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ABSTRACT

To address the big data challenges, serverless multi-party collabo-
rative training has recently attracted attention in the data mining
community, since they can cut down the communications cost by
avoiding the server node bottleneck. However, traditional serverless
multi-party collaborative training algorithms were mainly designed
for balanced data mining tasks and are intended to optimize accu-
racy (e.g., cross-entropy). The data distribution in many real-world
applications is skewed and classifiers, which are trained to improve
accuracy, perform poorly when applied to imbalanced data tasks
since models could be significantly biased toward the primary class.
Therefore, the Area Under Precision-Recall Curve (AUPRC) was in-
troduced as an effective metric. Although multiple single-machine
methods have been designed to train models for AUPRC maxi-
mization, the algorithm for multi-party collaborative training has
never been studied. The change from the single-machine to the
multi-party setting poses critical challenges. For example, existing
single-machine-based AUPRC maximization algorithms maintain
an inner state for local each data point, thus these methods are not
applicable to large-scale multi-party collaborative training due to
the dependence on each local data point.

To address the above challenge, in this paper, we reformulate
the serverless multi-party collaborative AUPRC maximization prob-
lem as a conditional stochastic optimization problem in a server-
less multi-party collaborative learning setting and propose a new
ServerLess biAsed sTochastic gradiEnt (SLATE) algorithm to di-
rectly optimize the AUPRC. After that, we use the variance reduc-
tion technique and propose ServerLess biAsed sTochastic gradiEnt
with Momentum-based variance reduction (SLATE-M) algorithm to
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improve the convergence rate, which matches the best theoretical
convergence result reached by the single-machine online method.
To the best of our knowledge, this is the first work to solve the
multi-party collaborative AUPRC maximization problem. Finally,
extensive experiments show the advantages of directly optimizing
the AUPRC with distributed learning methods and also verify the
efficiency of our new algorithms (i.e., SLATE and SLATE-M).
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1 INTRODUCTION

Multi-party collaborative learning, such as distributed learning
[2,9, 19] (typically focus on IID data and train learning model using
the gradients from different parties) and federated learning [24]
(focus on non-1ID data and train model via periodically averaging
model parameters from different parties coordinated by the server),
have been actively studied at past decades to train large-scale deep
learning models in a variety of real-world applications, such as
computer vision [11, 37], natural language processing [10], gen-
erative modeling [4], etc. In literature, multi-party collaborative
learning is also often called decentralized learning (compared to
centralized learning in the single-machine setting). With different
network topology, serverless algorithms could be converted into
different multi-party collaborative algorithms (seen in 3.1). On the
other hand, although there are many ground-breaking studies with
DNN in data classification [11, 27, 32, 36], most works focus on
balanced data sets, optimize the cross entropy, and use accuracy to
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measure model performance. From the viewpoint of optimization,
the cross entropy between the estimated probability distribution
based on the output of deep learning models and encoding ground-
truth labels is a surrogate loss function of the misclassification
rate/accuracy. However, in many real-world applications, such as
healthcare and biomedicine [8, 18, 47], where patients make up a far
smaller percentage of the population than healthy individuals, the
data distribution is frequently skewed due to the scarce occurrence
of positive samples. The data from the majority class essentially
define the result, and the accuracy fails to be an appropriate met-
ric to assess classifiers’ performance. As a result, areas under the
curves (AUC), including area under the receiver operating curve
(AUROC) and area under precision-recall curves (AUPRC) are given
much attention since it excels at discovering models with strong
predictive power in imbalanced binary classification [6, 16].

The prediction performance of models, which are trained with
cross entropy as the surrogate loss for imbalanced binary classifi-
cation, may be subpar because cross-entropy is not the surrogate
function of AUC, which call for the study of AUC maximization.
Recent works have achieved remarkable progress in directly opti-
mizing AUROC with single-machine and multi-party training algo-
rithms [21, 48]. Liu et al. [21] constructed deep AUC as a minimax
problem and resolved the stochastic AUC maximization problem
with a deep neural network as the classifier. Recently, Yuan et al.
[43] and Guo et al. [13] extended the single-machine training to
federated learning and proposed a PL-strongly-concave minimax
optimization method to maximize AUROC.

However, AUROC is not suitable for data with a much larger
number of negative examples than positive examples, and AUPRC
can address this issue because it doesn’t rely on true negatives.
Given that an algorithm that maximizes AUROC does not neces-
sarily maximize AUPRC [8], the design of AUPRC maximization
algorithms has attracted attention [17, 26, 30, 31, 35]. Nonetheless,
the multi-party algorithm for AUPRC maximization problems has
not been studied. Existing AUPRC optimization methods cannot
be directly applied to multi-party collaborative training, since they
mainly focus on the finite-sum problem and maintain an inner state
for each positive data point, which is not permitted in a multi-party
online environment. In addition, to improve communication effi-
ciency, serverless multi-party collaborative learning algorithms are
needed to avoid the server node bottleneck in deep learning training.
Therefore, it is desired to develop efficient stochastic optimization
algorithms for serverless multi-party AUPRC maximization for
deep learning to meet the challenge of data mining on large-scale
imbalanced data sets.

The challenges to design serverless multi-party collaborative
AUPRC maximization algorithm are three-fold. The first difficulty
lies in the complicated integral definition. To overcome the problem
of the continuous integral, we can use some point estimators. Sev-
eral estimators of AUPRC have been presented in previous works
[3, 5]. The average precision (AP) estimator is one of the most pop-
ularly used estimators. AP can be directly calculated based on the
sample prediction scores and is not subject to sampling bias. It is
ideally suited to be used in stochastic optimization problems due
to these advantages.

The second difficulty lies in the nested structure and the non-
differential ranking functions in the AP. Traditional gradient-based
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gradient descent techniques cannot directly be used with the origi-
nal concept of AP. Most existing optimization works use the surro-
gate function to replace the ranking function in the AP function
[13, 17, 21, 26, 31, 35]. We can follow these works and substitute a
surrogate loss for the ranking function in the AP function.

The third difficulty is that existing algorithms only focus on
finite-sum settings and maintain the inner estimators u; for each
positive data point, which is not permitted in multi-party collabo-
rative online learning. Therefore, despite recent developments, it
is still unclear if there is a strategy to optimize AUPRC for multi-
party collaborative imbalanced data mining. It is natural to ask the
following question:

Can we design serverless multi-party stochastic op-
timization algorithms to directly maximize AUPRC
with guaranteed convergence?

In this paper, we provide an affirmative answer to the aforemen-
tioned question. We propose the new algorithms for multi-party
collaborative AUPRC maximization and provide systematic analysis.
Our main contributions can be summarized as follows:

e We cast the AUPRC maximization problem into non-convex
conditional stochastic optimization problem by substituting a
surrogate loss for the indicator function in the definition of AP.
Unlike existing methods that just focus on finite-sum settings,
we consider the stochastic online setting.

e We propose the first multi-party collaborative learning algo-
rithm, ServerLess biAsed sTochastic gradiEnt (SLATE), to solve
our new objective. It can be used in an online environment and
has no reliance on specific local data points. In addition, with
different network topologies, our algorithm can also be used
for distributed learning and federated learning.
Furthermore, we propose a stochastic method (i.e., SLATE-M)
based on the momentum-based variance-reduced technique
to reduce the convergence complexity in multi-party collab-
orative learning. Our method can reach iteration complexity
of O (1/ 65), which matches the lower bound proposed in the
single-machine conditional stochastic optimization.

e We conduct extensive experiments on various datasets com-
pared with previous stochastic multi-party optimization algo-
rithms to verify the effectiveness of our methods.

2 RELATED WORK
2.1 AUROC Maximization

There is along line of research that investigated the imbalanced data
mining with AUROC metric [13, 21, 40, 43, 48], which highlight the
value of the AUC metric in imbalanced data mining. Earlier works
about AUROC focused on linear models with pairwise surrogate
losses [18]. Furthermore, Ying et al. [40] solved the AUC square sur-
rogate loss using a stochastic gradient descent ascending approach
and provided a minimax reformulation of the loss to address the
scaling problem of AUC optimization. Later, Liu et al. [21] stud-
ied the application of AUROC in deep learning and reconstructed
deep AUC as a minimax problem, which offers a strategy to resolve
the stochastic AUC maximization problem with a deep neural net-
work as the predictive model. Furthermore, some methods were
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proposed for multi-party AUROC maximization. Yuan et al. [43]
and Guo et al. [13] reformulated the federated deep AUROC maxi-
mization as non-convex-strongly-concave problem in the federated
setting. However, the analyses of methods in [43] and [13] rely on
the assumption of PL condition on the deep models. Recently, [42]
developed the compositional deep AUROC maximization model
and [46] extend it to federated learning.

2.2 AUPRC Maximization

Early works about AUPRC optimization mainly depend on tradi-
tional optimization techniques. Recently, Qi et al. [26] analyzed
AUPRC maximization with deep models in the finite-sum setting.
They use a surrogate loss to replace the ranking function in the AP
function and maintain biased estimators of the surrogate ranking
functions for each positive data point. They proposed the algorithm
to directly optimize AUPRC and show a guaranteed convergence.
Afterward, Wang et al. [31] presented adaptive and non-adaptive
methods (i.e. ADAP and MOAP) with a new strategy to update
the biased estimators for each data point. The momentum average
is applied to both the outer and inner estimators to track indi-
vidual ranking scores. More recently, algorithms proposed in [30]
reduce convergence complexity with the parallel speed-up and
Jiang et al. [17], Wu et al. [35] introduced the momentum-based
variance-reduction technology into AUPRC maximization to re-
duce the convergence complexity. While we developed distributed
AUPRC optimization concurrently with [12], they pay attention
to X-Risk Optimization in federated learning. Because X-Risk opti-
mization is a sub-problem in conditional stochastic optimization
and federated learning could be regarded as decentralized learning
with a specific network topology (seen 3.1), our methods could also
be applied to their problem.

Overall, existing methods mainly focus on finite-sum single-
machine setting [17, 26, 30, 31, 35]. To solve the biased stochastic
gradient, they maintain an inner state for local each data point.
However, this strategy limits methods to be applied to real-world
big data applications because we cannot store an inner state for
each data sample in the online environment. In addition, we cannot
extend them directly from the single-machine setting to multi-party
setting, because under non-IID assumption, the data point on each
machine is different and this inner state can only contain the local
data information and make it difficult to train a global model.

In the perspective of theoretical analysis, Hu et al. [15] studied
the general condition stochastic optimization and proposed two
single-machine algorithms with and without using the variance-
reduction technique (SpiderBoost) named BSGD and BSpiderboost,
and established the lower bound at £~° in the online setting.

AUPRC is widely utilized in binary classification tasks. It is
simple to adapt it for multi-class classifications. If a task has multiple
classes, we can assume that each class has a binary classification
task and adopt the one vs. the rest classification strategy. We can
then calculate average precision based on all classification results.

2.3 Serverless Multi-Party Collaborative
Learning

Distributed learning has wide applications in data mining and ma-
chine learning problems. Multi-party collaborative learning in this
paper has a more general definition that does not rely on the IID
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assumption of data to guarantee the convergence analysis. In the
last years, many serverless multi-party collaborative learning ap-
proaches have been put out because they avoid the communica-
tion bottlenecks or constrained bandwidth between each worker
node and the central server, and also provide some level of data
privacy [41]. Lian et al. [20] offered the first theoretical backing
for serverless multi-party collaborative training. Then serverless
multi-party collaborative training attracts attention [22, 23, 29, 39]
and the convergence rate has been improved using many differ-
ent strategies, including variance extension [29], variance reduc-
tion [25, 44], gradient tracking [23], and many more. In addition,
serverless multi-party collaborative learning has been applied to
various applications, such as reinforcement learning [45], robust
training [38], generative adversarial nets (GAN) [22], robust princi-
pal component analysis [33] etc. However, none of them focus on
imbalanced data mining. The serverless multi-party collaborative
learning setting in this paper is different to federated learning [24]
which uses server with different communication mechanism to
periodically average the model parameters and is mainly designed
for indirectly aggregating data from numerous devices, such as in
IoT applications, not for training large-scale deep learning models
with big data.

3 PRELIMINARY

3.1 Serverless Multi-Party Collaborative
Learning

Notations: We use x to denote a collection of all local model pa-
rameters x,, where n € [N], i.e, x = [x;'—,x;—,...,x;'\}]-r € RNd,
Similarly, we define u, v as the concatenation of up, v, for n € [N].
In addition, ® denotes the Kronecker product, and || - || denotes the
2 norm for vectors, respectively. D denotes the positive dataset
on the N worker nodes and D denotes the whole dataset on the n
worker nodes. The network system of N worker nodes G = (V, &)
is represented by double stochastic matrix W = {w,;} € RNXN,
which is defined as follows: (1) if there exists a link between node i
and node j, then w;; > 0, otherwise w;; = 0, (2) W = WT and (3)
W1=1and 1"W = 17. We define the second-largest eigenvalue
of Was A and W := W ® I ;. We denote the exact averaging matrix
as] = %(lnlg) ®1; and A = [|[W - J||. Taking ring network topol-
ogy as an example. In the ring network, where each node can only
exchange information with its two neighbors. The corresponding
W is in the form of

/3 1/3 1/3
13 1/3 1/3
W= /3 1/3 c RNXN
- 1/3
/3 1/3 1/3
1/3 /3 1/3

If we change the network topology, serverless multi-Party collabo-
rative learning could become different types of multi-party collabo-
rative training. If W is % 117, it is converted to distributed learning
with the average operation in each iteration. If we choose W as the
Identity matrix and change it to ﬁllT every q iteration, it would
be federated learning.
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3.2 AUPRC
AUPRC can be defined as the following integral problem [1]:
AUPRC = / Pr(y=1| h(x;z) = c)dPr(h(x;z) <cly=1)

where h(x;z) is the prediction score function, x is the model pa-
rameter, £ = (z,y) is the data point, and Pr(y = 1|h(x;z) > c) is
the precision at the threshold value of c.

To overcome the problem of the continuous integral, we use AP
as the estimator to approximate AUPRC, which is given by [3]:
' (x)
T
where D denotes the positive dataset, and samples & = (z,y) are
drawn from positive dataset D* where z € Z represents the data
features and y = +1 is the positive label. ™ denotes the positive
data rank ratio of prediction score (i.e., the number of positive
data points with no less prediction score than that of ¢ including
itself over total data number) and r denotes its prediction score
rank among all data points (i.e, the number of data points with
no less prediction score than that of ¢ including itself over total
data number). D denotes the whole datasets and &’ = (z’,y’) ~ D
denote a random data drawn from an unknown distribution D,
where z’ € Z represents the data features and y’ € Y = {-1,+1}.
Therefore, (1) is the same as:

Eg . pl(h(x2') 2 h(x;2)) - 1(y = 1)
Eg.pl(h(x;2’) 2 h(x;2))
We employ the following squared hinge loss:
t(x;2,2') = (max{s — h(x;2) + h(x;2'),0})* (2)

as the surrogate for the indicator function I(h(x;z") > h(x;z)),
where s is a margin parameter, that is a common choice used by
previous studies [17, 26, 31]. As a result, the AUPRC maximization
problem can be formulated as:

Ep pl(y =1)(x22)
Eg/wﬂ t(x;2,2)

AP = Eg. p+Precision (h(x;2)) = Eg.p+ (1)

AP = E§~@+

AP = E§~D+

In the finite-sum setting, it is defined as :
1 o en 1y =1 (xz2)
DY

AP 1
E~D* W Z§~D t (X; zZ, Z/)
For convenience, we define the elements in g(x) as the surrogates
of the two prediction score ranking function r* (x) and r (x) re-
spectively. Define the following equation:
1 ! ’ ’
ey = |9 &ES) ] _ |t (xz2) 1y =1)

g(X,f,f) = [gZ (X;‘f,f,) = f(X;Z,Z’)
and g(x;¢) = Eg.pg (x:§,¢) € R?, and assume f(u) = —Z—; :
R? - Rforanyu = [u,uz2]T € R% Then, we could reformulate the
optimization objective into the following stochastic optimization
problem:

min F(x) = Ez.p+ [f(9(x; O]
=EBepr [f(Beopg(x:EE))] ®3)

It is similar to the two-level conditional stochastic optimization
[15], where the inner layer function depends on the data points
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sampled from both inner and outer layer functions. Given that f(-)
is a nonconvex function, problem (3) is a noncvonex optimiztion
problem. In this paper, we considers serverless multi-party collabo-
rative non-convex optimization where N worker nodes cooperate
to solve the following problem:
1 n
min F(x) = min - > Fa(x) @
n=1

where Fp(x) = Eg, _p: f(Eg, ~p,gn(x;8n)) and &, = (zp,,yp,) ~
Dy and & = (zn,yn) ~ DT We consider heterogeneous data
setting in this paper, which refers to a situation where D; and D;
are different (i # j ) on different worker nodes.

In order to design the method, we first consider how to compute
the gradient of F(x).

VFn (%) =E§H~D;V9n(x§ ‘fn)TVf (gn(x;&n))
T
-1 91 (x;&n)
=Ey _p+Vgn(x;én T , 2
gn Dy, g (X f) (g?l(x,fn) (g%(x)gn))Z)
where
1(y.
Vgn (s ) = [zizg jii]

_ [Bgp,1(yn = 1) VI (x: 20, 23)
Eg;f“on ve (X; Zn, Z;l)

We can notice that it is different from the standard gradient
since there are two levels of functions and the inner function also
depends on the sample data from the outer layer. Therefore, the
stochastic gradient estimator is not an unbiased estimation for
the full gradient. Instead of constructing an unbiased stochastic
estimator of the gradient [28], we consider a biased estimator of
VFy,(x) using one sample ¢ from D;} and m sample & from D, as
By, in the following form:

VEy (X;En, Bn)

S Vs b GV D gnlsn )

§'eBy, &neBn

©)

where B, = {f’j};nzl. It is observed that VF, (x;&n, By) is the
gradient of an empirical objective such that

ﬁn (X;gnan) 1:fn % Z gn(x;,fn:g;z)

&h€Bn

4 ALGORITHMS

In this section, we propose the new serverless multi-party collabo-
rative learning algorithms for solving the problem (4). Specifically,
we use the gradient tracking technique ( which could be ignored
in practice) and propose a ServerLess biAsed sTochastic gradiEnt
(SLATE). We further propose an accelerated version of SLATE with
momentum-based variance reduction [7] technology (SLATE-M).

4.1 Serverless Biased Stochastic Gradient
(SLATE)

Based on the above analysis, we design a serverless multi-party
collaborative algorithms with biased stochastic gradient and is
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Algorithm 1 SLATE Algorithm

Algorithm 2 SLATE-M Algorithm

1: Input: T, step size 1 inner batch size m and mini-batch size b;
upo=0andvyg=0forne{1,---,N}

2: Initialize: x, 0 = % ZkN:1 Xn,0-

3: fort=0,1,...,T do

4 forn=12...,Ndo

5: Draw b samples B;, = {&] t}i‘?:l from D}
: m

6: Draw m samples B, ; = {{;jt} from Dy,
ot g

1 A i .

7: Uns =73 Zib:1 VFEq(Xn,t5 grlut’ Bp,t) asin (6)

8 Vit = Sy W, (Vi +u) —uf_)

9: Xnt+1 = 2N w, (XT = nving)

10: end for

11: end for

12: Output: x chosen uniformly random from {)‘(t}thl.

named SLATE. Algorithm 1 shows the algorithmic framework of
the SLATE. Step 8 could be ignored in practice.

At the beginning of Algorithm 1, one simply initializes local
model parameters x for all worker nodes. Given the couple structure
of problem (4). We can assign the value of gradient estimator uy o
and gradient tracker v, as 0.

At the Lines 5-6 of Algorithm 1, we draw b samples as B:{,
positive dataset D} and m samples as B, ;from full data sets Dy,
on each node, respectively. We use a biased stochastic gradient to
update the gradient estimator u,,; according to the (6).

Upt = (6)
(' xn: & 8) = ¢ (xn: ) 1Y = 1)) VE (X2, 2')

; from

5632,, &e€Bn,; bm (gZ (Xn,t§5z, §’))2

where ¢ = (z,y) and & = (7/,¢')

Afterward, at the Line 8 of Algorithm 1, we adopt the gradient
tracking technique [23] to reduce network consensus error, where
we update the v, ; and then do the consensus step with double
stochastic matrix W as:

N
Vnit = Zﬂnr(";—l +up ;)
r=1

Finally, at the Line 9 of Algorithm 1, we update the model with
gradient tracker vy ¢, following the consensus step among worker
nodes with double stochastic matrix W:

N
Xn,t+1 = Zﬂnr(xr,t = nVre)
r=1

The output X; is defined as: X; = % ZnN:1 Xnt -

4.2 SLATE-M

Furthermore, we further propose an accelerated version of SLATE
(SLATE-M) based on the momentum-based variance reduced tech-
nique, which has the better convergence complexity. The details of
the algorithm are shown in Algorithm 2. Step 11 could be ignored
in practice.

At the beginning, similar to the SLATE, one initialize local model
parameters x for all worker nodes, as seen in Lines 1-2 in Algo-
rithm 2.
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1: Input: T, step size n, momentum coefficient ¢, inner batch size
m and mini-batch size b, and initial batch size B;

2. Initialize: x,, 0 = % Zszl Xn,0

3: Draw B samples of {fiz,o}?:l from D, and draw

. am
m samples B = {§;]0}~1 from Dp, upo =
0f j-

% Zile V13"1 (Xn,0§ §,il’0s Z;n,O)V” € [N]
t Vpo = Zi\il ﬂnruno\?’n € [N]
: Xp1 = Zi«\i] ﬂnr(xn,o - Uvn,O)Vn € [N]
:fort=1,2,...,T do
forn=1,2,...,Ndo
Draw b samples of{fg,l, e ,52’1} from D}
9: Draw m samples B, = {g’f};.”zl from Dy,
10: Unt = %Z?:l Vﬁn(xn,ﬁfil’psn,t) + (1 - a)(upe-1 —
32l VEi(xni-1:E . Bi))
1L: Vit = S W, (Vi_y 0y —up_y)
12: Xn,t+1 = Zﬁ\il ﬂnr(x? —NVn,t)
13:  end for
14: end for
: Output: x chosen uniformly random from {)‘(t}thl.

'S

® N w

-
5

Different from SLATE, we initialize the uy, o with initial batch size
Band v, Vn € [N], which can be seen in Lines 3-4 in Algorithm 2.
Then we do the consensus step to update the model parameters x,.
The definition of F,, (Xn,0; §f1’0, Bh,0) is similar to (6) as below:

1 ~ .
_Fn(xn,t;’ﬁl,ta Bnt) = )

|Bn,t|
(9" (xnt:EE) = ¢ (xn: EE) 1Y = 1)) VE (xp152,27)

|Bn,t|m (92 (Xn,t§ g g,))Z

where |8, ;| denotes the size of batch 8B, ; and ¢ = (z,y) and
&¢=.y).

Afterwards, similar to SLATE, each iteration, we draw b samples
from positive dataset D} and m samples from full data sets Dp, on
each worker node, respectively to construct the biased stochastic
gradient, seen in Line 8-9 of Algorithm 2.

The key different between SLATE and SLATE-M is that we up-
date gradient estimator u,; in SLATE-M with the following vari-
ance reduction method:

1 b S ;
Unt = T Z VFn(Xn,t§ ﬁl,t, Bn,t) +(1- a)(un,t—l
b

E€By, £ B,

b
1 N .
=5 2 VEn G160 Bue)
i=1

where ll, Zlb:l Vﬁn(xn,ﬁ fﬁw Bp,t) and % Zib:1 Vﬁn(xn,t—ﬁ fﬁw But)
are defined in (7)

Finally, we update gradient tracker v, ; and model parameters
Xp,t as in Lines 11-12 in Algorithm 2.

5 THEORETICAL ANALYSIS

We will discuss some mild assumptions and present the convergence
results of our algorithms (SLATE and SLATE-M).
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5.1 Assumptions

In this section, we introduce some basic assumptions used for theo-
retical analysis.

Assumption 1. Vn € [N], we assume (i) there is C(> 0) that
£(x; zn, zn) > C; (ii) there is M(> 0) that 0 < £(x;zn, zy,) < M; (iii)
£(x;zn, z)y) is Lipschitz continuous and smooth with respect to model
x for any &, = (zn,yn) ~ D, &, = (20, y)) ~ D.

Assumption 2. Vn € [N], we assume there exists a positive constant
o, such that |Vg(x; & E)|? < 0®VE ~ D}, & ~ Dy,

Assumptions 1 and 2 are a widely used assumption in optimiza-
tion analysis of AUPRC maximization [17, 26, 31]. They can be
easily satisfied when we choose a smooth surrogate loss function
£(x;z,7') and a bounded score function model A(x;-).

Furthermore, based on Assumptions 1 and 2, we can build the
smoothness and lipschitz continuity of objective function in the
problem (4).

Lemma 1. (Lemma 1 in [31]) Suppose Assumptions 1 and 2 hold,
thenVx, ||gn(x; &)||2 < 05, gn(x; &) is Ly-Lipschitz and Sg-smooth for
xi ~ DF, andVYu € Q, f(u) is Lg-Lipschitz and S g-smooth. Vx, Fn (x)
is Lp-Lipschiz and Sp-smooth.

From the Lemma 1, we have f, and g, are Sp-smooth and Sp,-
smooth. This implies that for an samgle &, ~ D} there exist S >0
and Sy > 0 such that

EIVfa(x1) = Vin(x)ll < Sgllxr — x2l]
E||Vgn(y1, &n) = Vgn(y2, En)ll < Sqllyr — v2ll

And f, and g, are Lyg-Lipchitz continuous and Ly-Lipchitz con-
tinuous. This implies that there exist Ly > 0 and Ly > 0 such
that

BV (Il < 12

ElVgn(y1, &)I° < S

In addition, we also have bounded variance of g,. There exist oy > 0
such that

2 2
Eg,~ 01 lgn (X &n. &) = Bg, 0, 9n (X &n, E1° < 0y
which indicates that the inner function g, has bounded variance.
To control the estimation bias, we follow the analysis in single-

machine conditional stochastic optimization [15].

Lemma 2. (Proposition B.1 in [15]) Under Assumptions 1 and 2, on
the n-th worker node, for a sample &, ~ D;f and m samples By, from
Dn, )

(a) By = {f’f };":1 and we have

128207
IEVEn(x: 0, Ba) = VE ()2 < =L )
(b) EVE, (x; &n, Bn) are Sp-Lipschitz smooth
()
IV (f (G (%, 0))) — VEGO[; < L2122 ©)

Lemma 2 (a) provide a bound of biased stochastic gradient, which
will be used in the following theoretical analysis.
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Assumption 3. The function F,,(x) is bounded below,i.e.,infy Fy(x) >
—0Q,

5.2 The Communication Mechanism in
Serverless Multi-Party Collaborative
Training

The network system of N worker nodes G = (V, E) is represented

by double stochastic matrix W = {w; j} € RN*N in the analysis.

For the ease of exposition, we write the x; and v;-update in
Algorithm 1 and Algorithm 2 in the following equivalent matrix
form: Vt > 0,

Vi =WV +ur —up-1), Xpr1 = W(Xpo1 = 1vy)

where W := W ® I; and x;, us, v are random vectors in RN that

respectively concatenate the local estimates {xn,t}nN: , of a station-
N

n=1-
{un,t}ﬁ:f: 1- With the exact averaging matrix J, we have following

quantities:

ary point of F , gradient trackers {vp ;} gradient estimators

1@ % :=Jxg, 1@ 0 :=Jug, 1@V :=Jvy

Next, we enlist some useful results of gradient tracking-based
algorithms for serveress multi-party collaborative stochastic opti-
mization

Lemma 3. (Lemma 1 in [39]) For double stochastic matrix, we have
the following:

(a) |[Wx - Jx|| < M|x - Jx||, Vx € R™.

(b) ¥y =0y, YVt > 0. As the update step in 1 and 2, we have

X4l =X =NV = Xp — N

(c) According to the definition of network W, we have the following
inequalities: Vk > 0,

1+ 22 2% A2
et = Jxesa |1 < ke = Jxell? + 5 Ive =Jvill® (10)
X1 = Jxpa1ll® < 222 1% = Jxe[1? + 202 2% |lvs = Jve P (11)
lxe41 = Jxeall < A lxe = Jxe|* + 0 [Ive = Jvi | (12)

Then, we study the convergence properties of SLATE and SLATEM.
We first discus the metric to measure convergence of our algo-
rithms. Given that the loss function is nonconvex, we are unable to
demonstrate convergence to an global minimum point. Instead, we
establish convergence to an approximate stationary point, defined
below:

Definition 1. A point x is called e-stationary point if || Vf(x)|| <
€. Generally, a stochastic algorithm is defined to achieve an e-
stationary point in T iterations if E||Vf(xT)| < e.

5.3 Convergence Analysis of SLATE Algorithm

First, we study the convergence properties of our SLATE algorithm.
The detailed proofs are provided in the supplementary materials.

Theorem 1. Suppose the sequence {it}thl be generated from Algo-

1

; ; ; -2 1
rithm 1 and Assumptions 1, 2, and 3 hold, 0 < 1 < m1n{m, @}’
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SLATE in algorithm 1 has the following

%TZ_IEIIVFGWZ < ZELFGo) — FGr)]
t=0

nT
2,212712¢Q2 2¢Q2 2 2712
. i+5N 32A°ny LngSF 2LgSf0'g ZUSFLng
A2 (1-1%2)2N m N

Corollary 1. Based on the analysis in Theorem 1, by setting n =
O(4/ %) , SLATE in Algorithm 1 has the following

E[F(%0) - F(x7)]

T-1
1 = \[12
7 2 BIVEG)I” < O iz )
=0
2727242 262 52 ALz
1 242 LngSF N 2LgSfag ZSFLng
+|—=+5 Oo(= )
pE (1-2%2 T m (NT)1/2

Based on the result in Theorem 1 and Corollary 1, we can get
the convergence result of SLATE.

Remark 1. According to Corollary 1, without loss of generality,
we let m = O(e72), b = O(1) and VT > N, we know to make
% Zz—:_ol E||VF(%¢)||? < €2, we have iterations T should be as large
as O(N~1g74).

In Algorithm 1, we sample b + m data points to build the biased
stochastic gradients u, ¢, and need T iterations. Thus, our SLATE
algorithm has a sample complexity of m - T = O(N~'e7%), for
finding an e-stationary point. In addition, the result also indicates
the linear speedup of our algorithm with respect to the number of
worker nodes.

5.4 Convergence Analysis of SLATE-M

In the subsection, we study the convergence properties of our
SLATE-M algorithm. The details about proofs are provided in the
supplementary materials.

Theorem 2. Suppose the sequence {)‘(t}thl be generated from Algo-
rithm 2 and Assumptions 1, 2, and 3 hold, 0 < n < min{‘—ll,

1-22) o2 725%? . )
( 9M2) , 121ng }% and a = NFb , SLATE-M in Algorithm 2 has
the following
T-1 _ _ 3L252 0.2 L2L2
1 2(F(x9) — F(x 9 9 9
= nT m aNBT
2712 272712 2. 272712 4 A 2
60{LgLf . 96). LgLf . 256). [24 Lng 64 E”VFOH
Nb (1-p2)°BT  (1-2%)3  (1-A%)°NT

Corollary 2. Based on the analysis in the theorem 2, we choose

2/3 1/3 1/3 .
b=0(),n= 0(%),(1 = O(I}IZ—/S),B = O(ﬁ), SLATE-M in

Algorithm 2 has the following

5 X % 3L2S%0;
! 2(F(x¢) — F(x g g
LS Bvr|? < o 2GR “FGn) | 79y
L= (NT)2/3 m
3LgL% 6LZL%  3S2ALALE o
+0( ) +0( )+ )
(NT)Z/S (NT)Z/S (1-22)3 7473
Al il 1
(1-22)3NT (13)
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Based on the result in theorem 2, we can get the convergence
result of SLATE-M.

Remark 2. According to Corollary 2, without loss of generality, Let

_ 2/3 1/3 1/3
m=0(¢7%),b=001)n = 0(¥7),a = 0(45z), and B = 0({75),

we know to make % ZZZ_OI E||VF(%;)||? < €2, we have iterations T
should be as large as O(N~1e73).

In Algorithm 2, in each iteration, we sample b + m data points
to build the biased stochastic gradients u, ;, and need T iterations.
Thus, our SLATE-M algorithm has a sample complexity of m - T =
O(N~1¢73), for finding an e-stationary point, which also achieves
the linear speedup of our algorithm with respect to the number of
worker nodes.

Remark 3. The sample complexity of O(N~!¢~) in SLATE-M
matches the best convergence complexity achieved by the single-
machine stochastic method for conditional stochastic optimization
in the online setting, and also match the lower bound for the online
stochastic algorithms [15].

6 EXPERIMENTS

In this section, we conduct extensive experiments on imbalanced
benchmark datasets to show the efficiency of our algorithms. All
experiments are run over a machine with AMD EPYC 7513 32-
Core Processors and NVIDIA RTX A6000 GPU. The source code is
available at https://github.com/xidongwu/D-AUPRC.

The goal of our experiments is two-fold: (1) to verify that (4)
is the surrogate function of AUPRC and illustrate that directly
optimizing the AUPRC in the multi-party collaborative training
would improve the model performance compared with traditional
loss optimization, and (2) to show the efficiency of our methods for
AUPRC maximization.

6.1 Configurations

Datasets: We conduct experiments on imbalanced benchmark
datasets from LIBSVM data !: w7a and w8a, and four typical image
datasets: MNIST dataset, Fashion-MNIST dataset, CIFAR-10, and
Tiny-ImageNet dataset (seen in Table 1). For w7a and w8a, we scale
features to [0, 1]. For image datasets, following [26, 31], we con-
struct the imbalanced binary-class versions as follows: Firstly, the
first half of the classes (0 - 4) in the original MNIST, Fashion-MNIST,
and CIFAR-10, and (0 - 99) in Tiny-ImageNet datasets are converted
to be the negative class, and another half of classes are considered
to be the positive class. Because the original distributions of image
datasets are balanced, we randomly drop 80% of the positive ex-
amples in the training set to make them imbalanced and keep test
sets of image datasets unchanged. Finally, we evenly partition each
datasets into disjoint sets and distribute datasets among worker
nodes.

Models: For w7a and w8a, we use two layers of neural networks
with the dimension of the hidden layer as 28. The RELU is used as
the activation function. For MNIST, Fashion MNIST and Cifar-10
data sets, we choose model architectures from [34] for our imbal-
anced binary image classification task, as shown in Table 5 and
Table 6. For Tiny-ImageNet, we choose ResNet-18 [14] as the clas-
sifier. In our algorithms, We modify the output of all models to

!https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Table 1: Statistics of benchmark datasets

Data Set Training examples Testing examples Feature Size Proportion of positive data
w7a 24692 25057 300 2.99%
w8a 49749 14951 300 2.97 %

MNIST 60000 10000 28 X 28 16.7%

Fashion MNIST 60000 10000 28 x 28 16.7 %
CIFAR-10 50000 10000 3X32x%x32 16.7 %
Tiny-ImageNet 100000 10000 3 X 64 X 64 16.7 %
1 1 1
0.9 0.9
08 0o 08
0.7 08 0.7
c c c
Sos s Sos
'g 05 'g 0.7 'g 05
N
03[—DSGD *I—psap 03(—DSGD
oz|{—CODA —CODA 0z{—CODA
SLATE °5I1-— SLATE SLATE
*![|—SsLATEM — SLATEM *!l|—SsLATEM
00 0.2 0.4 0.6 0.8 1 0.40 0.2 04 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1
Recall Recall Recall
(a) w7a dataset (b) MNIST dataset (c) CIFAR-10 dataset

Figure 1: Precision-Recall curves of the models on the testing set
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Figure 2: AP vs Iterations on the test set

1 and the sigmoid function is followed since we consider binary
classification tasks.

In the experiments, the number of worker nodes is set as N = 20
and we use the ring-based topology as the communication network
structure. [20].
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6.2 Comparison with Existing Multi-Party
Stochastic Methods
Baselines: We compare our algorithms with two baselines: 1) D-

PSGD [20], a SGD-like serverless multi-party collaborative algo-
rithm with the Cross-Entropy loss as the optimization objective.
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Table 2: Final averaged AP scores on the testing data

Method w7a w8a MNIST Fashion MNIST CIFAR-10 Tiny-ImageNet
D-PSGD 0.6372 0.6585 0.9592 0.9497 0.5058 0.5906
CODA 0.5414 0.5786 0.9460 0.9474 0.5668 0.5971
SLATE 0.7788 0.8072 0.9911 0.9515 0.7279 0.6032
SLATEM 0.7778 0.8063 0.9913 0.9515 0.7285 0.6131

Table 3: SLATE test accuracy on CIFAR-10 with margin pa-
rameter s, and positive batch size b (B=60)

Margin 0.1 0.3 0.5 0.7 0.9
b=5 0.6270 0.5971 0.5992 0.5928 0.5765
b=10 0.6910 0.5887 0.5956 0.5986 0.5989
b=15 07248 0.5895 0.5902 0.5952 0.5979
b=20 07279 0.6001 0.5870 0.5929 0.5962
b=25 07216 0.6038 0.5876 0.5933 0.5962

Table 4: SLATE-M test accuracy on CIFAR-10 with margin
parameter s, positive batch size b (B = 60), and «

Margin 0.1 (¢=0.1) 01(x=0.9) 03(x=01) 0.3(a=0.9)
b=15 0.7273 0.7272 0.5853 0.5895
b =20 0.7285 0.7289 0.5986 0.6001
b =25 0.7167 0.7206 0.6024 0.6036

D-PSGD runs SGD locally and then computes the neighborhood
weighted average by fetching model parameters from neighbors;
2) CODA, a typical federated learning algorithm for optimizing
minimax formulated AUROC loss [13, 43]. CODA runs local SGDA
with the periodic model average in the federated learning setting.
We convert it into the serverless multi-party setting and run local
SGDA, following the consensus step to update the models. Gradi-
ent tracking steps are ignored. In the experiments, we ignore the
gradient tracking steps to reduce computation and communication
costs.

Parameter tuning: We perform a grid search to tune all methods
carefully. The total batch size m drawn from D is chosen in the set
{20, 20, 20, 20, 60, 200}. For SLATE and SLATE-M, the positive batch
size b in the total batch size is chosen in the set {2, 2, 3, 5, 20, 35},
and m - b negative data points. The squared hinge loss is used as (2),
a is chosen from {0.1,0.9} and the margin parameter s is selected
from {0.1,0.3,0.5,0.7,0.9}. The step size is selected from the set
{0.01,0.005,0.001}. For the D-PSGD, the step size is chosen in the
set {0.01,0.005,0.001}. For the CODA, the step size for minimum
variable is chose from the set {0.01,0.005,0.001} and that for the
maximum variable is chosen from the set {0.0001, 0.0005,0.001}.
Moreover, we use Xavier normal to initialize models.
Experimental results: Table 2 summarizes the final results on
the test sets. In order to present the advantage of optimization
of AUPRC, we plot the Precision-Recall curves of final models on
testing sets of W7A, MNIST, and CIFAR-10 when training stop in
Figure 1. Then we illustrate the convergence curve on test sets in
Figure 2. Results show that our algorithms (i.e., SLATE, SLATE-M)
can outperform baselines in terms of AP with a great margin across
each benchmark, regardless of model structure. The experiments
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verify that 1) the objective function (4) is a good surrogate loss
function of AUPRC and directly optimizing the AUPRC in the multi-
party collaborative training would improve the model performance
compared with traditional loss optimization in the imbalanced data
mining. 2) Although CODA, with minimax formulated AUROC
loss, has a relatively better performance compared with D-PSGD
in large-scale datasets (CIFAR-10 and Tiny-ImageNet), the results
verify the previous results that an algorithm that maximizes AU-
ROC does not necessarily maximize AUPRC. Therefore, designing
the algorithms for AUPRC in multi-party collaborative training is
necessary. 3) our algorithms can efficiently optimize the (4) and
largely improve the performance in terms of AUPRC in multi-party
collaborative imbalanced data mining. 4) In datasets CIFAR-10 and
Tiny-ImageNet, SLATE-M has better performance compared with
SLATE.

Ablation study: In this part, we study the effect of margin param-
eters, positive batch size, and a of SLATE-M. The results are listed
in Table 3 and Table 4.

7 CONCLUSION

In this paper, we systematically studied how to design serverless
multi-party collaborative learning algorithms to directly maximize
AUPRC and also provided the theoretical guarantee on algorithm
convergence. To the best of our knowledge, this is the first work to
optimize AUPRC in the multi-party collaborative training. We cast
the AUPRC maximization problem into non-convex two-level sto-
chastic optimization functions under the multi-party collaborative
learning settings as the problem (4), and proposed the first multi-
party collaborative learning algorithm, ServerLess biAsed sTochas-
tic gradiEnt (SLATE). Theoretical analysis shows that SLATE has a
sample complexity of O(¢7°) and shows a linear speedup respec-
tive to the number of worker nodes. Furthermore, we proposed a
stochastic method (i.e., SLATE-M) based on the momentum-based
variance-reduced technique to reduce the convergence complexity
for maximizing AP in multi-party collaborative optimization. Our
methods reach iteration complexity of O (1 / 65), which matches the
best convergence complexity achieved by the single-machine sto-
chastic method for conditional stochastic optimization in the online
setting, and also matches the lower bound for the online stochastic
algorithms. Unlike existing single-machine methods that just focus
on finite-sum settings and must keep an inner state for each positive
data point, we consider the stochastic online setting. The extensive
experiments on various data sets compared with previous stochastic
multi-party collaborative optimization algorithms validate the ef-
fectiveness of our methods. Experimental results also demonstrate
that directly optimizing the AUPRC in the multi-party collaborative
training would largely improve the model performance compared
with traditional loss optimization.
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Table 5: Model Architecture for the the MNIST dataset [34]

Layer Type Shape
Convolution + ReLU 5X5x20
Max Pooling 2%x2
Convolution + ReLU 5% 5% 50
Max Pooling 2X2
Fully Connected + ReLU 500

Fully Connected + ReLU 1

Table 6: Model Architecture for the Fashion MNIST dataset
[34]

Layer Type Shape
Convolution + ReLU 3X3%5
Max Pooling 2x2
Convolution + ReLU 3Xx3x10
Max Pooling 2X2
Fully Connected + ReLU 100

Fully Connected + ReLU 1

A SUPPLEMENTARY MATERIAL
A.1 Model Architecture
A.2 Basic Lemma

We draw one sample &, from D;} and m sample &, from Dy, as By,.

We define

gn(x;&n) =EBgr ., gn (x:&n. &)

(b = D gnlxuitl)
&n€Bn

ﬁn(X; gn: Bn) = f(én(x’ gn))

We also define

VFn(x) = VE¢, f(gn(x. ) = Eg,, [V (f(gn(x. £n)))]
=Eg, [Vf(gn(x. &n)) - Vgn(x, &n)]

Fr(x) = EFy(x; &n, Bn) = B [f(gn(x, &n))]

VE,(x) = EVEy(x; En, Bn) (14)
For convenience, we denote

1 N 1 N N

= ﬁzx"vt’ Vi = szn,t, u; = ﬁz

n=1 n=1 n=1

1 N N
F®) = Z; Fn(3), V(%) = Z Vin(x)  (19)
and VF; = [VE (x1)T, VA (x2)7, ..., VEn(xn) ] € R™,

Lemma 4. (Lemma 6 in [39]) Let {Vi}t>0. {Re}r>0 and {Qr}s>0
be non-negative sequences and C > 0 be some constant such that
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Vi < th—l + th—l + Qt +C,Vt >
following inequality holds: VT > 1,

ZVI<1_+ t+_ZQt+_

B SLATE

Lemma 5. Let Assumptions 1, 2 hold, and F is Sp-smooth, we have

1, where q € (0,1) Then the

T-2

—9q97%

(16)

BF (1) < BF(%) = ( ~ n*Sp)BIVE(R) | = JBIVF(x0) |
nsz & , gSto; qZSFLJ%Lg
+ — - X + 17
N2 lene -l ~—

Lemma 6. Let Assumptions 1, 2 hold. We have: Vt > 0,

1+ A2 6/127)252N 12
E [||Vt+1 —JVt+1||2] < E [“Vt —JVt||2] + #E“Vﬂ“
247752 2252 N
F 2 F 2712
+ Y E[”Xt_JXt” ]+(?+3N+2 Lng (18)

Based on previous lemmas, we start to prove the convergence of
Theorem.

Proor. Recall Lemma 3, we have
2n%)2
1- A2

Putting (19) and lemma 6 into lemma 4, then we have

2
lIxe = Jxel|* + lIve =Jvell® (19)

Ixz+1 — JXz41 ”2 <

T
Dl = Jx I < AZ Zan Jv,II? (20)
= )
T 2,262 2L2L2T
6A°n°S
2 2 F f9
Zuvt—Jvtu < =5z vo - Jvall +( 7 * ) 3
72/1252 I 24/12q
FZZE [lIx: = Jx11%] + AZ)Z ZE”VF(xt)H
=0
(21)
Then putting (20) into (21), we get
T
D lxe = Ixe 2
=0
4/12772 2 ) 4 4 2
S—(l —12)2 -2 [lvo = Jvoll + AZ)4 ZEHVF(X!)”
288147252 6121252 8PP LELLT
F 19
— ) ZE”XI Jxe||? +( 2 T3
Then we have
_ 288M%°S} 2y zT: s — T | < (6/12112512: +5N) 8AZn*LELIT
2)4 e 2 2)3
T L 1-2 (1-12)
96).4 452Nt T
-t ZEHVF(Xt)” (22)
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1225} E [lvo - Jvoll? < A%E ||ug — VEo|[* + A%E || V|

When 0 < n < mm{z‘y125 ’6SF} we have [1 - NEEDIN > %
Therefore, we have Then we start the proof of Theorem 2.
T
Z lxe = Jx, |12 Proor. Recall that
1 2 2 18 os 2
1 P ontytsin T Bllarn - Z VEGnen)IF < (1= @) Bllae = - > VEGeno)|
+5N + ZE”VFtH (23) =l e
22 (1-22)2 (1-A2)4 2(1 - a)28% 2a2L§L]2C
Putting (23) into lemma 5, we have N2b Bllxeer —x[* + Nb (26)
_ _ 2nSpL2L2 We know that —1—— < L fora € (0,1). Based on Lemma 4, we
2E[F(%o) — F(xT MoFLrhg 1-(1-a)? = @
1 ZEIIVF(X j2 < ZLER) O] T 7 have: VT > 2,
P nT N
, ; T-1 LN 2
2 T-1 N 21252 52 -1 .
) 9°f% (1 - 2nSf) . Ela; - = ) VF(xn0) (27)
N—F Z D e = 52+ —L2 - - = Z B||VE(%:)))° % N Zl "
t=0 n=1 t=0
LjL% 1282 1=t - 2aL2L2
, _ ipish T-1 9°f F 2, f
9B[F(x0) - F(xp)] 1 384A%n1s ,  <——+ ZE”Xt Jx 1% +
—_— = —[1-25S VF NB 2
< T T2 - — 1] Z IVE ) aNB N2« 4
32A2PI2128E 2125202 apSpl LZ where B is the 1n1t1a1 batch size. Slmllarly, we have the following:
f-9°F 9° % fr9 VT > 2,
+5N + +
(/12 ) (1-22)2N m N N T-1 ,
2,27272¢2 262 ;2 E - VF 28
ZE[F(X()) F(XT)] N ( SN) 32/1 LngS N 2LgSf g ; tz(; ||un,t n(xn’t)” ( )
= nT 22 (1-2%)2N m NLZ eNSZp2 T2 52 1= 2aNL2L?
S22 f 4 Fl 2, 2, 9,
2nSpLyL] it D Elul®+ ZEnxt—thu
+ t=0
N
o T-1
E[llve = Jvel?]
C PROOF OF SLATE-M ALGORITHM =0

Lemma 7. Suppose the sequence {xt}g are generated from SLATE-M 4AZNLJZCL§ 842N 2 n? T2l
in algorithm 2, we have < - + (1-12)B /12 Z E [la.||?
a - (1- =0
2
. . SF . .
Fenn) < F(x0) = (G = 00wl = ZIVFGOIE + S5 = xelP - asea?sy 1o . lzﬂzNazL}LéT
e Z e = Jxe> + ——L2—
3nLgSioy - A?%)
e ZVF (Xne) = G (24) mz ) T-1 N )
2 Z ZE |l‘ln’tL - VFn (Xn’[)”
Lemma 8. Assume that the stochastic partial derivatives u; be gen- =0 n=1
erated from SLATE-M in Algorithm 2, we have _— 902
N N RS 1o (@) 2(F(x0) ~ F(x7)) 3L95f"9 Loy
a 1 2 2 2mn, _ L A 2 T Z EIVF(z) " < = 3
Ellocs = 5 2, VEnCGinen) I < (10)°Ellu = 5 37 V(x| L moa
.. n=l p2p2p? n=l (xxL;Lji 9622 L3LE 256220’ LELE  ap iR ||V
2(1-a)’sp 2 Yy + + 3 T 2)3
+TE”XI‘+1 X¢||©+ ——— Nb Nb (1—12) (1-2%) (1-2%)°NT
X A [m]
Ellun st = V(s < (1= @)2Blluns = VEGon ) .
N _T
2(1—(1)2512,E 2a2L§L§, Then, we choose b = O(1), = O( T1/3) = W’B_ N
+—— F - +——3 25
b lxn, 241 — X, ¢lI? b (25) 1 TZ_ZIE”VF(— I < O(Z(F(Xo) ~ F(x7)) . 3LgSng
Lemma 9. Suppose sequence v; are generated by Algorithm 2 and T & Xl = (NT)2/3 m
; 1-A2 =
lfo <n < Z@AZSFJ we have 3L§L§. 6L2L]2¢. 3521214]2‘-[‘5 N2/3 64/1415 ||Vf‘0||2
) 2 , 21°NSip* +0( (NT)2/3) * ((NT)2/3) * (1-A2)3 " T4/3 + (1—A2)5NT
Ellvitr = Jvenll” < Ellve = Jvell* + _—/12]5 flo ||
631257 2
f T — LB % = Jx )2 + = V|| + 32 Na® L1 L
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