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Abstract: One characteristic feature of many fractonic lattice models, and a defining prop-

erty of the exotic field theories developed to describe them, are subsystem symmetries includ-

ing a conservation of not just net electric charge but also electric dipole moments or charges

living on submanifolds. So far all such theories were based on internal subsystem symmetries.

In this work we generalize the notion of subsystem symmetries to system with subsystem

spacetime symmetries with locally conserved energies.
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1 Introduction

The prime example for a continuum quantum field theory with fractonic “subsystem” sym-

metry is laid out in the recent work by Seiberg and Shao [1] based on the earlier [2]. Their

theory of a 2+1 dimensional real scalar has a large set of subsystem symmetries

φ(t, x, y)→ φ(t, x, y) + cx(x) + cy(y) (1.1)

Since cx(x) is an arbitrary function of x they have conserved charges Qx(x) which are

independently conserved for all x, and similarly for Qy(y). The only constraint is that the

sum of all Qx is equal to the sum of all Qy – the constant c is shared between cx and cy and

so there is only one position independent charge, not two. An action invariant under this full

symmetry is easily constructed. Upon deformation, this symmetry can be broken to cx and

cy being linear functions of x and y only. Instead of an infinite number of charges we are left

with only an overall conserved charge (from constant c) and an x and y dipole charge (from

the linear functions cx and cy).

All these symmetries are “internal” in the standard sense in that they only act on the

fields, not the spacetime coordinates. The dipole here is an electric dipole. One obvious gen-

eralization is to look for spacetime subsystem symmetries. In this case one would be looking

at locally conserved energy and momentum, and upon deformation conserved gravitational

multipole charges instead of electric multipole charges. In a non-relativistic setting time is

singled out, so the simplest spacetime fracton symmetry one could be looking for is a fractonic

time translation symmetry

t→ t′ = t+ c(x, y). (1.2)
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Intriguingly enough, this is symmetry is a subset of the full symmetries preserved by

the topological theory of [3] where they allowed and arbitrary function c(t, x, y) of both

coordinates as well as time, together with holomorphic reparameterizations of the spatial

coordinates. Only requiring the fractonic time translation symmetry (1.2) should allow for

more non-trivial dynamics than the topological theories of [3], but still have a more rigid

structure than a “standard” non-relativistic theory1 which only allows constant shifts in t.

This symmetry also contains the Carrollian contraction of the Poincaré group, which is the

c→ 0 limit [7–9]. 2

In this work, we present a very simple continuum field theory exhibiting such a “spacetime

subsystem” symmetry and work out some of its properties. We present the Lagrangian in

section 2 and analyze its conservation law and transport properties. In section 3 we discuss

some potential generalizations and conclude with open questions in section 4.

2 Field theories with exotic spacetime symmetries

2.1 Action

A very simple Lagrangian with the symmetry (1.2) can be written down for two real scalars φ1
and φ2 in d+1 dimensions, with generalization to any larger number of real scalars straight-

forward: 3

L = 1
2 φ̇

2
1 + 1

2 φ̇
2
2 + 1

2(φ̇1∂iφ2 − φ̇2∂iφ1)2 − V (φ1, φ2). (2.1)

The potential V is arbitrary. To see that the corresponding action is invariant, note that

under the transformation (1.2) the spacetime derivatives transform as

∂t → ∂t,

∂i → ∂i + (∂ic)∂t.
(2.2)

With this, the kinetic terms involving only time derivatives are manifestly invariant, whereas

the particular combination of terms in the mixed time and space derivatives containing gra-

dient term was chosen to cancel the terms containing derivatives of c. The model has an

additional U(1) symmetry rotating φ1 and φ2 provided the potential is also symmetric (i.e.

V (φ1, φ2) = V (φ21 + φ22).)

2.2 Nœther Charges

The main consequence of symmetries are conserved charges. We can work out the standard

Nœther currents for time independent space and time translations, the standard momentum

and energy density and currents. They turn out to be 4

1Incidentally, this is also different from the non-relativistic diffeomorphisms of Newton-Cartan symmetry

[4] where we allow for time dependent diffeomorphisms of x and y instead of allowing x and y dependent shifts

in t. It is also different than investigating what spacetime symmetries fractonic theories have, as was done in

[5, 6].
2We would like to thank the authors of [10] for bringing this point to our attention.
3A previous version of this manuscript contained a sign error in this formula which was pointed out in [11].
4A previous version of this manuscript omitted a term in T j

i which was pointed out in [11].
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T 0
0 = H
T i0 = 0

T 0
i = π1∂iφ1 + π2∂iφ2

= φ̇1∂iφ1 + φ̇2∂iφ2 + χj (∂iφ1∂jφ2 − ∂jφ1∂iφ2)

T ji = χiχ
j − δjiL

(2.3)

where the Hamiltonian density H is given by

H =
1

2
φ̇21 +

1

2
φ̇22 +

1

2
χ2
i + V (φ1, φ2) (2.4)

with5

χi = φ̇1∂iφ2 − φ̇2∂iφ1. (2.5)

The form of the Hamiltonian density displayed here is deceptively simple, as we still express it

in terms of the time derivatives of φi. When spelled out in terms of the conjugate momentum

variables πi = δL/δφ̇i the Hamiltonian density appears highly non-trivial.

The most interesting aspect of the currents in (2.3) is that the energy current T i0 vanishes

identically. This is, in fact, guaranteed by symmetry. Time translation invariance implies

∂µ ((δt)T µ0 ) = 0. (2.6)

This gives the standard current conservation for position independent δt, but for δt as an

arbitrary function of x and y, T i0 has to vanish identically and

∂tH = 0. (2.7)

As expected, the energy density is locally conserved. Despite the locally conserved energy

density, the model has non-trivial dynamics and in the quantum system this implies that the

Hilbert space does not locally factorize.

2.3 Transport

If energy is locally conserved, is there any dynamics left? Note that while the energy current

T i0 vanishes identically, neither the momentum density T 0
i nor the momentum flux T ji do.

Their dynamics is still given by the conservation law

∂0T
0
i + ∂jT

j
i = 0. (2.8)

For example, in the hydrodynamic regime we would want to write a constitutive relation for

T ji in terms of T 0
i in a derivative expansion. This will take the standard Navier-Stokes form,

5As an aside, it should be noted that the dynamics of the system becomes significantly more transparent

if one introduces χi as an independent Hubbard-Stratonovich field, whose algebraic equation of motion yields

(2.5). For the simple calculations presented in this work, this is not required.
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with derivatives of the conserved energy density T 0
0 appearing similar to an external potential.

The main difference here is that T 0
0 is given by the initial conditions rather than by external

forces: at time t = 0 one lays down an energy profile which will not evolve in time. This

energy profile provides a potential in which momentum flows more or less conventionally.

3 Generalizations

As a proof of principle, we constructed a simple model with spacetime sub-system symmetries.

While energy is locally conserved, the model still allows for non-trivial evolution in space and

time. Our basic construction can be generalized in many interesting directions, let us explicitly

demonstrate two:

3.1 Reduced Symmetry

The model we constructed so far has the large symmetry of shifts of t by an arbitrary function

c(x, y) of x and y, corresponding to an energy density that is locally conserved at every point

in space. One can wonder whether it is possible to systematically break this symmetry to

smaller exotic symmetries more in line with what was done for internal symmetries. For

example, one could try to reduce the symmetry to shifts of the form cx(x) + cy(y) (with

energy conserved along lines) or maybe even cxx + cyy. An action which formally achieves

the former is given by

L =
1

2
(∂tφ)2 ± g

3
φ
[
(∂2t φ)(∂x∂yφ)− (∂x∂tφ)(∂y∂tφ)

]
− V (φ). (3.1)

To see this is invariant note that

∂x∂yφ → ∂x∂yφ+ (∂xc)(∂y∂tφ) + (∂yc)(∂x∂tφ) + (∂xc)(∂yc)(∂
2
t φ) + (∂x∂yc)(∂tφ)

(∂x∂tφ)(∂y∂tφ) → (∂x∂tφ)(∂y∂tφ) + (∂xc)(∂
2
t φ)(∂y∂tφ)

+(∂yc)(∂
2
t φ)(∂x∂tφ) + (∂xc)(∂yc)(∂

2
t φ)2 (3.2)

As long as the last ∂x∂yc term vanishes, the transformations of the first and second term

cancel exactly and the action is invariant.

The equations of motion for this theory are

∂2t φ∓ g
[
(∂2t φ)(∂x∂yφ)− (∂x∂tφ)(∂y∂tφ)

]
+
∂V

∂φ
= 0. (3.3)

The presence of a term linear in ∂x∂yφ could potentially give rise to instabilities in the theory

at it has no definite sign.

We can write down similar theories which only conserve the dipole of energy, or equiv-

alently where the symmetry shifts t by linear functions c(~x) = ~a · ~x + t0. For example the

Lagrangian

L =
1

2
(∂tφ)2 +

g

3
φ
[
(∂2t φ)(∂i∂

iφ)− (∂i∂tφ)(∂i∂tφ)
]
− V (φ). (3.4)
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has this symmetry. In fact this reduced symmetry is the Carollian limit of the Poincaré group

[7–9], and this field theory constitutes a new non-trivial Carollian scalar field theory. The

connection between fractonic symmetries and Carollian dynamics have been explored before

by [10], and may provide a starting point to understand quantization of these field theories

and coupling these theories to a non-flat metric.

Additionally, in the absence of the potential term, the Lagrangian (3.4) is reminiscent

of the Lagrangian of scalar Galileon theories [12]. The Galileon Lagrangian, of course, is

Lorentz-invariant and invariant under arbitrary shifts, φ(xµ) → φ(xµ) + aµx
µ + b, whereas

ours is explicitly nonrelativistic. Furthermore, our Lagrangian does not have the potential

instabilities of (3.1) as ∂i∂
iφ has a definite sign.

3.2 Clock Field

The equations of motion following for (2.1) read

∂t

(
φ̇1 + iχi∂iφ2

)
= i∂i

(
χiφ̇2

)
− ∂V

∂φ1
,

∂t

(
φ̇2 − iχi∂iφ1

)
= −i∂i

(
χiφ̇1

)
− ∂V

∂φ2
,

χi = i
(
φ̇2∂iφ1 − φ̇1∂iφ2

)
,

(3.5)

As long as the potential in (2.1) vanishes, the theory has an additional symmetry: shift

invariance of φ by constants. This symmetry guarantees a solution of, say, the form

φ1 = t, φ2 = 0. (3.6)

φ1 acts as a clock field, that is we can read of time from the value of φ1. We can expand

around this solution by introducing a field

φ1 = t+ T (t, x, y). (3.7)

When written in terms of T , the action still is invariant under the subsystem spacetime

symmetry (1.2), but this time the action on spacetime has to be augmented by a shift of T .

We still have a locally conserved charge, but this time it is a mixture of an internal charge

and the energy density.

4 Future Directions

We have written down what appears to be the simplest model of a field theory with subsys-

tem spacetime symmetries. There remain clearly many interesting questions that should be

addressed. Among them:

• Lattice realizations: Fractons, which often come along with subsystem symmetries,

started out as solvable lattice models. Only later was their continuum field theory
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understood. For the spacetime subsystem theories we started in the continuum. It

would be interesting to understand whether lattice versions of our theory exist, with

a time translation symmetry that allows different time translations on different sites.

Of course this can be done trivially if the theories on separate sites are decoupled, but

our continuum theory suggests that it should also be possible to do this in a theory

with non-trivial nearest neighbor interactions. Unfortunately, any attempts to directly

discretize our Hamiltonian is hampered by its non-linear form. From the field theory

point of view, it is natural to start with a local Lagrangian and let the Hamiltonian

be whatever it needs to be. To connect to the lattice, it may be better to start with a

simpler Hamiltonian already in the continuum.

• Higher order corrections: Clearly, spacetime subsystem symmetries are highly re-

strictive. It would be interesting to spell out the most general action consistent with

these symmetries, including higher order corrections.

• Quantization: So far our entire analysis has been classical. It would be interesting to

understand quantum theories with spacetime subsystem symmetries.

• Connection with integrable system: The Lagrangians we consider have an infinite

number of conserved charges, so perhaps they define an integrable system. Unfortu-

nately the Hamiltonian and symplectic structure defined by the Poisson bracket are

unwieldy, and we have not been able to find a second symplectic structure to make the

system integrable [13]. It would be interesting to understand if these models are in fact

intergrable, or if they are somehow related to integrable models.

We hope to address at least some of these points in the future.
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l’IHP Physique théorique 3 (1965) 1.
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