
Feature Interaction Aware Automated Data

Representation Transformation

Ehtesamul Azim1 Dongjie Wang1 Kunpeng Liu2 Wei Zhang1 Yanjie Fu3

Abstract

Creating an effective representation space is crucial for mit-

igating the curse of dimensionality, enhancing model gener-

alization, addressing data sparsity, and leveraging classical

models more effectively. Recent advancements in automated

feature engineering (AutoFE) have made significant progress

in addressing various challenges associated with represen-

tation learning, issues such as heavy reliance on intensive

labor and empirical experiences, lack of explainable explic-

itness, and inflexible feature space reconstruction embedded

into downstream tasks. However, these approaches are con-

strained by: 1) generation of potentially unintelligible and

illogical reconstructed feature spaces, stemming from the ne-

glect of expert-level cognitive processes; 2) lack of system-

atic exploration, which subsequently results in slower model

convergence for identification of optimal feature space. To

address these, we introduce an interaction-aware reinforced

generation perspective. We redefine feature space recon-

struction as a nested process of creating meaningful features

and controlling feature set size through selection. We de-

velop a hierarchical reinforcement learning structure with

cascading Markov Decision Processes to automate feature

and operation selection, as well as feature crossing. By in-

corporating statistical measures, we reward agents based on

the interaction strength between selected features, resulting

in intelligent and efficient exploration of the feature space

that emulates human decision-making. Extensive experi-

ments are conducted to validate our proposed approach.

Keywords: automated feature engineering, multi-agent re-

inforcement learning, interaction-aware transformation

1 Introduction

With the advent of deep AI, data representation genera-
tion has become a key step to the application of machine
learning (ML) models. In this work, we investigate the
problem of learning to reconstruct an optimal and in-
terpretable feature representation space that enhances
performance of a subsequent ML task(e.g, classification,

1 University of Central Florida, Emails:
ehtesamul.azim@ucf.edu, dongjie.wang@ucf.edu, wzhang.cs@ucf.edu

2 Portland State University, Email: kunpeng@pdx.edu
3 Arizona State University, Email: yanjie.fu@asu.edu
The release code can be found in https://github.com/

ehtesam3154/InHRecon

regression) (Figure 1). Formally, given a set of origi-
nal features, a prediction target, and the specific down-
stream objective, the goal is to automatically construct
an ideal and explainable feature set for said ML task.

Assessment

Feedback

Original Feature Space

Input

Data Preprocessing Reconstructed Feature
Space

ML Model Training ML Model Evaluator

Output

Optimal Feature Space

Figure 1: We aim to iteratively reconstruct the feature
space for an optimal representation space for improved

performance in downstream ML task.
Prior literature partially addresses this, starting

with feature engineering [11, 14] to extract a trans-
formed representation of the data. These methods tend
to be labor-intensive and have limited ability to auto-
mate the extraction. The next relevant work is rep-
resentation learning. These include factorization [8],
embedding [9] and deep representation learning [25]-
all of which focus on learning effective latent features.
But these often lack interpretability, which limit their
deployment in many application scenarios where both
high predictive accuracy and a trustworthy understand-
ing of the underlying factors are required. The fi-
nal relevant work is learning based feature transfor-
mation, which involves traversal transformation graph-
based feature generation [14], sparsity regularization-
based feature selection [12] etc. These methods are
either deeply integrated into a specific ML model or
totally irrelevant to it. In recent years, significant ad-
vancements have been made in automated feature engi-
neering (AutoFE)[2, 24, 13]. These approaches aim to
tackle the challenges associated with reducing the de-
pendence on manual feature engineering. Researchers
have also emphasized the importance of ensuring trace-
able representation space[24], while simultaneously en-
suring the flexibility of the reconstructed representation
space for any given predictor.

Nevertheless, the mentioned works face two com-
mon issues. Classical feature engineering involves
expert-driven feature extraction, whereas AutoFE

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited878

D
ow

nl
oa

de
d

07
/2

1/
24

 to
 6

7.
8.

15
1.

12
0

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://github.com/ehtesam3154/InHRecon
https://github.com/ehtesam3154/InHRecon

RowID Age Sex Height Weight

Input Feature Space

1 25 1(M) 1.87 81

2 30 1(M) 1.66 63

......

1000 28 0(F) 1.53 52

operation set
(+, - , * , / ,

log, sqrt, square,
inverse)

RowID Age Sex Height Weight

Reconstructed Feature Space

1 25 1(M) 1.87 81

2 30 1(M) 1.66 63

......

1000 28 0(F) 1.53 52

Age+Sex
Weight/
Height²

Height*Age

26

31

........

28

23.16
3

22.863

........

22.214

46.75

49.8

........

42.84

Irrational and
uninterpretable to a human

observer

Figure 2: One major drawback of existing AutoFE
methods: generation of irrational features.

mainly focuses on model-driven feature optimization.
While the generated higher-order features might help
achieve better performance, many of them are incom-
prehensible by human observers (Figure 2). Issue 1
(expert-level cognition): How can we guarantee that
the representation space reconstruction yields human-
understandable features? Another issue observed is the
statistical insignificance of feature interactions, leading
to inefficient exploration of the feature space. This im-
plies that the interactions between some features may
have limited impact on the overall predictive perfor-
mance and the exploration process may focus on fea-
ture combinations with minimal contribution to model
improvement. Issue 2 (systematic exploration):
how can we ensure a methodical exploration of the fea-
ture space during representation space reconstruction for
faster convergence? Our objective is to develop a fresh
perspective to address these two well-known yet under-
explored challenges to reconstructing an optimal and
interpretable representation space.

Our Contributions: An Interaction-aware
Reinforced Generation Perspective. We approach
representation space reconstruction through the lens of
reinforcement learning (RL). We show that learning
to reconstruct is achievable by an interactive process
of nested feature generation and selection- where the
former focuses on generating new comprehensible fea-
tures while the later controls feature space size. We
emphasize that human intuition and domain expertise
in feature engineering can be formulated as machine-
learnable policies. We demonstrate that the iterative
sequential feature generation can be generalized as a
RL task. We find that by expanding the operational
capabilities of RL agents and ensuring their statistical
awareness, we increase the likelihood of generating inter-
pretable and meaningful variables in the new represen-
tation space. Additionally, we demonstrate that we can
enhance learning efficiency by rewarding agents based
on their level of human-like or statistical awareness.

Summary of Proposed Approach. Based on
our findings, we develop a comprehensive and sys-
tematic framework to learn a representation space re-
construction policy that can 1) Goal 1: explain-

able explicitness: provide traceable generation of fea-
tures while ensuring their interpretability to human ob-
server, 2)Goal 2: self optimization with statistical
awareness: automatically generate an optimal feature
set for a downstream ML task without prior domain
knowledge while being statistically manner, 3) Goal
3: enhanced efficiency and reward augmenta-
tion: enhance the generation and exploration speed in
large feature space and augment reward incentive sig-
nal to learn clear policy. To accomplish Goal 1, we
introduce an iterative strategy involving feature gener-
ation and selection which enhances interpretability by
allowing us to assign semantic labels to new features
and track generation process. To achieve Goals 2 and
3, we break down feature generation process into three
distinct Markov Decision Processes(MDPs) to select an
operation and two meta feature. To enhance the coordi-
nation and learning capabilities of the agents involved,
we employ a hierarchical agent architecture that enables
state sharing between agents and facilitates develop-
ment of improved selection policies. To avoid gener-
ating uninterpretable features, we design a model struc-
ture that can handle both numerical and categorical
features. Additionally, we formulate reward functions
to incentivize agents based on their selection of oper-
ations or feature type, thereby promoting human-level
awareness. To ensure statistical awareness, we incor-
porate H-statistics [7]. It measures feature interaction
strength by quantifying the extent to which the varia-
tion in the prediction of target label depends on selected
features’ interaction. This approach enhances efficiency
in large feature spaces, providing clearer guidance for
selection policies.

2 Defintions and Problem Formulation

Operation Set. We apply mathematical operations to
existing features to generate new ones. Previous Aut-
oFE studies typically treat all feature columns as nu-
merical and restrict the operation set to numerical oper-
ators. To effectively handle both numerical and categor-
ical features, we extend our operation set O to include
26 operators, providing a wider range of functionalities,
such as “Combine”, “GroupByThenMin”, “Freq” etc.

Hierarchical Agent. To address automated feature
generation, we introduce a hierarchical agent structure
with three agents: one operation agent and two feature
agents. These agents collaborate in dividing the feature
generation problem into two sub-problems: operation
selection and candidate feature selection, working to-
gether by sharing state information.
Problem Statement. Our research aims to learn an
optimal and meaningful representation space for im-
proved performance in a downstream ML task. For-

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited879

D
ow

nl
oa

de
d

07
/2

1/
24

 to
 6

7.
8.

15
1.

12
0

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Original Feature
Space

 Feature Classification
Based on Unique

Elements

Comprehensive Operations for
Enhanced Feature Handling
(e.g +, -, GroupByThenMax,

Freq, Combine etc.)

Operation
Agent

Feature
Agent 1

Feature
Agent 2

Selected
Operation

Selected
Feature 1

Selected
Feature 2

Do operation and
features form valid

pair?

Yes

No

Reconstructed Feature
Space

Is operation
unary?

Relevance
Prioritized Unary

Feature Generation

H-statistics Based
Interaction Aware
Feature-Feature

Crossing

Yes No

Downstream Task Feature Selection

Feedback

Iterate

Hierarchical Agents

Statistically Aware Feature Interaction

Feedback

Figure 3: Overview of the proposed framework. Feature classification step categorizes features into continuous
and categorical types, along with an enhanced operation set. Hierarchical agents select an operation and two
features, followed by statistically aware feature interaction to generate new features. Responsible agents are

penalized for invalid operation-feature pairs. The updated feature set evaluated in a downstream task. Feature
selection is applied to control the feature set size, with iterations continuing until optimization or set limit.

mally, given a dataset D < F , y > with a feature set
F and a target label y, an operator set O, and a down-
stream ML task A (e.g., classification, regression), our
goal is to automatically reconstruct an optimal and in-
terpretable feature set F∗ that maximizes:

(2.1) F∗ = argmaxF̂ (VA(F̂ , y))

F̂ denotes subset comprising combinations of the origi-
nal feature set F and the generated features Fg, which
are obtained by applying operation set O to original
feature set using a specific algorithmic structure.

3 Methodology

An overview of our proposed framework, Interaction-
aware Hierarchical Reinforced Feature Space Re-
construction(InHRecon) is illustrated in Figure 3.
We initiate the process by classifying the feature space
into two categories: categorical and numerical. This
classification is based on the number of unique ele-
ments in each feature column. Our approach employs an
operation-feature-feature strategy to combine two exist-
ing features at each step. The technical details of each
of rest of the component are discussed below.

3.1 Hierarchical Reinforced Feature Selection
and Generation We devise a hierarchical RL agent
structure framework for automated feature generation
based on two key findings. Firstly, we emphasize that
programming optimal selection criteria for features and
operations can be treated as machine-learnable policies,
addressed by three learning agents. Secondly, we ob-
serve that the agents operate in a hierarchical manner,
with interconnected sequential decision-making process.
Within each iteration, the agents divide the feature
generation problem into sub-problems of selecting op-

eration and selecting feature(s). They make decisions
sequentially, where the choices made by an upstream
agent have an impact on the state of the environment
for downstream agents.
Three utility metrics for reward quantification.
We propose three metrics to quantify feature usefulness,
and form three MDPs to learn selection policies.
Metric 1: Validity of operation. We ensure operation
validity by considering the compatibility between the
selected feature types and operations. For instance, ap-
plying a mathematical operator like ‘sqrt’ to a categor-
ical feature such as ‘Sex’ is not appropriate. To address
such instances, we hold the responsible agent account-
able through this metric and encourage improved future
feature choices. We use the notation U(ft|ot) to repre-
sent the metric associated with a selected operation-
feature pair (ot, ft) at t-th iteration.
Metric 2: Interaction strength of selected features. To
enhance statistical awareness and efficient exploration
by agents, we consider how feature interaction influences
the outcome of the target label. This interaction
strength is quantified using H-statistics, the details of
which is given in section 3.2.
Metric 3: Downstream Task Performance. We evaluate
the effectiveness of the feature set in downstream task,
such as regression or classification, using a utility metric
such as 1-RAE, Precision, Recall, or F1 score.
Learning Selection Policy for Operation and
Features. Leveraging these metrics, we develop three
MDPs to learn three agent polices to select the best
operation and feature(s). We adopt the t-th iteration
as an example to illustrate the calculation process.

Learning Selection Policy for Operation Agent. The op-
eration agent picks the best operation from an opera-

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited880

D
ow

nl
oa

de
d

07
/2

1/
24

 to
 6

7.
8.

15
1.

12
0

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

𝓕t

Explore Exploit

𝒪t

𝓕t 𝒪t

Explore Exploit

Ct
2Ct

1

Explore Exploit

𝓕t Ct
1 𝒪t

𝒪t

Ct
1

Ct
2

Feature
SpaceState

Policy
Network

Action

Selected
Operation

State

Policy
Network

Action Action

Policy
Network

State

Selected
 Meta Feature 1

Selected
 Meta Feature 2

Operation Agent Feature Agent 1 Feature Agent 2

Final Output

Figure 4: Proposed hierarchical agent structure

tion set as a feature crossing tool. Its learning system
includes: i) State: its state is an embedding of the gen-
erated feature set of the previous iteration. Let Rep be a
state representation method(discussed later), the state
can be denoted by s1t = Rep(Ft−1). Ft−1 is the current
feature space observed by the agent. ii) Action: its ac-
tion is the selected operation, denoted by aot = ot. iii)
Reward: its reward is performance improvement on
downstream task, denoted by R(sot , a

o
t) = VAt

− VAopt
,

where VAt is model performance after the t-th iteration
with VAopt being the best performance achieved so far.
Learning Selection Policy for Feature Agent 1. This
agent selects the first meta feature. Its learning sys-
tem includes: i) State: its state is the combination
of Rep(Ft−1) and vectorized representation of the op-
eration selected by operation agent, denoted by s1t =
Rep(Ft−1)⊕Rep(ot), where ⊕ indicates concatenation.
ii) Action: its action is the first meta feature selected
from the observed feature space, denoted by a1t = f1

t .
iii) Reward: its reward is determined by the utility
score of the selected feature and the improvement in
the downstream task performance. The reward can be
formulated as R(s1t , a

1
t) = U(f1

t |ot) + (VAt
− VAopt

).
Learning Selection Policy for Feature Agent 2. This
agent selects the best meta feature 2. Its learning sys-
tem includes: i) State: The combination of Rep(Ft−1),
Rep(f1

t) and vectorized representation of the operation,
denoted by s2t = Rep(Ft−1) ⊕ Rep(f1

t−1) ⊕ Rep(ot) ii)
Action: The meta feature 2 selected from the observed
feature space, denoted by a2t = f2

t . iii) Reward: in-
cludes the utility score of the selected feature, the in-
teraction strength between features f1

t and f2
t , Hf1

t ,f
2
t

measured by H-statistics and improvement in down-
stream task performance. We formulate the reward as
R(s2t , a

2
t) = U(f2

t |ot) +Hf1
t ,f

2
t
+ (VAt

− VAopt
).

State Representation of Feature Space and Op-
eration. We propose to map the observed feature space
to a vector to characterize its state. Given feature space
F , we compute its descriptive statistics(i.e count, stan-
dard deviation, min, max and first, second and third
quartile) for each of its column. We then calculate the
descriptive statistics of the outcome of this step for each
row and thus, obtain descriptive matrix of shape R7×7.
The descriptive matrix is flattened to obtain the final
representation Rep(F) ∈ R1×49 of the feature space.

With this representation method, we generate a fixed-
size state vector that adapts to the varying size of the
feature set at each iteration. For the operators, we em-
ploy one-hot encoding, represented by Rep(o).

instance 1

instance 2

instance 3

instance 4

instance M

Describe

​

𝑄₁

𝑄2

𝑄3

std

mean

min

max

​

𝑄₁

𝑄3

std

mean

min

max

𝑄2

𝑄₁ 𝑄2 𝑄3std mean min max

Describe

Flatten

 𝑄2 of 𝑄3

𝑄3 of 𝑄3

std of std

mean of std

f1​ f2 fn f1​ f2 fn

Feature Space F of size M-by-n Descriptive Statistics Matrix
(column-by-column)

Meta Descriptive Statistics Matrix
(row-by-row)

State Vector of size 1-by-49
Rep(F)

Figure 5: Illustration of state representation extraction

Solving the Optimization Problem. During the
iterative feature generation process, we train our agents
to maximize the discounted and cumulative reward. To
achieve this, we minimize the temporal difference error
L converted from the Bellman equation, given by:
(3.2)
L = Q(st, at)− (R(st, at) + γ ∗maxat+1

Q(st+1, at+1))

where Q is the estimated Q-function and γ ∈ [0 ∼ 1]
is the discounted factor. After convergence, agents
discover the optimal policy π∗ to choose the most
appropriate action (i.e feature or operation) based on
the state of the Q-value, formulated as follows:

(3.3) π∗(at|st) = argmaxaQ(st, a)

3.2 Feature Generation and Post-processing
We found that giving our agents human-like statistical
awareness can generate more meaningful, interpretable
features at an accelerated exploration speed. Based on
the selection results, our RL system is faced with two
generation scenarios: (1) an operation and two features
are selected (2) an operation and a feature are selected.
In cases where the selected feature(s) are deemed in-
valid for the selected operation (e.g.,selected features
are ‘Weight’ and ‘Height’ and selected operation is ‘+’
or ‘GroupByThenMin’), feature generation process for
that iteration is bypassed, and responsible agents are
penalized based on previously discussed utility metrics.

Scenario 1: H-statistics Based Interaction
Aware Feature-Feature Crossing. Existing Aut-
oFE literature solely focuses on generating higher-order
features to improve downstream task performance.
However, this trial-and-error approach lacks efficiency
and does not align with human expert intuition. To
make our model efficient by giving it statistical aware-
ness, we incorporate Friedman’s H-statistics [7]. We
here present two-way interaction measure that tells us
whether and to what extent two features in the model

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited881

D
ow

nl
oa

de
d

07
/2

1/
24

 to
 6

7.
8.

15
1.

12
0

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

interact with each other. When two features don’t inter-
act, we can decompose partial dependence(PD) function
as follows(assuming PD functions are centered at zero):

(3.4) PDjk(fj , fk) = PDj(fj) + PDk(fk)

where PDj(fj) and PDk(fk) the PD functions of re-
spective features and PDjk(fj , fk) is their 2-way PD
function. PD functions measure the marginal effect a
feature has on the predicted outcome of a ML model.
For regression, the PD function can be defined as,
(3.5)

PDs(xs) = E[f̂(xs, XC)] =

∫
f̂(xs, XC)dP(XC)

xs being the features for which partial dependence is
to be calculated and Xc the other features used in
ML model f̂ . Expected value E is over the marginal
distribution of of all variables Xc not represented in xs.
PD works by marginalizing the ML model output over
the distribution of the features in set C, so that the
function shows the relationship between the features in
set S and the predicted outcome.

Equation 3.4 expresses the PD function without in-
teractions between fj and fk. The observed PD func-
tion is compared to the no-interaction decomposition,
and the difference represents the interaction strength.
The variance of the PD output quantifies the interac-
tion between the two features. An interaction statistic
of 0 indicates no interaction, while a statistic of 1 sug-
gests that the prediction relies solely on the interaction.
Mathematically, the H-statistic proposed by Friedman
and Popescu for the interaction between fj and fk is:
(3.6)

Hj,k =

∑n
i=1[PDjk(f

(i)
j , f

(i)
k)− PDj(f

(i)
j)− PDk(f

(i)
k)]2∑n

i=1 PD2
jk(f

(i)
j , f

(i)
k)

where n is the number of instances in the dataset. For
ease of understanding, we have refrained from delv-
ing into the detailed calculation for interactions involv-
ing more than two features, which we implement in
our work. In our implementation, rather than directly
computing the interaction strength between two higher-
order features, we calculate it for their respective ‘par-
ent’ features. Our rationale behind this approach is
that although the interaction strength between two fea-
tures may be relatively low, exploring the interactions
between their parent features can yield valuable insights
and justify the agents’ exploration efforts.

Scenario 2: Relevance Prioritized Unary Fea-
ture Generation. Inspired by [24], we directly apply
the operation to the feature that is more relevant to
target label when an unary operation and two features
are selected. We measure relevance using mutual infor-
mation(MI) between feature f ∈ F and target label y,

quantified by: rel = MI(f, y). The operation is applied
to the more relevant feature to generate new feature.

Post-generation Processing. After generating
new features, we combine them with the original fea-
tures to create an updated feature set and evaluate the
predictive performance on downstream task. The per-
formance serves as feedback to update the agents’ poli-
cies for the next round of feature generation. To control
feature set size, we apply feature selection if the size sur-
passes a threshold, using K-best feature selection. The
tailored feature set becomes the original feature set for
the next iteration. Upon reaching the maximum num-
ber of iteration, the algorithm concludes by returning
the optimal feature set F∗.

4 Experiments

4.1 Experimental Setup 24 public datasets from
LibSVM*, UCI†, Kaggle‡ and OpenML§ are utilized to
evaluate InHRecon, including 14 classification and 10
regression tasks. Table1 shows the statistics of the
data. To evaluate the classification tasks, we use F-1
score. For regression tasks, we use 1-relative absolute
error (RAE) to evaluate the accuracy.

4.1.1 Baseline Algorithms We compare InHRe-
con with six state-of-the-art feature generation meth-
ods: (1) ERG expands the feature space by applying
operations to each feature and then does feature selec-
tion; (2) LDA [1] extracts latent features via matrix
factorization; (3)AFT [13] is an enhanced ERG imple-
mentaion that explores feature space and adopts multi-
step feature selection leveraging L1-regularization; (4)
NFS [2] mimics feature transformation trajectory for
each feature and optimizes the feature generation pro-
cess through RL; (5) TTG [14] records the feature gen-
eration process using a transformation graph and em-
ploys RL to explore the graph for the best feature set;
(6) GRFG [24] adopts a groupwise feature generation
approach, leveraging MI theory. To validate the impact
of each technical component, we developed four vari-
ants of InHRecon: (i) InHRecon−rnd randomly picks
an operation and feature(s); (ii) InHRecon−h treats all
feature columns as numerical; (iii) InHRecon−u ran-
domly selects a feature from the selected features when
operator is unary; (iv) InHRecon−b doesn’t utilize H-
statistics for binary operations. We adopted random
forest as the downstream ML model and a 5-fold strat-
ified cross-validation approach.

*https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/
†https://archive.ics.uci.edu/
‡https://www.kaggle.com/datasets
§https://www.openml.org/

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited882

D
ow

nl
oa

de
d

07
/2

1/
24

 to
 6

7.
8.

15
1.

12
0

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://archive.ics.uci.edu/
https://www.kaggle.com/datasets
https://www.openml.org/

Table 1: Overall performance comparison. ‘C’ for classification and ‘R’ for regression.

Dataset Source C/R Instances\Features ERG LDA AFT NFS TTG GRFG InHRecon
Higgs Boson UCIrvine C 50000\28 0.674 0.509 0.711 0.715 0.705 0.716 0.718

Amazon Employee Kaggle C 32769\9 0.740 0.920 0.943 0.935 0.806 0.946 0.947
PimaIndian UCIrvine C 768\8 0.703 0.676 0.736 0.762 0.747 0.767 0.778

SpectF UCIrvine C 267\44 0.748 0.774 0.775 0.842 0.788 0.854 0.878
SVMGuide3 LibSVM C 1243\21 0.747 0.683 0.829 0.831 0.766 8.842 0.850

German Credit UCIrvine C 1001\24 0.661 0.627 0.751 0.765 0.731 0.769 0.773
Credit Default UCIrvine C 30000\25 0.752 0.744 0.799 0.799 0.809 0.800 0.812

Messidor Features UCIrvine C 1150\19 0.635 0.580 0.679 0.746 0.726 0.757 0.738
Wine Quality Red UCIrvine C 999\12 0.611 0.600 0.658 0.666 0.647 0.686 0.706
Wine Quality White UCIrvine C 4900\12 0.587 0.571 0.673 0.679 0.638 0.685 0.696

SpamBase UCIrvine C 4601\57 0.931 0.908 0.951 0.955 0.959 0.958 0.971
AP-omentum-ovary OpenML C 275\10936 0.705 0.117 0.783 0.804 0.795 0.808 0.811
Lymphography UCIrvine C 148\18 0.638 0.737 0.833 0.859 0.846 0.866 0.875
Ionosphere UCIrvine C 351\34 0.926 0.730 0.827 0.942 0.938 0.946 0.954

Bikeshare DC Kaggle R 10886\11 0.980 0.794 0.992 0.991 0.991 0.992 0.994
Housing Boston UCIrvine R 506\13 0.617 0.174 0.641 0.654 0.658 0.658 0.660

Airfoil UCIrvine R 1503\5 0.732 0.463 0.774 0.771 0.783 0.787 0.793
Openml 618 OpenML R 1000\50 0.427 0.372 0.665 0.640 0.587 0.668 0.673
Openml 589 OpenML R 1000\25 0.560 0.331 0.672 0.711 0.682 0.739 0.723
Openml 616 OpenML R 500\50 0.372 0.385 0.585 0.593 0.559 0.603 0.605
Openml 607 OpenML R 1000\50 0.406 0.376 0.658 0.675 0.639 0.680 0.671
Openml 620 OpenML R 1000\25 0.584 0.425 0.663 0.698 0.656 0.714 0.694
Openml 637 OpenML R 500\50 0.497 0.494 0.564 0.581 0.575 0.589 0.625
Openml 586 OpenML R 1000\25 0.546 0.472 0.687 0.748 0.704 0.763 0.756

5 10 15 20 25 30
epochs

0.73

0.74

0.75

0.76

0.77

0.78

0.79

F-
1

Sc
or

e

InHRecon
InHRecon rnd

InHRecon h

InHRecon u

InHRecon b

(a) PimaIndian

5 10 15 20 25 30
epochs

0.790

0.795

0.800

0.805

0.810

0.815

F-
1

Sc
or

e

InHRecon
InHRecon rnd

InHRecon h

InHRecon u

InHRecon b

(b) Credit Default

5 10 15 20 25 30
epochs

0.640

0.645

0.650

0.655

0.660

0.665

1-
RA

E

InHRecon
InHRecon rnd

InHRecon h

InHRecon u

InHRecon b

(c) Housing Boston

5 10 15 20 25 30
epochs

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

1-
RA

E

InHRecon
InHRecon rnd

InHRecon h

InHRecon u

InHRecon b

(d) Openml 637

Figure 6: Comparison of convergence of different variants of InHRecon

4.2 Overall Performance This experiment aims to
answer: Can our proposed method construct optimal
feature space to improve a downstream task? Ta-
ble 1 shows that, compared to six baselines, our
model achieves state-of-the-art performance on 19 out
of 24 datasets overall. The underlying driver is that
our personalized feature crossing strategy incorporates
the strength of feature-feature interactions to generate
new features. The superior performance of InHRecon
over expansion-reduction-based (ERG, AFT) methods
demonstrates the effectiveness of hierarchical sharing of
states among agents, enabling optimal selection poli-
cies. Our self-learning end-to-end framework allows for
easy application to diverse datasets, making it a prac-
tical and automated solution compared to state-of-the-
art baselines (NFS, TTG) in real-world scenarios. Our
model demonstrates a notable trend in its performance,

showcasing superior results on real-world datasets such
as PimaIndian or German Credit, compared to syn-
thetic datasets like OpenML 620. Synthetic datasets
typically consist of features with randomly generated
values, which might be better suited for AutoFE frame-
works that rely on simple mathematical operations.

4.3 Ablation Study This experiment aims to an-
swer: How does each component in our model im-
pact its performance? We developed four variants of
InHRecon (Section 4.1.1). Figure 6 shows the com-
parison results on two classification datasests (PimaIn-
dian and Credit Default) and two regression datasets
(Housing Boston and Openml 637). Unsurprisingly,
InHRecon−rnd is consistently outperformed across all
experiments. InHRecon surpasses InHRecon−h, indi-
cating that replicating expert cognition process facili-
tates the generation of meaningful and optimal features.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited883

D
ow

nl
oa

de
d

07
/2

1/
24

 to
 6

7.
8.

15
1.

12
0

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

0.740

0.745

0.750

0.755

0.760

0.765

0.770

0.775

F1
 S

co
re

H-statistics
Cosine Similarity
Pearson's correlation
Mutual information

(a) PimaIndian

0.790

0.795

0.800

0.805

0.810

0.815

F1
 S

co
re

H-statistics
Cosine Similarity
Pearson's correlation
Mutual information

(b) Credit Default

0.630

0.635

0.640

0.645

0.650

0.655

0.660

0.665

1-
RA

E

H-statistics
Cosine Similarity
Pearson's correlation
Mutual information

(c) Housing Boston

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

1-
RA

E

H-statistics
Cosine Similarity
Pearson's correlation
Mutual information

(d) Openml 637

Figure 7: Comparison of different interaction strategy in terms of F1 or 1-RAE.

RF XGB SVM KNN Ridge
0.68

0.70

0.72

0.74

0.76

0.78

0.80

F1
 S

co
re

Original
InHRecon

(a) PimaIndian

RF XGB SVM KNN Ridge
0.780

0.785

0.790

0.795

0.800

0.805

0.810

0.815

0.820

F1
 S

co
re

Original
InHRecon

(b) Credit Default

RF XGB SVM KNN Ridge
0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

1-
RA

E

Original
InHRecon

(c) Housing Boston

RF XGB SVM KNN Ridge

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

1-
RA

E

Original
InHRecon

(d) Openml 637

Figure 8: Comparison on different ML models in terms of F1 or 1-RAE.

Performances of InHRecon−u and InHRecon−b demon-
strate that our personalized feature crossing strategy
leads to improved feature space.

4.4 Study of Impact of H-statistics This experi-
ment aims to answer: Is H-statistics more effective than
classical approaches in introducing statistical awareness
in feature generation? We replaced H-statistics with co-
sine similarity, Pearson’s correlation, and mutual infor-
mation measurements- aiming for the selected features
to have lower redundancy and greater relevance to the
prediction target. For instance, in experimental setup
with MI, the utility metric is designed as follows:
(4.7)

U(F|y) = − 1

|F|2
∑

fi,fj∈F

MI(fi, fj) +
1

|F|
∑
f∈F

MI(f, y),

where F represents the set of selected features fi and fj ,
|F| the size of F and y the target label. We report the
comparison results on four different datasets. As seen
from Figure 7, H-statistics shows superiority across
all datasets. The underlying driver is that, instead
of merely calculating the degree to which two feature
columns are related or how similar or dissimilar they are,
H-statistics directly measures the share of variance that
is explained by the interaction between two(or more)
features. This allows us to prioritize the crossing of
features that have more significant impact on prediction
variation, resulting in faster convergence.

4.5 Robustness check of InHRecon under dif-
ferent ML models This experiment aims to answer:

Is InHRecon robust when different ML models are used
in downstream task performance evaluation? We exam-
ined the robustness of InHRecon by changing the ML
model of a downstream task to Random Forest (RF),
Xgboost (XGB), SVM, KNN, and Ridge Regression, re-
spectively. The comparison results, depicted in Figure
8, demonstrate that InHRecon consistently enhances
model performances across the tested datasets. This
indicates that InHRecon exhibits strong generalization
capabilities across various benchmark applications.

4.6 Parameter Sensitivity Analysis of InHRe-
con This experiment aims to answer: How InHRecon
behaves under different parameter settings, specifically
the order of generated features and the enlargement fac-
tor of feature space. While the baseline methods simply
overlook this, we argue that higher-order features are
less interpretable to human observers. Hence, we report
our performance results with the highest feature order
set at 4. The results, as depicted in Figure 9, indicate
that InHRecon stabilizes around the 3rd to 5th order of
features. We demonstrate that InHRecon achieves fast
convergence when enlarging the feature space, typically
only by a factor of 2x to 3x compared to the original
feature space. These findings highlight the efficacy of
our statistically aware feature crossing strategy, which
intelligently explores the feature space and efficiently
generates informative features.

4.7 Case Study: Rationality and Interpretabil-
ity Analysis This study aims to answer: Can InHRe-
con generate a rational and interpretable feature space?

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited884

D
ow

nl
oa

de
d

07
/2

1/
24

 to
 6

7.
8.

15
1.

12
0

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

1 2 3 4 5 6 7 8
order of generated features

0

2

4

6

8

10

12

14

Pe
rc

en
t(

%
) o

f i
m

pr
ov

em
en

t

Openml_637
Airfoil
Housing_Boston
Wine_Quality_Red
German_Credit
PimaIndian

(a) Effect of higher order

features

1 2 3 4 5 6
Enlargement Factor

0

2

4

6

8

10

12

14

Pe
rc

en
t(

%
) o

f i
m

pr
ov

em
en

t

Openml_637
Airfoil
Housing_Boston
Wine_Quality_Red
German_Credit
PimaIndian

(b) Effect of enlargement factor

of feature space

Figure 9: Parameter Sensitivity Analysis of InHRecon

In our German Credit dataset case study, we use ran-
dom forest classifier to identify the top 10 essential
features for predicting credit risk. This dataset poses
challenges in understanding due to its vague catego-
rization, where feature columns are labeled with num-
bers 1 through 24. Figure 10 presents the model
performances in the central parts of each sub-figure,
with corresponding features in the associated pie charts.
Pie chart size corresponds to feature importance. We
show that the InHRecon-reconstructed feature space
enhances model performance by 5.75%, with 40% of the
top 10 features being generated. This suggests that
InHRecon generates informative features, leading to the
refinement of feature space. Furthermore, our analysis
highlights the impact of categorizing the features and
expanding operation set to handle both numerical and
categorical features.

5 Related Work

Hierarchical Reinforcement Learning(HRL).
HRL enables simultaneous learning at multiple resolu-
tions to accelerate the learning process [3]. Hierarchical
structures incorporate sub-goal information [21], en-
hancing existing options [22]. Value functions can
be decomposed into individual sub-goals, facilitating
improved exploration and learning efficiency [4] and
decision-making abstractions [15]. In [23], a deep
HRL framework in lifelong learning is proposed, while
[20] introduces HRL with learned goals for conveying
instructions between policy levels. However, none of
these methods are not suitable to be directly applied
to learn strategies for AutoFE.
Automated Feature Engineering(AutoFE). Aut-
oFE aims to improve ML model performance by en-
hancing feature space through feature generation and
selection techniques. Feature selection eliminates
redundancy and preserves important features, utiliz-
ing filter(e.g., correlation-based selection [30]), wrap-
per(e.g., RL [16, 6, 17, 19, 18, 29] etc.), and embed-
ded methods (e.g., decision tree [5] etc.). Feature
generation on the other hand, includes latent repre-

16

F1-score:0.731

German Credit

6

5

8

3

7

1

10

0

4

(a) Original Feature Space

6

F1-score:0.773

German Credit

GroupBy_4_ThenRank_4

Combine_8_10

10

0

3

1

GroupBy_7_
ThenRank_1_sigmoid

GroupBy_12_Then
Rank_GroupBy_
4_ThenRank_
1_sigmoid

4

(b) InHRecon-reconstructed

Feature Space

Figure 10: Top10 features for prediction in the original
and InHRecon-reconstructed feature space

sentation learning[10] and feature transformation ap-
proaches [2, 25, 14, 24, 28, 27, 26]. These methods lack
human-like and statistical awareness, leading to mind-
less exploration in larger feature spaces and causing in-
efficiency. Our personalized feature crossing captures
highly relevant and interacted features and hierarchical
agents learn effective interaction policies- all of which
accelerate feature generation.

6 Concluding Remarks

We introduce InHRecon, an interaction-aware hierar-
chical reinforced feature generation framework for opti-
mal, interpretable and meaningful representation space
reconstruction. We extend the operation space for
RL agents, enabling them to emulate human expertise
across various feature types. We decompose the feature
generation process into sub-problems of operation se-
lection and feature selection, addressed by hierarchical
RL agents. We incorporate H-statistics as a feature in-
teraction strength measurement to promote systematic
exploration of the feature space and faster convergence.
InHRecon also offers traceable feature generation, irm-
porving explainability. Our framework achieves (sur-
passing or on-par) state-of-the-art performances on the
standardized benchmarks adopted by prior work.

7 Acknowledgement

This research was partially supported by the Na-
tional Science Foundation (NSF) via the grant numbers:
2040950, 2006889, 2045567, 215230 and 2246796.

References

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent
dirichlet allocation, the Journal of machine Learning
research, 3 (2003), pp. 993–1022.

[2] X. Chen, Q. Lin, C. Luo, X. Li, H. Zhang, Y. Xu,
Y. Dang, K. Sui, X. Zhang, B. Qiao, et al., Neu-
ral feature search: A neural architecture for automated
feature engineering, in 2019 IEEE International Confer-
ence on Data Mining (ICDM), IEEE, 2019, pp. 71–80.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited885

D
ow

nl
oa

de
d

07
/2

1/
24

 to
 6

7.
8.

15
1.

12
0

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

[3] P. Dayan and G. E. Hinton, Feudal reinforcement
learning, Advances in neural information processing
systems, 5 (1992).

[4] T. G. Dietterich et al., The maxq method for
hierarchical reinforcement learning., in ICML, vol. 98,
1998, pp. 118–126.

[5] W. Fan, K. Liu, H. Liu, Y. Ge, H. Xiong, and
Y. Fu, Interactive reinforcement learning for feature
selection with decision tree in the loop, IEEE Transac-
tions on Knowledge and Data Engineering, (2021).

[6] W. Fan, K. Liu, H. Liu, P. Wang, Y. Ge,
and Y. Fu, Autofs: Automated feature selection via
diversity-aware interactive reinforcement learning, in
2020 IEEE International Conference on Data Mining
(ICDM), IEEE, 2020, pp. 1008–1013.

[7] J. H. Friedman and B. E. Popescu, Predictive
learning via rule ensembles, The annals of applied
statistics, (2008), pp. 916–954.

[8] N. Fusi, R. Sheth, and M. Elibol, Probabilistic
matrix factorization for automated machine learning,
Advances in neural information processing systems, 31
(2018), pp. 3348–3357.

[9] P. Goyal and E. Ferrara, Graph embedding tech-
niques, applications, and performance: A survey,
Knowledge-Based Systems, 151 (2018), pp. 78–94.

[10] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, Deepfm:
a factorization-machine based neural network for ctr
prediction, arXiv preprint arXiv:1703.04247, (2017).

[11] I. Guyon and A. Elisseeff, An introduction to
variable and feature selection, The Journal of Machine
Learning Research, 3 (2003), pp. 1157–1182.

[12] T. Hastie, R. Tibshirani, and M. Wainwright,
Statistical learning with sparsity: the lasso and gen-
eralizations, Chapman and Hall/CRC, 2019.

[13] F. Horn, R. Pack, and M. Rieger, The autofeat
python library for automated feature engineering and
selection, arXiv preprint arXiv:1901.07329, (2019).

[14] U. Khurana, H. Samulowitz, and D. Turaga,
Feature engineering for predictive modeling using rein-
forcement learning, in Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 32, 2018.

[15] G. Konidaris, On the necessity of abstraction, Current
opinion in behavioral sciences, 29 (2019), pp. 1–7.

[16] K. Liu, Y. Fu, P. Wang, L. Wu, R. Bo, and
X. Li, Automating feature subspace exploration via
multi-agent reinforcement learning, in Proceedings of
the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 207–
215.

[17] K. Liu, Y. Fu, L. Wu, X. Li, C. Aggarwal,
and H. Xiong, Automated feature selection: A rein-
forcement learning perspective, IEEE Transactions on
Knowledge and Data Engineering, (2021).

[18] K. Liu, D. Wang, W. Du, D. O. Wu, and Y. Fu, In-
teractive reinforced feature selection with traverse strat-
egy, Knowledge and Information Systems, 65 (2023),
pp. 1935–1962.

[19] K. Liu, P. Wang, D. Wang, W. Du, D. O. Wu, and

Y. Fu, Efficient reinforced feature selection via early
stopping traverse strategy, in 2021 IEEE International
Conference on Data Mining (ICDM), IEEE, 2021,
pp. 399–408.

[20] O. Nachum, S. S. Gu, H. Lee, and S. Levine, Data-
efficient hierarchical reinforcement learning, Advances
in neural information processing systems, 31 (2018).

[21] R. Parr and S. Russell, Reinforcement learning with
hierarchies of machines, Advances in neural informa-
tion processing systems, 10 (1997).

[22] R. S. Sutton, D. Precup, and S. Singh, Between
mdps and semi-mdps: A framework for temporal ab-
straction in reinforcement learning, Artificial intelli-
gence, 112 (1999), pp. 181–211.

[23] C. Tessler, S. Givony, T. Zahavy, D. Mankowitz,
and S. Mannor, A deep hierarchical approach to
lifelong learning in minecraft, in Proceedings of the
AAAI conference on artificial intelligence, vol. 31, 2017.

[24] D. Wang, Y. Fu, K. Liu, X. Li, and Y. Solihin,
Group-wise reinforcement feature generation for opti-
mal and explainable representation space reconstruc-
tion, in Proceedings of the 28th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, KDD
’22, New York, NY, USA, 2022, Association for Com-
puting Machinery, p. 1826–1834.

[25] D. Wang, P. Wang, K. Liu, Y. Zhou, C. E.
Hughes, and Y. Fu, Reinforced imitative graph rep-
resentation learning for mobile user profiling: An ad-
versarial training perspective, in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35,
2021, pp. 4410–4417.

[26] D. Wang, M. Xiao, M. Wu, pengfei wang,
Y. Zhou, and Y. Fu, Reinforcement-enhanced au-
toregressive feature transformation: Gradient-steered
search in continuous space for postfix expressions, in
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

[27] M. Xiao, D. Wang, M. Wu, K. Liu, H. Xiong,
Y. Zhou, and Y. Fu, Traceable group-wise self-
optimizing feature transformation learning: A dual
optimization perspective, (2023).

[28] M. Xiao, D. Wang, M. Wu, Z. Qiao, P. Wang,
K. Liu, Y. Zhou, and Y. Fu, Traceable automatic fea-
ture transformation via cascading actor-critic agents,
in Proceedings of the 2023 SIAM International Confer-
ence on Data Mining (SDM), SIAM, 2023, pp. 775–783.

[29] M. Xiao, D. Wang, M. Wu, P. Wang, Y. Zhou,
and Y. Fu, Beyond discrete selection: Continuous
embedding space optimization for generative feature
selection, arXiv preprint arXiv:2302.13221, (2023).

[30] L. Yu and H. Liu, Feature selection for high-
dimensional data: A fast correlation-based filter solu-
tion, in Proceedings of the 20th international confer-
ence on machine learning (ICML-03), 2003, pp. 856–
863.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited886

D
ow

nl
oa

de
d

07
/2

1/
24

 to
 6

7.
8.

15
1.

12
0

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Defintions and Problem Formulation
	Methodology
	Hierarchical Reinforced Feature Selection and Generation
	Feature Generation and Post-processing

	Experiments
	Experimental Setup
	Baseline Algorithms

	Overall Performance
	Ablation Study
	Study of Impact of H-statistics
	Robustness check of InHRecon under different ML models
	Parameter Sensitivity Analysis of InHRecon
	Case Study: Rationality and Interpretability Analysis

	Related Work
	Concluding Remarks
	Acknowledgement

