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Results: In this study, we introduce the Viral Eukaryotic Bacterial Archaeal (VEBA) open-
source software suite developed to recover genomes from all domains. To our know!-
edge, VEBA is the first end-to-end metagenomics suite that can directly recover, quality
assess, and classify prokaryotic, eukaryotic, and viral genomes from metagenomes.
VEBA implements a novel iterative binning procedure and hybrid sample-specific/
multi-sample framework that yields more genomes than any existing methodology
alone. VEBA includes a consensus microeukaryotic database containing proteins from
existing databases to optimize microeukaryotic gene modeling and taxonomic classifi-
cation. VEBA also provides a unique clustering-based dereplication strategy allowing for
sample-specific genomes and genes to be directly compared across non-overlapping
biological samples. Finally, VEBA is the only pipeline that automates the detection of
candidate phyla radiation bacteria and implements the appropriate genome quality
assessments. VEBA's capabilities are demonstrated by reanalyzing 3 existing public
datasets which recovered a total of 948 MAGs (458 prokaryotic, 8 eukaryotic, and

482 viral) including several uncharacterized organisms and organisms with no public
genome representatives.

Conclusions: The VEBA software suite allows for the in silico recovery of microorgan-
isms from all domains of life by integrating cutting edge algorithms in novel ways.
VEBA fully integrates both end-to-end and task-specific metagenomic analysis in a
modular architecture that minimizes dependencies and maximizes productivity. The
contributions of VEBA to the metagenomics community includes seamless end-to-end
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metagenomics analysis but also provides users with the flexibility to perform specific
analytical tasks. VEBA allows for the automation of several metagenomics steps and
shows that new information can be recovered from existing datasets.

Keywords: Metagenomics, Pipeline, Binning, Metagenome-assembled genome

Introduction

The importance of microorganisms and how their interactions are relevant to ecosystem
resilience, sustainability, and human health has become more apparent with each study
conducted. Therefore, cataloging and preserving biodiversity is paramount not only for
the Earth’s natural systems but also for discovering solutions to challenges that we face
as a growing civilization in the midst of global pandemics and a warming climate. Large
scale microbiome surveys have been enacted for cataloging and describing the human
microbiome (Human Microbiome Project (HMP) [1, 2]), environmental taxonomic pro-
filing (Earth Microbiome Project (EMP) [3]), the world’s oceans (Tara [4], GOS [5]), and,
perhaps the most ambitious, the sequencing of all eukaryotes (Earth BioGenome Project
(EBP) [6]).

Microorganisms provide humanity with potential solutions to some of our most com-
plex geopolitical and socioeconomic challenges. For instance, all domains of micro-
organisms have been harnessed for progressing medicine including antimicrobial
compounds derived from prokaryotes [7—10], bacteriophage therapy developed from
viruses [11], and yeast that could engineer drugs with complex glycans [12]. In addition
to biomedical applications, microorganisms have been reengineered for biofuel produc-
tion [13-15], beverage fermentation [16], waste water treatment [17], sustainable agri-
culture [18], and self-repairing building materials [19, 20].

Metagenomics is a sequencing-based microbial-centric survey of an ecosystem often
composed of prokaryotes, eukaryotes, and viruses. There are 3 main approaches to
metagenomics each with their own strengths/weaknesses, resource demand, and capac-
ity for investigating different hypotheses. The first approach to metagenomics is the
marker-gene survey where predefined primers are used to amplify specific fragments of
genetic material from an environmental sample. These primers typically amplify ribo-
somal DNA (e.g., 16S in prokaryotes or 18S in eukaryotes) to produce either amplicon
sequence variants [21] or clusters of operational taxonomic units [22] that are inter-
preted as taxonomic barcodes classified based on a reference database. While marker-
gene survey classification is reference dependent, novelty can be flagged post hoc if a
query sequence is divergent enough from other sequences in the reference. The big-
gest caveat of marker-gene surveys is that they provide no phylogenetic resolution nor
insight into function, although, well characterized environments such as the human
gut can benefit from functional inference software [23]. The second approach is read-
based shotgun metagenomics which involves a reference database, aligning fastq reads
to said reference, and generating counts tables with respect to taxonomic features in the
reference [24—26]. Read-based approaches have phylogenetic resolution but is decou-
pled from function. The benefits of read-based approaches are that the algorithms are
easy to implement, scalable to large datasets, and have rapid run times but are entirely
dependent on a reference and cannot be used de novo. The third approach is assem-
bly-centric shotgun metagenomics where, in short, reads are assembled into contigs,
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metagenome-assembled genomes (MAG) are binned from assemblies, genes are mod-
eled, and annotation/classification is performed. Assembly-centric metagenomics is far
more computationally challenging but provides vastly more power in terms of biological
interpretation having led to the characterization of uncultivated lineages vastly expand-
ing the tree of life and finding potential links in eukaryogenesis [27, 28]. In particular,
assembly-centric metagenomics allows for coupling taxonomy with function and is not
dependent on—though, supplemented by—existing reference databases as is required
for read-based metagenomics. However, the majority of software packages and suites
for recovering genomes from metagenomes perform exclusively on prokaryotes [29,
30]. Recently, the advent of robust viral genome recovery software has broken barri-
ers in viral metagenomics [31, 32] but these standalone packages are not implemented
in many metagenomic pipelines and, thus, need to be run independently. As far as we
know, there exists no published software suite that recovers eukaryotic genomes from
metagenomes, models eukaryotic genes with intron structure, and classifies taxonomy.

Microeukaryotes are largely ignored from assembly-centric studies for a variety of
reasons including binning algorithms being developed exclusively for prokaryotes [33,
34], gene modeling software with inconvenient licensing agreements making installa-
tion a significant barrier for entry [35], or software that requires lineage-specific refer-
ences making automation difficult for de novo metagenomics [36]. Recent studies have
demonstrated the merit of recovering microeukaryotes from metagenomes [37, 38];
while essential to the field, these methods are currently are not autonomous and require
expert curation during the analysis and assessment phases making reproducibility and
large-scale implementation on new or existing datasets difficult.

Recently, there has been an explosion in software developed to handle prokaryotic
genomes with a multitude of binning algorithms [33, 39, 40], consensus binning meth-
odologies to utilize the strengths of each binning algorithm [29, 34], lineage-specific
genome quality assessment [41], and consensus genome classification tools [42] making
high-quality assembly-centric prokaryotic metagenomics only a Conda virtual environ-
ment and a few commands away from entry-level computational biologists. Two com-
monly used metagenomics pipelines, Meta WRAP [29] and SqueezeMeta [30], perform
exclusively on prokaryotic organisms, do not properly account for candidate phyla
radiation (CPR), and discard unbinned contigs after a single pass; potentially failing to
maximize the information gain from a given dataset. MetaWRAP has set a precedent
in end-to-end modular metagenomics suites and is agnostic in its support for sample-
specific and multi-sample approaches. However, it is not actively maintained and can be
difficult to install due to forcing incompatible package dependencies to work together in
a single compute environment. SqueezeMeta places a strong emphasis in coassembly-
based metagenomics, which can be useful when comparing genomic features between
samples that can be difficult in sample-specific metagenomics (a caveat we address in
this study). However, coassembly results in composite MAGs that have lost sample spe-
cific strain level variations. This composite property of coassembly-based metagenomics
was initially noted in marine environments [43, 44] and has since been demonstrated
in the oral microbiome [45, 46]. In the past, coassembly was necessary due to a paucity
of data but with the decrease in sequencing costs, sample-specific assembly and subse-
quent genome recovery is possible. However, the challenge remains to collapse similar
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MAGs into representative features (e.g., species) for comparing abundances between
samples while retaining sample-specific resolution on relative data.

In this study, we introduce the Viral Eukaryotic Bacterial Archaeal (VEBA) open-
source software suite developed with all domains of microorganisms as the primary
objective (not post hoc adjustments) including prokaryotic, eukaryotic, and viral organ-
isms. To our knowledge, VEBA is the first end-to-end metagenomics software suite that
can directly recover and analyze eukaryotic and viral genomes in addition to prokary-
otic genomes with automated support for CPR. VEBA implements a novel iterative bin-
ning procedure and an optional hybrid sample-specific/multi-sample framework that
recovers more genomes than non-iterative methods. To optimize microeukaryotic gene
calling and taxonomic classification, VEBA includes a consensus microeukaryotic data-
base containing protists and fungi compiled from several existing databases. VEBA also
provides a unique clustering-based dereplication strategy allowing for sample-specific
genomes and proteins to be directly compared across non-overlapping biological sam-
ples. In addition, VEBA is the only pipeline that automates the detection of CPR bacteria
and implements the appropriate genome quality assessments for said organisms. Lastly,
we demonstrated VEBA'’s capabilities by reanalyzing 3 existing public datasets and iden-
tified several previously uncaptured organisms including eukaryotic and viral organisms
with no existing genome representatives. The VEBA software suite is open-sourced and
freely available (https://github.com/jolespin/veba).

Methods

Databases

To build a microeukaryotic protein database that could be used in both environmental
and clinical settings, we combined the following databases in the following order: (1)
MMETSP [47], (2) EukZoo [48], EukProt [49], and NCBI non-redundant [50]. However,
these are not simply concatenated databases as each one has been filtered to include only
microeukaryotes and fungi with prokaryotes and metazoans removed (Additional file 2:
Table S2). As these databases are not mutually exclusive, dereplication by sequences and
identifiers was necessary. The identifiers for labels have also been modified for seamless
usage and parsing with MetaEuk [51]. Lastly, only records associated with source organ-
isms that had lineages characterized up to class were considered as this database is used
for both eukaryotic gene modeling and annotation. MMSegs2 [52] is used to build the
processed microeukaryotic reference database which is compatible with MetaEuk for
exon-aware gene calls and eukaryotic lineage classification.

Also included with the distribution are 5 marker protein sets included in the distri-
bution: (1) Archaea_76.hmm [53, 54]; (2) Bacteria_71.hmm [53, 54]; (3) CPR_43.hmm
[41]; (4) Fungi_593.hmm [55], and (5) Protista_83.hmm [54, 56] that can be used for phy-
logenetic inference and other marker-based methodologies such as the developmental
branch of DAS Tool (https://github.com/cmks/DAS_Tool/tree/dev_customSCG). The
remaining databases such NCBI non-redundant [50], KOFAM [57], Pfam [58], GTDB-Tk
[42], CheckM [41], CheckV [31], and an ETE3 [59] configured NCBI Taxonomy database
are installed separately using a database installation script.
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Workflow architecture

The GenoPype Python package (https://github.com/jolespin/genopype) was developed
to construct VEBA and all the modules that comprise the pipeline. GenoPype is a light-
weight Python library for computational pipelines that splits the workflow into indi-
vidual steps. Each step of the workflow has a designated set of log files (standard out,
standard error, and return codes), checkpoint files for continuing an existing run, an exe-
cutable of all the commands, and file validation for input and output files. The depend-
ency framework for VEBA is built using Conda (https://conda.io/), primarily using the
Bioconda channel [60], where each module is coupled with a specific Conda environ-
ment and all necessary Conda environments are configured using the install script in the
GitHub repository.

VEBA utility scripts
VEBA comes equipped with several utility scripts that are intended for running auto-
matically in the backend of VEBA or seamless transition of data to and from various
tools. These scripts include essential post-processing methods such as modifying gene
models to include useful identifier information in a file-friendly format, binning wrap-
pers, concatenation methods for various file types, fasta utilities, quality filtering meth-
ods, partitioning batch jobs, consensus classification/annotation, and so on. These
scripts include a wrapper around Tiara [61], a program that predicts taxonomic domain
for contigs, which aggregates the prediction probabilities for each domain category into
logits and uses a softmax transformation to scale the logits into MAG-level prediction
probabilities. The consensus ortholog annotation script uses the natural language pro-
cessing capabilities of UniFunc [62] to compile consensus annotations using individual
annotations for each protein in an orthogroup. The consensus genome classification
script includes the following algorithm given a table of protein lineage classifications and
scores: (1) create an array of N scaling factors, determined by the leniency parameter,
where N represents the number of taxonomic levels; (2) iterate through protein annota-
tion table; (3) use the score provided for the annotation (e.g., bitscore, percent identity)
and create a running sum for each taxonomic level for TaxonLevel;TaxonLevel;, where i
is in the interval [1,N] multiplying scores by the scaling factors; and (4) assign taxonomy
to the highest scoring group.

The exhaustive list can be found under the script directory: https://github.com/joles
pin/veba/src/scripts

VEBA modules

VEBA is partitioned into several modules each targeting an independent stage of
metagenomics. A schematic detailing the flow of information through the pipeline is
shown in Fig. 1.

preprocess.py—Fastq quality trimming, adapter removal, decontamination, and read
statistics calculations

The preprocess module is a wrapper around our fastq preprocessor (https://github.
com/jolespin/fastq_preprocessor) which is a modernized reimplementation of Kne-
adData (https://github.com/biobakery/kneaddata) that relies on fastp [63] for ultra-fast
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Fig. 1 Schematic of VEBA workflow. VEBA modules and workflow I/O connectivity

automated adapter removal and quality trimming. Pairing of the trimmed reads is
assessed and corrected using BBTools’ repairsh (https://sourceforge.net/projects/
bbmap). If the user provides a contamination database (e.g., the human reference
genome), then trimmed reads are aligned using Bowtie2 [64] and reads that do not map
to the contamination database are stored. If the --retain_contaminated_reads flag is
used then the contaminated reads are stored as well. Similarly, if a k-mer reference data-
base is provided (e.g., ribosomal k-mers) then the trimmed or decontaminated reads are
aligned against the reference database using BBTools’ bbduk.sh with an option for stor-
ing hits. By default, the none of the contaminated or k-mer analyzed reads are stored but
regardless of the choice for retaining reads, the read sets are quantified using SegKit [65]
for accounting purposes (e.g., % contamination or % ribosomal). All sequences included
were downloaded using Kingfisher (https://github.com/wwood/kingfisher-download),
included in the preprocess environment, which is a fast and flexible program for the pro-
curement of sequencing files and their annotations from public data sources including
ENA, NCBI SRA, Amazon AWS, and Google Cloud.

assembly.py — Assemble reads, align reads to assembly, and count mapped reads

The assembly module optimizes the output for typical metagenomics workflows. In
particular, the module does the following: (1) assembles reads using either metaSPAdes
[default] [66], SPAdes [67], rnaSPAdes [68], or any of the other task-specific assemblers
installed with the SPAdes package [69, 70]; (2) builds a Bowtie2 index for the scaffolds.
fasta (or transcripts.fasta if rnaSPAdes is used); (3) aligns the reads using Bowtie2 to the
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assembly; (4) pipes the alignment file into Samtools [71] to produce a sorted BAM file
(required for coverage applications); (5) counts the reads mapping to each contigs via
featureCounts [72]; and (6) runs SegKit for useful assembly quality control statistics such
as N50, number of contigs, and total assembly size. This module automates many critical
yet overlooked workflows dealing with assemblies that are typically performed post hoc
such as contig-level sequence alignment, contig-level counts tables, assembly indexing,
and assembly statistics.

coverage.py—Align reads to a (multi-sample/pseudo-coassembly) reference and count
mapped reads

The coverage module further optimizes the output for typical metagenomics work-
flows. In particular, the module does the following: (1) filters contigs based on a size
filter (default 1500 bp); (2) builds a Bowtie2 index for the reference fasta; (3) aligns the
reads from all provided samples using Bowtie2 to the assembly; (4) pipes the alignment
file into Samtools to produce a sorted BAM file; (5) counts the reads mapping to each
contig via featureCounts; and (6) SeqKit for useful assembly statistics such as N50, num-
ber of contigs, and total assembly size [65]. The recommended usage for this module is
after prokaryotic, eukaryotic, and viral binning has been performed and the unbinned
contigs are merged into a single concatenated reference from multiple samples used as
input (i.e., a pseudo-coassembly). The outputs of this module are expected to be used
as a final pass through prokaryotic and eukaryotic binning modules successively. While
there is overlap in functionality between coverage.py and assembly.py, coverage.py was
designed for multi-sample coverage calculations and does not perform assembly (Fig. 1);
although, it supports single sample coverage calculations for flexibility. The end products
of coverage.py such as the reference fasta and the sorted BAM files can be used as input
into prokaryotic and eukaryotic binning modules analogously to the assembly fasta and
sorted BAM file from assembly.py.

binning-prokaryotic.py—Iterative consensus binning for recovering prokaryotic genomes

with lineage-specific quality assessment

The prokaryotic binning module implements a novel iterative consensus binning pro-
cedure that uses CoverM (https://github.com/wwood/CoverM) for fast coverage calcu-
lations, multiple binning algorithms (MaxBin2 (marker set=107); MaxBin2 (marker
set=40) [33]; MetaBAT2 [39]; and CONCOCT [40]), consensus dereplication and
aggregate binning with DAS Tool [34], the consensus domain wrapper for Tiara [61]
for removing eukaryotes at the MAG level, and CheckM for quality assessment where
poor quality MAGs are removed (e.g., completeness <50% and/or contamination > 10).
The novelty of this procedure is that the unbinned contigs are stored and fed back
into the input of the binning procedure using a separate random seed state allowing
for an exhaustive, yet effective, approach in extracting high quality and difficult to bin
genomes; number of iterations specified by --#_iter option (Fig. 2). Gene calls are per-
formed using Prodigal [73] and the gene models (GFF3 Format) are modified to include
gene and contig identifiers for use with downstream feature counting software. Although
CheckM can handle CPR, it cannot do so with the recommended lineage wf directly
in the current version but instead with a separate manual workflow. The prokaryotic
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Fig. 2 Schematic iterative binning algorithm. VEBA' iterative binning algorithm and the flow of contigs
through the procedure

binning module allows for basal bacteria to filter through intermediate genome qual-
ity checks, runs GTDB-Tk [42] for genome classification, reruns CheckM CPR workflow
for said genomes, updates the genome set with adjusted completeness and contamina-
tion scores, and then filters out genomes that do meet the completeness and contamina-
tion cutoffs. The input alignment file is utilized using featureCounts to produce counts
tables for the gene models and MAGs. Lastly, genome statistics such as N50, number
of contigs, and genome size are calculated using SegKit. Utility scripts, installed with
VEBA, are run in the backend to modify prodigal gene models, consensus domain clas-
sification of MAGs using Tiara contig predictions, along with several fasta and pre/post-
processing scripts. The input to this module is a fasta file (typically the scaffolds.fasta
from metaSPAdes) and sorted BAM while the output includes the prokaryotic MAGs
via Prodigal, gene models, identifier mappings, counts tables, CheckM output, GTDB-Tk
output, and unbinned fasta. MAG naming scheme for prokaryotes follows [SampleID]_
[Algorithm]_P.[Iteration]_[Name] (e.g., SRR17458623_METABAT2_P.1_bin.1). As Max-
Bin2 takes several orders of magnitude longer than MetaBAT2 and CONCOCT when
using coverage from multiple samples, there is an option to exclude MaxBin2 operations
in the workflow (i.e., --skip_maxbin2).

binning-eukaryotic.py—Binning for recovering eukaryotic genomes with exon-aware gene
modeling and lineage-specific quality assessment

The eukaryotic binning module uses several checks and state-of-the-art software to
ensure high quality genomes. In particular, non-prokaryotic-biased binning algorithms
MetaBAT?2 [default] (coverage calculated with CoverM) or CONCOCT (coverage calcu-
lated using CONCOCT scripts) is used for binning out genomes followed by a genome
size filter (2,000,000 bp is the default). VEBA’s approach towards eukaryotic binning is
to perform domain prediction at the bin level rather than the contig level in order to
capture organelles and potentially misclassified contigs. To implement this approach,
VEBA performs the following operations in the backend: (1) contigs from MetaBAT2
or CONCOCT bins are fed into Tiara to produce prediction probability vectors for each
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contig; (2) prediction probabilities are aggregated with respect to bin assignment to
produce logits; (3) logits are transformed into bin-level probabilities using the softmax
transformation [default]. Contigs from the eukaryotic MAGs are input into MetaEuk’s
easy-predict workflow [51] using our custom consensus microeukaryotic database (see
Database section in Methods). Although MetaEuk is a high-quality software suite, the
identifiers from MetaEuk are very complex, long, and include characters that are often
problematic for downstream applications including parsing, file naming systems, and
certain programs with simplified identifier requirements such as Anvio [54]. In addition,
the gene model GFF files are not intuitive, compatible with Prodigal GFF files or feature-
Counts without major modification. Therefore, we developed an essential wrapper for
MetaEuk that simplifies identifiers (i.e., [ContigID]_[GeneStart]:[GeneEnd]([strand])),
ensuring no duplicates are produced, creates a GFF file that can be concatenated with
the Prodigal GFF file for use with featureCounts, and several identifier mapping tables
for seamless conversion between original and modified identifiers. Lineage-specific
genome quality estimation is performed using BUSCO [56] where poor quality MAGs
are removed (e.g., completeness <50% and contamination >10). Gene counts are com-
puted using featureCounts at the gene level. Lastly, genome statistics such as N50, num-
ber of contigs, and genome size are calculated using SegKit. The input to this module is a
fasta file (typically the unbinned.fasta from the prokaryotic binning module) and sorted
BAM while the output includes the eukaryotic MAGs, gene models via MetaEuk, iden-
tifier mappings, BUSCO output, counts tables, and unbinned fasta. Iterative binning is
not currently available for eukaryotic genome recovery as no consensus binning tool is
available, therefore, iterative binning would result in diminishing returns. MAG nam-
ing scheme for eukaryotes follows [SampleID]_[Algorithm]_E.[Iteration]_[Name] (e.g.,
ERR2002407_METABAT2_E.1_bin.2).

binning-viral. py—Detection of viral genomes and quality assessment

Viral binning is performed using VirFinder [32] to extract candidate viral contigs (e.g.,
P<0.05 [default]). The candidate viral contigs are then input into CheckV [31] where
quality assessment removes poor quality or low confidence viral predictions. The fil-
tering scheme is based on CheckV author recommendations [74] in which a can-
didate viral contig is considered if it meets the following criteria: (1) number of viral
genes > 5 x number of host genes; (2) completeness >50%; (3) CheckV quality is either
medium-quality, high-quality, or complete; and (4) MIUViG quality is either medium-
quality, high-quality, or complete [75]. Proviruses can be included by using the
--include_proviruses flag. After poor quality viral contigs are removed, Prodigal is used
for gene modeling and SegKit is used for useful genome statistics. The input to this mod-
ule is a fasta file (typically the unbinned.fasta from the eukaryotic binning module) while
the output includes the viral MAGs, gene models via Prodigal, identifier mappings, and
CheckV quality assessment output. Iterative binning is not applicable for viral detection
as algorithms are executed on a per-contig basis and all viral genomes will be identified
on first pass. MAG naming scheme for viruses follows [SampleID]_[Algorithm]_[Name]
(e.g., SRR9668957_VIRFINDER_Virus.1).
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classify-prokaryotic.py—Taxonomic classification and candidate phyla radiation adjusted
quality assessment of prokaryotic genomes

The prokaryotic classification module is a useful wrapper around GTDB-Tk which either
combines the resulting archaea and bacteria summary tables or runs GTDB-Tk lineage_
wf from the beginning. If genome clusters are provided, then it performs consensus line-
age classification.

classify-eukaryotic.py—Taxonomic classification of eukaryotic genomes

The eukaryotic classification module utilizes the target field of MetaEuk gene identifi-
ers and the taxonomic lineage associated with each source genome. The default marker
set is eukaryote_odb10 from BUSCO but custom marker sets are support along with
the inclusion of all genes not just marker genes. An option to include marker-specific
noise cutoff scores is also available using the --scores_cutoff parameter which is default
behavior with BUSCO’s eukaryote_odb10 provided noise thresholds. For each MAG,
bitscores are accumulated for each taxonomic level and taxonomy is assigned with leni-
ency specified by the leniency parameter with high leniency resulting higher order taxo-
nomic assignments. If genome clusters are provided, then it performs consensus lineage
classification.

classify-viral.py—Taxonomic classification and isolation source of viral genomes

The viral classification module utilizes the CheckV database along with the best hit line-
age and source habitat information from the CheckV output. This includes a look up of
CheckV identifiers based on direct terminal repeats and GenBank identifiers when appli-
cable. If genome clusters are provided, then it performs consensus lineage classification
and consensus habitat annotation.

cluster.py—Species-level clustering of genomes and lineage-specific orthogroup detection

To leverage intra-sample genome analysis in an inter-sample analytical paradigm,
genome clustering and lineage-specific orthogroup detection is necessary. The clus-
tering module first uses FastANI [76] to compute pairwise ANI and these are used to
construct a NetworkX graph object where nodes are genomes and edges are ANI val-
ues [77]. This graph is converted into subgraphs of connected components whose edges
are connected by a particular threshold such as 95% ANI [default] as recommended
by the authors for species-level clustering. These species-level clusters (SLC) are then
partitioned and OrthoFinder [78] is then run on each SLC panproteome. The input is a
list of genome paths and list of protein fasta paths while the output includes identifier
mappings between genomes, SLCs, contigs, proteins, and orthogroups. The nomencla-
ture preferred by VEBA is the PSLC, ESLC, and VSLC for the prefix of each cluster (e.g.,
PSCLO).

annotate.py—Annotate translated gene calls against NR, Pfam, and KOFAM

Annotation is performed using best-hit annotations and profile HMMs. First proteins
are aligned against NCBI non-redundant protein database (other databases are sup-
ported) using Diamond [79, 80]. After annotation, protein domains are identified using
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the Pfam database [58] via HMMER [81] and KEGG orthology is characterized via
KOFAMSCAN [57].

phylogeny.py— Construct phylogenetic trees given a marker set

The phylogeny module is a tool used for phylogenetic inference and constructing phy-
logenetic trees for genomes given a reference marker set (see Databases section of
Methods). This is performed by the following method: (1) identify marker proteins
using HMMSearch from the HMMERS3 suite; (2) create protein alignments for each
marker identified MUSCLE [82]; (3) trim the alignments using ClipKIT [83]; (4)
concatenate the alignments; (5) approximately-maximum-likelihood phylogenetic
inference using FastTree2 [84]; and (6) optional maximum likelihood phylogenetic
inference using IQ-TREE2 [85]. An option to include marker-specific noise cutoff
scores is also available using the --scores_cutoff parameter. Poor-quality genomes that
do not meet a threshold in the proportion of markers in the reference are removed
using the --minimum_markers_aligned_ratio parameter. Similarly, non-informative
markers that are not prevalent in the query genomes are removed using the --mini-
mum_genomes_aligned_ratio parameter.

index.py—Build local or global index for genomes

The index module creates reference indices for alignments in both local or global par-
adigms. In the local paradigm, an index is created for all the assembled genomes con-
catenated together for each sample. This is useful in situations where perfectly paired
metagenomics and metatranscriptomics are available where the metatranscriptomics
can be mapped directly to the de novo reference generated from the metagenomics.
However, this is not applicable in all cases such as when there is not a perfect overlap
between metagenomics and metatranscriptomics where a global paradigm is more
appropriate. In the global paradigm, assembled genomes are concatenated across all
samples and an alignment index is created for this concatenated reference. Currently,
Bowtie2 [64] is the only alignment software packages supported.

mapping.py—Align reads to local or global index of genomes

The mapping module uses local or global reference indices generated by the index
module and aligns reads using Bowtie2. The alignment files are sorted to produce
sorted BAM files using Samtools which are then indexed. Coverage is calculated
for contigs via Samtools and genome spatial coverage (i.e., ratio of bases covered in
genome) is provided. Reads from the sorted BAM files are then fed into featureCounts
to produce gene-level counts, orthogroup-level counts, MAG-level counts, and SLC-
level counts.

Local and global reference indexing

Multi-omics analyses such as paired metagenomics and metatranscriptomics are
becoming increasingly more common to study complex systems. However, the logis-
tics of sampling introduce two main scenarios: (1) a perfect sample overlap between
modalities; and (2) an incomplete (or even disjoint) overlap between modalities. To
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address both scenarios, our software implements both local and global read align-
ment. In the local paradigm, binned MAGs are concatenated and alignment indexes
are generated for each sample. In the global paradigm, all the binned MAGs from all
the samples are concatenated and a single index is generated for the concatenated
assembly. Local read alignment are limited to scenarios in which there is a perfect
overlap of samples between modalities, is less computationally intensive, and has the
benefit of decreasing ambiguous mapping events (i.e., mapping equally well to more
than one reference). The caveats of local read alignment is that there may be genomes
that are present but were not properly binned and will not be accounted for in the
final counts table. The benefits of global read alignments is that they can be used for
any dataset even if there are no overlapping samples. The caveats of this approach is
that it is more computationally expensive and the increased likelihood of ambiguous
mapping events; though, the latter is addressed when grouping features by the clus-
tering mentioned prior and summing the counts. Both local and global indexing are
implemented using the index.py module.

Hybrid sample-specific and consensus approach to metagenomics

The approach implemented in this software suite is a hybrid of sample-specific and con-
sensus approaches with several rounds of dereplication. The benefits of using consensus
metagenomics such as coassembly and metagenomic binning on said assemblies is that
they yield biological features (e.g., genes, contigs, genomes, etc.) that are comparable
across multiple samples. For example, a coassembly from N metagenomic samples will
result in a community-level metagenome where the reads can be aligned resulting in
contigs that are comparable across all samples. While this approach is convenient from
an analytical perspective, it is prone to producing MAGs that are a compilation of mul-
tiple strains resulting in more complete composite MAGs rather than sample-specific
MAGs more closely representing source strains. Although current NGS-based metagen-
omics do not allow for in silico recovery of individual organisms without probes, sample-
specific approaches result in less complex problems to solve by assembly and binning
algorithms than coassembly-based approaches. In addition to producing composite
genomes, coassembly-based methodologies use considerably more compute resources
during assembly as the k-mer space increases. However, coassembly-based binning can
have benefits such as the multi-split approach in VAMB [86] where assemblies from
different samples are merged for binning but then split into individual bins based on
each sample; an approach that can be implemented using any non-marker-based bin-
ning algorithm with post hoc procedures. For clarification, in this study we define bins
as putative genomes output from binning algorithms and MAGs as genomes that have
been quality assessed using metrics from CheckM, BUSCO, or CheckV for prokaryotic,
eukaryotic, and viral genomes, respectively.

On the contrary, sample-specific metagenomics are more scalable and benefit
from less complex computational problems to solve by assembly and binning algo-
rithms as the samples represent a single community instead of a mixture of communi-
ties. In addition, the assemblies and the resulting MAGs binned from said assemblies
are more biologically accurate as they are not composites based on multiple samples
and communities. However, the caveat of pursuing a sample-specific approach is that
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the resulting biological features are not comparable between samples. For example,
metagenomes A, B, and C all have their own assemblies with their own disjoint set of
contigs that comprise a disjoint set of MAGs so the reads used to assemble contigs in
A are not used to assemble contigs in B or C. One approach would be aligning reads
directly to each respective sample but this would produce an inherently sparse concat-
enated matrix when concatenating counts tables. Another alternative would be align-
ing reads to a concatenated assembly but—due to the likelihood of similar but distinct
strains of the same species occurring in multiple samples—reads will either be randomly
assigned or multi-mapped. The former would result in another sparse matrix and lat-
ter in a multi-mapped counts table both of which violate assumptions of compositional
data analysis [87] with the latter known to introduce downstream analytical complica-
tions [88-92]. Further, sample-specific and consensus metagenomics is analogous to
amplicon-sequence variants [21, 93] and operational taxonomic units [22] in that MAGs
yielded by the former can be added to existing databases as their construction is not
dependent on multiple samples. Although this approach prioritizes sample-specific bin-
ning, it also supports multi-sample binning, introducing the concept of a pseudo-coas-
sembly, which we prefer to implement when using all the unbinned contigs from the
assemblies within a dataset as none of the samples alone have complete genomes. We
define pseudo-coassembly as the union of contigs from all samples within a dataset that
could not be binned using sample-specific binning approaches with the premise that the
genomes are present in each sample but could not be resolved due to biological, techni-
cal, or computational limitations. The approach to implementing hybrid sample-specific
and consensus approaches synergistically in this study is to use dereplication of sample-
specific metagenomics via clustering. In addition to pseudo-coassembly binning, VEBA
also supports workflows for bona fide coassembly and subsequent binning.

Iterative binning

Most metagenomic genome binning pipelines are not exhaustive nor are they iterative in
the sense that unbinned contigs are fed back into the algorithm. While this may suffice
for metagenomic samples of low to mid-level complexity, a one-and-done approach is
not effective in maximizing the available information content hidden within mid-to-high
level complexity metagenomes. Further, genomes that may be problematic for binning
algorithms to extract on a first pass may be less problematic in subsequent runs. While
running a single binning algorithm iteratively is useful, the benefits are magnified when
using the results of multiple binning algorithms (e.g., MetaBAT2, MaxBin2, and CON-
COCT) followed by dereplication tools (e.g., DAS Tool) referred to as consensus binning
and as has been benchmarked extensively in prior research [29, 34]. Consensus binning
is a powerful approach as it uses the strengths and bypassing the weaknesses of each
binning algorithm to produce a single combination of bins based on the individual bin-
ning algorithms; some of which could not have been identified alone by any single algo-
rithm. While VEBA does not specifically introduce a unique binning algorithm, it uses a
combination of consensus binning, alternative random seed states, and iterative binning
of unbinned contigs the prokaryotic binning in a unique workflow that can be adapted to
incorporate other software packages.
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To further complement iterative sample-specific binning procedures, the unbinned
contigs from prokaryotic, eukaryotic, or viral binning methods can be aggregated into
a pseudo-coassembly with a post hoc binning based on concatenated contigs containing
incomplete genomes. This post hoc pseudo-coassembly binning is optional and available
for users to maximize usage on all the available data if desired. The logic for this proce-
dure is that genomes present in each individual sample are incomplete and fragmented
which is why they were not recovered during the sample-specific binning and pseudo-
coassembly binning has the potential to combine said fragments into a complete genome
with reduced likelihood of contaminated genomes than binning using the entire coas-
sembled dataset. The schematic for the iterative binning algorithm is shown in Fig. 2.
Iterative binning is currently not implemented for eukaryotes because there is not yet an
analog to DAS Tool for the eukaryotic domain.

Clustering in genomic and functional space

VEBA clusters in both genomic and functional space. More specifically, clustering
strains into species-level clusters (SLC) and proteins into SLC-specific orthogroups
(SSO). Clustering genomes into SLCs have been successfully implemented in the past
when dereplicating genomes from different assemblies [94] using average nucleotide
identity (ANI). In this implementation, we use 95% ANI to cluster genomes of the same
species from different genomes to produce SLCs but this parameter can be adjusted. We
extend this logic to functional space by using SLC-specific orthogroup (SSO) analysis
on all open reading frames (ORF) to yield functional genes that are representatives of
specific proteins within a taxonomic grouping (e.g., species) in a dataset. Genome and
protein-level clustering into SLCs and SSOs, respectively, allows the user to conduct
analysis using biological features that are directly comparable across samples while oper-
ating under the constraints of compositional data analysis assumptions. Both genomic
and functional clustering are performed using the cluster.py module.

Genomic and functional feature compression for dimensionality reduction

Many downstream metagenomics methods require statistical analysis, either classical or
machine-based, to model a system and explore a particular hypothesis. Using metagen-
omics datasets to model complex phenomena such as clinical phenotypes or ecologi-
cal disturbances can be extremely difficult due to the vast number of features relative
to the number of samples. When the number of features (e.g., MAGs and ORFs) greatly
exceeds the number of observations (e.g., biological sample), the likelihood of statistical
anomalies increases due to the “curse of dimensionality” [95]. Feature compression is a
feature engineering method that aggregates the values of features with respect to specific
groupings and can be used to reduce the dimensionality of the data and, therefore, mini-
mize anomalous phenomena. To compress biological features for counts tables, VEBA
utilizes the SLC and SSO clustering to aggregate the read counts from the mapping py
module by summing the counts for each original feature with respect to their clustered
grouping. For instance, given a mapping of 1000 ORFs to 100 SSOs, an ORFs counts
matrix of dimensionality (Ng,,es= 80, Mopp=1000) is aggregated to a dimensionality
(Nsampies = 80, Mgg0,= 100).
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The feature compression ratio (FCR) is an informative heuristic that can not only pro-
vide information on how much the dimensionality has been reduced but also on how
complex a community is in terms of redundancy in organisms and functionality. The
ECR is calculated as 1 — N¢yorer/Nrearures Where Ny, is the number of clustered fea-
tures and N, is the number of original features. For example, if there are 200 MAGs
that collapse into 50 SLCs then the FCR is 1 —(50/200)=0.75 which is interpreted as
SLCs encode roughly the same information content in 75% fewer dimensions. The oper-
ation is the same for functional feature aggregation of ORFs into SSOs with the one dis-
tinction being that only clustered ORFs are considered. Modifying an earlier example, if
there were 1100 ORFs in total with 1000 ORFs clustered into 100 SSOs then the func-
tional FCR would be 1—(100/1000) =0.9 or 90%. Functional FCRs can be interpreted
as the functional information in all clustered proteins can be represented in 90% fewer
features. While this feature compression may not be suitable for granular analysis that
investigates strain-level or isoform-level properties, it applies to the vast majority of
studies where species and their associated functionalities are the focus.

Phylogenetic inference of recovered diatom genomes

Phylogenetic inference of diatom genomes recovered from Plastisphere was performed
using the phylogeny.py module with eukaryote_odbl0 marker set and the associated
noise cutoffs from BUSCO. Proteomes from related diatoms from VEBA’s microeu-
karyotic protein database including MMETSP and NCBI were included in inference
for placement. A threshold of 0.95 was used for --minimum_genomes_aligned_ratio to
remove poor quality genomes. A threshold of 0.2 was used for --minimum_markers_
aligned_ratio to remove non-informative markers. Phylogenetic trees were visualized
using ETE in Python.

Differential co-occurrence networks and compositional data analysis

Network analysis was performed on the Plastisphere dataset using read counts from
the mapping py module and a global index from the index.py module. In short, reads
were mapped and read alignments were counted with respect to contigs using the map-
ping.py module. Aggregating contig counts instead of ORF counts is more accurate in
abundance-based approaches because it accounts for genes missed by gene modeling
algorithms and reads that land between coding regions. The contig-level counts are
aggregated by MAGs and then by SLCs to reduce dimensionality, compress strains into
species, and yield taxonomic features that are both compositionally-valid and compara-
ble across samples. This aggregation is performed using merge_contig mapping. py utility
script.

For interpretation and visualization, counts from the SLC features were further aggre-
gated in a domain-specific manner. More specifically, there were far more prokaryotic
and viral SLCs than eukaryotic SLCs so we grouped prokaryotes by their genus-level
taxonomy and viruses by their VOG classification (Retrovirales or Caudovirales). This
aggregate feature matrix was then filtered by removing features that are in less than 40%
of the samples.

Networks were implemented using the following approach: (1) split feature matrix
into (la) mature plastic biofilm samples and (1b) early plastic biofilm samples; (2) p
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proportionality for ensemble co-occurrence of Networkyy,,,,. and Networkg,,,, separately
[87, 88, 91, 92] using the EnsembleNetworkX Python package [96] with 1000 iterations;
(3) compute differential connectivity via Networkyy,,,,—Networkg,,,; (4) consider only
edges that have positive associations in both conditions (negative p associations are non-
trivial to interpret) and have a differential connectivity of at least 0.1; and (5) hive plot of
differential connectivity edges implemented via Hive NetworkX [97]. Network analysis
was performed only on the Plastisphere dataset as this had several taxa for each domain
which was not the case in MarineAerosol or Netherton datasets.

Clustered abundance heatmaps were implemented using the following approach: (1)
Center Log-Ratio (CLR) transformed counts with pseudo-count of 1/m* where m indi-
cates number of features; (2) Aitchison distance hierarchical clustering for samples; (3)
p dissimilarity hierarchical clustering for features; and (4) heatmap via Seaborn Python
package [98]. Hierarchical clustering was performed using average linkage implemented
and visualized using the Agglomerative class of the Soothsayer Python package [9, 99].
Dissimilarity representation of the p proportionality calculated via 1—p as implemented
in correlation distance calculations of SciPy [100]. Aitchison distance is calculated via
Euclidean distance on CLR-transformed counts.

Results and discussion

A walkthrough of VEBA

VEBA is a modular software suite that supports users at different stages of metagen-
omics analysis such as starting from reads, contigs, proteins, or MAGs. The workflows
are designed for sample-specific metagenomics followed by a post hoc multi-sample
approach via a pseudo-coassembly to merge incomplete and fragmented genomes from
different samples (Fig. 1). In addition, the design of VEBA allows for purely sample-spe-
cific or bona fide coassembly approaches as well.

VEBA supports complete end-to-end metagenomics workflows from reads all the way
up to fully annotated and clustered MAGs. In a complete end-to-end metagenomics
workflow, users starting with raw reads would input fastq formatted reads into the pre-
process.py module which performs trimming/adapter removal, an optional decontami-
nation based on a reference genome (e.g., human), an optional k-mer based removal/
quantification (e.g., ribokmers), read pairing to ensure each forward read has a reverse
counterpart (essential for SPAdes-based assemblers), and read statistics are calculated
for each stage for a full accounting of reads. Cleaned reads are input into the assembly.py
module where reads are assembled using SPAdes-based assemblers (e.g., metaSPAdes),
reads are mapped to the assembly to produce a sorted BAM file, counts tables are gen-
erated, and assembly statistics are calculated. Assembled contigs and the sorted BAM
file from the assembly.py are then input into the binning-prokaryotic.py module where
iterative consensus binning is performed using MetaBAT2, CONCOCT, and an optional
MaxBin2 (using 2 separate marker sets) followed by DAS Tool for consensus binning
(Fig. 2), gene modeling using Prodigal, quality assessment with CheckM, phylogenetic
inference with GTDB-Tk after all iterations are complete to adjust quality for CPR
using the appropriate lineage marker set, and ORF-level counts table are compiled. The
unbinned contigs from the binning-prokaryotic.py module and the sorted BAM file are
used as input into the binning-eukaryotic.py module, which bins genomes using either
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MetaBAT2 or CONCOCT, predicts whether or not bins are eukaryotic using Tiara,
models genes using MetaEuk with the VEBA microeukaryotic protein database, quality
assesses genomes using BUSCO, and ORF-level counts table are compiled. The unbinned
contigs from the binning-eukaryotic.py module are input into the binning-viral.py mod-
ule where VirFinder is used to identify candidate viral contigs, quality is assessed using
CheckV; and models genes using Prodigal. A sorted BAM file is not required but if pro-
vided then ORF-level counts table are compiled. If the user desires to strictly implement
a sample-specific workflow then the next steps pertaining to pseudo-coassembly binning
can be skipped but to effectively extract as much information as possible from a dataset
then the pseudo-coassembly steps are recommended for datasets that contain samples
with highly similar biological sources. For pseudo-coassembly binning, the user concat-
enates unbinned contigs from all assemblies (available in the output directories) into a
pseudo-coassembly fasta file, the coverage.py module aligns reads from each sample to
provide sorted BAM files based on this multi-sample reference, sorted BAM files are
used to create a contig-level counts table, and sequence statistics are calculated. This
pseudo-coassembly reference fasta and the associated sorted BAM files are then used as
input into the binnning-prokaryotic.py module with the unbinned contigs getting sent to
a final round of binning-eukaryotic.py. None of the pseudo-coassembly gets reinput into
the binning-viral py because the backend algorithms work on the contig-level and all
high-quality viruses have already been recovered. Once the genome binning is complete,
clustering of genomes into SLCs and proteins into SSOs from each domain is performed
using the clusterpy module which also generates identifier mappings used to reference
between contigs, MAGs, SLCs, ORFs, and SSOs. Next, reads are mapped to either local
or global references using the index.py and mapping py modules to compile contig and
ORF-level counts tables. Counts tables are then aggregated using the clustering from
cluster.py for MAGs and ORFs to engineer SLC and SSO features, respectively, and com-
pute their feature compression ratios (FCR) to quantify the dimensionality reduced for
genomic FCR (1 — Ng; /Ny4¢) and functional FCR (1 — Ngg/Norr) Genomes from each
domain are classified using the classify-prokaryotic.py, classify-eukaryotic.py, and clas-
sify-viral.py modules which uses GTDB-Tk, MetaEuk, and CheckV results, respectively.
Genes are annotated using NCBI's non-redundant, Pfam, and KOFAM databases with
the annotate.py module. Finally, phylogenetic trees are inferred using the phylogeny.py
module with either custom marker sets or VEBA provided marker sets.

Another end-to-end workflow would be recovering and annotating RNA viruses in
metatranscriptomes. If reads are provided as input then reads are cleaned with preproc-
ess.py just as in the metagenomics workflow previously and assembled into transcripts
via rnaSPAdes in the assembly.py module. If transcripts were assembled separately (e.g.,
Trinity [101]) then these transcripts can be provided instead. Viruses are then recov-
ered from the de novo transcripts with the binning-viral.py module and classification of
viruses is performed using the classify-viral.py module. This modularity extends to other
domain-specific workflows and can include or omit counts table generation, gene anno-
tations, and phylogenetic analysis.

As mentioned, VEBA is modular so users could use the suite to cluster existing
genomes that they have downloaded or binned using custom methods, annotate exist-
ing gene models or protein sets, build phylogenetic trees from existing genomes, or
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map reads to existing references. A user can even skip a domain or run in non-itera-
tive mode if desired. Further, users can use VEBA’s microeukaryotic protein database
to model genes and phylogenetically characterize genomes not derived from VEBA.
VEBA maximizes the input/output of modules to increase the productivity of users and
their metagenomics workflow. For instance, whenever sequences are generated, they
come with sequence statistics or when BAM files are used as input they come out with
counts tables to name a few examples. Please refer to the Methods section for a more
detailed explanation of each module and the walkthroughs available on GitHub for more

workflows.

Microeukaryotic protein database

A protein database is required not only for eukaryotic gene calls using MetaEuk and
these results can also be leveraged for MAG annotation. Many eukaryotic protein data-
bases exist such as MMETSP, EukZoo, and EukProt, yet these are limited to marine
environments, include prokaryotic sequences, or include eukaryotic sequences for
organisms that would not be expected to be binned out of metagenomes such as meta-
zoans. While it may be possible to bin fragments of higher eukaryotic genomes, this is
often not the objective of many metagenomic studies where microorganisms are the
focus. We combined and dereplicated MMETSP, EukZoo, EukProt, and NCBI non-
redundant to include only microeukaryotes such as protists and fungi. This optimized
microeukaryotic database ensures that only eukaryotic exons expected to be represented
in metagenomes are utilized for eukaryotic gene modeling and the resulting MetaEuk
reference targets are used for eukaryotic MAG classification. This microeukaryotic tar-
geted protein database lowers the database size and computational resources needed for
eukaryotic gene modeling and classification than including additional prokaryotic or
metazoan proteins. VEBA’s microeukaryotic protein database includes 48,006,918 pro-
teins from 42,922 microeukaryotic strains (Table 1).

Case study I: The “Plastisphere” microbiome of early and mature plastic biofilm
communities

The Plastisphere microbiome (BioProject: PRINA777294, N =44 metagenomic samples,
237 gigabases) is a dataset that includes environmental microbial communities from
early and mature stage biofilms formed on macroplastics in a marine environment [102]
(Additional file 1: Table S1). Around 5-11% of annual plastic production is input into
the ocean each year [103, 104] and researchers predict these plastics may last hundreds
to thousands of years because of their stability and durability [105]. As the rate of plastic
input into the ocean greatly exceeds the degradation rate, the accumulation of plastic
and microplastics in the food chain presents itself as an unprecedented threat not only
to ecological health but public health, while also being a new anthropogenically intro-
duced habitat. Studies have shown that microplastics can transmit protozoan pathogens
[106], induce reproductive toxicity [107] and are not uncommon in the human body
[108] including reproductive organs such as the placenta [109]. The premise of Bos et al.
2022 was to identify and characterize emergent marine microbial biofilm communities
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Table 1 Microeukaryotic protein database taxonomy synopsis

Number Representatives Number of
sequences

Class Order Family Genus Species
Aconoidasida 2 5 12 3366 420945
Agaricomycetes 20 122 730 7633 3598622
Arthoniomycetes I 6 71 277 557
Bacillariophyceae 25 49 139 1139 3695969
Bangiophyceae 3 4 27 298 91032
Conoidasida 3 12 26 548 283655
Coscinodiscophyceae 11 24 49 369 761079
Cryptophyceae 5 9 18 126 1281699
Dinophyceae 13 37 80 404 9452835
Dothideomycetes 33 120 796 4173 2193726
Eumycetozoa 7 17 48 212 110038
Eurotiomycetes 10 29 137 2028 2406417
Florideophyceae 28 95 650 4014 140811
Fragilariophyceae 9 12 62 216 226623
Glomeromycetes 4 10 30 126 456928
Haptophyta 8 15 31 % 847085
Kinetoplastea 4 4 28 355 511789
Lecanoromycetes 15 66 435 2593 103042
Leotiomycetes 9 32 215 795 737176
Mediophyceae 8 10 49 155 190677
Microbotryomycetes 5 7 15 107 121936
Mucoromycetes 1 14 52 184 583544
Oligohymenophorea 10 37 70 406 266349
Pezizomycetes 1 15 143 709 224226
Phaeophyceae 12 43 236 1244 58542
Pucciniomycetes 5 19 62 379 228062
Saccharomycetes 1 15 83 844 1157942
Sordariomycetes 31 99 705 7228 3772436
Spirotrichea 8 34 84 199 429742
Tremellomycetes 4 17 50 316 377309
Ustilaginomycetes 4 10 25 169 137101
Xanthophyceae 4 11 21 149 49722
Other (N=147 classes) 242 346 663 2065 13089302
Total classes=179 546 1345 5842 42922 48006918

during both the early and late stages of plastic colonization using natural seawater com-
munities as the seed.

The bacterial microbiome was previously characterized using coassembly-based
genome binning and a strict quality threshold to yield only high-quality genomes (com-
pleteness >70 and contamination<2). In the original study, 37 high-quality MAGs,
including 14 Alteromonas, 4 Marinobacter, and 8 Marisediminitalea MAGs were recov-
ered from early colonization incubations. Using the same genome quality thresholds
as the original study, our iterative method was able to isolate 92 high-quality bacterial
MAGs, including a novel species of Gracilibacteria from the UBA6489 genus, as well
as 3 diatom and 1 pelagophyte eukaryotic MAGs. These eukaryotic MAGs also include
a Chrysoreinhardia sp strain CCMP3193 and a novel Bacillariophyceae diatom genera
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Fig. 3 Phylogenetic inference of diatoms recovered in Plastisphere. A Phylogenetic tree using the
concatenated alignment of eukaryote_odb10 marker set from BUSCO and FastTree2 visualized with ETE 3. B
VEBA eukaryotic classifications for diatom MAGs

both of which lack genome representatives in any public database. In addition to prokar-
yotes and eukaryotes, we were able to isolate 119 high-quality viral MAGs (clustering
into 81 SLCs with 1,317 genes) including 71 Retrovirales, 6 Caudovirales, 3 Inoviridae, 1
CressDNAParvo, and 35 uncharacterized viruses.

There is information to be gained in medium-quality MAGs, therefore we con-
ducted a secondary analysis with our default operating threshold (completeness > 50
and contamination < 10) where we obtain 127 more medium-quality bacterial MAGs
(total of 219 prokaryotic MAGs clustering into 137 SLCs with 1,029,466 genes).
In addition to more prokaryotic MAGs, these thresholds yielded an unclassified
Amphora (diatom) MAG (total of 5 eukaryotic MAGs clustering into 4 SLCs with
78,750 genes); the genus Amphora does not have a genome published in any public
databases. Phylogenetic inference of Plastisphere diatoms agrees with VEBA’s eukar-
yotic classification (Fig. 3). Concatenating unbinned contigs from sample-specific
prokaryotic, eukaryotic, and viral binning into a pseudo-coassembly and binning this
pseudo-coassembly resulted in additional 25 prokaryotic MAGs but no additional
eukaryotic MAGs (Table 2). Of the 219 prokaryotic genomes recovered using VEBA’s
iterative binning module, the overwhelming majority were represented by Alphapro-
teobacteria (44%), Gammaproteobacteria (29%), and Bacteroidia (12%) with 168
genomes of novel species. Recovered genome statistics and taxonomy of genomes are
detailed in Tables 2, 4, Additional file 3: Table S3.
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The genomic FCR was modest for prokaryotes, eukaryotes, and viruses with a percent
decrease in dimensionality of 29.7%, 20%, and 32.9% respectively. The functional FCR
had a similar trend for prokaryotes, eukaryotes, and viruses with a percent decrease in
dimensionality of 31.5%, 18.6%, and 46.4%, respectively (Table 2).

Table 2 Genome binning, clustering results, and complexity analysis for case studies

Plastisphere MarineAerosol Netherton
BioProject PRINA777294 PRJEB20421 PRINA551026
Original Study Bos et al. 2022 Michaud et al. 2017 Williams et al. 2020
Number of samples 44 64 17
Gigabases 237 90 9
Prokaryotic
MAGs (Original Study) 37 8 0
MAGs (Sample-specific) 194(91)¢ 214 15
MAGs (Multi-sample)® 25(1)¢ 3 5
MAGs (Total) 219 217 20
SLCs 154 48 12
ORFs 735406 652008 50711
ORFs? 706092 615479 47954
SSOs 483864 140638 25848
Genomic FCR 0.296803653 0.778801843 04
Functional FCR? 0.314729525 0.771498296 0.460983442
Eukaryotic
MAGs (Original Study) 0 17¢ 0
MAGs (Sample-specific) 5(4)° 3 0
MAGs (Multi-sample)® 0 0 0
MAGs (Total) 5 3 0
SLCs 4 1 Not applicable
ORFs 78750 49958 Not applicable
ORFs (Orthogroups)? 78171 46709 Not applicable
SSOs 63661 15335 Not applicable
Genomic FCR 0.2 0.666666667 Not applicable
Functional FCR? 0.185618708 0.671690681 Not applicable
Viral
MAGs (Original Study) 0 64 0
MAGs (Sample-specific) 119 345 18
MAGs (Multi-sample)® Not applicable Not applicable Not applicable
MAGs (Total) 119 345 18
SLCs 81 69 12
ORFs 1317 20519 602
ORFs (Orthogroups)? 1279 20397 598
SSOs 686 3436 393
Genomic FCR 0.319327731 0.8 0.333333333
Functional FCR? 0.463643471 0.831543854 0.342809365

2 Only includes ORFs that are in SSOs
b Multi-sample binning uses unbinned contigs from all of the samples in a pseudo-coassembly

¢ Parenthesis indicate completeness > 70 and contamination < 2 as used in original study. Outer indicates completeness > 50
and contamination< 10

d Quality was not assessed in original study
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Case study Il: Ocean-atmosphere aerosolization mesocosm microbiome

The MarineAerosol microbiome (BioProject: PRJEB20421, N = 64 metagenomic samples,
90 gigabases) is a dataset investigating ocean—atmosphere aerosolization mesocosms
and includes environmental microbial communities in ocean water collected before,
during, and after an algal bloom using the Wave Flume ocean simulator [110] (Addi-
tional file 1: Table S1). The types of ocean water included in this study were bulk, surface,
and aerosolized sea water. Aerosolized bacteria can travel as far as 11,000 km over the
span of days to weeks [111, 112] while algal viruses can remain infectious over several
hundred km [113]. Further, airborne microbes and viruses influence climate by seed-
ing cloud formation and inducing ice nucleation [114]. From a clinical setting, airborne
microorganisms impact air quality through transmission of allergens [115] and transmit
pandemic-scale pathogens such as SARS-CoV-2 [116]. The premise of this study was to
identify and characterize the microbial communities in the bulk and surface ocean that
were able to effectively aerosolize into the atmosphere.

The original study broadly assessed both singleton genomes and pangenomes of vary-
ing quality in addition to read-based taxonomic profiling via Kraken [117]. Regarding
the assembly-centric metagenomics, the supplementary information reported 8 draft
singleton bacterial genomes annotated as basal Roseobacter, basal Proteobacteria, Meth-
ylophaga, and Escherichia coli along with 17 draft genomes labeled as pangenomes rep-
resenting diatom fragments, various phages, and several bacterial phyla. These draft
genomes were quality assessed by ensuring each genome covered at least 1% of the avail-
able reference genome for the closest representative yielding 14 MAGs used in the main
study.

Our iterative prokaryotic binning module recovered 217 MAGs clustering into 48
SLCs with 652,008 genes. The overwhelming majority of prokaryotic MAGs represented
by Alphaproteobacteria (44%), Gammaproteobacteria (32%), and Bacteroidia (18%)
including 162 MAGs representing novel species of Alphaproteobacteria, Babeliae, Bac-
teroidia, Chlamydiia, Gammaproteobacteria, and UBA1135 (Table 4, Additional file 3:
Table S3). The eukaryotic binning module recovered 3 strains of Cyclotella meneghini-
ana, clustering into 1 SLC with 49,958 genes, which does not have a representative spe-
cies genome and only one reference genome (Cyclotella cryptica CCMP332) available
for the entire genera. The viral binning module recovered 345 MAGs that clustered into
69 SLCs with 20,519 genes represented by majority Caudovirales (86%) and Retrovirales
(4%) with the remainder being unclassified viral lineages. This study contained a consid-
erable amount of viral MAGs compared to the other case studies analyzed as expected
from the original study’s finding of substantial numbers of reads mapping to existing
viral genomes. Recovered genome statistics and taxonomy of genomes are detailed in
Tables 2, 4, Additional file 3: Table S3.

The genomic FCR was high across all domains with a percent decrease in dimensional-
ity for prokaryotes, eukaryotes, and viruses of 77.9%, 66.7%, and 80%, respectively. This
high FCR essentially means that we captured many strain variants of a smaller subset of
species, as defined at the nucleotide identity in a genome scale alignment. As this was a
longitudinal experiment with a confined population, it is possible that these strain vari-
ants were emergent over the course of the 365-day experiment or were differential abun-
dance over the course of the two phytoplankton bloom cycles. The functional FCR had a
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similar trend for prokaryotes, eukaryotes, and viruses with percent decreases in dimen-
sionality of 77.2%, 67.2%, and 83.2%, respectively (Table 2).

Case study lll: The Netherton syndrome microbiome

The Netherton microbiome (BioProject: PRINA551026, N=17 metagenomic samples, 9
gigabases) is a dataset that includes human skin microbiome samples from healthy con-
trols and individuals exhibiting Netherton syndrome [118] (Additional file 1: Table S1).
Netherton syndrome is rare, multisystemic, autosomal recessive disease [119]. The prog-
nosis of Netherton syndrome may be severe, with significant mortality in early years of
life due to potentially fatal complications. Skin and hair defects persist throughout life,
but the disorder usually becomes more manageable with age [120]. The pathogenesis of
the disease is complex involving interactions between the host immune system and host
microbiome, such as the excess microbial proteolytic activity in the setting of LEKTI-1
[121]; there are no specific therapies currently available for patients with Netherton
syndrome.

The original study utilized assembly-based metagenomics to focus on virulence-mark-
ers from 14 strains of Staphylococcus aureus, 8 strains of Staphylococcus epidermidis, but
recovery of genomes from metagenomes was not a focus of that study. A challenge with
skin is that the bulk (>90%) of the sequencing reads are from the host, thus, the major-
ity of studies only use read-based approaches. Our iterative prokaryotic binning module
yielded 20 MAGs clustering into 12 SLCs with 50,711 genes, with species from Bacilli
(59%), Actinomycetia (36%), and Bacteroidia (5%). Our analysis recovered genomes for
multiple strains of Staphylococcus aureus (N=3 MAGs), Staphylococcus epidermidis
(N=2 MAGs), Staphylococcus pettenkoferi (N =3 MAGs), Staphylococcus caprae (N=3
MAGs), and Staphylococcus capitis N=1 MAG). The eukaryotic binning module was
not able to recover any eukaryotic genomes either due to lack of biological material or
sequencing depth. The viral binning module recovered 18 MAGs that clustered into 12
SLCs with 602 genes represented by majority Caudovirales (44%) along with a CressD-
NAParvo, PolyoPapillo, and several unclassified viral lineages. Recovered genome sta-
tistics and taxonomy of genomes are detailed in Tables 2, 4, Additional file 3: Table S3.
Previous research have linked phages with Staphylococcus aureus host evolution and are
believed to play major roles in species diversification of staphylococci in general [122],
and the co-recovery of putative staph bacteriophage and Staphylococcus genomes would
be a first in skin microbiome research.

The genomic FCR was modest across all recovered domains with a percent decrease in
dimensionality of 40% for prokaryotes and 33.3% for viruses. The functional FCR had a
similar trend with 46.1% for prokaryotes and 34.3% for viruses (Table 2).

Recovered metagenome-assembled genomes

VEBA recovered a total of 942 medium-to-high quality MAGs that were detected
between the 3 datasets (N=125 samples) which includes 458 prokaryotic, 8 eukaryotic,
and 482 viral MAGs. Iterative binning recovered more genomes than non-iterative bin-
ning for prokaryotes in complex communities such as the Plastisphere and MarineAero-
sol datasets as shown in Table 3; non-iterative binning being only iteration 1 with bins
recovered in additional iterations demonstrating the utility of VEBA’s iterative binning
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Table 3 Per iteration genome binning yields

Origin type Iteration Plastisphere MarineAerosol Netherton
Sample-specific 1 175 202 15
2 14 7 0
3 1 4 0
4 1 1 0
5 1 0 0
6 0 0 0
7 2 0 0
8 0 0 0
9 0 0 0
10 0 0 0
Multi-sample 1 14 3 5
2 1 0 2
3 3 0 0
4 5 0 0
5 1 0 0
6 1 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0
Total - 219 217 22

procedure. As a sanity check, we analyzed the GC-content, coding-density, and distri-
bution of genes relative to the genome size (Fig. 4) to compare with previous research.
Most of the prokaryotes had GC-content distributed between 30%—65% across all 3
datasets with the exception of 5 Planctomycetota MAGs (i.e., the entirety of Marine-
Aerosol PSCL10) that had GC-content ~74%; a group that has been previously character-
ized with high GC-content [123]. In the Netherton dataset, we observed 4 Caudovirales
MAGs and 8 Corynebacterium MAGs that have higher than average GC-content (~ 60%)
compared to the rest of the MAGs in the dataset which potentially indicates a viral/host
pair as phages replicate within their host and often share similar GC-content [124]. In
the MarineAerosol dataset, we observed 8 uncharacterized viral MAGs from VSLCS8
which contained some of the largest viral genomes (~ 86,000 bp) and lowest GC-content
(25%) across all datasets.

We observed a strong relationship between genome size and the number of genes
called for each MAG and this trend was consistent across domains for all datasets with
very few outliers. For viral outliers, we observed 5 MAGs (i.e., the entirety of Plas-
tisphere VSLCI19) recovered from 5 separate samples that had no known classifica-
tion and noticeably fewer genes relative to its genome size compared to the other viral
genomes. For eukaryotic outliers, we observed 1 MAG representing Chrysoreinhardia
sp CCMP3193 that had a higher number of genes relative to the genome size. With
regards to coding-density, we observed a high number of genes relative to genome size
for prokaryotic MAGs relative to eukaryotic MAGs, as expected, where the latter con-
tains introns and more non-coding regions. An uncharacterized species of Trichodes-
mium from the Plastisphere dataset had much lower coding-density than all the other
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Table 4 Taxonomy of recovered genomes

Domain Taxonomy Plastisphere MarineAerosol Netherton
Eukaryotic c_Bacillariophyceae 4 0 0
c_Coscinodiscophyceae 0 3 0
c_Pelagophyceae 1 0 0
Prokaryotic c_Acidimicrobiia 4 0 0
c_Actinomycetia 1 0 8
c_Alphaproteobacteria 97 95 0
c_Anaerolineae 1 0 0
c_Babeliae 0 7 0
c_Bacilli 0 0 13
c_Bacteriovoracia 2 0 0
c_Bacteroidia 26 38 1
c_Chlamydiia 0 2 0
c_Cyanobacteriia 15 0 0
c_Gammaproteobacteria 64 70 0
c_Gracilibacteria 1 0 0
c_Planctomycetes 4 0 0
c_Thermoanaerobaculia 1 0 0
c_UBA1135 0 5 0
c_Vampirovibrionia 1 0 0
c_Verrucomicrobiae 2 0 0
Viral Caudovirales 6 298 8
CressDNAParvo 1 0 1
Inoviridae 3 0 0
PolyoPapillo 0 1
Retrovirales 71 13 0
Uncharacterized 35 28 8

prokaryotic MAGs across the 3 datasets; low coding-density in Trichodesmium has been
documented previously [125]. Note, the presence of Trichodesmium on plastic pollution
has not been previously reported. Viruses had relatively high coding-density with the
exception of a few uncharacterized viral MAGs in the Plastisphere dataset (~30% com-
pared to the dataset average of 86%) along with a CressDNAParvo MAG from Netherton
dataset (63% compared to the dataset average of 92%).

Ecological applications of VEBA workflows

One of the biggest advantages of coassembly-based metagenomics over sample-specific
approaches is that the resulting contigs, and by extension genes and MAGs, are directly
comparable across all samples used to generate the coassembly while the latter produces
disjoint contigs that are specific to each sample. VEBA uses the strengths of sample-
specific and coassembly approaches by clustering and aggregating genomic features
providing an avenue for comparing features across samples; a necessity in downstream
analytical methods. To demonstrate the ecological applications of VEBA’s multi-domain
binning, clustering, and feature compression approaches, we implemented a clustered
abundance heatmap (Fig. 5A) and compositionally-valid differential co-occurrence
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network to investigate differential connectivity in mature and early plastic biofilms
(Fig. 5B, C).

In the clustered abundance heatmap, the most obvious trend is that samples naturally
group by either mature or early plastic biofilms. Another defining characteristic is that
the mature plastic biofilm samples have greater taxonomic richness and are not domi-
nated by any one taxa as is the case in early biofilm samples which are dominated by
Caudovirales viruses and Alteromonas, Marisedimintalea, Nolabens, and Tateymaria
bacteria. In particular, Alteromonadaceae genera (e.g., Alteromonas and Marisedimini-
talea) are the most abundant organisms in the early plastic biofilm community which
agrees with read-based analyses of the original study [102] and previous research [126].
Many of the early plastic biofilm samples completely lack diatoms, pelagophytes, and
retroviruses that are both abundant and prevalent in mature biofilms. Another char-
acteristic of the mature plastic biofilm grouping is that almost every sample contains
Retrovirales and only a few contain Caudovirales (though, at low abundance) suggesting
these may influence community dynamics.

The most notable trend for the differential co-occurrence network is that prokar-
yotes overall have stronger co-occurrence with viruses in early plastic biofilms and
transition to co-occurring more strongly with eukaryotes in mature biofilms (Fig. 5B,
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Fig.5 Compositional data analysis of Plastisphere. A Clustered abundance heatmap of CLR values using
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as red and blue, respectively. C Heatmap of differential connectivity values in the hive network

C). The only prokaryotes that have an increased co-occurrence in mature biofilms

with any virus in the network are Mariniblastus and Pleurocapsa; an enriched con-

nectivity to Retrovirales. While no RNA viruses are known to infect Mariniblastus or

Pleurocapsa, RNA viruses have been well documented in eukaryotic phytoplankton

[127] for which these bacteria co-occur. Mariniblastus have been isolated from the

surface of algae [128] and associations between cyanobacteria and diatoms have been

well characterized [129] suggesting an indirect association rather than a host/virus

relationship.
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Alteromonadaceae genera co-occur strongly with Caudovirales phages. Phage
infection may give rise to genetic diversity amongst Alteromonadaceae and their abil-
ity to colonize early plastic biofilms which may be the case in plastic biofilms with 12
Alteromonas macleodii MAGs, 9 Marisediminitalea aggregate MAGs, and 2 unchar-
acterized species of Alteromonas recovered. As mentioned in the original study [102],
Alteromonas and Marisediminitalea have large flexible genomes and contain a broad
metabolism suited to colonize diverse substrates and metabolize various carbon
sources [130, 131].

Flaviramulus and Cellulophaga co-occur strongly with diatoms in the mature plas-
tic biofilms. Diatoms and Flaviramulus have long been known to establish marine
biofilms on artificial surfaces [132, 133]. Further, Cellulophaga strains with potent
extracellular enzymic activity have been isolated from the surfaces of the chain-
forming sea-ice diatoms [134] suggesting a similar mechanism with the Cellulophaga
tyrosinoxydans species associating with diatoms in mature plastic biofilms. However,
exploring these relationships is speculative and not the primary directive of this dem-
onstration of applications.

Conclusions

In this study, we provide a software suite that allows for the in silico recovery of micro-
organisms from all domains of life by integrating cutting edge algorithms in novel ways.
VEBA fully integrates both end-to-end and task-specific metagenomic analysis in a
modular architecture that minimizes dependencies and maximizes productivity. VEBA’s
unsupervised clustering at the genomic and protein level provides a means to have the
best of both worlds in terms of sample-specific and coassembly-based assembly-centric
metagenomics; that is, biologically-relevant (i.e., less composite) genomes are recovered
while also being comparable across samples. This clustering also provides a means to
use feature engineering to aggregate counts from groups of related features to reduce
dimensionality for downstream analysis. In addition, VEBA outputs machine-readable
identifier mapping tables that can be used for accounting of features along the biological
feature hierarchy (contig—MAG—SLC and ORF—SSO).

Using sample-specific binning followed by pseudo-coassembly binning of concat-
enated unbinned contigs from multiple samples was demonstrated here to recover far
more quality MAGs than non-iterative modes. VEBA does not introduce a novel binning
algorithm but instead builds upon established workflows and reuses discarded contigs
in novel ways. For instance, VEBA utilizes DAS Tool for consensus binning of MaxBin2,
MetaBAT2, and CONCOCT as the base for recovering prokaryotic genomes; a workflow
that has been well established and rigorously benchmarked by previous research [29,
34]. The merit of iterative binning is apparent when considering that additional genomes
are recovered in all 3 case study datasets that would have been discarded using non-
iterative methods. This merit is also apparent with pseudo-coassembly binning where we
recovered additional high-quality genomes, but we recognize that with any coassembly-
based methods the possibility of recovering composite genomes increases. To account
for this property, we add pseudo-coassembly binning solely as an optional feature that
can be implemented for users that have datasets with highly similar biological samples
believed to contain overlapping microbial communities. Regardless, the same strict
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quality assessment via CheckM is performed for both sample-specific and pseudo-coas-
sembly approaches.

VEBA was designed to be modified and updated as new peer-reviewed software
becomes available. For instance, the standardized output of the prokaryotic binning
procedure could allow for additional binning algorithms to be added or swapped out.
There are several adaptations planned for future releases of VEBA once new software
has been peer-reviewed or existing software has been updated. The first adjustment
would be to update CheckM to CheckM2 [135] which is currently in preprint phase.
Although CheckM version 1 can handle CPR, it cannot do so with the recommended
lineage_wf directly but instead with a separate manual workflow. VEBA’s prokary-
otic binning module automates the lineage wf, GTDB-Tk classification, the manual
CheckM CPR workflow, and concatenates the output so users can have a seamless
experience without manually rerunning algorithms, subsetting tables, and updat-
ing quality assessments (see Methods). CheckM?2 is expected to handle this directly
and will be implemented in VEBA once peer-reviewed and available via Bioconda.
Another potential modification will be the incorporation of EukRep in addition to
Tiara for eukaryotic classification. The decision to use Tiara over EukRep in the ini-
tial release was based the following considerations: (1) Tiara is reported to outper-
form EukRep in terms of prediction accuracy and calculation time [61, 136]; (2) Tiara
has an option to output prediction probability vectors (EukRep does not) allowing
probabilities to be aggregated for bin-level predictions; (3) Tiara is designed to han-
dle eukaryotic organelles; and (4) the current EukRep v0.6.7 version backend models
are dependent on a deprecated Scikit-Learn version 0.19.2 (https://github.com/patri
ckwest/EukRep/issues/14) forcing users to downgrade their environment. If future
EukRep versions can address these issues, VEBA will certainly add it as an additional
option for users. Lastly, there are two software packages under active development
designed specifically for eukaryotic metagenomics that are also in preprint phase.
The first software package is EukMetaSanity [137] which is a structural and func-
tional annotation algorithm for eukaryotic MAGs. While EukMetaSanity is expected
to produce more robust gene modeling than MetaEuk, the dependency of restrictive
licensing software (e.g., GeneMark and RepeatMasker) conflicts with the objectives of
VEBA in avoiding the use of limited restriction software. The second software pack-
age is EukHeist [138] which performs similar operations to VEBA'’s eukaryotic binning
module but uses EukRep at the contig level instead of the MAG level and couples
binning with assembly. Once peer-reviewed, future versions of VEBA can incorpo-
rate workflows built around the input and output of EukMetaSanity and EukHeist
that can synergize the benefits of VEBA and external software packages. However,
eukaryotic genomes binned with EukHeist and/or genes modeled with EukMetaSan-
ity are already supported by VEBA’s mapping-based modules (coverage.py, mapping.
py, index.py), phylogenetic inference module (phylogeny.py), genomic/orthogroup
clustering module (cluster.py), and protein-product annotation module (annotate.py);
this accessibility holds true for any custom genomes or gene models either binned or
downloaded from some repository.

Despite the utility of VEBA and the backend software, there are several lim-
iting factors that must be addressed by future research. One limiting factor in
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genome-resolved microeukaryotic metagenomics is the lack of consensus binning
tools that can handle microeukaryotic lineages. However, DAS Tool [34] is currently
working on implementing custom marker sets which may be available in future ver-
sions (https://github.com/cmks/DAS_Tool/issues/69). Ideally, this type of workflow
would be combined with BUSCO’s lineage-specific marker sets to handle lineage-spe-
cific completeness and contamination quality assessment. Another limiting factor for
both microeukaryotic and viral metagenomics is the lack of taxonomy classification
with the same rigor as GTDB-Tk. Currently, the only peer-reviewed tool designed for
eukaryotic taxonomy classification is ELKulele [139] but there were several barriers
we experienced when attempting to incorporate EUKulele. First, many of the exist-
ing EUKulele databases are targeted towards marine ecosystems, thus, not practical
for alternative environments (e.g., human microbiomes, soil, built-environments),
contain eukaryotes which would not be expected to be binned in a metagenome, and
contain prokaryotic genomes that increase computational resource demand. Second,
when trying to build a custom EUKulele database using VEBA’s microeukaryotic pro-
tein database as a reference, we experienced fatal errors that could not be directly
diagnosed but were likely due to the dependency of supergroup and division fields
that were missing for certain taxa. If we are able to resolve these issues in collabo-
ration with EUKulele developers, then VEBA can incorporate an option to leverage
EUKulele as an alternative to VEBA’s default eukaryotic classification module.

To fully understand an ecosystem and how changes within an ecosystem are associated
with sustainability or human health, we must consider all members of the microbiome
including eukaryotes and viruses in addition to the already established precedence of
prokaryotes. As of April 2022, there are 1,250 protist genome assemblies publicly acces-
sible through NCBI and only 23 of these genomes are considered complete. Although
there has been an emerging interest in microeukaryotic metagenomics, there has not
been a full awakening because the type of industry-standard workflow and convenience
that exists for prokaryotic metagenomics has not been available for microeukaryotic
metagenomics. Opportunely, the advent of MetaEuk for gene modeling and the recent
updates to BUSCO for lineage-specific genome quality assessment used in parallel with
domain-agnostic binning algorithms (MetaBAT2, CONCOCT) has made the quest for
microeukaryotic metagenomics more accessible to the modern bioinformatician which
are implemented in the eukaryotic workflow of VEBA. While short-read technologies
may not yield complete genomes due to repeat region resolution, non-coding complex-
ity, and multiple chromosomes, they certainly link taxonomy with function which is crit-
ical for characterizing ecological changes related to climate change and human disease.
Further, these draft genomes sourced from metagenomes may serve as references for
hybrid short/long-read technologies to polish and complete genomes for organisms that
cannot be cultured.

The recovery of phages in communities dominated by a particular genus such as Staph-
ylococcus in the Netherton microbiome and Alteromonas in the Plastisphere microbiome
could have novel applications for synthetic biology and bioengineering. In the case of
the Netherton syndrome, an untreatable disease, these phages can be assessed for host
specificity and their potential to target specific strains of Staphylococcus that contribute
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to diseased phenotypes. Recent research suggests that phage therapy could be used in
the fight against antimicrobial resistance [140] and skin disorders such as psoriasis [141].

In the context of the human microbiome, prior research has provided vast insight
into which prokaryotes are considered commensals, mutualists, or parasites. While the
ecology of some pathogenic microeukaryotes is well characterized, this is not the case
for commensal and mutualistic microeukaryotes. This modus operandi is reminiscent
of bacteriology before early microbiome studies where most bacteria associated with
humans were considered to be harmful [142]. Thus, our understanding of microeu-
karyotic roles in ecological communities contains a blind spot from the bias of funded
research towards pathogenic organisms; understandably given their direct relation to
disease. In the context of biotechnology, this gap in our knowledge base may contain
organisms and mechanisms relevant for biomedical applications or sustainability.

The current culture of biological science and research funding has been hyper
focused on acquiring new biological samples for solving existing problems. While
sequencing new biological material is essential in progressing science, this paradigm
tends to overlook the undiscovered wealth available in existing datasets that can be
economically reevaluated using modern methodologies such as VEBA. We demon-
strated that our method can be applied to effectively mine out new information and
uncharacterized organisms from existing published datasets. Large-scale efforts to
sequence the entirety of life is not trivial by any means. As stated eloquently by Lewin
and colleagues, “while recognizing that it may not be feasible to obtain samples for
every species, pragmatism does not negate the primary scientific and societal need
for trying to do so” [6]. The time has come to maximize the amount of information
acquired from new and existing biological datasets by using iterative methodologies

and extending the precedent of prokaryotes to eukaryotic organisms and viruses.
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