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ABSTRACT: One characteristic feature of many fractonic lattice models, and a defining prop-
erty of the exotic field theories developed to describe them, are subsystem symmetries includ-
ing a conservation of not just net electric charge but also electric dipole moments or charges
living on submanifolds. So far all such theories were based on internal subsystem symmetries.
In this work we generalize the notion of subsystem symmetries to system with subsystem
spacetime symmetries with locally conserved energies.
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1 Introduction

The prime example for a continuum quantum field theory with fractonic “subsystem” sym-
metry is laid out in the recent work by Seiberg and Shao [1] based on the earlier [2]. Their
theory of a 241 dimensional real scalar has a large set of subsystem symmetries

o(t, 2, y) — d(t,z,y) + cu() + cy(y) (1.1)

Since ¢, () is an arbitrary function of z they have conserved charges @Q.(z) which are
independently conserved for all z, and similarly for Q,(y). The only constraint is that the
sum of all @), is equal to the sum of all ), — the constant c is shared between ¢, and ¢, and
so there is only one position independent charge, not two. An action invariant under this full
symmetry is easily constructed. Upon deformation, this symmetry can be broken to ¢, and
¢y being linear functions of x and y only. Instead of an infinite number of charges we are left
with only an overall conserved charge (from constant ¢) and an z and y dipole charge (from
the linear functions ¢, and cy).

All these symmetries are “internal” in the standard sense in that they only act on the
fields, not the spacetime coordinates. The dipole here is an electric dipole. One obvious gen-
eralization is to look for spacetime subsystem symmetries. In this case one would be looking
at locally conserved energy and momentum, and upon deformation conserved gravitational
multipole charges instead of electric multipole charges. In a non-relativistic setting time is
singled out, so the simplest spacetime fracton symmetry one could be looking for is a fractonic
time translation symmetry

t—t'=t+c(zy). (1.2)



Intriguingly enough, this is symmetry is a subset of the full symmetries preserved by
the topological theory of [3] where they allowed and arbitrary function ¢(t,z,y) of both
coordinates as well as time, together with holomorphic reparameterizations of the spatial
coordinates. Only requiring the fractonic time translation symmetry (1.2) should allow for
more non-trivial dynamics than the topological theories of [3], but still have a more rigid
structure than a “standard” non-relativistic theory! which only allows constant shifts in ¢.
This symmetry also contains the Carrollian contraction of the Poincaré group, which is the
¢ — 0 limit [7-9]. 2

In this work, we present a very simple continuum field theory exhibiting such a “spacetime
subsystem” symmetry and work out some of its properties. We present the Lagrangian in
section 2 and analyze its conservation law and transport properties. In section 3 we discuss
some potential generalizations and conclude with open questions in section 4.

2 Field theories with exotic spacetime symmetries

2.1 Action

A very simple Lagrangian with the symmetry (1.2) can be written down for two real scalars ¢
and ¢9 in d+1 dimensions, with generalization to any larger number of real scalars straight-
forward: 3

L= 5% + 505 + 5(10i02 — $28i01)° — V (1, 62). (2.1)
The potential V is arbitrary. To see that the corresponding action is invariant, note that
under the transformation (1.2) the spacetime derivatives transform as

Ot — 815,
0; — 0; + (aiC)at.

With this, the kinetic terms involving only time derivatives are manifestly invariant, whereas

(2.2)

the particular combination of terms in the mixed time and space derivatives containing gra-
dient term was chosen to cancel the terms containing derivatives of ¢. The model has an
additional U(1) symmetry rotating ¢; and ¢, provided the potential is also symmetric (i.e.

V1, ¢2) = V(7 + ¢3).)
2.2 Noether Charges

The main consequence of symmetries are conserved charges. We can work out the standard
Noether currents for time independent space and time translations, the standard momentum
and energy density and currents. They turn out to be 4

ncidentally, this is also different from the non-relativistic diffeomorphisms of Newton-Cartan symmetry
[4] where we allow for time dependent diffeomorphisms of x and y instead of allowing = and y dependent shifts
in t. It is also different than investigating what spacetime symmetries fractonic theories have, as was done in
[5, 6].

*We would like to thank the authors of [10] for bringing this point to our attention.

3 A previous version of this manuscript contained a sign error in this formula which was pointed out in [11].

4A previous version of this manuscript omitted a term in Tij which was pointed out in [11].



0 =H

Te=0

T = m0i¢1 + 20,02 (2:3)
= 10,01 + $20i6 + X; (0:10;¢2 — 0;¢10;¢2)

T} = xix) - 6/L

where the Hamiltonian density H is given by

HZ%%+%%+%ﬁ+th@) (2.4)

with?
Xi = 01052 — $20i1. (2.5)
The form of the Hamiltonian density displayed here is deceptively simple, as we still express it
in terms of the time derivatives of ¢;. When spelled out in terms of the conjugate momentum
variables m; = 6L/ §¢; the Hamiltonian density appears highly non-trivial.
The most interesting aspect of the currents in (2.3) is that the energy current 7| 3 vanishes
identically. This is, in fact, guaranteed by symmetry. Time translation invariance implies

9, ((58)TE) = 0. (2.6)

This gives the standard current conservation for position independent &t, but for d; as an
arbitrary function of xz and y, Tg has to vanish identically and

OH = 0. (2.7)

As expected, the energy density is locally conserved. Despite the locally conserved energy
density, the model has non-trivial dynamics and in the quantum system this implies that the
Hilbert space does not locally factorize.

2.3 Transport

If energy is locally conserved, is there any dynamics left? Note that while the energy current
T¢ vanishes identically, neither the momentum density TP nor the momentum flux T? do.
Their dynamics is still given by the conservation law

AT + 9;T! = 0. (2.8)

For example, in the hydrodynamic regime we would want to write a constitutive relation for
TZ-J in terms of Ti0 in a derivative expansion. This will take the standard Navier-Stokes form,

®As an aside, it should be noted that the dynamics of the system becomes significantly more transparent
if one introduces x; as an independent Hubbard-Stratonovich field, whose algebraic equation of motion yields
(2.5). For the simple calculations presented in this work, this is not required.



with derivatives of the conserved energy density T(()) appearing similar to an external potential.
The main difference here is that T(()) is given by the initial conditions rather than by external
forces: at time t = 0 one lays down an energy profile which will not evolve in time. This
energy profile provides a potential in which momentum flows more or less conventionally.

3 Generalizations

As a proof of principle, we constructed a simple model with spacetime sub-system symmetries.
While energy is locally conserved, the model still allows for non-trivial evolution in space and
time. Our basic construction can be generalized in many interesting directions, let us explicitly
demonstrate two:

3.1 Reduced Symmetry

The model we constructed so far has the large symmetry of shifts of ¢ by an arbitrary function
¢(z,y) of z and y, corresponding to an energy density that is locally conserved at every point
in space. One can wonder whether it is possible to systematically break this symmetry to
smaller exotic symmetries more in line with what was done for internal symmetries. For
example, one could try to reduce the symmetry to shifts of the form c,(x) + ¢,(y) (with
energy conserved along lines) or maybe even ¢, + ¢,y. An action which formally achieves
the former is given by

L= %(atqﬁ)? + g¢ [(076)(020,0) — (0:0:9)(9y0:6)] — V(). (3.1)

To see this is invariant note that

arayﬁb — 39632/(;5 + (0zc) (ayat¢) + (ayc)(amat¢) + (amc)(ayc)(at2¢) + (8:1:8?40) (0:9)
(0:00)(0y0k) — (92010)(Dy0h) + (020) (07 6) (001
+(8,0) (97 9)(0:0:0) + (00¢) (9y0) (87 ¢)? (3.2)

As long as the last 0,0,c term vanishes, the transformations of the first and second term
cancel exactly and the action is invariant.
The equations of motion for this theory are

oV
0;9 F 9 [(9/9)(9:0y9) — (8:09)(9,019)] + 55 = 0. (3:3)
The presence of a term linear in 9,0,¢ could potentially give rise to instabilities in the theory
at it has no definite sign.
We can write down similar theories which only conserve the dipole of energy, or equiv-
alently where the symmetry shifts ¢ by linear functions ¢(Z¥) = @ - & + t9. For example the

Lagrangian

L= %(am)? + §¢ [(07)(0:0"¢) — (0:0:9)(0'09)] — V (9). (3.4)



has this symmetry. In fact this reduced symmetry is the Carollian limit of the Poincaré group
[7-9], and this field theory constitutes a new non-trivial Carollian scalar field theory. The
connection between fractonic symmetries and Carollian dynamics have been explored before
by [10], and may provide a starting point to understand quantization of these field theories
and coupling these theories to a non-flat metric.

Additionally, in the absence of the potential term, the Lagrangian (3.4) is reminiscent
of the Lagrangian of scalar Galileon theories [12]. The Galileon Lagrangian, of course, is
Lorentz-invariant and invariant under arbitrary shifts, ¢(z*) — ¢(z#) + ayat + b, whereas
ours is explicitly nonrelativistic. Furthermore, our Lagrangian does not have the potential
instabilities of (3.1) as 0;0%¢ has a definite sign.

3.2 Clock Field

The equations of motion following for (2.1) read

O <¢1 + iXi3i¢2> = i0; (XiéQ) - ;‘:1,
O <¢2 - iXi3i¢1> = —i0; <X¢<ﬁ1> - 3;/2, (3.5)

Xi =1 (%3@1 - <2513i¢2) ;

As long as the potential in (2.1) vanishes, the theory has an additional symmetry: shift
invariance of ¢ by constants. This symmetry guarantees a solution of, say, the form

¢1 =1, ¢2=0. (3.6)

¢1 acts as a clock field, that is we can read of time from the value of ¢1. We can expand
around this solution by introducing a field

When written in terms of 7', the action still is invariant under the subsystem spacetime
symmetry (1.2), but this time the action on spacetime has to be augmented by a shift of 7T
We still have a locally conserved charge, but this time it is a mixture of an internal charge
and the energy density.

4 Future Directions

We have written down what appears to be the simplest model of a field theory with subsys-
tem spacetime symmetries. There remain clearly many interesting questions that should be
addressed. Among them:

e Lattice realizations: Fractons, which often come along with subsystem symmetries,
started out as solvable lattice models. Only later was their continuum field theory



understood. For the spacetime subsystem theories we started in the continuum. It
would be interesting to understand whether lattice versions of our theory exist, with
a time translation symmetry that allows different time translations on different sites.
Of course this can be done trivially if the theories on separate sites are decoupled, but
our continuum theory suggests that it should also be possible to do this in a theory
with non-trivial nearest neighbor interactions. Unfortunately, any attempts to directly
discretize our Hamiltonian is hampered by its non-linear form. From the field theory
point of view, it is natural to start with a local Lagrangian and let the Hamiltonian
be whatever it needs to be. To connect to the lattice, it may be better to start with a
simpler Hamiltonian already in the continuum.

e Higher order corrections: Clearly, spacetime subsystem symmetries are highly re-
strictive. It would be interesting to spell out the most general action consistent with
these symmetries, including higher order corrections.

e Quantization: So far our entire analysis has been classical. It would be interesting to
understand quantum theories with spacetime subsystem symmetries.

e Connection with integrable system: The Lagrangians we consider have an infinite
number of conserved charges, so perhaps they define an integrable system. Unfortu-
nately the Hamiltonian and symplectic structure defined by the Poisson bracket are
unwieldy, and we have not been able to find a second symplectic structure to make the
system integrable [13]. It would be interesting to understand if these models are in fact
intergrable, or if they are somehow related to integrable models.

We hope to address at least some of these points in the future.
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