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Abstract. For surface groups and right-angled Artin groups, we prove lower bounds on
the shortest word in the generators representing a nontrivial element of the kth term of
the lower central series.

1. Introduction

Let G be a group and let γk(G) be its lower central series:

γ1(G) = G and γk+1(G) = [γk(G), G] for k ≥ 1.

If γk+1(G) = 1, then G is at most k-step nilpotent. Let S be a finite generating set for G.

Question. What is the shortest word in S±1 representing a nontrivial element in γk(G)?
What are the asymptotics of the length of this word as k → ∞?

The asymptotic question is only interesting for non-nilpotent groups. It is also natural to
only consider groups that are residually nilpotent, i.e., such that

∞⋂︂
k=1

γk(G) = 1

Let G be a non-nilpotent residually nilpotent group with a finite generating set S. Define
for g ∈ G its associated word norm:

∥g∥S = min
{︁
ℓ | g can be written as a word of length ℓ in S±1

}︁
.

The lower central series depth function is the following function dG,S : N → N:

dG,S(k) = min {∥g∥S | g ∈ γk(G), g ̸= 1} .
Though dG,S(k) depends on the generating set S, its asymptotic behavior as k → ∞ is
independent of S. Our goal in this paper is to find bounds on dG,S(k) for several natural
classes of groups G.

1.1. Free groups. For n ≥ 2, let Fn be the free group on S = {x1, . . . , xn}. These are the
most fundamental examples of groups that are residually nilpotent but not nilpotent [15],
and both lower and upper bounds on dFn,S(k) have been studied:

• Using the free differential calculus, Fox [9, Lemma 4.2] proved that dFn,S(k) ≥ 1
2k

for k ≥ 1. In [17, Theorem 1.2], the authors improved this to dFn,S(k) ≥ k.
• In [17, proofs of Theorems 1.3 and 1.5], the authors proved that dFn,S(k) ≤ 1

4(k+1)2.
Elkasapy–Thom [8, Theorem 2.2] then improved this to a bound that grows like kc

with c ≈ 1.4411, and later Elkasapy [7, Theorem 1.1] slightly improved this to kc

where c = logφ 2 and φ is the golden ratio.

The growth rate of dFn,S(k) thus lies between k and klogφ 2, and Elkasapy conjectured that
the growth rate is klogφ 2.
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Remark 1.1. Kuperberg [14] showed that finding short words that are deep in γk(Fn) is
related to the problem of approximating elements of SU(d) by elements of a dense subgroup.
He showed you can use such short elements of γk(Fn) in an algorithm that solves the following
problem: given a finitely generated dense subgroup Γ of SU(d), a specified error tolerance,
and a specific element M ∈ SU(d), construct short words in Γ that approximate M to the
given tolerance. See [14] for precise results and more context. □

1.2. Upper bounds. Now let G be a non-nilpotent residually nilpotent group with a finite
generating set S. If G contains a non-abelian free subgroup, then using the work of Elkasapy–
Thom discussed above we can find an upper bound on dG,S(k) that grows1 like k1.4411.
However, lower bounds on dG,S(k) do not follow from the analogous results for free groups,
so for the rest of this paper we focus on lower bounds.

1.3. Surface groups. Let Σg be a closed oriented genus g ≥ 2 surface and let

π = π1(Σg) = ⟨a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg] = 1⟩ .
Here our convention is that [x, y] = xyx−1y−1. The surface group π is residually nilpotent
but not nilpotent [2, 10], and shares many features with free groups. Since g ≥ 2, the
subgroup of π generated by a1 and b1 is a rank 2 free group. As in §1.2 above, this implies
a k1.4411 upper bound on the growth rate of dπ,S(k).

However, lower bounds are more problematic. The known lower bounds for free groups
use the free differential calculus, and there is no analogue of the free differential calculus for
surface groups.2 The lower bounds for free groups can also be derived using the “Magnus rep-
resentations” from free groups to units in rings of power series with noncommuting variables,
but again it seems hard to construct suitable analogues for surface groups. Nevertheless, we
are able to prove the following:

Theorem A. Let π be a nonabelian surface group with standard generating set S = {a1, b1, . . . , ag, bg}.
Then for all k ≥ 1 we have dπ,S(k) ≥ 1

4k.

The 1
4 in this theorem is probably not optimal. We make the following conjecture:

Conjecture 1.2. Let π be a nonabelian surface group with standard generating set S =
{a1, b1, . . . , ag, bg}. Then dπ,S(k) ≥ k for all k ≥ 1.

See §1.6 below for why our proof likely cannot be extended to prove this conjecture.

1.4. Right-angled Artin groups. We will derive Theorem A from an analogous result for
right-angled Artin groups, which are defined as follows. Let X be a finite graph. The associ-
ated right-angled Artin group (RAAG) is the group AX given by the following presentation:

• The generators are the vertex set V (X).
• The relations are {[x, y] = 1 | x, y ∈ V (X) are joined by an edge}.

Example 1.3. The free abelian group Zn is the RAAG with X the complete graph on n
vertices, and the free group Fn is the RAAG with X a graph with n vertices and no edges. □

These groups play an important role in many areas of geometric group theory (see, e.g.,
[3, 22]). Just like free groups and surface groups, they are residually nilpotent [6], and they
are only nilpotent if they are free abelian, i.e., if X is a complete graph. The latter fact
can be deduced from the basic observation that if Y is a vertex-induced subgraph of X,

1Precise upper bounds are more complicated and depend on how the free subgroup is embedded in G.
2The free derivatives are derivations d : Fn → Z[Fn]. For a group G, if there exist nontrivial derivations

d : G → Z[G] then H1(G;Z[G]) ̸= 0. If G has a compact K(G, 1) this implies that G has more than one end
[18], so G cannot be a one-ended group like a surface group.
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then the natural map AY → AX is split injective; indeed, the map AX → AY that kills the
generators which are not vertices of Y is a right inverse for it.

Remark 1.4. More generally, Baudisch [1] proved that any two elements of a RAAG either
commute or generate a free subgroup. This implies that any nonabelian subgroup of a
RAAG is non-nilpotent. □

Right-angled Artin groups often contain many surface subgroups [4, 5, 13, 20], and we
will prove Theorem A by embedding surface groups into RAAGs and studying the lower
central series depth function there. The main result we need along these lines is as follows.

Theorem B. Let X be a finite graph that is not a complete graph, and let S = V (X) be
the generating set of AX . Then for k ≥ 1 we have dAX ,S(k) ≥ k.

Though Theorem B does not seem to previously appear in the literature, it is implicit in
the work of Wade (see [21, Lemma 4.7]), and our proof follows his ideas. The key tool is
a version of the “Magnus representation” for RAAGs that was introduced by Droms in his
thesis [6], generalizing work of Magnus on free groups. The classical Magnus representations
are maps from Fn to units in rings of power series with noncommuting variables (see [16,
Chapter 5]). They contain much of the same information as the free derivatives.

1.5. From RAAGs to surface groups. Let G be a non-nilpotent residually nilpotent
group with finite generating set T and let H be the subgroup of G generated by a finite
subset S < G. Each s ∈ S can be written as a word in T±1, so we can define

r = max {∥s∥T | s ∈ S} .
For h ∈ H, we thus have

∥h∥S ≥ 1

r
∥h∥T .

From this, we see that

dH,S(k) ≥
1

r
dG,S(k) for all k ≥ 1.

Since all nonabelian surface groups π are subgroups of RAAGs, Theorem B therefore im-
mediately implies a linear lower bound on the lower central series depth function of π.
However, the precise constants depend on the embedding into a RAAG, and without further
work might depend on the genus g. To get the genus-independent constant 1

4 from Theorem
A, we will have to carefully control the geometry of our embeddings of surface groups into
RAAGs and ensure that we can take r = 4 in the above.

Remark 1.5. Many other groups can also be embedded in right-angled Artin groups, and
the argument above shows that all of them have linear lower bounds on their lower central
series depth functions (which are well-defined by Remark 1.4). □

1.6. Optimal embeddings. It is natural to wonder if we can improve the 1
4 in Theorem

A by using a more clever embedding into a RAAG. We conjecture that this is not possible:

Conjecture 1.6. Let π be a nonabelian surface group with standard generating set S =
{a1, b1, . . . , ag, bg}, let X be a finite graph, and let ϕ : π ↪→ AX be an embedding. Then there
exists some s ∈ S such that ∥ϕ(s)∥V (X) ≥ 4.

Remark 1.7. As we will discuss in §3 below, Crisp–Wiest [5] gave an explicit description of
all homomorphisms from surface groups to RAAGs in terms of collections of loops on the
surface. To prove Conjecture 1.6, what one would have to show is that if ϕ : π → AX is a
map from a surface group to a RAAG arising from the Crisp–Wiest construction that does
not satisfy the conclusion of Conjecture 1.6, then ϕ is not injective. □
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1.7. Sublinearity. We close by posing the following question:

Question 1.8. Does there exist a non-nilpotent residually nilpotent group G equipped with
a finite generating set S such that dG,S grows sublinearly?

By Remark 1.5, such a group G cannot be a subgroup of a RAAG.

1.8. Outline. We prove Theorem B in §2 and Theorem A in §4. This last section depends on
the preliminary §3, which discusses work of Crisp–Wiest parameterizing maps from surface
groups to RAAGs.

1.9. Acknowledgments. We thank Greg Kuperberg for some useful references.

2. Right-angled Artin groups

Let X be a finite graph with associated right-angled Artin group AX . In this section, we
first discuss some structural results about AX and then prove Theorem B.

2.1. Monoid. In addition to the right-angled Artin group AX , we will also need the right-
angled Artin monoid MX . This is the associative monoid with the following presentation:

• The generators are the vertices V (X) of X. To distinguish these generators from
the corresponding generators of AX , we will sometimes write them with bold-face
letters. In other words, s denotes an element of AX and s denotes an element of
MX .

• The relations are {xy = yx | x, y ∈ V (X) are joined by an edge}.
There is a monoid homomorphism MX → AX whose image is the set of all elements of
AX that can be represented by “positive words”. As we will discuss below, this monoid
homomorphism is injective.

2.2. Normal form. Let S = V (X) be the generating set for AX and MX . Consider a word

w = se11 · · · senn with s1, . . . , sn ∈ S and e1, . . . , en ∈ Z.

This word represents an element of AX , and if ei ≥ 0 for all 1 ≤ i ≤ n it represents an
element of MX (here for conciseness we are not using our bold-face conventions). We say
that w is fully reduced if it satisfies the following conditions:

• Each ei is nonzero.
• For all 1 ≤ i < j ≤ n with si = sj , there exists some k with i < k < j such that sk

does not commute3 with si = sj .
Note that this implies in particular that si ̸= si+1 for all 1 ≤ i < n, so w is reduced as a
word in the free group on S. It is clear that every element of AX and MX can be represented
by a fully reduced word.

This representation is unique in the following sense:
• Consider fully reduced words

w = se11 · · · senn and w′ = tf11 · · · tfmm
representing the same element of AX or MX . Then we can obtain w′ from w by a
sequence of swaps, i.e., flipping adjacent terms seii and s

ei+1

i+1 such that si commutes
with si+1.

3As observed earlier, AY embeds in AX for any vertex-induced subgraph Y , so this is equivalent to sk
being distinct from and not adjacent to si = sj .
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For AX , this uniqueness was stated without proof by Servatius [19]. The earliest proof
we are aware of is in Green’s thesis [11]. Alternate proofs can be found in [5, Proposition
9] and [21, Theorem 4.14]. Using the monoid homomorphism MX → AX , the uniqueness
for MX follows4 from that of AX . Note that this uniqueness also implies that the monoid
homomorphism MX → AX is injective.

The following lemma shows that fully reduced words realize the word norm in AX :

Lemma 2.1. Let X be a finite graph. Let S = V (X) be the generating set for AX . Consider
some w ∈ AX , and represent w by a fully reduced word

w = se11 · · · senn with s1, . . . , sn ∈ S and e1, . . . , en ∈ Z.

Then ∥w∥S = |e1|+ · · ·+ |en|.

Proof. Immediate from the uniqueness up to swaps of fully reduced words as well as the fact
that taking an arbitrary word and putting it in fully reduced form does not lengthen the
word. □

2.3. Monoid ring. Let Z[MX ] be the monoid ring whose elements are formal Z-linear
combinations of elements of MX . Since the relations in MX are all of the form xy = yx
for generators x and y, all words representing an element m ∈ MX have the same length,
which we will denote ℓ(m). This length function satisfies ℓ(m1m2) = ℓ(m1) + ℓ(m2) for
m1,m2 ∈ MX . For k ≥ 0, define

M
(k)
X = {m ∈ MX | ℓ(m) = k} .

The monoid ring Z[MX ] is a graded ring with Z[MX ](k) = Z[M (k)
X ].

2.4. Partially commuting power series. Let I ⊂ Z[MX ] be the ideal generated by the
elements of the generating set V (X). For k ≥ 1, the ideal Ik consists of Z-linear combinations
of m ∈ MX with ℓ(m) ≥ k. Define

PX = lim
←−

Z[MX ]/Ik.

Elements of the inverse limit PX can be regarded as power series
∞∑︂
k=0

mk with mk ∈ Z[MX ](k) for all k ≥ 0.

Each mk is a linear combination of products of k generators from V (X), some of which
commute and some of which do not. Multiplication works in the usual way:(︄ ∞∑︂

k=0

mk

)︄(︄ ∞∑︂
k′=0

m′k′

)︄
=
∞∑︂
ℓ=0

(︄ ∑︂
k+k′=ℓ

mkm
′
k′

)︄
.

2.5. Magnus representation. We now discuss the Magnus representation of AX , which
was introduced by Droms in his thesis [6], generalizing classical work of Magnus for free
groups (see [16, Chapter 5]). See [21] for a survey. The starting point is the observation
that for s ∈ V (X), we have the following identity in PX :

(1 + s)(1− s+ s2 − s3 + · · · ) = 1.

4Whether this is a circular argument depends on the proof of uniqueness used for AX . The geometric
proof from [5, Proposition 9] works directly with groups, and does not even implicitly prove anything about
monoids.
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In other words, 1 + s is a unit in PX . If generators s, s′ ∈ V (X) commute, then 1 + s and
1 + s′ also commute. It follows that we can define a homomorphism

µ : AX −→ (PX)×

via the formula
µ(s) = 1 + s for s ∈ V (X).

2.6. Dimension subgroups and the lower central series. Recall that I ⊂ Z[MX ] is
the ideal generated by elements of the generating set V (X). There is a corresponding ideal
I ⊂ PX consisting of all elements with constant term 0. For k ≥ 1, the kth dimension
subgroup of AX , denoted Dk(AX), is the kernel of the composition

AX
µ−→ PX −→ PX/Ik.

In other words, Dk(AX) consists of elements w ∈ AX such that

µ(w) = 1 + (terms of degree at least k) .

The most important theorem about Dk(AX) identifies it with the kth term of the lower
central series of AX :

Theorem 2.2 ([21, Theorem 6.3]). Let X be a finite graph. Then Dk(AX) = γk(AX) for
all k ≥ 1.

Remark 2.3. In fact, for what follows all we need is the much easier fact that γk(AX) ⊂
Dk(AX), which appears in Droms’s thesis [6]. For this, since D1(AX) = AX = γ1(AX) it is
enough to verify that

[Dk(AX), Dℓ(AX)] ⊂ Dk+ℓ(AX),

which is immediate from the definitions. □

2.7. Lower bounds for the lower central series of a RAAG. We close this section by
proving Theorem B. As we said in the introduction, the proof closely follows ideas of Wade
[21].

Proof of Theorem B. We start by recalling the statement. Let X be a finite graph that is
not a complete graph and let S = V (X) be the generating set for AX . Consider a nontrivial
element w ∈ AX , and let k = ∥w∥S be its word norm in the generating set S. We must
prove that w /∈ γk+1(AX). By Theorem 2.2, it is enough to prove that w /∈ Dk+1(AX).

Represent w by a fully reduced word:

w = se11 · · · senn with s1, . . . , sn ∈ S and e1, . . . , en ∈ Z.
By Lemma 2.1, we have

∥w∥S = |e1|+ · · ·+ |en| ≥ n.

It is thus enough to prove that w /∈ Dn+1(AX). To do this, is enough to prove that a term
of degree n appears in µ(w) ∈ PX .

An easy induction shows that for all 1 ≤ i ≤ n, we have

µ(seii ) = (1 + si)
ei = 1 + eisi + s2i ti for some ti ∈ PX .

It follows that

(2.1) µ(w) =
(︁
1 + e1s1 + s21t1

)︁ (︁
1 + e2s2 + s22t2

)︁
· · ·
(︁
1 + ensn + s2ntn

)︁
.

Say that some m ∈ MX is square-free if it cannot be expressed as a word in the generators
S = V (X) for the monoid MX with two consecutive letters the same generator.5 It is

5Be warned that it is possible for an element to have one such expression while not being square-free.
For instance, if s, s′ ∈ S are distinct commuting generators then ss′s is not square-free since ss′s = s2s′.
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immediate from the uniqueness up to swaps of fully reduced words that the fully reduced
word s1s2 · · · sn represents a square-free element of MX . When we expand out (2.1), the
only square-free term of degree n is

e1e2 · · · ens1s2 · · · sn.

It follows that this degree n term survives when we expand out µ(w), as desired. □

3. Mapping surface groups to RAAGs

Before we can prove Theorem A, we must discuss some work of Crisp–Wiest [5] that
parameterizes maps from surface groups to RAAGs. We will not need the most general
form of their construction (which they prove can give any homomorphism from a surface
group to a RAAG), so we will only describe a special case of it. Fix a closed oriented surface
Σ and a basepoint ∗ ∈ Σ.

3.1. Crisp–Wiest construction. A simple dissection6 on Σ is a finite collection L of ori-
ented simple closed curves on Σ satisfying the following conditions:

• None of the curves contain the basepoint ∗.
• Any two curves in L intersect transversely.
• There are no triple intersection points between three curves in L.

For a simple dissection L, let X(L) be the graph whose vertices are the curves in L and
where two vertices are joined by an edge if the corresponding curves intersect. Crisp–Wiest
[5] proved that the following gives a well-defined homomorphism ϕ : π1(Σ, ∗) → AX(L):

• Consider some x ∈ π1(Σ, ∗). Realize x by an immersed based loop x : [0, 1] → Σ that
is transverse to all the curves in L and avoids intersection points between curves of
L. If x is disjoint from all the curves in L, then ϕ(x) = 1. Otherwise, let

0 < t1 < · · · < tn < 1

be the collection of all values such that x(ti) is contained in some γi ∈ L. For
1 ≤ i ≤ n, let ei = ±1 be the sign of the intersection of x with the oriented loop γi
at x(ti). Then

ϕ(x) = γe11 · · · γenn ∈ AX(L).

We will say that ϕ is the map obtained by applying the Crisp–Wiest construction to L.

3.2. Injectivity criterion. Crisp–Wiest [5] describe an approach for proving that ϕ is
injective in certain cases. To describe it, we must introduce some more terminology. For a
simple dissection L on Σ, let

G(L) =
⋃︂
γ∈L

γ,

which we view as a graph embedded in Σg with a vertex for each intersection point between
curves in L. We say that L is a filling curve system if each component of Σ \G(L) is a disk.

For a component U of Σ \G(L), the boundary of U can be identified with a circuit in the
graph G(L). Say that U satisfies the injectivity criterion if the following holds for any two
distinct edges e and e′ in the boundary of U . Let γ and γ′ be the oriented curves in L that
contain e and e′, respectively. We then require that γ ̸= γ′ and that if γ intersects γ′, then
e and e′ are adjacent edges in the boundary of U .

We can now state our injectivity criterion:

6Crisp and Wiest use the term dissection for a collection of curves which satisfy some conditions and have
a certain decoration. We add “simple” to indicate that we do not have any decoration.
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Proposition 3.1. Let Σ be a closed oriented surface equipped with a basepoint ∗ and let
L be a filling simple dissection on Σ. For all components U of Σ \ G(L), assume that U
satisfies the injectivity criterion. Then the map ϕ : π1(Σ, ∗) → AX(L) obtained by applying
the Crisp–Wiest construction to L is injective.

While Proposition 3.1 is not explicitly stated or proved in [5], it is implicit in their work.
We present a proof for the convenience of the reader. This requires some preliminaries.

Remark 3.2. The injectivity criterion implies that the dual cubulation to L we introduce
below is a special cube complex in the sense of Haglund–Wise [12]. The paper [5] predates
[12], and the machinery of [12] is unnecessary for this application. □

3.3. Salvetti complex. Let X be a finite graph and let AX be the corresponding right-
angled Artin group. The Salvetti complex of AX , denoted S(X), is a certain non-positively
curved cube complex7 with π1(S(X)) = AX . It can be constructed as follows. Enumerate
the vertices of X as

V (X) = {v1, . . . , vn}.

Identify S1 with the the unit circle in C, so 1 ∈ S1 is a basepoint. For a subset I ⊂
{v1, . . . , vn} of cardinality k, let SI

∼= (S1)k be

SI =
{︁
(z1, . . . , zn) ∈ (S1)n | zi = 1 for all i with vi /∈ I

}︁
.

A subset I ⊂ {v1, . . . , vn} is a k-clique of X if the subgraph of X induced by I is a complete
subgraph on k vertices. A clique is a set of vertices that forms a k-clique for some k. With
these definitions, S(X) is the union of the SI as I ranges over cliques in X. The space
S(X) can be given a cube complex structure containing a k-cube for each k-clique in X. In
particular, it has a single vertex (i.e., 0-cube) corresponding to the (empty) 0-clique.

3.4. Dual cubulation. Now let L be a filling dissection on Σg. We can form a cube complex
structure on Σg called the cube complex structure dual to L in the following way. We start
by defining the 1-skeleton σ of our cube complex structure:

• Put a vertex of σ in the interior of each component of Σg \G(L). For the component
containing the basepoint ∗, the vertex should be ∗.

• For each edge e of G(L), connect the vertices in the components on either side of e
by an edge of σ.

A component of Σg \G(L) looks like the following:

Here G(L) is in blue and σ is in black. Each edge coming out of the vertex of σ shown in
the figure terminates in the vertex in the adjacent component.

Now consider a component C of Σg \ σ. The component C contains exactly one vertex of
G(L), and the boundary of C is composed of four edges of σ as follows:

7Here a cube complex is non-positively curved if its universal cover is CAT(0).
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Here again the graph G(L) is blue and σ is black. Complete σ to a cube complex structure
by attaching a square to each such C.

3.5. Proof of Proposition 3.1. We first recall what we must prove. Let Σ be a closed
oriented surface equipped with a basepoint ∗ and let L be a filling simple dissection on Σ.
For all components U of Σ\G(L), assume that U satisfies the injectivity criterion. We must
prove that the map ϕ : π1(Σ, ∗) → AX(L) obtained by applying the Crisp–Wiest construction
to L is injective.

Endow Σ with the cube complex structure dual to L, and let S(X(L)) be the Salvetti
complex of AL(X). We start by constructing a map of cube complexes f : Σ → S(X(L))
such that

f∗ : π1(Σ, ∗) → π1(S(X(L))) = AX(L)

equals ϕ. Define f as follows:
• The map f sends each vertex of Σ to the unique vertex of S(X(L)).
• For an edge e of Σ that crosses an oriented loop γ of L, the map f takes e isometrically

to the loop of S(X(L)) corresponding to the 1-clique {γ} of X(L). Orienting e such
that the intersection of e with γ is positive, we do this such that f(e) goes around
the loop in the direction corresponding to the generator γ of π1(S(X(L))) = AX(L).

• For a 2-cube c of Σ centered at an intersection of loops γ1 and γ2 of L, the map f
sends c isometrically to the 2-cube corresponding to the 2-clique {γ1, γ2} of X(L).

With these definitions, it is clear that f∗ = ϕ.
By [5, Theorem 1], the map f∗ = ϕ will be an injection if for every vertex v of Σ, the map

f take the link of v injectively into a full subcomplex of the link of f(v) in S(X(L)). These
links have the following description:

• The vertex v lies in some component U of Σ \G(L). The link of v is a cycle whose
vertices are precisely the edges of G(L) surrounding U .

• The vertex f(v) is the unique vertex of S(X(L)). Its link is the following complex:
– There are two vertices for each generator γ of AX(L) (or alternatively, each

γ ∈ L), one corresponding to the positive direction and the other to the negative
direction.

– A collection of vertices forms a simplex if they correspond to distinct generators
of AXL all of which commute.

From this description, we see that the fact that U satisfies the injectivity criterion ensures
that f takes the link of v injectively into a full subcomplex of the link of f(v) in S(X(L)),
as desired. □

4. Bounds on surface groups

We now study the lower central series of surface groups and prove Theorem A.

Proof of Theorem A. We start by recalling the statement. For some g ≥ 2, let Σg be a
closed oriented genus g surface equipped with a basepoint ∗ and let S = {a1, b1, . . . , ag, bg}
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be the standard basis for π = π1(Σg, ∗). Our goal is to prove that dπ,S(k) ≥ 1
4k for all k ≥ 1.

Equivalently, consider some nontrivial w ∈ γk(π). We must prove that ∥w∥S ≥ 1
4k.

What we will do is find a finite graph X and an injective homomorphism ϕ : π → AX

such that letting T = V (X) be the generating set for AX , we have ∥ϕ(s)∥T ≤ 4 for all
s ∈ S. We then have ϕ(w) ∈ γk(AX), and since ϕ is injective we have ϕ(w) ̸= 1. Since π
is nonabelian the graph X is not a complete graph, so we can apply Theorem B to deduce
that ∥ϕ(w)∥T ≥ k. Since ∥ϕ(s)∥T ≤ 4 for all s ∈ S, we conclude that

∥w∥S ≥ 1

4
∥ϕ(w)∥T ≥ 1

4
k,

as desired.
It remains to construct X and ϕ. We can draw the elements of S as follows, where ak

“encircles” the kth hole from the left:

...
ak

...
bk

Let
L = {x0, . . . , xg, y1, . . . , yg, z}

be the following simple dissection on Σg:

...
x0 x1 xgy1 y2 yg

z

Let ϕ : π → AX(L) be the homomorphism obtained by applying the Crisp–Wiest construction
to L and let T = V (X(L)) be the generating set for AX(L). There are four components
of Σg \ G(L), and by inspection each of them satisfies the injectivity criterion from §3.2.
Proposition 3.1 thus implies that ϕ is injective. By construction, the following hold:

ϕ(ak) = xk−1x
−1
k ,

ϕ(bk) = xkzykx
−1
k .

These formulas imply that ∥ϕ(s)∥T ≤ 4 for all s ∈ S, as desired. □
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