𝑥2∥
E∥∇𝑔𝑛 (𝑦1, 𝜉𝑛) − ∇𝑔𝑛 (𝑦2, 𝜉𝑛)∥ ≤ 𝑆𝑔 ∥𝑦1 − 𝑦2∥

And 𝑓𝑛 and 𝑔𝑛 are 𝐿𝑓 -Lipchitz continuous and 𝐿𝑔-Lipchitz con-

tinuous. This implies that there exist 𝐿𝑓 > 0 and 𝐿𝑔 > 0 such

that

E∥∇𝑓𝑛 (𝑥)∥2 ≤ 𝐿2
𝑓

E∥∇𝑔𝑛 (𝑦1, 𝜉𝑛)∥2 ≤ 𝑆2𝑔

In addition, we also have bounded variance of𝑔𝑛 . There exist 𝜎𝑔 > 0

such that

E𝜉𝑛∼D+
𝑛
∥𝑔𝑛 (x; 𝜉𝑛, 𝜉 ′𝑛) − E𝜉 ′𝑛∼D𝑛

𝑔𝑛 (x; 𝜉𝑛, 𝜉 ′𝑛 ∥2 ≤ 𝜎2𝑔

which indicates that the inner function 𝑔𝑛 has bounded variance.

To control the estimation bias, we follow the analysis in single-

machine conditional stochastic optimization [15].

Lemma 2. (Proposition B.1 in [15]) Under Assumptions 1 and 2, on
the 𝑛-th worker node, for a sample 𝜉𝑛 ∼ D+

𝑛 and𝑚 samples B𝑛 from
D𝑛 ,
(a) B𝑛 =

{
𝜉 ′𝑗

}𝑚
𝑗=1

and we have

∥E∇𝐹𝑛 (𝑥 ; 𝜉𝑛,B𝑛) − ∇𝐹𝑛 (𝑥)∥2 ≤
𝐿2𝑔𝑆

2

𝑓
𝜎2𝑔

𝑚
(8)

.
(b) E∇𝐹𝑛 (𝑥 ; 𝜉𝑛,B𝑛) are 𝑆𝐹 -Lipschitz smooth
(c) 

∇ (𝑓 (𝑔𝑛 (x, 𝜉𝑛))) − ∇𝐹 (𝑥)



2
2
≤ 𝐿2

𝑓
𝐿2𝑔 (9)

Lemma 2 (a) provide a bound of biased stochastic gradient, which

will be used in the following theoretical analysis.

Assumption 3. The function 𝐹𝑛 (𝑥) is bounded below, i.e., inf𝑥 𝐹𝑛 (𝑥) >
−∞.

5.2 The Communication Mechanism in
Serverless Multi-Party Collaborative
Training

The network system of N worker nodes G = (V, E) is represented
by double stochastic matrix W = {𝑤𝑖 𝑗 } ∈ R𝑁×𝑁

in the analysis.

For the ease of exposition, we write the x𝑡 and v𝑡 -update in

Algorithm 1 and Algorithm 2 in the following equivalent matrix

form: ∀𝑡 ≥ 0,

v𝑡 = W(v𝑡−1 + u𝑡 − u𝑡−1), x𝑡+1 = W(x𝑡−1 − 𝜂v𝑡 )

where W := W ⊗ I𝑑 and x𝑡 , u𝑡 , v𝑡 are random vectors in R𝑁𝑑
that

respectively concatenate the local estimates {x𝑛,𝑡 }𝑁𝑛=1 of a station-
ary point of 𝐹 , gradient trackers {v𝑛,𝑡 }𝑁𝑛=1 , gradient estimators

{u𝑛,𝑡 }𝑁𝑛=1. With the exact averaging matrix J, we have following
quantities:

1 ⊗ x̄𝑡 := Jx𝑡 , 1 ⊗ ū𝑡 := Ju𝑡 , 1 ⊗ v̄𝑡 := Jv𝑡

Next, we enlist some useful results of gradient tracking-based

algorithms for serveress multi-party collaborative stochastic opti-

mization

Lemma 3. (Lemma 1 in [39]) For double stochastic matrix, we have
the following:
(a) ∥Wx − Jx∥ ≤ 𝜆∥x − Jx∥,∀x ∈ R𝑛𝑑 .
(b) v̄𝑡 = ū𝑡 ,∀𝑡 ≥ 0. As the update step in 1 and 2, we have

x̄𝑡+1 = x̄𝑡 − 𝜂v̄𝑡 = x̄𝑡 − 𝜂ū𝑡

(c) According to the definition of networkW, we have the following
inequalities: ∀𝑘 ≥ 0,

∥x𝑡+1 − Jx𝑡+1∥2 ≤ 1 + 𝜆2

2

∥x𝑡 − Jx𝑡 ∥2 +
2𝜂2𝜆2

1 − 𝜆2
∥v𝑡 − Jv𝑡 ∥2 (10)

∥x𝑡+1 − Jx𝑡+1∥2 ≤ 2𝜆2 ∥x𝑡 − Jx𝑡 ∥2 + 2𝜂2𝜆2 ∥v𝑡 − Jv𝑡 ∥2 (11)

∥x𝑡+1 − Jx𝑡+1∥ ≤ 𝜆 ∥x𝑡 − Jx𝑡 ∥2 + 𝜂𝜆 ∥v𝑡 − Jv𝑡 ∥ (12)

Then, we study the convergence properties of SLATE and SLATEM.

We first discus the metric to measure convergence of our algo-

rithms. Given that the loss function is nonconvex, we are unable to

demonstrate convergence to an global minimum point. Instead, we

establish convergence to an approximate stationary point, defined

below:

Definition 1. A point 𝑥 is called 𝜖-stationary point if ∥∇𝑓 (𝑥)∥ ≤
𝜖 . Generally, a stochastic algorithm is defined to achieve an 𝜖-

stationary point in 𝑇 iterations if E∥∇𝑓 (𝑥𝑇 )∥ ≤ 𝜖 .

5.3 Convergence Analysis of SLATE Algorithm
First, we study the convergence properties of our SLATE algorithm.

The detailed proofs are provided in the supplementary materials.

Theorem 1. Suppose the sequence {x̄𝑡 }𝑇𝑡=1 be generated from Algo-

rithm 1 and Assumptions 1, 2, and 3 hold, 0 < 𝜂 ≤ min{ 1−𝜆2
24𝜆2𝑆𝐹

, 1

6𝑆𝐹
},
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SLATE in algorithm 1 has the following

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (x̄𝑡 )∥2 ≤ 2E[𝐹 (x̄0) − 𝐹 (x̄𝑇 )]
𝜂𝑇

+
(
1

𝜆2
+ 5𝑁

)
32𝜆2𝜂2𝐿2

𝑓
𝐿2𝑔𝑆

2

𝐹

(1 − 𝜆2)2𝑁
+
2𝐿2𝑔𝑆

2

𝑓
𝜎2𝑔

𝑚
+
2𝜂𝑆𝐹𝐿

2

𝑓
𝐿2𝑔

𝑁

Corollary 1. Based on the analysis in Theorem 1, by setting 𝜂 =

𝑂 (
√︃

𝑁
𝑇
) , SLATE in Algorithm 1 has the following

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (x̄𝑡 )∥2 ≤ 𝑂 (E[𝐹 (x̄0) − 𝐹 (x̄𝑇 )]
(𝑁𝑇 )1/2

)

+
(
1

𝜆2
+ 5

)
24𝜆2𝐿2

𝑓
𝐿2𝑔𝑆

2

𝐹

(1 − 𝜆2)2
𝑂 (𝑁

𝑇
) +

2𝐿2𝑔𝑆
2

𝑓
𝜎2𝑔

𝑚
+𝑂 (

2𝑆𝐹𝐿
2

𝑓
𝐿2𝑔

(𝑁𝑇 )1/2
)

Based on the result in Theorem 1 and Corollary 1, we can get

the convergence result of SLATE.

Remark 1. According to Corollary 1, without loss of generality,

we let 𝑚 = 𝑂 (𝜀−2), 𝑏 = 𝑂 (1) and
√
𝑇 > 𝑁 , we know to make

1

𝑇

∑𝑇−1
𝑡=0 E∥∇𝐹 (x̄𝑡 )∥2 ≤ 𝜀2, we have iterations 𝑇 should be as large

as 𝑂 (𝑁 −1𝜀−4).
In Algorithm 1, we sample 𝑏 +𝑚 data points to build the biased

stochastic gradients u𝑛,𝑡 , and need 𝑇 iterations. Thus, our SLATE

algorithm has a sample complexity of 𝑚 · 𝑇 = 𝑂 (𝑁 −1𝜀−6), for
finding an 𝜖-stationary point. In addition, the result also indicates

the linear speedup of our algorithm with respect to the number of

worker nodes.

5.4 Convergence Analysis of SLATE-M
In the subsection, we study the convergence properties of our

SLATE-M algorithm. The details about proofs are provided in the

supplementary materials.

Theorem 2. Suppose the sequence {x̄𝑡 }𝑇𝑡=1 be generated from Algo-
rithm 2 and Assumptions 1, 2, and 3 hold, 0 < 𝜂 ≤ 𝑚𝑖𝑛{ 1

4
,

(1−𝜆2)2
90𝜆2

,

√
1−𝜆2

12

√
7𝜆

} 1

𝑆𝐹
and 𝛼 =

72𝑆2
𝐹
𝜂2

𝑁𝑏
, SLATE-M in Algorithm 2 has

the following

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇F(x̄𝑡 )∥2 ≤ 2(F(x̄0) − F(x̄𝑇 ))
𝜂𝑇

+
3𝐿2𝑔𝑆

2

𝑓
𝜎2𝑔

𝑚
+ 3

𝐿2𝑔𝐿
2

𝑓

𝛼𝑁𝐵𝑇

+
6𝛼𝐿2𝑔𝐿

2

𝑓

𝑁𝑏
+

96𝜆2𝐿2𝑔𝐿
2

𝑓(
1 − 𝜆2

)
3

𝐵𝑇
+
256𝜆2𝛼2𝐿2

𝑓
𝐿2𝑔

(1 − 𝜆2)3
+
64𝜆4E



∇F̂0

2
(1 − 𝜆2)3𝑁𝑇

Corollary 2. Based on the analysis in the theorem 2, we choose
𝑏 = 𝑂 (1), 𝜂 = 𝑂 ( 𝑁 2/3

𝑇 1/3 ), 𝛼 = 𝑂 ( 𝑁 1/3

𝑇 2/3 ), 𝐵 = 𝑂 ( 𝑇 1/3

𝑁 2/3 ), SLATE-M in
Algorithm 2 has the following

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇F(x̄𝑡 )∥2 ≤ 𝑂 ( 2(F(x̄0) − F(x̄𝑇 ))
(𝑁𝑇 )2/3

+
3𝐿2𝑔𝑆

2

𝑓
𝜎2𝑔

𝑚

+𝑂 (
3𝐿2𝑔𝐿

2

𝑓

(𝑁𝑇 )2/3
) +𝑂 (

6𝐿2𝑔𝐿
2

𝑓

(𝑁𝑇 )2/3
) +

352𝜆2𝐿2
𝑓
𝐿2𝑔

(1 − 𝜆2)3
𝑂 (𝑁

2/3

𝑇 4/3 )

+
64𝜆4E



∇F̂0

2
(1 − 𝜆2)3𝑁𝑇

(13)

Based on the result in theorem 2, we can get the convergence

result of SLATE-M.

Remark 2. According to Corollary 2, without loss of generality, Let

𝑚 = 𝑂 (𝜀−2),𝑏 = 𝑂 (1) 𝜂 = 𝑂 ( 𝑁 2/3

𝑇 1/3 ), 𝛼 = 𝑂 ( 𝑁 1/3

𝑇 2/3 ), and𝐵 = 𝑂 ( 𝑇 1/3

𝑁 2/3 ),
we know to make

1

𝑇

∑𝑇−1
𝑡=0 E∥∇𝐹 (x̄𝑡 )∥2 ≤ 𝜀2, we have iterations 𝑇

should be as large as 𝑂 (𝑁 −1𝜀−3).
In Algorithm 2, in each iteration, we sample 𝑏 +𝑚 data points

to build the biased stochastic gradients u𝑛,𝑡 , and need 𝑇 iterations.

Thus, our SLATE-M algorithm has a sample complexity of𝑚 ·𝑇 =

𝑂 (𝑁 −1𝜀−5), for finding an 𝜖-stationary point, which also achieves

the linear speedup of our algorithm with respect to the number of

worker nodes.

Remark 3. The sample complexity of 𝑂 (𝑁 −1𝜀−5) in SLATE-M

matches the best convergence complexity achieved by the single-

machine stochastic method for conditional stochastic optimization

in the online setting, and also match the lower bound for the online

stochastic algorithms [15].

6 EXPERIMENTS
In this section, we conduct extensive experiments on imbalanced

benchmark datasets to show the efficiency of our algorithms. All

experiments are run over a machine with AMD EPYC 7513 32-

Core Processors and NVIDIA RTX A6000 GPU. The source code is

available at https://github.com/xidongwu/D-AUPRC.

The goal of our experiments is two-fold: (1) to verify that (4)

is the surrogate function of AUPRC and illustrate that directly

optimizing the AUPRC in the multi-party collaborative training

would improve the model performance compared with traditional

loss optimization, and (2) to show the efficiency of our methods for

AUPRC maximization.

6.1 Configurations
Datasets: We conduct experiments on imbalanced benchmark

datasets from LIBSVM data
1
: w7a and w8a, and four typical image

datasets: MNIST dataset, Fashion-MNIST dataset, CIFAR-10, and

Tiny-ImageNet dataset (seen in Table 1). For w7a and w8a, we scale

features to [0, 1]. For image datasets, following [26, 31], we con-

struct the imbalanced binary-class versions as follows: Firstly, the

first half of the classes (0 - 4) in the original MNIST, Fashion-MNIST,

and CIFAR-10, and (0 - 99) in Tiny-ImageNet datasets are converted

to be the negative class, and another half of classes are considered

to be the positive class. Because the original distributions of image

datasets are balanced, we randomly drop 80% of the positive ex-

amples in the training set to make them imbalanced and keep test

sets of image datasets unchanged. Finally, we evenly partition each

datasets into disjoint sets and distribute datasets among worker

nodes.

Models: For w7a and w8a, we use two layers of neural networks
with the dimension of the hidden layer as 28. The RELU is used as

the activation function. For MNIST, Fashion MNIST and Cifar-10

data sets, we choose model architectures from [34] for our imbal-

anced binary image classification task, as shown in Table 5 and

Table 6. For Tiny-ImageNet, we choose ResNet-18 [14] as the clas-

sifier. In our algorithms, We modify the output of all models to

1
https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Table 1: Statistics of benchmark datasets

Data Set Training examples Testing examples Feature Size Proportion of positive data

w7a 24692 25057 300 2.99%

w8a 49749 14951 300 2.97 %

MNIST 60000 10000 28 × 28 16.7%

Fashion MNIST 60000 10000 28 × 28 16.7 %

CIFAR-10 50000 10000 3 × 32 × 32 16.7 %

Tiny-ImageNet 100000 10000 3 × 64 × 64 16.7 %

(a) w7a dataset (b) MNIST dataset (c) CIFAR-10 dataset

Figure 1: Precision-Recall curves of the models on the testing set

(a) w7a dataset (b) w8a dataset (c) MNIST dataset

(d) Fashion MNIST dataset (e) CIFAR-10 dataset (f) Tiny-ImageNet dataset

Figure 2: AP vs Iterations on the test set

1 and the sigmoid function is followed since we consider binary

classification tasks.

In the experiments, the number of worker nodes is set as N = 20

and we use the ring-based topology as the communication network

structure. [20].

6.2 Comparison with Existing Multi-Party
Stochastic Methods

Baselines: We compare our algorithms with two baselines: 1) D-

PSGD [20], a SGD-like serverless multi-party collaborative algo-

rithm with the Cross-Entropy loss as the optimization objective.
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Table 2: Final averaged AP scores on the testing data

Method w7a w8a MNIST Fashion MNIST CIFAR-10 Tiny-ImageNet

D-PSGD 0.6372 0.6585 0.9592 0.9497 0.5058 0.5906

CODA 0.5414 0.5786 0.9460 0.9474 0.5668 0.5971

SLATE 0.7788 0.8072 0.9911 0.9515 0.7279 0.6032

SLATEM 0.7778 0.8063 0.9913 0.9515 0.7285 0.6131

Table 3: SLATE test accuracy on CIFAR-10 with margin pa-
rameter 𝑠, and positive batch size b (B=60)

Margin 0.1 0.3 0.5 0.7 0.9

b = 5 0.6270 0.5971 0.5992 0.5928 0.5765

b = 10 0.6910 0.5887 0.5956 0.5986 0.5989

b = 15 0.7248 0.5895 0.5902 0.5952 0.5979

b = 20 0.7279 0.6001 0.5870 0.5929 0.5962

b = 25 0.7216 0.6038 0.5876 0.5933 0.5962

Table 4: SLATE-M test accuracy on CIFAR-10 with margin
parameter 𝑠, positive batch size b (B = 60), and 𝛼

Margin 0.1 (𝛼 = 0.1) 0.1 (𝛼 = 0.9) 0.3 (𝛼 = 0.1) 0.3 (𝛼 = 0.9)

b = 15 0.7273 0.7272 0.5853 0.5895

b = 20 0.7285 0.7289 0.5986 0.6001

b = 25 0.7167 0.7206 0.6024 0.6036

D-PSGD runs SGD locally and then computes the neighborhood

weighted average by fetching model parameters from neighbors;

2) CODA, a typical federated learning algorithm for optimizing

minimax formulated AUROC loss [13, 43]. CODA runs local SGDA

with the periodic model average in the federated learning setting.

We convert it into the serverless multi-party setting and run local

SGDA, following the consensus step to update the models. Gradi-

ent tracking steps are ignored. In the experiments, we ignore the

gradient tracking steps to reduce computation and communication

costs.

Parameter tuning: We perform a grid search to tune all methods

carefully. The total batch size m drawn from D is chosen in the set

{20, 20, 20, 20, 60, 200}. For SLATE and SLATE-M, the positive batch

size b in the total batch size is chosen in the set {2, 2, 3, 5, 20, 35},
and m - b negative data points. The squared hinge loss is used as (2),

𝛼 is chosen from {0.1, 0.9} and the margin parameter s is selected

from {0.1, 0.3, 0.5, 0.7, 0.9}. The step size is selected from the set

{0.01, 0.005, 0.001}. For the D-PSGD, the step size is chosen in the

set {0.01, 0.005, 0.001}. For the CODA, the step size for minimum

variable is chose from the set {0.01, 0.005, 0.001} and that for the

maximum variable is chosen from the set {0.0001, 0.0005, 0.001}.
Moreover, we use Xavier normal to initialize models.

Experimental results: Table 2 summarizes the final results on

the test sets. In order to present the advantage of optimization

of AUPRC, we plot the Precision-Recall curves of final models on

testing sets of W7A, MNIST, and CIFAR-10 when training stop in

Figure 1. Then we illustrate the convergence curve on test sets in

Figure 2. Results show that our algorithms (i.e., SLATE, SLATE-M)

can outperform baselines in terms of AP with a great margin across

each benchmark, regardless of model structure. The experiments

verify that 1) the objective function (4) is a good surrogate loss

function of AUPRC and directly optimizing the AUPRC in the multi-

party collaborative training would improve the model performance

compared with traditional loss optimization in the imbalanced data

mining. 2) Although CODA, with minimax formulated AUROC

loss, has a relatively better performance compared with D-PSGD

in large-scale datasets (CIFAR-10 and Tiny-ImageNet), the results

verify the previous results that an algorithm that maximizes AU-

ROC does not necessarily maximize AUPRC. Therefore, designing

the algorithms for AUPRC in multi-party collaborative training is

necessary. 3) our algorithms can efficiently optimize the (4) and

largely improve the performance in terms of AUPRC in multi-party

collaborative imbalanced data mining. 4) In datasets CIFAR-10 and

Tiny-ImageNet, SLATE-M has better performance compared with

SLATE.

Ablation study: In this part, we study the effect of margin param-

eters, positive batch size, and 𝛼 of SLATE-M. The results are listed

in Table 3 and Table 4.

7 CONCLUSION
In this paper, we systematically studied how to design serverless

multi-party collaborative learning algorithms to directly maximize

AUPRC and also provided the theoretical guarantee on algorithm

convergence. To the best of our knowledge, this is the first work to

optimize AUPRC in the multi-party collaborative training. We cast

the AUPRC maximization problem into non-convex two-level sto-

chastic optimization functions under the multi-party collaborative

learning settings as the problem (4), and proposed the first multi-

party collaborative learning algorithm, ServerLess biAsed sTochas-

tic gradiEnt (SLATE). Theoretical analysis shows that SLATE has a

sample complexity of 𝑂 (𝜀−6) and shows a linear speedup respec-

tive to the number of worker nodes. Furthermore, we proposed a

stochastic method (i.e., SLATE-M) based on the momentum-based

variance-reduced technique to reduce the convergence complexity

for maximizing AP in multi-party collaborative optimization. Our

methods reach iteration complexity of𝑂
(
1/𝜖5

)
, which matches the

best convergence complexity achieved by the single-machine sto-

chastic method for conditional stochastic optimization in the online

setting, and also matches the lower bound for the online stochastic

algorithms. Unlike existing single-machine methods that just focus

on finite-sum settings andmust keep an inner state for each positive

data point, we consider the stochastic online setting. The extensive

experiments on various data sets compared with previous stochastic

multi-party collaborative optimization algorithms validate the ef-

fectiveness of our methods. Experimental results also demonstrate

that directly optimizing the AUPRC in the multi-party collaborative

training would largely improve the model performance compared

with traditional loss optimization.
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Table 5: Model Architecture for the the MNIST dataset [34]

Layer Type Shape

Convolution + ReLU 5 × 5 × 20

Max Pooling 2 × 2

Convolution + ReLU 5 × 5 × 50

Max Pooling 2 × 2

Fully Connected + ReLU 500

Fully Connected + ReLU 1

Table 6: Model Architecture for the Fashion MNIST dataset
[34]

Layer Type Shape

Convolution + ReLU 3 × 3 × 5

Max Pooling 2 × 2

Convolution + ReLU 3 × 3 × 10

Max Pooling 2 × 2

Fully Connected + ReLU 100

Fully Connected + ReLU 1

A SUPPLEMENTARY MATERIAL
A.1 Model Architecture
A.2 Basic Lemma
We draw one sample 𝜉𝑛 from D+

𝑛 and𝑚 sample 𝜉 ′𝑛 from D𝑛 as B𝑛 .

We define

𝑔𝑛 (𝑥 ; 𝜉𝑛) = E𝜉 ′𝑛∼D𝑛
𝑔𝑛

(
𝑥 ; 𝜉𝑛, 𝜉

′
𝑛

)
𝑔𝑛 (𝑥, 𝜉𝑛) =

1

𝑚

∑︁
𝜉 ′𝑛∈B𝑛

𝑔𝑛 (𝑥, 𝜉𝑛 ; 𝜉 ′𝑛)

𝐹𝑛 (𝑥 ; 𝜉𝑛,B𝑛) = 𝑓 (𝑔𝑛 (𝑥, 𝜉𝑛))

We also define

∇𝐹𝑛 (𝑥) = ∇E𝜉𝑛 𝑓 (𝑔𝑛 (𝑥, 𝜉𝑛)) = E𝜉𝑛 [∇ (𝑓 (𝑔𝑛 (𝑥, 𝜉𝑛)))]
=E𝜉𝑛 [∇𝑓 (𝑔𝑛 (𝑥, 𝜉𝑛)) · ∇𝑔𝑛 (𝑥, 𝜉𝑛)]

𝐹𝑛 (𝑥) = E𝐹𝑛 (𝑥 ; 𝜉𝑛,B𝑛) = E [𝑓 (𝑔𝑛 (𝑥, 𝜉𝑛))]

∇𝐹𝑛 (𝑥) = E∇𝐹𝑛 (𝑥 ; 𝜉𝑛,B𝑛) (14)

For convenience, we denote

x̄𝑡 =
1

𝑁

𝑁∑︁
𝑛=1

x𝑛,𝑡 , v̄𝑡 =
1

𝑁

𝑁∑︁
𝑛=1

v𝑛,𝑡 , ū𝑡 =
1

𝑁

𝑁∑︁
𝑛=1

u𝑛,𝑡

𝐹 (x̄) = 1

𝑁

𝑁∑︁
𝑛=1

𝐹𝑛 (x̄),∇𝐹 (x̄) =
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x̄) (15)

and ∇F̂𝑡 = [∇𝐹1 (x1)⊤,∇𝐹2 (x2)⊤, . . . ,∇𝐹𝑁 (x𝑁 )⊤]⊤ ∈ R𝑛𝑑 .

Lemma 4. (Lemma 6 in [39]) Let {𝑉𝑡 }𝑡≥0, {𝑅𝑡 }𝑡≥0 and {𝑄𝑡 }𝑡≥0
be non-negative sequences and 𝐶 ≥ 0 be some constant such that

𝑉𝑡 ≤ 𝑞𝑉𝑡−1 + 𝑞𝑅𝑡−1 + 𝑄𝑡 + 𝐶,∀𝑡 ≥ 1, where 𝑞 ∈ (0, 1) Then the
following inequality holds: ∀𝑇 ≥ 1,

𝑇−1∑︁
𝑡=0

𝑉𝑡 ≤ 𝑉0

1 − 𝑞
+ 1

1 − 𝑞

𝑇−2∑︁
𝑡=0

𝑅𝑡 +
1

1 − 𝑞

𝑇−1∑︁
𝑡=1

𝑄𝑡 +
𝐶𝑇

1 − 𝑞
(16)

B SLATE
Lemma 5. Let Assumptions 1, 2 hold, and 𝐹 is 𝑆𝐹 -smooth, we have

E𝐹 (x̄𝑡+1) ≤ E𝐹 (x̄𝑡 ) − (𝜂
2

− 𝜂2𝑆𝐹 )E∥∇𝐹 (x̄𝑡 )∥2 −
𝜂

2

E∥∇𝐹 (x̄𝑡 )∥2

+
𝜂𝑆2

𝐹

𝑁

𝑁∑︁
𝑛=1

∥𝑥𝑛,𝑡 − x̄𝑡 ∥2 +
𝜂𝐿2𝑔𝑆

2

𝑓
𝜎2𝑔

𝑚
+
𝜂2𝑆𝐹𝐿

2

𝑓
𝐿2𝑔

𝑁
(17)

Lemma 6. Let Assumptions 1, 2 hold. We have: ∀𝑡 ≥ 0,

E
[
∥v𝑡+1 − Jv𝑡+1∥2

]
≤ 1 + 𝜆2

2

E
[
∥v𝑡 − Jv𝑡 ∥2

]
+
6𝜆2𝜂2𝑆2

𝐹
𝑁

1 − 𝜆2
E



∇𝐹𝑡 

2
+
24𝜆2𝑆2

𝐹

1 − 𝜆2
E

[
∥x𝑡 − Jx𝑡 ∥2

]
+

(
6𝜆2𝜂2𝑆2

𝐹
𝑁

1 − 𝜆2
+ 3𝑁 + 2

)
𝐿2
𝑓
𝐿2𝑔 (18)

Based on previous lemmas, we start to prove the convergence of

Theorem.

Proof. Recall Lemma 3, we have

∥x𝑡+1 − Jx𝑡+1∥2 ≤ 1 + 𝜆2

2

∥x𝑡 − Jx𝑡 ∥2 +
2𝜂2𝜆2

1 − 𝜆2
∥v𝑡 − Jv𝑡 ∥2 (19)

Putting (19) and lemma 6 into lemma 4, then we have

𝑇∑︁
𝑡=0

∥x𝑡 − Jx𝑡 ∥2 ≤ 4𝜆2𝜂2

(1 − 𝜆2)2
𝑇∑︁
𝑡=0

∥v𝑡 − Jv𝑡 ∥2 (20)

𝑇∑︁
𝑡=0

∥v𝑡 − Jv𝑡 ∥2 ≤ 2

1 − 𝜆2
∥v0 − Jv

0
∥2 +

(
6𝜆2𝜂2𝑆2

𝐹

1 − 𝜆2
+ 5𝑁

)
2𝐿2

𝑓
𝐿2𝑔𝑇

1 − 𝜆2

+
72𝜆2𝑆2

𝐹

(1 − 𝜆2)2
𝑇∑︁
𝑡=0

E
[
∥x𝑡 − Jx𝑡 ∥2

]
+
24𝜆2𝜂2𝑆2

𝐹
𝑁

(1 − 𝜆2)2
𝑡=𝑇∑︁
𝑡=0

E


∇𝐹 (x̄𝑡 )

2

(21)

Then putting (20) into (21), we get

𝑇∑︁
𝑡=0

∥x𝑡 − Jx𝑡 ∥2

≤ 4𝜆2𝜂2

(1 − 𝜆2)2
2

1 − 𝜆2
∥v0 − Jv

0
∥2 +

96𝜆4𝜂4𝑆2
𝐹
𝑁

(1 − 𝜆2)4
𝑡=𝑇∑︁
𝑡=0

E


∇𝐹 (x̄𝑡 )

2

+
288𝜆4𝜂2𝑆2

𝐹

(1 − 𝜆2)4
𝑇∑︁
𝑡=0

E ∥x𝑡 − Jx𝑡 ∥2 +
(
6𝜆2𝜂2𝑆2

𝐹

1 − 𝜆2
+ 5𝑁

)
8𝜆2𝜂2𝐿2

𝑓
𝐿2𝑔𝑇

(1 − 𝜆2)3

Then we have

[1 −
288𝜆4𝜂2𝑆2

𝐹

(1 − 𝜆2)4
]

𝑇∑︁
𝑡=0

∥x𝑡 − Jx𝑡 ∥2 ≤
(
6𝜆2𝜂2𝑆2

𝐹

1 − 𝜆2
+ 5𝑁

)
8𝜆2𝜂2𝐿2

𝑓
𝐿2𝑔𝑇

(1 − 𝜆2)3

+
96𝜆4𝜂4𝑆2

𝐹
𝑁

(1 − 𝜆2)4
𝑡=𝑇∑︁
𝑡=0

E


∇𝐹 (x̄𝑡 )

2 (22)
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When 0 < 𝜂 ≤ min{ 1−𝜆2
24𝜆2𝑆𝐹

, 1

6𝑆𝐹
}, we have [1 − 192𝜆4𝜂2𝑆2

𝐹

(1−𝜆2 )4 ] ≥ 1

2
,

Therefore, we have

𝑇∑︁
𝑡=0

∥x𝑡 − Jx𝑡 ∥2

≤
(
1

𝜆2
+ 5𝑁

)
16𝜆2𝜂2𝐿2

𝑓
𝐿2𝑔𝑇

(1 − 𝜆2)2
+
192𝜆4𝜂4𝑆2

𝐹
𝑁

(1 − 𝜆2)4
𝑡=𝑇∑︁
𝑡=0

E


∇𝐹𝑡 

2 (23)

Putting (23) into lemma 5, we have

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (x̄𝑡 )∥2 ≤ 2E[𝐹 (x̄0) − 𝐹 (x̄𝑇 )]
𝜂𝑇

+
2𝜂𝑆𝐹𝐿

2

𝑓
𝐿2𝑔

𝑁

+
2𝑆2

𝐹

𝑁𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

∥𝑥𝑛,𝑡 − x̄𝑡 ∥2 +
2𝐿2𝑔𝑆

2

𝑓
𝜎2𝑔

𝑚
− (1 − 2𝜂𝑆𝐹 )

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (x̄𝑡 )∥2

≤ 2E[𝐹 (x̄0) − 𝐹 (x̄𝑇 )]
𝜂𝑇

− 1

𝑇
[1 − 2𝜂𝑆𝐹 −

384𝜆4𝜂4𝑆4
𝐹

(1 − 𝜆2)4
]
𝑇−1∑︁
𝑡=0

∥∇𝐹 (x̄𝑡 )∥2

+
(
1

𝜆2
+ 5𝑁

)
32𝜆2𝜂2𝐿2

𝑓
𝐿2𝑔𝑆

2

𝐹

(1 − 𝜆2)2𝑁
+
2𝐿2𝑔𝑆

2

𝑓
𝜎2𝑔

𝑚
+
2𝜂𝑆𝐹𝐿

2

𝑓
𝐿2𝑔

𝑁

≤ 2E[𝐹 (x̄0) − 𝐹 (x̄𝑇 )]
𝜂𝑇

+
(
1

𝜆2
+ 5𝑁

)
32𝜆2𝜂2𝐿2

𝑓
𝐿2𝑔𝑆

2

𝐹

(1 − 𝜆2)2𝑁
+
2𝐿2𝑔𝑆

2

𝑓
𝜎2𝑔

𝑚

+
2𝜂𝑆𝐹𝐿

2

𝑓
𝐿2𝑔

𝑁

□

C PROOF OF SLATE-M ALGORITHM
Lemma 7. Suppose the sequence {𝑥𝑡 }𝑇

0
are generated from SLATE-M

in algorithm 2, we have

𝐹 (x̄𝑡+1) ≤ 𝐹 (x̄𝑡 ) − (𝜂
2

− 𝜂2𝑆𝐹

2

)∥ū𝑡 ∥2 −
𝜂

2

∥∇𝐹 (x̄𝑡 )∥2 +
3𝜂𝑆2

𝐹

2𝑁
∥x𝑡 − x̄𝑡 ∥2

+
3𝜂𝐿2𝑔𝑆

2

𝑓
𝜎2𝑔

2𝑚
+ 3𝜂

2

∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ) − ū𝑡 ∥2 (24)

Lemma 8. Assume that the stochastic partial derivatives 𝑢𝑡 be gen-
erated from SLATE-M in Algorithm 2, we have

E∥ū𝑡+1 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡+1)∥2 ≤ (1𝛼)2E∥ū𝑡 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2

+
2(1 − 𝛼)2𝑆2

𝐹

𝑁 2𝑏
E∥x𝑡+1 − x𝑡 ∥2 +

2𝛼2𝐿2𝑔𝐿
2

𝑓

𝑁𝑏

E∥𝑢𝑛,𝑡+1 − ∇𝐹𝑛 (x𝑛,𝑡+1)∥2 ≤ (1 − 𝛼)2E∥u𝑛,𝑡 − ∇𝐹 (x𝑛,𝑡 )∥2

+
2(1 − 𝛼)2𝑆2

𝐹

𝑏
E∥𝑥𝑛,𝑡+1 − x𝑛,𝑡 ∥2 +

2𝛼2𝐿2𝑔𝐿
2

𝑓

𝑏
(25)

Lemma 9. Suppose sequence v𝑡 are generated by Algorithm 2 and
if 0 < 𝜂 ≤ 1−𝜆2

2

√
24𝜆2𝑆𝐹

, we have

E ∥v𝑡+1 − Jv𝑡+1∥2 ≤ 3 + 𝜆2

4

E ∥v𝑡 − Jv𝑡 ∥2 +
21𝜆2𝑁𝑆2

𝐹
𝜂2

1 − 𝜆2
E ∥ū𝑡 ∥2

+
63𝜆2𝑆2

𝐹

1 − 𝜆2
E ∥x𝑡 − Jx𝑡 ∥2 +

7𝜆2𝛼2

1 − 𝜆2
E



u𝑡 − ∇F̂𝑡


2 + 3𝜆2𝑁𝛼2𝐿2

𝑓
𝐿2𝑔

E ∥v0 − Jv
0
∥2 ≤ 𝜆2E



u0 − ∇F̂0


2 + 𝜆2E



∇F̂0

2
Then we start the proof of Theorem 2.

Proof. Recall that

E∥ū𝑡+1 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹 (𝑥𝑛,𝑡+1)∥2 ≤ (1 − 𝛼)2E∥ū𝑡 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹 (x𝑛,𝑡 )∥2

+
2(1 − 𝛼)2𝑆2

𝐹

𝑁 2𝑏
E∥x𝑡+1 − x𝑡 ∥2 +

2𝛼2𝐿2𝑔𝐿
2

𝑓

𝑁𝑏
(26)

We know that
1

1−(1−𝛼 )2 ≤ 1

𝛼 for 𝛼 ∈ (0, 1). Based on Lemma 4, we

have: ∀𝑇 ≥ 2,

𝑇−1∑︁
𝑡=0

E






ū𝑡 − 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹 (𝑥𝑛,0)





2 (27)

≤
𝐿2𝑔𝐿

2

𝑓

𝛼𝑁𝐵
+

12𝑆2
𝐹

𝑁 2𝛼𝑏

𝑇−1∑︁
𝑡=0

E∥x𝑡 − Jx𝑡 ∥2 +
6𝜂2𝑆2

𝐹

𝑁𝛼𝑏

𝑇−1∑︁
𝑡=0

∥ū𝑡 ∥2 +
2𝛼𝐿2𝑔𝐿

2

𝑓

𝑁𝑏
𝑇

where 𝐵 is the initial batch size. Similarly, we have the following:

∀𝑇 ≥ 2,

𝑁∑︁
𝑛=1

𝑇−1∑︁
𝑡=0

E


u𝑛,𝑡 − ∇𝐹𝑛 (x𝑛,𝑡 )



2
(28)

≤
𝑁𝐿2

𝑓
𝐿2𝑔

𝛼𝐵
+
6𝑁𝑆2

𝐹
𝜂2

𝛼

𝑇−2∑︁
𝑡=0

E ∥ū𝑡 ∥2 +
12𝑆2

𝐹

𝛼𝑏

𝑇−1∑︁
𝑡=0

E ∥x𝑡 − Jx𝑡 ∥2 +
2𝛼𝑁𝐿2𝑔𝐿

2

𝑓

𝑏
𝑇

𝑇−1∑︁
𝑡=0

E
[
∥v𝑡 − Jv𝑡 ∥2

]
≤
4𝜆2E



∇F̂0

2
1 − 𝜆2

+
4𝜆2𝑁𝐿2

𝑓
𝐿2𝑔(

1 − 𝜆2
)
𝐵

+
84𝜆2𝑁𝑆2

𝐹
𝜂2(

1 − 𝜆2
)
2

𝑇−1∑︁
𝑡=0

E ∥ū𝑡 ∥2

+
252𝜆2𝑆2

𝐹(
1 − 𝜆2

)
2

𝑇−1∑︁
𝑡=0

E ∥x𝑡 − Jx𝑡 ∥2 +
12𝜆2𝑁𝛼2𝐿2

𝑓
𝐿2𝑔𝑇

1 − 𝜆2

+ 28𝜆2𝛼2(
1 − 𝜆2

)
2

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

E


u𝑛,𝑡 − ∇F̂𝑛

(
x𝑛,𝑡

)

2
1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇F(x̄𝑡 )∥2
(𝑑 )
≤ 2(F(x̄0) − F(x̄𝑇 ))

𝜂𝑇
+
3𝐿2𝑔𝑆

2

𝑓
𝜎2𝑔

𝑚
+ 3

𝐿2𝑔𝐿
2

𝑓

𝛼𝑁𝐵𝑇

+
6𝛼𝐿2𝑔𝐿

2

𝑓

𝑁𝑏
+

96𝜆2𝐿2𝑔𝐿
2

𝑓(
1 − 𝜆2

)
3

𝐵𝑇
+
256𝜆2𝛼2𝐿2

𝑓
𝐿2𝑔

(1 − 𝜆2)3
+
64𝜆4E



∇F̂0

2
(1 − 𝜆2)3𝑁𝑇

□

Then, we choose 𝑏 = 𝑂 (1), 𝜂 = 𝑂 ( 𝑁 2/3

𝑇 1/3 ), 𝛼 = 𝑁 1/3

𝑇 2/3 , 𝐵 = 𝑇 1/3

𝑁 2/3

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇F(x̄𝑡 )∥2 ≤ 𝑂 ( 2(F(x̄0) − F(x̄𝑇 ))
(𝑁𝑇 )2/3

+
3𝐿2𝑔𝑆

2

𝑓
𝜎2𝑔

𝑚

+𝑂 (
3𝐿2𝑔𝐿

2

𝑓

(𝑁𝑇 )2/3
) +𝑂 (

6𝐿2𝑔𝐿
2

𝑓

(𝑁𝑇 )2/3
) +

352𝜆2𝐿2
𝑓
𝐿2𝑔

(1 − 𝜆2)3
𝑂 (𝑁

2/3

𝑇 4/3 ) +
64𝜆4E



∇F̂0

2
(1 − 𝜆2)3𝑁𝑇
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