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AbstractÐThe rate-limited optimal transport problem is intro-
duced for the continuous-variable quantum measurement systems
in the form of output-constrained rate-distortion coding. The
main coding theorem provides a single-letter characterization of
the achievable rate region for lossy quantum-to-classical source
coding that transforms a sufficiently large tensor product of IID
continuous-variable quantum states from a quantum source to a
sequence of IID samples from a classical continuous destination
distribution with a prescribed distortion level. The evaluation of
rate region is performed for the systems with quantum Gaussian
source and Gaussian destination distribution. We establish a
Gaussian observable optimality theorem for such systems and
provide an analytical formulation of the rate-limited quantum-
classical Wasserstein distance in the case of isotropic and one-
mode Gaussian quantum systems.1

I. INTRODUCTION

The goal of optimal transport is to map a source probability
measure into a destination one with the minimum possible cost
[2], [3]. Let X be a random variable in the source probability
space (X ,FX , PX), where X is the support, FX is the event
space defined by the σ-algebra of sets on X , and PX is
the probability measure. Let Y be a random variable in the
target probability space (Y,FY , PY ). The optimal transport
problem aims at finding an optimal mapping f : X → Y
that converts X to Y and minimizes the expectation of the
transportation cost c(x, y), i.e., E[c(X, f(X))] [4]. However,
as such deterministic mappings do not exist in many cases,
one has to resort to stochastic channels to transform the source
distribution to the target distribution. Thus the problem boils
down to finding the optimal coupling π∗ ∈ P(X × Y) of
marginal distributions PX and PY that minimizes the expected
transportation cost [5]. For a metric space (X ×Y, d), and the
cost given by dp, for some p ≥ 1, Wasserstein p-distance
between the two probability measures PX and PY is defined
as the p-th power of the optimal transportation cost [3]±[6].
This problem has been studied extensively in the literature
with applications in many areas such as information theory,
machine learning and statistical inference [2], [7].

In [8], the authors formally introduced the problem of
information-constrained optimal transport by imposing an ad-
ditional constraint on coupling π in the form of a threshold

1The proofs of the theorems and the details of the results are provided in
the extended online version [1] available at https://arxiv.org/abs/2305.10004
for further reference. This work was supported in part by NSF grants CCF
2007878 and CCF 2132815.

on the mutual information between X and Y , and established
an upper bound on the information-constrained Wasserstein
distance by generalizing Talagrand’s transportation inequal-
ity. It is worth noting that the information-cost function in
[8] is equivalent to the rate-distortion function of Output-
Constrained (OC) lossy source coding with unlimited common
randomness [9]. The protocol associated with this source
coding problem provides an operational meaning to the mutual
information constraint in [8], as described in [10]. We refer to
this problem as Rate-Limited Optimal Transport (RLOT).

The quantum version of the optimal transport problem has
also been investigated in recent years [11]±[15]. In [13], the
authors proposed a generalization of the quantum Wasserstein
distance of order 2 and proved that it satisfies the triangle
inequality. In an earlier work [10], we introduced Quantum-
to-Classical (QC) RLOT along with its corresponding OC
lossy source coding problem for the case of finite-dimensional
quantum systems.

In this work we consider the QC RLOT problem for
Continuous-Variable (CV) quantum systems and characterize
the associated performance limits with the development of a
novel continuous measurement coding protocol (see Theorem
1). We further employ a novel Gaussian observable optimality
theorem (Theorem 2) to perform an evaluation of the optimal
performance limit for the Gaussian QC systems with unlimited
common randomness using a quadratic distortion observable
constructed from canonical quadrature operators (Theorem 3,
4).

II. CONTINUOUS-VARIABLE QC OPTIMAL TRANSPORT

In this section, we consider measurement lossy source
coding for CV quantum systems with separable Hilbert space
HA = L2(R) [16, Chapters 11, 12]. Note that that the proof of
the achievability part of the discrete coding theorem [10] does
not directly apply to the continuous quantum systems. The
first reason is that the operator Chernoff bound as defined in
[17] is only applicable to a finite-dimensional Hilbert space.
Secondly, in infinite-dimensional systems, an observable with
a non-discrete set of outcomes cannot define a quantum
channel. Therefore, it is not possible to represent the outcome
space using quantum registers defined on separable Hilbert
spaces [16].



A. Generalized Definitions of Continuous Quantum Systems

We first appeal to the generalized definition for the ensemble
[16, Definition 11.22] and generalized definition of POVM
[16, Definition 11.29] for quantum systems with continuous
outcome space. In contrast to the finite-dimensional Hilbert
space for which the POVM is defined for all possible out-
comes, in the continuous quantum measurement systems, the
generalized POVM is defined over the subset of σ-algebra of
Borel subsets B.

An observable M acting on a CV quantum state ρ, with
outcomes in measurable space X , results in the following
probability measure πM

ρ (B) = Tr{ρM(B)} for all B ∈
B(X ). It is also necessary to have a proper definition of post-
measurement states. The a posteriori average density operator
for a subset B ∈ B is defined in [18] for a general POVM M

as ρB =

√
M(B)ρ

√
M(B)

Tr{ρM(B)} .

Based on that, Ozawa proves in [18, Theorem 3.1] that for
any continuous source ρ and observable M , there exists a
family of a posteriori density operators {ρx;x ∈ X}, where
the mapping x 7→ ρx is strongly Borel measurable and where
π(B) = Tr{M(B)ρ}, B ∈ B, is the probability measure of
the outcome space.

If the M POVM is such that the measure M(B) is ab-
solutely continuous with respect to some measure µ on X ,
then there exists a weakly measurable function y 7→ m(y)
with values in the cone of bounded positive operators of H
(Radon-Nikodym derivative) such that [19, Section IV]:

E ′ : π(B) = Tr{ρM(B)}, ρy =
ρ1/2m(y)ρ1/2

Tr{ρm(y)} ,

M(B) =

∫

B

m(y)µ(dy).

Using the definition of post-measured ensemble one can
define the information gain for an input state ρ and output
ensemble {ρB , πM

ρ (B)}B∈B as [16], [20]:

Ig(ρ,X) := H(ρ)−
∫

X

H(ρx)π
M
ρ (dx). (1)

Definition 1. An (n,R,Rc) source coding scheme for the

continuous QC system is comprised of an encoder En on

Alice’s side and a decoder Dn on Bob’s side. The encoder En
is a set of |M| = 2nRc collective n-letter measurement POVMs

Υ(m) ≡ {Υ(m)
l }l∈L, each comprised of |L| = 2nR outcomes

and the common randomness value m, which determines the

specific POVM that will be applied to the source state. Bob

receives the outcome L of the measurement through a classical

channel and applies the randomized decoder Dn(B|l,m) to

this input pair (L,M) to obtain the final output sequence

Xn in the output space Xn with the probability measure

{πXn(B), B ∈ B(Xn)}. Therefore, the average Post-

Measured Reference (PMR) state {ρ̂Rn

B }B∈B(Xn), along with

the probability measure, forms the output ensemble over their

corresponding Borel subset B(X ), where

ρ̂R
n

B =
1

|M|PXn (B)

∑

m,l

TrAn

{

(id ⊗Υ
(m)
l )[Ψρ

RA]
⊗n)

}

Dn(B|l,m),

πXn(B) =
∑

m,l

1

|M| Tr
{

Υ
(m)
l ρ⊗n

}

Dn(B|l,m).

We further define the average n-letter distortion for the
source coding system with encoder-decoder pair (En,Dn) as
the average single-letter distortion of the local PMR states,
given the set of distortion observable operators ∆(x), x ∈ X ,
and a continuous memoryless source state ρ⊗n as

dn(ρ
⊗n,Dn ◦ En) =

1

n

n
∑

i=1

∫

x∈R

TrRi

[

ρ̂Ri

x ∆R(x)
]

πXi
(dx),

where ρ̂Ri

xi
:= Exn\[i]

[

Trn\[i]
{

ρ̂R
n

Xn

}]

is the i-th local PMR
state, conditioned on local outcome xi ∈ X , and πXi

is the
marginal probability measure of the i-th local outcome.

Definition 2. Consider a QC system with a distortion observ-

able ∆RX with operator mapping x 7→ ∆R(x), x ∈ X , and

an input quantum state ρ forming (∆RX , ρ). The pair is called

uniformly integrable if for any ϵ > 0 there exists a δ > 0 such

that

sup
Π

sup
Λ

EX

[

TrR
{

ΠXρ
R
XΠX∆R(X)

}]

≤ ϵ, (2)

where the supremum is over all POVMs Λ ≡ {Λx}x∈X and

all projectors of the form Π =
∑

x Πx ⊗ |x⟩⟨x| such that

EX [Tr(ρXΠX)] ≤ δ, and ρRx is the PMR state of ρ given the

outcome x with respect to Λ.

Remark 1. We further make the following assumptions. (I)

The density operator ρ belongs to a compact subset K of

G(H) (see [16, Definition 11.2]). (II) The system is uniformly

integrable. (III) the operator mapping of the distortion x 7→
∆R(x) is uniformly continuous with respect to the trace norm.

B. Main Results: Achievable Rate Region for CV Quantum

Systems

Using the above definitions, we define the achievability of
a rate pair for the given coding system as follows.

Definition 3. Given a probability measure πX on (X ,B(X ))
and a distortion level D, and assuming a product input state

of ρ⊗n of infinite-dimensional separable Hilbert space, a rate

pair (R,Rc) is said to be achievable if, for any sufficiently

large n and any positive value ϵ > 0, there exists an (n,R,Rc)
coding scheme comprising of a measurement encoder En and

a decoder Dn as described in Definition 1 that satisfy the

following conditions,

Xn ∼ πn
X , dn(ρ

⊗n,Dn ◦ En) ≤ D + ϵ. (3)

The closure of the set of all such achievable rate pairs is

referred to as the achievable rate region with respect to

distortion level D.

The following theorem provides a single-letter characteriza-
tion of the achievable rate region for the continuous quantum
system.

Theorem 1. Given a pair (πX , D) and having a product input

state ρ⊗n of continuous infinite-dimensional Hilbert space



with limited von Neumann entropy, a rate pair (R,Rc) is

inside the achievable rate region in accordance with Definition

3 if and only if there exists an intermediate state W with a

corresponding measurement POVM MW = {MW (B), B ∈
BW} where BW is the σ-algebra of the Borel sets of W , and

randomized post-processing channel PX|W which satisfies the

rate inequalities

R ≥ Ig(R;W ), (4)

R+Rc ≥ I(W ;X), (5)

where W constructs a quantum Markov chain of the form R−
W − X , generating the ensemble Ew := {ρ̂w, πW (w)}w∈W

on the intermediate space and the ensemble Ex :=
{ρ̂x, πX(x)}x∈X on the output space, (as described by [18,

Theorem 3.1]) according to the following set:

Mc(D) =























(Ew, Ex)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

w
PX|W (A|w)πW (dw) = πX(A),

for A ∈ B(X ),
πW (B) = Tr{M(B)ρ},

for B ∈ B(W),
∫

x∈R
TrR[ρx ∆R(x)]πX(dx) ≤ D























.

(6)

Remark 2. The classical channel PX|W : W × B(X ) →
X is a mapping such that for every w ∈ W , PX|W (.|w) is

a probability measure on B(X ) and for every B ∈ B(X ),
PX|W (B|.) is a Borel-measurable function.

Remark 3. The converse of the finite quantum system in [10]

directly applies to the CV quantum systems, except for the

cardinality bound.

III. EVALUATION OF THE GAUSSIAN QUANTUM STATES

A. A Brief Overview of Gaussian Quantum Systems

Before providing the evaluation of the Gaussian systems,
we first introduce the principal definitions and provide a brief
overview of the Gaussian quantum systems.

1) Gaussian Quantum Systems: Let HA ≡ L2(Rs) be the
separable infinite-dimensional Hilbert space of the square-
integrable functions ψ(η) for η ∈ R

s corresponding to s

Harmonic oscillators. The canonical observable operators of
this system are formed in a 2s-vector operator R1 = Q1,
R2 = P1, R3 = Q2, R4 = P2, ..., R2s−1 = Qs, R2s = Ps

with continuous eigenspectra, where Qi, Pi are the position
and momentum quadrature operators of the i-th harmonic
oscillator. In this section, we consider the energy-bounded
harmonic oscillator system as described by [13], [16].

The canonical observables satisfy the Canonical Commuta-
tion Relation (CCR) [Ri, Rj ] = i∆ijIH, for i, j = 1, ..., 2m,
with ∆ being a non-degenerate skew-symmetric symplectic

matrix defined as ∆ =
⊕s

k=1

[

0 1
−1 0

]

.

The Weyl operator is further defined by W (z) = exp{iRz}
where z := [q1, p1, ..., qs, ps], z ∈ R

2s is a vector of values
in some phase space corresponding to the eigenvalues of
the quadrature operators. The displacement operator is also
defined by D(m) := W (∆−1m). The Wigner characteristic

function is further given by ϕρ(z) = Tr{ρW (z)}. The domain
of the Wigner function Z = R

2s, together with the symplectic
matrix ∆, forms a symplectic space K := (Z,∆), which is
called the phase space.

For a density operator ρ, the mean vector and covari-
ance matrix are given by m = Tr{ρR} and α − i

2∆ =
Tr

{

(R−m)T ρ (R−m)
}

, respectively, where α is the co-
variance matrix of the Wigner quasi-probability distribution.

The quantum Gaussian state is defined on H as a state
whose Wigner characteristic function is Gaussian:

ϕρ(z) = exp

[

−1

2
zTαz + imT z

]

.

2) Gaussian Observables: The measurement POVM M has
a general form as defined in [16]. For any observable POVM
M , the information gain can be obtained by substituting its
corresponding PMR ensemble {ρz, πZ(dz)}z∈Z into (1). An
important group of observables is the general form of the
covariant Gaussian observable as provided in [19]:

M̃(d2sz) = D(Kz)ρGD(Kz)†
|detK|2d2sz

πs
, (7)

where ρG is a density operator. The von-Neumann entropy of
the general Gaussian state with covariance matrix α is given
by [21]:

H(ρN ) = HG(α) :=
1

2
Spg

(

∣

∣∆−1α
∣

∣− I

2

)

, (8)

where Sp(.) is the matrix trace as opposed to the Tr(.) the
trace in Hilbert space and g(x) = (x+1) log(x+ 1)−x log x,
for x > 0, with g(0) = 0 is the Gordon function.

3) Distortion Observable: Let H∗ be the space of contin-
uous linear functionals on Hilbert space H [13]. We consider
the following definition of the transposition.

Definition 4. For any operator X ∈ L(H), let XT be the

linear operator on H∗ given by

XT ⟨ϕ| = ⟨ϕ|X for all ⟨ϕ| ∈ H∗. (9)

Remark 4. Assume having a source state ρ ∈ HA and a mea-

surement POVM with outcomes z ∈ Z . Then the conditional

PMR states (ρ̂Tz )
R and the unrevealed PMR state (ρT )R live

in H∗ [13], [17]. Furthermore, the entropic quantities are

invariant under the transposition.

The following distortion observable operator was introduced
by [13] using the quadrature operators:

C =
1

2s

2s
∑

i=1

(RT
i ⊗ IH − IH∗ ⊗Ri)

2. (10)

The significance of this cost operator is that it acts on the
composite state of the reference and the destination system
in the H∗ ⊗ H space. As a result, the optimal coupling that
minimizes this distortion measure has a unique correspondence
to the physical quantum channels.

We modify this distortion observable in a way that fits our
QC Gaussian measurement system. Consider a POVM Λ with



outcomes in Z . Let πZ(B) = Tr
{

ρAΛ(B)
}

for all B ∈ B(Z).
Define the distortion of the PMR ensemble {{ρ̂z}z∈Z , πZ} as

d(ρA,Λ) :=
1

2s

2s
∑

i=1

∫

Z

[

Tr
{

ρ̂Rz (Ri − m̄i(z))
2
}

+
〈

z|(Ri − m̄i(z))
2
∣

∣z
〉

]

πZ(dz) (11)

=
1

2s

∫

Z

(

Sp{Σ(z)}+ ∥z − m̄(z)∥22
)

πZ(dz) := d(ρZ , πZ),

where m̄i(z) = Tr
{

ρ̂Rz Ri

}

= Tr
{

(ρ̂Tz )
R
RT

i

}

is the first

moment and Σ(z) is the covariance matrix of the state ρ̂Rz .
Further, note that a Gaussian measurement system with the
above distortion measure satisfies the uniform integrability
property in Definition 2. For a proof see [1, Appendix A].

B. Problem Formulation

Suppose having a QC optimal transport system with Gaus-
sian source states and Gaussian output distribution. Recall the
single-letter conditions of the rate pair in Theorem 1. We
further restrict our evaluation to the systems with unlimited
common randomness (Rc = ∞). Thus, with no loss of
generality we can assume W = Z. Moreover, due to the
ensemble-observable duality [19], instead of searching for the
optimal measurement itself, we can search for the optimum
measurement outcome ensembles {{ρ̂z}z∈Z , πZ}. In that case,
the OC rate-distortion function [9], [10] is defined by the
following optimization problem:

R(D;Rc = ∞, ρ||πZ) := min
{ρ̂z : z∈Z}

[

H(ρ)−
∫

Z

H(ρ̂z)πZ(dz)

]

,

subject to,
∫

Z

ρ̂zπZ(dz) = ρ,

1

2s

∫

Z

(

Sp{Σ(z)}+ ∥z − m̄(z)∥22
)

πZ(dz) ≤ D.

Definition 5. The rate-limited Wasserstein distance

W2(R, ρ||πZ) of the system is defined as the square

root of the inverse of the above OC rate-distortion function

within the proper range. The QC Wasserstein distance of

order 2 is defined by W2(ρ||πZ) := W2(∞, ρ||πZ). Then the

rate of QC Wasserstein distance is defined as the lowest rate

achieving the Wasserstein distance:

RW2
(ρ||πZ) := inf

{

R :W2(R, ρ||πZ) =W2(ρ||πZ)
}

.

C. Main Result: Optimality of Gaussian Observables

We establish a Gaussian measurement optimality theorem
which shows that for the aforementioned OC rate-distortion
quantum measurement system with Gaussian source state and
Gaussian output distribution and unlimited common random-
ness, the Gaussian observables achieve the optimal rate. The
proof employs a QC version of the law of total variance.
Consider a measurement that is applied on a source state ρ and
results in the PMR ensemble {{ρ̂Tz }z∈Z , πZ}. In this setting,
m̄(Z) = Tr{ρ̂ZR} can be interpreted as the classical estimator

of the source state ρ. 2 The following lemma provides the
relation for the covariance matrix of this estimator.

Lemma 1. (QC Law of Total Variance) For a source quantum

state ρ with first moment m̄ρ and covariance Σρ and a

measurement POVM with the corresponding PMR ensemble

{{ρ̂Tz }z∈Z , πZ}, we have, Σρ =
∫

Σ̂(z)πZ(dz) + Σ̃, where

Σρ −
i

2
∆ =Tr

{

ρ(R− m̄ρ)(R− m̄ρ)
T
}

,

Σ̂(z)− i

2
∆ =Tr

{

ρ̂z(R− m̄(z))(R− m̄(z))T
}

, ∀z ∈ Z,
Σ̃ := Cov(m̄(Z)) = EZ

[

m̄(Z)m̄(Z)T
]

− m̄ρm̄
T
ρ ,

are the covariance matrix of the source, the conditional

covariance of PMR state ρ̂z and the covariance of the classical

estimator m̄(Z) respectively.

Using the above lemma, we obtain the following Gaussian
observable optimality theorem.

Theorem 2. In a quantum measurement system, suppose hav-

ing a Gaussian quantum source state ρ ∼ QN (m̄ρ,Σρ) and

a classical Gaussian output distribution πZ ≡ N (µZ ,ΣZ).
Also, suppose using the quadratic distortion observable op-

erator (10) as the distortion measure. Then, for any feasible

distortion value D, the information gain Ig(R;Z) is minimized

by a Gaussian observable. This optimal Gaussian observable

has the output ensemble representation {ρ̃NG,z, πZ(dz)}z∈Z

with post-measured states

ρ̃NG,z := D(Kz)ρNG
D(Kz)†, (12)

where ρNG
∼ QN (0,ΣN ) is a zero-mean Gaussian

state representing the measurement noise with ΣN ≤ Σρ

and K is a transformation matrix of the form K =

Σ
−1/2
Z

(

Σ
1/2
Z (Σρ − ΣN )Σ

1/2
Z

)1/2

Σ
−1/2
Z .

Corollary 1. To characterize the rate-distortion R(D;Rc =
∞, ρ||πZ), it suffices to consider Gaussian PMR ensembles

with

Ig(R;X) = HG(Σρ)−HG(ΣN ),

d(ρ̃NG,z, πZ) =
1

2s

(

Sp(ΣN ) + Eπ̄Z
[Z −KZ] + ∥m̄ρ − µZ∥22

)

,

where the expectation in the second term is with respect to

π̄Z(B) = πZ(B − µZ) for B ∈ B(Z).

D. The QC Gaussian Optimal Transport

By using the above Gaussian optimality theorem, it suffices
to find the optimal noise covariance matrix ΣN that minimizes
the information gain given the distortion constraint. By further
simplifying the distortion constraint, it reduces to,

R(D;Rc = ∞, ρ||πZ)

:= min
ΣN

1

2
Sp g

(

∣

∣∆−1Σρ

∣

∣− I

2

)

− 1

2
Sp g

(

∣

∣∆−1ΣN

∣

∣− I

2

)

,

2This is analogous to the estimator X̃ = E[X|Y ] for an observation Y

of a source X in a fully classical system.
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