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Abstract: We study the growth of entanglement entropy in a doubly holographic model of
gravity for a spherical AdS black hole. Compared to previous work, which was limited to
the case of planar black holes, this introduces an extra scale to the problem. This allows us
to analyze the interplay between the reorganization of entanglement entropy due to island
formation and the onset of the Hawking-Page phase transition and to find the appearance
of a new critical black hole radius unrelated to the thermodynamics. We also find that the
geometry of the Ryu-Takayanagi surface capturing the physics of islands exhibits drastically
different behavior than in the planar case.
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1 Introduction

The AdS/CFT correspondence [1–3], which is the most concrete realization of the holographic
principle to date, is a conjectured duality between two seemingly different physical theo-
ries. One of its most remarkable aspects is that, since the correspondence relates a higher-
dimensional theory of gravity in anti-de Sitter space (AdS) to a dual conformal field theory
(CFT) on its boundary, it provides a consistent framework where the unitarity of a black
hole’s evaporation process can be studied.

The crucial ingredient in recent calculations, which have yielded a unitary Page curve
for the time-evolution of the entanglement entropy, has been entanglement islands [4, 5] –
regions of spacetime which, while seemingly disconnected from the holographic system, arise
when the boundary region is coupled to a system with additional gravitational degrees of
freedom. They are responsible for the late-time contribution to the entropy of a subregion
on the boundary theory, and their location on a slice of AdSd+1 is determined by a quantum
extremal surface (QES) [6] whose location, if perturbed, won’t affect the measurements of
entanglement entropy.

However, determining the location of these islands is highly nontrivial as one needs to
have quantitative control of the quantum entanglement across the QES. But by introducing
a boundary to the conformal field theory, one obtains a doubly holographic model where the
entanglement entropy can be computed using the classical Ryu-Takayanagi (RT) prescription
in one dimension higher [7–13]. In such models the boundary of the CFT, which we will
refer to as the defect, is dual to a Karch-Randall (KR) brane where RT surfaces can connect,
thus defining a quantum extremal surface and forming an island on the brane. More precisely,
following previous work [14], the island is defined as the region extending from the RT surface’s
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anchor point on the brane to the other side of the thermofield double, and the family of anchor
points on the brane to which RT surfaces can connect is defined as the atoll. RT surfaces
that connect the brane to the boundary are called island surfaces, and when they connect the
brane to the defect, the location where it attaches to the brane is known as a critical anchor.

One way to realize this model is by starting with a Karch-Randall (KR) brane on a d-
dimensional slice of AdSd+1. Through the AdS/CFT correspondence, this model has three
equivalent descriptions [15–19] which we will refer to as the boundary, intermediate, and bulk
pictures. The boundary picture is a unitary d-dimensional CFT ending on a d−1 dimensional
defect, and the bulk picture is an AdSd+1 spacetime with an embedded AdSd KR brane. We
emphasize that the bulk picture is particularly notable because we can use this description
to compute entanglement entropy using classical RT surfaces. The location of the RT surface
in the bulk description determines the location of the QES in the intermediate picture. Here
we have a d-dimensional CFT on the KR brane ending on the defect, with semi-transparent
boundary conditions, allowing energy transfer between the KR brane and a non-gravitating
bath housing a d-dimensional CFT. The intermediate description is useful because, once a
Schwarzschild black hole is introduced on each AdSd+1 spacetime slice, we can use it to
interpret the areas of the bulk RT surfaces – which determine the entanglement entropy of the
radiation region in the non-gravitating bath – as the entanglement entropy of the radiation
escaping the black hole on the brane.

We pause briefly to describe the coupling of the conformal field theory to a semi-transparent
boundary, which makes sense from a physical perspective. There is a negative cosmological
constant on the brane which necessitates the introduction of boundary conditions for the
quantum fields. The conventional approach is to choose reflecting boundary conditions, and
when this choice is made, AdS black holes essentially cannot evaporate on their own because
the Hawking radiation they send to the boundary is reflected. One way to define an evapo-
ration process for them is to couple the system to a heat bath [20] – in this model, from the
intermediate perspective, this is achieved through the transparent boundary conditions at the
defect that separates the degrees of freedom on the brane from the degrees of freedom on the
boundary CFT.

The main difference between the setup we consider here, and the one previously explored
in [14, 21], is that we are interested in spherical Schwarzschild black holes instead of planar
ones. This means we use AdS in global coordinates. To understand the significance of this, let
us first recall some facts about standard AdS/CFT at finite temperature without the brane.
For global AdS, the topology of the boundary is Sd−1 × S1, and that’s where the CFT is
located. If we instead place the CFT on flat background Rd−1, as has been done in previous
work on double holographic islands [14, 21–25], this differs from a sphere Sd−1 in that the
latter introduces an extra phase transition and associated instability. For a CFT on Rd−1, the
temperature T is the only scale, and therefore there is no notion of a hot or cold black hole;
physics is equivalent at different temperatures. In this case, the boundary topology makes the
AdS Schwarzschild black hole the only candidate solution in the bulk to express the thermal
CFT on the boundary. As for the CFT on a sphere, we now have the radius of the sphere R
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Figure 1: The diameter of the black string is determined by the order parameter in the
theory, uh. The bulk theory is dual to a thermal BCFT state on the surface of the sphere.
When uh becomes larger than uHP = 1

21/3
we encounter the Hawking-Page transition and the

string is no longer the global minimum of the free energy. The black string reaches minimum
temperature at the spinodal point us =

√
3

22/3
, where the specific heat changes sign from positive

to negative. Also see Figure 2.

and temperature T composing a dimensionless number RT which can form nontrivial physics
at different temperatures [26]. This is to say the CFT at finite T on a sphere introduces two
candidate solutions: the thermal AdS (empty AdS) and the Schwarzschild AdS black hole. It
is the well-known Hawking-Page phase transition, above which the black hole is no longer the
preferred phase, which signals that there exists a point at which a phase transition from a
black hole to a thermal gas of gravitons occurs.

We employ the black string solution, a well-known solution to vacuum gravity in AdS5 or
higher dimensional spacetimes, to realize this important phase transition of a finite tempera-
ture CFT on the sphere within double holography. The scale in the theory is represented by
the parameter uh, which determines the size of the Schwarzschild black hole on each spacetime
slice – see Figure 1. From the bulk perspective, introducing the black string in global AdSd+1

is equivalent to placing spherical Schwarzschild black holes on each AdSd+1 spacetime slice,
including on the boundary on which the BCFT lives. From the intermediate perspective, this
amounts to placing equal size black holes on the gravitating brane and the non-gravitating
bath, which allows them to be in equilibrium while still exchanging Hawking quanta. From
the boundary perspective, this is just a theory at finite temperature. In our case, the finite
temperature in the non-gravitating bath is maintained by having a black hole in the bath as
well. While somewhat unnatural from the field theory point of view, this situation serves just
as well as a heat bath. It greatly simplifies the problem due to the underlying simplicity of the
black string. Furthermore, since this is a static geometry, the RT surfaces can be constructed
on a single time slice.

It can be seen in Figure 1 that the black string has the topology of a cylinder. Such black
string solutions are known to have an instability, corresponding to the rippling of the horizon,
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which is known as the Gregory Laflamme instability [27]. This instability is first encountered
for the global AdS black string when the black holes on each slice dip below a certain size.
Early on it was believed that this instability is dual to the Hawking-Page phase transition
of the braneworld black hole [28, 29] based on early numerical evidence [30]. More recent
numerical evidence [31] and analytic arguments in a large number of dimensions [32] have
shown that the GL instability, in fact, only sets in for black holes smaller than the radius at
the Hawking Page transition. This is in fact consistent with the Gubser Mitra conjecture [33],
which states that mechanical instabilities in the higher dimensional bulk should be dual to
local thermodynamic instabilities in the dual CFT. The Hawking Page transition being first
order does not correspond to a local instability.

Our objective in this note is to examine whether the Hawking-Page transition encountered
in the global AdS black string model at a certain temperature, set by the order parameter
uh, plays an important role in this doubly holographic model which places a BCFT on the
surface of a sphere. We are interested in the interplay of islands with the Hawking-Page phase
transition. In particular, we are interested in obtaining a connection between the Hawking-
Page transition and a general phase transition that occurs for higher-dimensional RT surfaces
at the critical angle [21]. The area difference between the Hartman-Maldacena (HM) surface,
which encodes the increasing entanglement entropy of the black hole on the brane, and the
island surface is known to diverge to negative infinity at the critical angle when there is a
black hole on the brane. However, note that the area difference vanishes there in empty AdS.
But we are mainly interested in the fact that island RT surfaces do not exist at all below the
critical angle in empty AdS, and that for any asymptotically AdS geometry, the entanglement
entropy above the critical angle is governed by tiny islands: global minima that live in the
asymptotic region near the defect.

In this work, where we examine the RT phase structure for the global black string, we
obtain new scale-dependent behavior realized at the brane’s critical angle (θc). We find there
exists a hole in the atoll when the brane lies above θc – namely, there is a region on the brane
where RT surfaces cannot anchor. From the intermediate perspective, this leads directly to
a discontinuous phase transition for quantum extremal surfaces at θc. For fixed brane angles
above the critical angle, the size of this region grows monotonically as the black hole decreases
in size and vanishes at what we call the saturation angle, θs. We also find that RT surfaces can
connect to the boundary points both above and below the hole, which in some cases leads to
multiple candidate RT surfaces that need to be compared. This gives multiple candidate RT
surfaces that travel from the brane to the defect, and we have found that the critical anchors
for these surfaces lie exactly at the boundaries of the hole – see Figure 3 and Figure 4. The
hole’s origin lies in the non-monotonic behavior of h(u), and some surprising connections to
the photon sphere for the black hole on the brane will soon be outlined in a separate note.
Note that, while the hole exists for any non-zero uh, the size of the hole starts to become large
on the order of the Hawking-Page phase transition. Finally, we remark that the area difference
between the HM and island surfaces vanishes at θc for a special value of uh which we call ucrit

h

– in the language of [21], the Page angle equals the critical angle for this value of the order
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parameter. It can be seen in Figure 8 that, even though it is invisible to purely thermodynamic
arguments, its value nonetheless plays an important role in the phase structure of this model.

2 Setup and Equations of Motion

2.1 The Doubly-Holographic Global Black String

This section provides an overview of the doubly-holographic black string model which we are
using to model the entanglement entropy of an evaporating black hole on the KR brane. It
is important to realize that there is a major difference between this setup and the one we
explored in our previous note [14] – in brief, the area density for global AdSd depends on the
scale set by the size of the black hole. Once we place a spherical AdSd black hole on each
AdSd spacetime slice, we will obtain the global AdSd+1 black string.

We begin by writing down the metric for an AdSd black hole in a convenient coordinate
system. Conventionally setting the AdSd curvature radius to 1, one can write spherically
symmetric metrics as:

ds2 =
1

u2

[
−h(u)dt2 +

du2

h(u)
+ dΩ2

d−2

]
. (2.1)

To obtain a spherical Schwarzschild black hole, which we will soon place on each constant
angle µ slice, we choose the following form for h(u):

h(u) = 1 + u2 − ud−1

ud−1h

. (2.2)

Decreasing the value of uh always increases the size of the black hole. The coordinates we are
using differ from the more conventional ones – the difference is that we made the coordinate
substitution:

r → 1

u
. (2.3)

and defined:
h(u) ≡ u2f

(
1

u

)
, (2.4)

where f(1/u) = f(r) is the standard blackening function:

f(r) = 1 + r2 − ωd−1M

rd−3
. (2.5)

Where ω is a constant that is introduced so thatM is the mass of the black hole. By comparing
these two coordinate systems, we can see that the parameter uh is given by:

uh =

(
1

ωd−1M

) 1
d−1

(2.6)
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The main advantage of using u coordinates, instead of r coordinates, is that the boundary
of AdS lies at u = 0 instead of at r = ∞; similarly, u = ∞ corresponds to r = 0 in standard
coordinates. From a numerical perspective, these coordinates are much easier to work with
than the standard f(r) coordinates, and they also helped us gain insight into the equations
of motion.

In order to make our setup doubly holographic, we take the standard approach of em-
ploying the black string by embedding a d-dimensional KR brane in AdSd+1 [15, 16]. This
can be done by adding the standard Randall-Sundrum (RS) term [16] to the Einstein action
while restricting to subcritical brane tensions. The simplest approach is to treat this as an
end-of-the-world brane by orbifolding the original 2-sided RS geometry. For the black string
geometry the brane is embedded in we use:

ds2 =
1

u2 sin2 µ

[
−h(u)dt2 +

du2

h(u)
+ dΩ2

d−2 + u2dµ2
]
. (2.7)

In contrast to Poincare-patch AdS, where the transverse coordinates are Cartesian, the trans-
verse coordinates form a sphere Sd−2 with a line element proportional to dΩd−2. Due to the
presence of the brane, the angular coordinate must be larger than the angle of the brane loca-
tion as we are taking a positive subcritical brane tension. This removes part of the universe
with the angle variable being limited to:

µ ∈ [θb, π). (2.8)

In addition, The introduction of the KR brane induces an AdS radius on the brane, b, which
differs from the bulk value, l, according to the following equation:

b =
l

sinµ
. (2.9)

2.2 The Doubly-Holographic System and Instabilities

Here we discuss the doubly-holographic system which we are studying, beginning with a review
of the black string and some well-known instabilities: the Hawking-Page phase transition and
the spinoidal point.

2.2.1 The Location of the Black String

The location of the Schwarzschild black string in the bulk, which has been plotted numerically
in Figure 1, can be determined by determining where the blackening function h(u)

u2
vanishes,

which is equivalent to solving for the roots of the non-monotonic function h(u):

h(u) = 1 + u2(µ)− ud−1

ud−1h

= 0 (2.10)

In our case, where d = 4, we have:

u+ =
1

3

(
u3h +

(
2

χ

) 1
3

u5h +

(
2

χ

)− 1
3

uh

)
, (2.11)
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with χ (uh) ≡ 2u6h + 3
(

9 +
√

81 + 12u6h

)
and u+ ∈ R+, introduces a scale to the theory with

uh acting as an order parameter. The advantage to focusing on d = 4 is that the system
has enough dimensions to have interesting dependence on scale. There are also some less
interesting cases where d = 2 or d = 3, where the horizon is given by:

R2 =
1

2uh
−
√

1− 4uh2

2uh
if uh <

1

2
(2.12)

R3 =
uh√

1− uh2
if uh < 1 (2.13)

These systems lack interesting dependence on scale for different reasons – the d = 2 system
is scale invariant, and the d = 3 system is the BTZ black hole on the brane. Note that, for a
general number of dimensions, the location of the horizon can be straightforwardly obtained
using standard root-finding methods.

2.2.2 The Hawking-Page Phase Transition

Before discussing the full braneworld geometry, let us focus on AdSd gravity and its CFTd−1
dual. The standard lore is that conformal field theories, on a manifold M of dimension d− 1,
can be studied holographically by summing over the contributions of different gravitational
bulk theories, B, of dimension d, which have M as their boundary. Our bulk theory B is
susceptible to an interesting phase transition, known as the Hawking-Page phase transition
[34], because the thermal state on the boundary, M , of the bulk lives on a sphere.

When the thermal boundary state lives on a sphere, there are two known bulk theories,
B, which need to be compared [26] – the first is empty AdS with a spherical boundary theory,
also called thermal AdS,

ds2 =

(
r2

b2
+ 1

)
dt2 +

dr2(
r2

b2

)
+ 1

+ r2dΩ2, (2.14)

and the second is a standard AdS Schwarzschild black hole,

ds2 =

(
r2

b2
+ 1− wd−1M

rd−3

)
dt2 +

dr2(
r2

b2
+ 1− wd−1M

rd−3

) + r2dΩ2. (2.15)

Here ωd−1 is a constant we introduce so that M is the mass of the black hole, but its precise
value does not play an important role in our discussion.

The difference between the infinite actions associated to these geometries, I, was first
computed for three spatial dimensions, d − 1 = 3, by Hawking and Page [34]. It is also
computed by Witten [26] for a general number of spatial dimensions. The action turns out to
be proportional to the volume and is given by:

I =
d− 1

8πGN
lim
R→∞

(V2(R)− V1(R)) =
Vol

(
Sd−2

) (
b2rd−2+ − rd+

)
4GN

(
(d− 1)r2+ + (d− 3)b2

) , (2.16)
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where r+ is the radius of the black hole in radial coordinates and b is the AdSd curvature
radius. These radial coordinates, r, are related to our coordinates, u, by the coordinate
transformation1:

r =
1

u sinµ
(2.17)

The Hawking-Page transition occurs when I changes sign – in other words, an AdS black
hole is unstable when its radius, measured from the origin on the KR braneworld in r coor-
dinates, is less than the brane AdS radius:

r+ < b =⇒ The AdS Black Hole on the Brane is Unstable (2.18)

The next step is to convert to the coordinates used in our note. Taking u+ to be the location
of the horizon in our coordinates, Equation 2.17 gives:

u+ sinµ =
1

r+
>

1

b
=

sinµ

l
(2.19)

u+ >
1

l
=⇒ The AdS Black Hole on the Brane is Unstable (2.20)

Here we choose a bulk AdS radius l = 1, so the Hawking-Page transition occurs when u+ = 1.
From Equation (2.11), it can be seen immediately that the Hawking-Page phase transition
occurs at uh = 2−

1
3 . Note that the change in the AdS radius on the brane was canceled by

the sin(µ) term from the warped geometry.

2.2.3 The Spinodal Point

To facilitate our review of the spinoidal transition, we derive a well-known and generically
useful result that relates the temperature of a black hole to the derivative of its blackening
function at the horizon. Following the standard procedure [26], we perform a Taylor expansion
in the near horizon region:

ds2 =
dr2

f(r)
+ f(r)dt2. (2.21)

When working in Euclidean signature, the metric encounters a conical singularity at the
horizon which poses a problem for the periodic time coordinate. This can be repaired by
carefully tuning the circle’s circumference and amounts to fixing an inverse temperature, β,
which makes the time-circle smooth at and outside the horizon. Start by noting that the metric
near the horizon, written in Euclidean signature, is asymptotically flat with the periodic φ
playing the role of a time coordinate:

ds2 = dr2 + r2dφ2 (2.22)
1This differs from Equation 2.3 because the sin(µ) term arises when the braneworld Schwarzschild black

hole is placed into a warped geometry.
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Figure 2: The temperature of the black hole scales non-monotonically with uh, but for large
black holes, the relationship is approximately linear. Unlike in asymptotically flat space, where
black holes always have negative specific heat, AdS black holes have positive specific heat when
they are large enough. The canonical ensemble in AdS is sensible because a temperature can
be defined in the dual theory. For β above the Hawking-Page phase transition, where the
radius of the black hole is the AdS radius, the system will transition to a gas of thermal
radiation. Such black holes cannot be in thermal equilibrium in the canonical ensemble. For
uh past the spinodal point, black holes become hotter as they evaporate, so their specific heat
is negative. Since AdS black holes do not exist above the value of β where the spinodal point
occurs, they do not contribute at all to the canonical ensemble.

Defining a new coordinate that is measured from the horizon, ξ, the Taylor expansion for the
metric near the horizon yields:

f(ξ) = f(r+) + f ′(r+)(ξ − r+) +O(ξ2) (2.23)

One can match coefficients in the region near the horizon while pairing the periodic coordinates
– that is, one should match the time coordinate, t, with the φ coordinate. Solving the resulting
system of equations gives an expression for the differential coordinate along the circle, dφ:

dξ2

f ′(r+)ξ
+ f ′(r+)ξdt2 = dρ2 + ρ2dφ2 (2.24)

dφ =
f ′(r+)

2
dt (2.25)

When working in Euclidean signature, the system’s time coordinate is periodic in the system’s
inverse temperature, β. Requiring that the time coordinate makes it "all the way around" the

– 9 –



circle at the horizon yields the known expression for the inverse temperature of the system:

2π =
f ′(r+)

2
β =⇒ β =

4π

f ′(r)|r+
(2.26)

The blackening function for the spherical AdS Schwarzschild black hole, given by Equation
(2.15), then gives an expression for its temperature:

β =
4π

f ′(r)|r+
=

4πr+b
2

(d− 1)r2+ + (d− 3)b2
=

4πu+b
2

(d− 1) + (d− 3)b2u2+
(2.27)

The local minimum occurs when the derivative with respect to r+ vanishes:

r+ = b

√
d− 3

d− 1
=⇒ r+ =

b√
3
⇐⇒ u+ =

√
3 (2.28)

As in the previous section, the relationship 2.9 between the AdS radius on the brane, b, and
the AdS radius in the bulk, l, cancels the sin(µ) term that arises due to the warped geometry.
It can be seen in Figure 2 that, at least for large black holes, uh is roughly proportional to
the inverse temperature. This can be shown analytically. In the limit of large M , we can use
an equation from [26], together with Equation 2.6, to show that the temperature of the black
hole is approximately:

β =
4π

f ′(r)|r+
≈ 4πb2

(d− 1)(ωd−1b2)
1

d−1 (M)
1

d−1

= uh

(
4π

d− 1

)
b
2(d−2)
d−1 . (2.29)

2.2.4 The Gregory Laflamme Instability

From the perspective of the intermediate picture, where the conformal boundary and the
KR brane are connected through the defect, the black string is perceived as two eternal AdS
Schwarzschild black holes. These correspond to where the black string crosses the gravitat-
ing KR-brane and the non-gravitating conformal boundary, and one black hole lives in each
region. Since the brane is gravitating, the AdS-Schwarzschild black hole on the brane will be
susceptible to the Hawking-Page phase transition.

Beyond a certain value of uh, the cylindrical topology of the black string is unstable to
small perturbations which lead to the formation of a series of black holes along the extra
dimension [27]. This is the well-known Gregory Laflamme instability for the black string.
Recent results on this instability [31, 32] indicate that the Gregory Laflamme instability in
fact happens at black hole radii even smaller than the spinodal point. This is rather surprising
as one would have thought that the local thermodynamic instability that sets on at the
spinodal should be represented by exactly such an instability of the black string against small
fluctuations. It would be interesting to understand the interplay between Gregory Laflamme
and the well-know thermodynamic transitions of the black hole on the brane in more detail. In
this work we will not consider Gregory Laflamme any further and will focus on the interplay
between Hawking Page, the spinodal point, and the formation of islands.
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2.3 Enforcing The Ryu-Takayanagi Prescription

Now that we have constructed our doubly-holographic model, our objective is to determine
the time-dependent entanglement entropy between the two black holes in the intermediate
picture by computing the areas of classical RT surfaces anchored to the defect in the bulk
picture. To do this we will need to follow the RT prescription.

The RT prescription, which requires us to determine the minimal extremal surfaces Σ

that are homologous to R [19, 35], leads directly to the formation of islands when these
surfaces terminate on the end-of-the-world brane [4, 5]. First we consider a generic interval
on the brane I—a “candidate” island. We then determine extremal surfaces Σ that satisfy the
homology constraint,

∂Σ = ∂R∪ ∂I. (2.30)

The next step is to apply a variational principle to the area density functional A, which can
be obtained by computing the square root of the determinant of the constant-time slices of
the metric. This determines the area of the surface up to a factor, proportional to the volume
of the suppressed dimensions, that does not affect the phase structure:

A =

∫
dµ

(u sinµ)d−1

√
u2 +

u′(µ)2

h(u)
, (2.31)

where h(u) is given by:

h(u) = 1 + u2(µ)− ud−1

ud−1h

. (2.32)

The action parameterized as µ(u) can be obtained using the same procedure:

A =

∫
du

(u sinµ)d−1

√
u2µ′(u)2 +

1

h(u)
(2.33)

Now we vary the area functional to determine the Σ and corresponding I for which the
area is minimized. Note that, in contrast to our previous work, the size of the black hole plays
an important role in this note. While we can bring the uh outside the integral for the action
as an overall prefactor u2−dh when the black string is large, we cannot make this simplification
for a scale-dependent black string in global AdS.2 In our case, the size of the black hole –
which now depends on uh – introduces a scale to the theory which determines the width of
the black string and plays a major role in the phase structure.

The Euler-Lagrange equations for the action (2.31) will be ordinary differential equations
because of the parameterizations u = u(µ) and µ = µ(u). As discussed in [21], the boundary
terms in the variation of A vanish by imposing boundary conditions on Σ. Following the
same argument, we impose a Dirichlet condition at the conformal boundary and a Neumann

2For this reason, for ease of comparison with our previous note we have rescaled the axis by u2
+ in Figure

7.
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condition – requiring that the first derivative u′ vanishes – at the brane. The Neumann
boundary condition demands that RT surfaces anchor to the brane at right angles. Depending
on which coordinate system – u(µ) or µ(u) – we choose to use, we have:

u′(θb) = 0 (2.34)

µ′(ub) =∞ (2.35)

It’s possible to gain some physical intuition into these boundary conditions. The first
states that the RT surface is struck at a right angle at the brane, since increasing the angle
does not change the radial distance. The second statement follows from taking the reciprocal.

2.3.1 The Equations of Motion

Since we wrote the action in terms of two different parametrizations, we can obtain the
corresponding equation of motion for each of them separately. Varying the action (2.31) and
solving the resulting Euler-Lagrange equation for the second derivative u′′(µ) yields:

u′′(µ) = −(d− 2)h(u)u(µ) + u′(µ)
(

(d− 1) cotµ− (d− 3)u
′(µ)
u(µ)

)
+
(
u′(µ)
u(µ)

)2 (
u(µ)2h′(u)+2(d−1) cot(µ)u′(µ)

2h(u)

)
.

(2.36)

We can similarly vary the action (2.33) and solve the resulting Euler-Lagrange equations for
the second derivative µ′′(u), which yields:

µ′′(u) = (d− 2)h(u)uµ′(u)3 +

(
µ′(u)

u

)(
(d− 3)− (d− 1)u cot(µ(u))µ′(u)

)
− 2(d− 1) cot(µ(u)) + u2h′(u)µ′(u)

2u2h(u)

(2.37)

These equations of motion are useful in different situations. The first set of equations is
typically more useful when solving the shooting problem from the brane, since the RT surface
will lie at a right angle to the radial direction, which sets u′(µ) = 0. The second set is typically
more useful when shooting from the defect, since the RT surface will point along the radial
direction, which sets µ′(u) = 0.

For example, when shooting from the brane we have u′(µ) = 0, which reduces our u(µ)

equations of motion to:

u′′(µ) = −(d− 2)h(u)u(µ) (2.38)

It follows immediately that RT surfaces that shoot from the horizon of the black hole, where
h(u) = 0, will remain on the horizon until they reach the boundary. Indeed, in such cases we
have u′′(µ) = 0 and u′(µ) = 0, so u(µ) lies at a stationary point.
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Similarly, when shooting from the defect we have µ′(u) = 0, which reduces our u(µ)

equations of motion to:

µ′′(u) = −(d− 1) cot(µ(u))

u2h(u)
(2.39)

Under similar reasoning, this equation is stationary when µ = π/2. Such solutions correspond
to the Hartman-Maldacena surface [36] which travels from the defect, crosses the black hole
horizon, and travels through the Einstein-Rosen bridge to the other side of the thermofield
double.

3 Numerical Results

Here we present our main results. Our objective is to understand how the scale-dependent
location of the horizon, given by Equation 2.11, affects the phase structure, especially at the
critical angle. We find that introducing a scale induces a discontinuous phase transition in
the entanglement wedge at the critical angle for the brane. This is in contrast to [21], where
the scale-less theory had a continuous phase transition at the critical angle. We will explain
how this new behavior comes about due to a "hole" in the atoll, which is the region on the
brane where RT surfaces can shoot from the brane to the bath.

The standard approach is followed throughout. By using our equations of motion, given
by Equations 2.36 and 2.37 respectively, together with the appropriate boundary conditions,
given by Equations 2.34 and 2.35, we identify the candidate extremal surfaces which compete
to dominate the entropy functional, given by Equations 2.31 and 2.33. As in our previous
work [21], we are interested in the boundary conditions satisfying the homology constraint in
Equation 2.30, namely, Γ = 0, which anchors the RT surfaces to the defect and determines
which regions can, in principle, be reconstructed using information localized at the defect.

3.1 Numerical Approach: The Shooting Method

The RT surfaces were obtained using the following procedure, which amounts to using the
shooting method at the defect:

1. Using the equations of motion – in our case, Equation 2.33 – expand µ(u) in series in
the asymptotic region near the defect. Solutions can then be obtained near the defect
using an asymptotic expansion.

2. The asymptotic expansion cannot satisfy the boundary conditions, given by Equation
2.35, which require µ′(u) to diverge at some finite value of u. One must define a suitable
cutoff region for the asymptotics and switch to numerics when the asymptotic solution
crosses the boundary of that region. Since the equations of motion are second order, the
values of µ(u) and µ′(u) at the cutoff region will suffice to perform the numerics.
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3. For some given parameters, the first derivative µ′(u) is found, numerically, to diverge to
positive infinity at some angle θb. Therefore the boundary conditions, given by Equation
2.35, are obeyed at this angle. While such solutions will not necessarily be unique, each
corresponds to an RT surface anchored to a KR brane at an angle θb.

This method should be widely applicable to doubly-holographic models where RT surfaces
anchored to the defect need to be calculated.

3.2 The Series Expansion

The series expansion near the defect for µ(u), which is needed to perform the shooting method
described in the previous section, can be written as:

µ(u) = µ(0) + α1µ
′(0) + α2µ

′′(0) + α3µ
′′′(0) + . . . (3.1)

In our coordinate system the RT surface intersects the defect at a right angle at µ = π
2 , so

we have µ(0) = π/2 and µ′(0) = 0. It is straightforward to show that µ′′(0) = 0 by using the
equations of motion for µ(u) in (2.39), and so:

µ(u) =
π

2
+ α3µ

′′′(0) + . . . (3.2)

This equation gives µ(u) in the asymptotic region as a function of just one parameter α3,
with each of its values potentially yielding a solution satisfying the boundary conditions for a
brane at some angle θb. Result 1, see Appendix A, points out that the RT surfaces anchored
to the defect will not necessarily be unique, and in fact, we have obtained multiple solutions
for each brane angle above the critical angle.

3.3 Multiple Critical Anchors, and The Hole in the Atoll

It was shown in previous work [14, 21] that RT surfaces are restricted to parts of the brane
in higher dimensional models. The region where candidate RT surfaces can anchor to the
KR brane, thereby forming islands on the brane when they dominate the entropy functional,
has been called the atoll. The point where defect-anchored RT surfaces form an island by
anchoring to the brane is called a critical anchor. We can, for example, use these definitions
to restate a relevant result from an earlier paper – when there is a planar black hole on each
constant µ slice, as in [14, 21], the atoll is the region beyond the critical anchor on the brane.
Note that, above the critical angle, tiny island surfaces dominate the entropy functional.
Please see Figure 6 and Appendix B for more details.

Here we generalize our previous results by extending them to spherical Schwarzschild
black holes on each slice, with a horizon distance set by uh. The scale set by uh leads to
interesting new behavior – note, however, that we can obtain our old results by taking the
limit where uh → 0. We have found that – above the critical angle – there are two critical
anchors which border a region on the brane which we call the "hole" in the atoll. The critical
anchors as a function of uh and the angle of the brane have been computed and can be seen in
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Figure 3: This figure shows the critical anchor on the brane, as a function of brane angle, as a
percentage of the horizon radius, for various choices of order parameter uh. The black string’s
diameter, and correspondingly, the black hole’s size on the KR brane, decreases (increases)
as uh is increased (decreased). The Hawking-Page transition lies at uh = 1

21/3
≈ .8. We

recover our result for a large black string, discussed in [21], by taking the limit uh → 0.
There is a "hole" on the atoll when the critical anchor plot is not 1-to-1, which occurs for
any non-zero value of uh. As uh → ∞, the black string’s diameter shrinks to a point, and
the plot approaches a square shape. There is only one critical anchor below the critical angle
(θc ≈ .98687), but there are two critical anchors between the critical angle and the saturation
angle θs.

Figure 3. Those critical anchors are determined as a percentage of the horizon distance. The
hole defines a region on the brane from which RT surfaces cannot reach the bath – please see
Figure 4 for an illustrative example.

The extent of the hole on the atoll depends on the value of uh, according to Equation
(2.11), with larger values of uh leading to smaller Schwarzschild black holes and larger holes
in the atoll. Its size can be seen by inspecting Figure 3 – for any non-zero value of uh, the
critical anchor plot stops being 1-to-1 above the critical angle, θc, and increasing the value of
uh causes the plot to become not 1-to-1 within an increasingly wide strip of θb values. For
those brane angles, there is more than one critical anchor, and the hole is defined as the region
between the two critical anchors.

It can be seen in Figure 3 and Figure 4 that, for any fixed value of uh, increasing the
brane angle decreases the size of the hole up until what we call the saturation angle θs. The
hole does not exist beyond that point because it shrinks to a point on the brane which we
call the saturation anchor us. Beyond the saturation angle, the atoll saturates the brane, and
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Figure 4: This cartoon illustrates typical RT surfaces, above the critical angle θc, for an
eternal black string dual to a BCFT on the surface of a sphere. When the KR brane lies
above the critical angle, RT surfaces can travel from the KR brane to the defect from either
the upper or lower critical anchor. RT surfaces can reach the boundary only from the atoll,
and the region between the critical anchors is always a hole in the atoll. Increasing the brane
angle decreases the size of the hole; at the saturation angle, the upper and lower critical
anchors annihilate at the saturation anchor. Note that similar observations apply to anchors
within a finite distance of the defect on the non-gravitating bath.

an RT surface can reach the bath from any point on the brane – i.e., there is no hole in the
atoll beyond the saturation angle. The saturation angles and saturation anchors are given
in Figure 5. We observe that in the limit where uh → ∞, the saturation angle approaches
π/2, and the saturation anchor approaches ≈ 81% of the horizon distance. This generalizes
our result for the planar black string [14, 21], where the atoll first saturates the brane at the
critical angle θc as we approach it from below and continues to saturate it above – for the
global black string, the atoll saturates the brane at the saturation angle θs > θc.

3.4 Area Differences

We have used the equations of motion to determine which extremal surfaces can reach the
defect, located at Γ = 0, and we have identified a "hole" in the atoll on the brane. There
is a second question concerning these surfaces that is also interesting – which bulk region is
holographically dual to the defect, in the sense that we can use boundary information located
on the defect to reconstruct its contents? This is equivalent to asking which extremal surface,
for a given brane angle θb, and KR braneworld Schwarzschild black hole size (set by uh),
dominates the entropy functional on a given time-slice.

The answer to this question depends critically on the tiny island surfaces, which always
(never) dominate the area functional for Γ = 0 above (below) the critical angle θc. More
details are available in [21], and we also review the tiny islands in Appendix B. To answer this
question below the critical angle, where the tiny islands are never dominant, we have computed
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Figure 5: This figure shows the saturation angle for the brane on the left, and the saturation
anchor for the brane on the right, both as a function of uh. For a given value of uh, the
saturation angle is the largest brane angle with a hole on the atoll. As the brane angle
increases, the hole shrinks to a point that we call the saturation anchor. Our numerics are
consistent with Result 2, in the Appendix, which states that the saturation anchor always lies
inside the photon sphere.

the area differences between the "candidate" RT surfaces: the Hartman-Maldacena surfaces,
which plunge from the defect through the horizon, and the island RT surfaces, which travel
from the defect to the brane. While these areas are formally infinite, their area difference is
finite and given by:

∆A(t) = AIS −AHM (t), (3.3)

for a fixed time slice, which we take to be t = 0. Note that the Hartman-Maldacena surface
is dominant (subdominant) when ∆A is positive (negative). In other words, when the area
difference is positive, AIS > AHM the Hartman-Maldacena surface is dominant on the initial
time-slice and we get a non trivial Page curve. Similarly, when the area difference is negative,
AHM > AIS the island surface is dominant on the initial time-slice and we get a trivial Page
curve.

This area difference depends on the time coordinate, t, because the Hartman-Maldacena
(HM) surface traverses the Einstein-Rosen bridge – hence, its area increases roughly linearly
at late times, and its area will eventually exceed that of the island RT surface. So when
the island RT surface does not start out dominant on the initial time slice, it will dominate
after the area of the Hartman-Maldacena surface has grown by an amount equal to the area
difference on the initial time slice. This happens at a coordinate time which we conventionally
call the Page time, denoted tp.

We are mainly interested in whether the islands dominate on the initial time slice. To
determine which RT surface is dominant below the critical angle, it will suffice to compute
A(0), beginning with the HM surface. Since the anchor point on the bath lies on the defect
(in other words, Γ = 0) the HM surface drops straight down, on the µ = π/2 slice, and crosses
the black string horizon at u = u+. Since µ′(u) = 0 along its trajectory, we can use 2.33 to
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show that its area outside the horizon is given by:

AHM (0) =

∫ u+

0

1

u3

√
1

h(u)
. (3.4)

This equation has closed-form solutions, which can be obtained using Mathematica but are
cumbersome to write down. Meanwhile, the areas of the island RT surfaces must be obtained
by solving the equations of motion (2.37) using the shooting method, as described in Section
3.1, and evaluating the action (2.33) numerically. The results we obtained by carrying out
this procedure can be seen Figure 7. The next step, below, is to use these results to determine
the phase structure.

3.5 Phase Structure and the Critical Angle

One of the key features of the phase structure for the black string is a discontinuous phase
transition in the entanglement wedge at the critical angle, θc, for the brane. It was established
in [21] that, since tiny island solutions always dominate the entropy functional above the
critical angle, the island phase will dominate on the initial time slice above the critical angle.
This leads to interesting new behavior for the black string – when the angle for the brane, θb,
crosses the critical angle, θc, the entanglement wedge shrinks discontinuously from finite to
infinitesimal size – see Figure 6 for an illustration. More details about the tiny islands can be
found in [21] and in the Appendix.

The area differences are also interesting and can be seen in Figure 7, where our numerical
data is presented as a function of brane angle, θb, for various uh values.3 Some general features
from the planar model are preserved in the spherical scale-dependent case. For any fixed
value of black hole size, determined by uh and Equation (2.11), the area difference decreases
monotonically with the brane angle. Hence, as before, island surfaces trend toward dominance
as the brane angle increases. On the other hand, the dependence on the scale, uh, is new. We
find that, for any fixed value of the brane angle, θb, the area difference increases monotonically
with uh.4 According to (2.11), and Figure 1, increasing the value of uh decreases the size of
the black hole on the KR brane and narrows the diameter of the black string. Hence, islands
tend to lose dominance as the size of the black string decreases.

The phase diagram for the eternal black string in d = 4 is presented in Figure 8. The
value of θb where the area difference vanishes is interesting since the island phase becomes
dominant when the sign of the area difference changes. In previous work, we have called
this value the Page angle θp. Below the critical angle, θc, there is genuine competition for
dominance between the HM and island surfaces because the tiny islands are not dominant.
For each value of uh below ucrit

h , which will be explained in a moment, we obtain a value of θb
where the area difference vanishes below the critical angle. We find that the Page angle equals
the critical angle at uh = ucrith , where ucrith ≈ 0.62777 – beyond this point, the island phase

3The numerics become more challenging as uh increases.
4Since u+ increases with uh, the rescaling of our axis by u2

+ does not affect this result.
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Figure 6: According to Figure 3, the critical anchor lies at a finite distance from the defect,
which depends on the order parameter uh, at the critical angle θc. Then for uh 6= 0, which
corresponds to non-planar black holes on each slice, the phase transition at the critical angle
is discontinuous because tiny island surfaces dominate the entropy functional at and above θc.
For a review of tiny islands, see the Appendix. By sending uh → 0, one recovers the result
for planar black holes in our previous note [21] – the critical anchor drops into the defect, and
the phase transition becomes continuous. Note that, in contrast to [21], the atoll does not
saturate the brane at the critical angle when uh 6= 0.

is dominant precisely when defect-anchored RT surfaces lie above the critical angle. Beyond
this critical value for uh, which amounts to fine-tuning the radius of the Schwarzschild black
hole on the brane, the entropy curve is constant if and only if the brane lies above the critical
angle.

Some additional connections to previous work are noted here. We have studied the case
for uh = 0, for which the diameter of the black string is much larger than the AdS radius,
before [21]. In that case, θp was slightly less than θc – it was also found that, for empty AdS,
θc was exactly equal to θp due to the scale invariance in the model. One of the authors has
explored another situation where the Page and critical angles are equivalent under certain
conditions after an Einstein-Hilbert term is used to introduce DGP gravity to the brane [37].

4 Conclusion

We have detailed the entanglement phase structure for a doubly-holographic black string
formed from spherical AdS black holes placed on each spacetime slice. In such BCFT models,
the boundary of the CFT, which we refer to as the defect throughout this note, is dual to
a Karch-Randall (KR) brane where RT surfaces can connect. When they do so, this defines
a quantum extremal surface (QES) and forms an island on the brane. The black holes on
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Figure 7: Here are the numerically computed area differences between the Hartman-
Maldacena (HM) surface and the island RT surface for each value of uh below the critical
angle θc ≈ .98687. The bottom panel zooms in on the region where the area difference van-
ishes. We find numerically that the Page angle equals the critical angle at roughly uh ≈ .62777.
While the area differences above the critical angle are also displayed for completeness, the ac-
tual dominant surface for θ > θc will be the tiny island surface, for which the area difference
actually diverges to negative infinity – see the Appendix. By sending uh → 0, one obtains
our old result [21], given by the thick dark curve, where the island RT surface degenerates
into the tiny island surface at the critical angle – so for uh = 0, the area difference diverges
to negative infinity at θc. For ease of comparison with our previous note, the vertical axis has
been rescaled by the square of the horizon radius u+.

the brane and boundary are located where the black string crosses their respective regions,
and we have computed the entanglement entropy between them by placing the anchor point
for the bulk RT surfaces on the defect. It should be noted that since the RT surfaces in our
model are homologous to the defect, our results apply equally well to the case where the bath
is gravitating.

Spherical AdS black holes differ from planar ones because they are susceptible to the
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Figure 8: Here we present our phase diagram for the doubly-holographic global black string
model. Since the thermal BCFT state lives on the surface of a sphere, there is a scale depen-
dence in the model that depends on uh – see Figure 1 and Figure 2. Each point on this plot
gives the brane angle for which the area difference vanishes, which we call the Page angle θp.
The Page angle was found to increase with uh. The island surfaces are dominant when the
area difference is negative. It was shown in previous work [21] that the tiny island phase is
dominant above the critical angle because the area difference diverges to −∞. In contrast,
finite-size islands dominate below the critical angle when the brane lies above the Page angle.
When uh > ucrit

h , which is ≈ .62777, the island surfaces are dominant only when the brane
lies above the critical angle.

Hawking-Page (HP) phase transition. This is connected to the fact that their dual thermal
BCFT state lives on the surface of a sphere. Unlike in asymptotically flat space, where black
holes have negative specific heat, AdS black holes below the HP phase transition can exist in
stable thermal equilibrium with a heat bath. In contrast, when the inverse temperature, β,
lies above the HP phase transition the system will transition to a gas of thermal radiation.
This important phase transition is related to the observation that the blackening function
f(r) is not monotonic and the temperature achieves a minimum value at the spinoidal point.
Some intriguing connections will be explored more generally in an upcoming note [38].

We have shown that the phase structure, presented in Figure 8, for the entanglement
entropy between two spherical AdS black holes exhibits drastically different behavior than the
planar case explored in [14, 21]. There is a direct connection to the diameter of the black
string set by uh, which also sets the system’s temperature and acts as an order parameter
in our model. Recall that when the island surface is dominant on the initial time slice, the
entanglement entropy does not increase and there is a constant Page curve. For a fixed
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brane angle, as uh decreases, the area difference decreases. Thus islands become increasingly
dominant as we decrease uh. When the value of uh lies above a critical value, which we call
ucrit
h , entanglement islands are always subdominant unless the KR brane lies above the critical

angle θc identified in [21].
We have also found that the diameter of the black string in the bulk picture influences the

existence of candidate RT surfaces. This is due to new scale-dependent behavior realized at
the brane’s critical angle. When the angle of the brane is greater than θc, island RT surfaces
are forbidden from anchoring to a region of the KR brane which we call the hole in the atoll.
Our results are illustrated in Figures 3 and Figure 4. There are potentially up to two candidate
RT surfaces that need to be considered for any choice of boundary anchor, with the extremal
surfaces anchoring either above or below the hole. At the critical angle, the critical anchors –
defined in [21] as the anchor points on the brane for extremal surfaces which connect the brane
and the defect – lie precisely at the boundaries of the hole. For fixed uh, we find that the
hole shrinks with increasing brane angle until it vanishes at what we call the saturation angle
θs. We also found that the critical anchors depend on the scale set by the diameter of the
black string, and that the hole’s existence induces a discontinuous change in the entanglement
wedge at the critical angle.

Several interesting connections exist between this work and our previous note [14, 21]. In
particular, we once again find that the area difference between the HM and island surfaces
diverges to negative infinity at the critical angle – the main difference is that the change in
the size of the entanglement wedge is discontinuous instead of continuous. Note that, when
we take the limit as uh → 0, we obtain the same results which were detailed in [14, 21]. In
particular, the hole in the atoll vanishes, the entanglement wedge again vanishes continuously
at the critical angle, and the uniqueness of (finite) candidate island surfaces is restored. The
restoration of the diverging area difference at the critical angle in this limit can be seen in
Figure 7. We also noted in [14] that the atoll need not be connected, and we have realized
that in this particular doubly-holographic model.

It would be interesting to analyze how the two competing surfaces, which appear for
general Γ on a non-gravitating bath when a scale is introduced, change the phase structure
in [14]. Since tiny island solutions are unavailable when the RT surface anchors to a finite
point on the boundary, there will be competition from the candidate RT surfaces anchoring
above and below the hole on the atoll. We anticipate that, for fixed brane angles and anchor
points on the boundary, there will be a phase transition between them at some value of uh.
We also expect that each boundary anchor will have its own saturation angle θs. It might
also be interesting to compute the Page time for various combinations of parameters in this
model.

As before, we conclude our discussion by noting that several general considerations should
apply to a wide variety of braneworld models, even if the geometry is changed. First we note
that, for doubly-holographic models with d > 2, there will be a critical phase transition at the
critical angle θc. The existence of the hole on the atoll, which appears above the critical angle,
is consistent with our predictions for the general structure of the atoll that were laid out in
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[14] – the atoll should contain the region near the horizon on the brane, since the horizon
is an extremal surface. It should also contain the region near the defect above the critical
angle, since island surfaces exist in that region in empty AdS. Nonetheless, as we find here, it
need not be connected. Our results are also consistent with our observation that increasing the
brane angle should decrease the area difference between the HM and island surface. Physically
one expects that the number of degrees of freedom on the defect decreases with angle, and the
defect encodes the braneworld black hole; hence, increasing the brane angle should decrease
the Page time. Finally, in this note, for the relatively small uh that we have studied, we have
observed that the area difference increases with uh. This suggests that smaller spherical AdS
black holes take longer to saturate their entanglement entropy, at least in this system. It is
possible that the area difference turns around as the black hole shrinks with uh and heats up.
It would be interesting to study this observation in more detail.
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A Useful Results about Islands and the Photon Sphere

Here we quote some results from another paper, in preparation by one of the authors, which
were relevant to the analysis of this note [38].

Result 1 For spherically symmetric blackening functions, there will be exactly one solution
which travels from the brane to the defect unless the black hole on the brane has a photon
sphere. In such cases where there are multiple solutions, at most one solution will be outside
the photon sphere.

Result 2 The atoll is defined as the region on the brane where RT surfaces can anchor,
forming an island. In some cases there is a "hole" in the atoll, with islands being possible on
both sides of the hole. The hole exists only when there is a photon sphere; when it exists, part
of the hole will always lie within the interior of the photon sphere.

B Tiny Island Surfaces and Flat Page Curves

A crucial role in the phase diagram is played by what we refer to as tiny island surfaces [21].
These are tiny surfaces that connect the defect to the brane in the asymptotic region near
the defect, and their dominance above the critical angle leads directly to the second-order
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phase transition noted in Section 3. The main point of this subsection is that tiny island
surfaces are legitimate global minima that dominate the area functional above the critical
angle. Nonetheless, while tiny islands have many features in common with RT surfaces, we
will review some important distinctions here. Note that the Page curve is flat when tiny
islands are dominant, and furthermore, that these comments hold quite generally in higher
dimensional AdS [21].

Unlike tiny island surfaces, RT surfaces are local minima of the area functional. As such,
their area functional vanishes under infinitesimal fluctuations of the RT surface. This is true
both in the bulk and on the boundary – indeed, the vanishing of the variation of the area
with respect to the location of the boundary point is a physical requirement that gave rise to
the condition (2.34). And since tiny islands do not satisfy condition (2.34), one might well
wonder if these saddles are legitimate.

But one must not lose sight of the fact that perfectly legitimate saddles of the area
functional can be obtained under finite variations, so long as one obtains a global minima
for the area functional. Indeed, when the RT endpoints on the brane (the brane anchors)
are allowed to fluctuate by a finite amount, the true global minima of the area functional
can also occur at the boundaries of the range of the allowed anchors. And this is what tiny
island surfaces are – when the brane anchor approaches the defect under a finite variation,
the corresponding RT surface degenerates into an infinitesimal surface localized very near the
defect.

It was found in [21] that the regulated areas of these surfaces are always formally infinite,
despite their tiny nature, but the infinity can be either positive or negative. Since these areas
are positive infinity below the critical angle, tiny islands are never dominant in that regime.
But it was also found that the areas are negative infinity above the critical angle, which means
they are always dominant in that regime. The physical interpretation of this is as follows:
when one remembers to include finite variations above the critical angle, one realizes that the
would-be RT surface can simply slide toward the defect to decrease its area without bound.
See Figure 6. As its endpoint slides down the brane, the area difference between the island
surface and the HM surface blows up to negative infinity – in other words, the HM surface
becomes infinitely larger – and one obtains a tiny island that dominates the area functional.

It may seem somewhat unsatisfactory to find that the area difference between these sur-
faces diverges, but this apparent infinity can be resolved using a limiting procedure. Consider
a finite endpoint for the RT surface on the boundary, the boundary anchor, by sliding it
slightly off the defect – i.e., Γ = ε for some small ε. One finds that the apparently infinite
area difference is a large but finite one [21]. To obtain the tiny island surfaces, one takes the
limit as the endpoint on the boundary approaches the defect, i.e. ε→ 0. The area difference
diverges to negative infinity and one realizes that, for Γ = 0, the tiny islands are indeed the
dominant RT surfaces above the critical angle. In such cases, the tiny islands are dominant
on the initial time slice and one obtains a flat Page curve.
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