é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

autofz: Automated Fuzzer Composition at Runtime
Yu-Fu Fu, Jaehyuk Lee, and Taesoo Kim, Georgia Institute of Technology

https://www.usenix.org/conference/usenixsecurity23/presentation/fu-yu-fu

This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the
32nd USENIX Security Symposium.

August 9-11, 2023 « Anaheim, CA, USA
978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX
Security Symposium is sponsored
by USENIX.

+ B — = -
n A : 4
- pl TENE »

ARTIFACT
EVALUATED
zusenix

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED

é; usenix
@ #ssociTion

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix:
autofz: Automated Fuzzer Composition at Runtime

Yu-Fu Fu

Jaehyuk Lee

Taesoo Kim

Georgia Institute of Technology

A Artifact Appendix

A.1 Abstract

autofz’s artifact contains the source code and all the bench-
marks used in the evaluation section of the paper. This artifact
appendix is used to outline the steps to retrieve the artifact
and how to use it to reproduce the experiments. Furthermore,
we provide the instructions to extend the framework (i.e. add
ad new fuzzer or a new benchmark to autofz).

A.2 Description & Requirements

The artifact contains the following components.

1. autofz source code

2. A pre-built docker image containing autofz, fuzzers, and
benchmarks.

3. A VM image which includes all the necessary changes
to the host environment and can be used to launch the
aforementioned docker image.

A.2.1 Security, privacy, and ethical concerns

During fuzzing, we modify some kernel parameters which
docker shares with the host. For example, we enable core
dump and disable ASLR for the whole system. Therefore, we
recommend that running autofz inside a VM.

A.2.2 How to access

1. Source code https://github.com/sslab-gatech/autofz

2. Source code with commit hash
https://github.com/sslab-gatech/autofz/tree/

b9a795dda252aa37406d593434b710b0fbedd177

3. Docker image: https://hub.docker.com/r/fuyu0425/autofz

with SHA256 digest f39fb70af5db and tag v1.0.1.

4. VM image: https://doi.org/10.5281/zenodo.7865366

A.2.3 Hardware dependencies

During the evaluation, we use a cluster of Ubuntu 20.04 ma-
chines equipped with AMD Ryzen 9 3900 (12C/24T), 32 GB

RAM, and 512 GB SSD disk space. To use the provided
docker image or VM image, 30 GB disk space is required.

A.2.4 Software dependencies

To use the docker image, a working Docker/Podman under
Linux is required. Alternatively, to use the VM image, Virtu-
alBox/VMware is required.

A.2.5 Benchmarks

All benchmarks required for evaluation are already in the
docker image.

A.3 Set-up

We provide a detailed set-up process in README.md in the
provided GitHub repository. However, building all fuzzers and
benchmarks will takes a lot of time and resource. Therefore,
we recommend using either the pre-built docker image or the
VM image (preferred).

A.3.1 cgroup v2 downgrade

autofz uses cgroup vl; therefore, a manual downgrade from
v2 to vl might be required in newer operating systems. This
can be done by adding “systemd.unified_cgroup_hierarchy=0"
to the kernel command line (e.g. via “/etc/default/grub”).

A.3.2 Basic Test

To make sure autofz is installed successfully, type the follow-
ing command:

autofz --help

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We demonstrate that autofz can achieve better cov-
erage against different target binaries compared with

USENIX Association

Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 109

https://github.com/sslab-gatech/autofz
https://github.com/sslab-gatech/autofz/tree/b9a795dda252aa37406d593434b710b0fbedd177
https://github.com/sslab-gatech/autofz/tree/b9a795dda252aa37406d593434b710b0fbedd177
https://hub.docker.com/r/fuyu0425/autofz
https://doi.org/10.5281/zenodo.7865366

individual fuzzers (Figure 3 in the paper). The result is
supported by E1.

(C2): We demonstrate that autofz can achieve better cover-
age against different target binaries compared with other
collaborative fuzzing techniques ENFuzz and CUPID
(Figure 7 in the paper). The result is supported by E2.

A.4.2 Experiments

Setup. To execute the experiments, we need to pull docker
images and launch a docker container by the following com-
mands.

docker pull fuyu®425/autofz:v1.0.1
docker tag fuyu®425/autofz:v1.0.1 autofz

docker run --rm --privileged -it autofz
/bin/bash.

Note that, the result is not preserved after exiting the con-
tainer. To preserve the fuzzing output, we need to mount a
docker volume.

docker run --rm --privileged -v
$PWD: /work/autofz -w /work/autofz -it
autofz /bin/bash.

After entering the docker, we need to tune the necessary
kernel parameters and create a cgroup for autofz; we pack all
commands in a script /init. sh and can be executed by the
following command. Note the security concern mentioned in
§A.2.1.

sudo /init.sh

More detail is in the running section of README .md.

(E1): [autofz v.s. individual fuzzers] [32000 compute-hours
+ 200 GB disk]: Generate the 24-hour fuzzing output
of autofz and individual fuzzers on 12 benchmark pro-
grams for 10 repetitions for Figure 3 in the paper.

How to: Use autofz with different command line argu-
ments to run all the fuzzing. README .md in the reposi-
tory has more information about the arguments.
Execution: To run autofz on a target (e.g. exiv2), use
the following command:

autofz -o output-exiv2-autofz -t exiv2
-T 24h -f all

To run a individual fuzzer (e.g. AFL) on a target (e.g.
exiv2), use the following command:

autofz -o output-exiv2-afl -t exiv2 -T
24h -f afl --focus-one afl

Output directory specified by -o needs to be different
for each fuzzing repetition.
Results: For each fuzzing run, autofz will generate a
log file in JSON format, which includes all the coverage
and the number unique bugs information.
Additionally, there is a directory called eval in the
fuzzer output directory. The directory stores the results
of crash deduplication and ASAN output of each crash.
(E2): [autofz v.s. ENFUzz/CUPID] [7680 compute-hours +
200 GB disk]: Generate the 24-CPU-hour fuzzing output
of autofz-10, autofz-6, CUPID-4, and ENFUZZ-6 on 8
benchmark programs for 10 repetitions for Figure 7 in
the paper.
Execution: To run autofz-10 on a target (e.g. exiv2),
use the following command:

autofz -o output-exiv2-autofzl® -t
exiv2 -T 24h -f all -jl1® --parallel

To run autofz-6 on a target (e.g. exiv2), use the follow-
ing command:

autofz -o output-exiv2-autofz6

-t exiv2 -T 24h -f afl fairfuzz
gsym aflfast lafintel radamsa -j6
--parallel

To run CuPID-4 (ENFUZZ-Q) on a target (e.g. exiv2),
use the following command:

autofz -o output-exiv2-cupid4 -t exiv2
-T 24h -f afl fairfuzz qsym aflfast
--enfuzz 300 -j4 --parallel

Results: Note that, in the paper, we draw the graph
based on CPU hours. Therefore, if we use 10 CPU
cores (by specifying -j 10), only the first 2.4 hours is
draw on the graph.

Because both experiments take enormous resource to repli-
cate, we recommend choosing only a subset of benchmarks.
Please note that fuzzing is an inherently a random process;
therefore, the reproduced result might not be the same as we
have reported in the paper. To alleviate this problem, we rec-
ommend increasing the fuzzing repetition (e.g. 10 times as
we did) and similar results are expected.

A.4.3 Inspect log files of autofz

The log file of autofz is in JSON format and can be easily
parsed by standard libraries in most programming languages.
To inspect the log file (e.g. exiv2.json), we recommend using

110 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium

USENIX Association

a tool called jq (https://github.com/stedolan/jq), which can be
installed by the package manager in most Linux distributions.
We already installed it in both the docker image and the VM
image.

There are many fields in the log file. One of them is “log”,
which can be retrieved by the following command.

jg .log exiv2.json

The output is an array and each element of the array con-
tains the coverage (“bitmap” field) and unique bugs informa-
tion and the timestamp for that record. By default, a new log
entry is appended for every 60 seconds.

To get the results based on rounds, we can use the following
commands.

jq .round exiv2.json

The output is also an array and each element is the result
of one round. Each element records information for different
phases in one round (e.g. the coverage before/after prepara-
tion/focus phases, resource allocation metadata and current
difference threshold 6.)

In the provided VM, we provided one of the fuzzing log
with the path

/home/autofz/output_exiv2/exiv2.json

A.4.4 Plotting the figures

We also include the scripts to draw the figures used in the
paper.

autofz-draw -o output-draw -t exiv2 -d
exp -T 24h -pdf

Above commands is used to draw figure 3 in the paper but
only for exiv2.

We have more detailed explanation of each argument in the
provided repository.

Note that for timeout parameter -T, it specifies CPU Time;
therefore, for Figure 7, -T 3h is enough if you use 10 CPU
cores.

A.5 Notes on Reusability

We have included instructions to extend autofz (add new
fuzzers or new benchmarks) in the provided repository.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association

Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 111

https://github.com/stedolan/jq
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	cgroup v2 downgrade
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments
	Inspect log files of autofz
	Plotting the figures

	Notes on Reusability
	Version

