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Abstract—We study the one-shot channel coding problem over
classical and classical-quantum channels, where the underlying
codes are constrained to be group codes. In the achievability part,
we introduce a new distribution that incorporates the encoding
homomorphism and the underlying channel law. Using a random
coding argument, we characterize the performance in terms of
hypothesis testing relative-entropies. In the converse part, we es-
tablish bounds by leveraging a hypothesis testing-based approach.
Further we apply the one-shot result to the asymptotic use case
and establish the group capacities for both channels.

I. INTRODUCTION

In this paper, we study channel coding both in the classi-
cal and classical-quantum (CQ) settings. In both problems, the
data to be transmitted reliably are classical, but the channel out-
put of the former is classical in nature, whereas in the latter
it is a quantum state characterized by a density operator. The
channel coding theorems for classical-quantum channels have
been established in [1]–[4].

Due to its algebraic properties, the finite field structure has
been adopted in the coding schemes, over the past several
decades, to approach information-theoretic performance limits
of point-to-point communication [5]–[9]. Later these coding
approaches were extended to weaker algebraic structures such
as rings and groups [10]–[16]. This is motivated by the two
following reasons: a) finite fields exist only for alphabets with
a prime power size, and b) for communication under certain
constraints, codes with weaker algebraic structures have better
properties. For example, when communicating over an addi-
tive white Gaussian noise channel with 8-PSK constellation,
codes over Z8, the cyclic group of size 8, are more desirable
over binary linear codes because the structure of the code is
matched to the structure of the signal set [12]. As another ex-
ample, construction of polar codes over alphabets of size pr,
for r > 1 and p prime, is simpler with a module structure
rather than a vector space structure [17]–[19]. Furthermore,
Abelian group codes yield better performance in network
communication settings such as distributed source coding
and interference channels [20]–[22]. Many of the aforemen-
tioned works addressed the channel coding problem in the
asymptotic regime.

Later researchers considered single-serving scenarios where
a given channel is used only once. This approach gives rise
to a high level of generality that no assumptions are made

This work was supported by the National Science Foundation under grants
CCF–2132815 and CCF–1909771.

on the structure of the channel and the associated capacity is
usually referred to as one-shot capacity. The one-shot capac-
ity of a classical channel was characterized in terms of min-
and max-entropies in [23]. The one-shot classical capacity of a
quantum channel is addressed by a hypothesis testing approach
in [24] and [25], yielding expressions in terms of the general-
ized (Rényi) relative entropies and a smooth relative entropy
quantity, respectively. These works considered random unstruc-
tured codes–those which do not have any group structure–in
their achievability approaches.

In this work, we consider performance of structured codes,
in particular Abelian group codes, for transmission of classi-
cal information over classical and classical-quantum channels
in the one-shot regime. This problem has not been studied be-
fore. Our derivation is based on the idea of relating the prob-
lem of channel coding to hypothesis testing. Here, we use a
relative-entropy-type quantity defined in [25] known as hypoth-
esis testing relative entropy, denoted Dϵ

H(·∥·). We introduce a
new hypothesis testing group-based relative entropy that incor-
porates the underlying subgroup structure of the channel input
group alphabet, and derive a tight characterization of the per-
formance of group codes. We use the framework of one-shot
quantum typicality developed in [26] for the achievability of
CQ channels.

II. PRELIMINARIES

A. Classical and CQ Channel Model

We consider discrete memoryless classical channels used
without feedback specified by the tuple (X ,Y,WY |X), where
X and Y are the channel input and output alphabets. We also
study the case of classical-quantum channel coding, where
the data to be transmitted reliably are classical. Let a (classi-
cal) set X denote the input alphabet. For any input x ∈ X ,
the channel produces an output, specified by a density oper-
ator ρx on a Hilbert space B. We denote a CQ channel by a
mapping N : x 7→ ρx from X to a set of density operators.

B. Definition of Achievability for Classical Channel Coding

For a group G, a group transmission system with parame-
ters (n,Ω, τ) for reliable communication over a given channel
(X = G,Y,WY |X) consists of a codebook, an encoding map-
ping and a decoding mapping. The codebook C is a shifted
subgroup of Gn whose size is equal to Ω and the mappings



are defined as

Enc : {1, 2, · · · ,Ω} → C , Dec : Yn → {1, 2, · · · ,Ω} ,

such that
Ω∑

m=1

1

Ω

∑
x∈Xn

1{x=Enc(m)}
∑
y∈Yn

1{m ̸=Dec(y)}W
n(y|x) ⩽ τ .

A rate R is said to be achievable using group codes if for
all ϵ > 0 and for all sufficiently large n, there exists a group
transmission system with parameters (n,Ω, τ) such that

1

n
log Ω ⩾ R− ϵ, τ ⩽ ϵ .

The group capacity C of the channel is defined as the supre-
mum of the set of all achievable rates using group codes.

C. Definition of Achievability for CQ Channel

Given a classical-quantum channel N = {ρx}x∈X from the
classical alphabet X to the quantum system B, where X = G is
an Abelian group, a group transmission system with parameters
(n,Ω, τ) over N consists of a codebook, an encoding mapping
and a decoding positive operator-valued measure (POVM). The
codebook C is a shifted subgroup of Gn whose size is Ω. The
encoding mapping is defined as Enc : {1, 2, · · · ,Ω} → C.
The decoding POVM is a set {Λm}Ωm=1 of operators such that
Λm ⩾ 0,∀m and

∑
m Λm = I . The probability of obtaining

outcome j is tr(Λjρ) if the state is described by some den-
sity operator ρ. The group transmission system with parameters
(n,Ω, τ) over N exists if

Ω∑
m=1

1

Ω

∑
x∈Xn

1{x=Enc(m)}[1− tr(Λmρx)] ⩽ τ .

Given a channel N , the rate R is said to be achievable using
group codes if for all ϵ > 0 and for all sufficiently large n,
there exists a group transmission system for reliable commu-
nication with parameters (n,Ω, τ) such that

1

n
log Ω ⩾ R− ϵ, τ ⩽ ϵ .

The group capacity of the channel C = C(N ) is defined as
the supremum of all achievable rates using group codes.

D. Groups and Group Codes

All groups referred to in this paper are Abelian groups. Given
a group (G,+) and a subset H of G, we use H ⩽ G to de-
note that H is subgroup of G. A coset C of a subgroup H is a
shift of H by an arbitrary element a ∈ G (i.e. C = a+H for
some a ∈ G). A coset is also referred to as a shifted subgroup.
For a prime p dividing the cardinality of G, the Sylow-p sub-
group of G is the largest subgroup of G whose cardinality is
a power of p. Group isomorphism is denoted by ∼=. Given a
group G, a group code C over G with block length n is coset
of a subgroup of Gn.

III. ABELIAN GROUP CODE ENSEMBLE

In this section, we use a standard characterization of Abelian
groups and introduce the ensemble of Abelian group codes
used in [15] and this paper.

A. Abelian Groups

For an Abelian group G, let P(G) denote the set of all
distinct primes which divide |G| and for a prime p ∈ P(G)
let Sp(G) be the corresponding Sylow subgroup of G. It
is known that any Abelian group G can be decomposed
as a direct sum of its Sylow subgroups in the following
manner G =

⊕
p∈P(G) Sp(G) Furthermore, each Sylow sub-

group Sp(G) can be decomposed into Zpr groups as follows:
Sp(G) ∼=

⊕
r∈Rp(G)Z

Mp,r

pr ,where Rp(G) ⊆ Z+ and for
r ∈ Rp(G), Mp,r is a positive integer. Thus,

G ∼=
⊕

p∈P(G)

⊕
r∈Rp(G)

Z
Mp,r

pr =
⊕

p∈P(G)

⊕
r∈Rp(G)

Mp,r⊕
m=1

Z
(m)
pr (1)

where Z(m)
pr is called the mth Zpr ring of G or the (p, r,m)-th

ring of G. We also define two sets, Q(G) ⊆ P× Z+ by

Q(G) = {(p, r) | p ∈ P(G), r ∈ Rp(G)} ,

and G(G) ⊆ P× Z+ × Z+ by

G(G) = {(p, r,m) | (p, r) ∈ Q(G),m ∈ {1, 2, . . . ,Mp,r}} .

Hence any element a of the Abelian group G can be regarded
as a vector whose components are indexed by (p, r,m) ∈ G(G)
and whose (p, r,m)-th component ap,r,m takes values from the
ring Zpr .

Example 1: Let G = Z4 ⊕ Z3 ⊕ Z2
9. Then we have

P(G) = {2, 3}, S2(G) = Z4 and S3(G) = Z3 ⊕ Z2
9,

R2(G) = {2}, R3(G) = {1, 2}, M2,2 = 1, M3,1 = 1,
M3,2 = 2 and G(G) = {(2, 2, 1), (3, 1, 1), (3, 2, 1), (3, 2, 2)}.
Each element a of G can be represented by a quadruple
(a2,2,1, a3,1,1, a3,2,1, a3,2,2) where a2,2,1 ∈ Z4, a3,1,1 ∈ Z3

and a3,2,1, a3,2,2 ∈ Z9.
In the following section, we introduce the ensemble of Abelian
group codes which we use in the paper.

B. The Image Ensemble

Recall that for a positive integer n, an Abelian group code
of length n over the group G is a coset of a subgroup of Gn.
Our ensemble of codes consists of all Abelian group codes
over G; i.e., we consider all cosets of subgroups of Gn. The
following lemma ( [15, Lemma 1]) effectively characterizes all
subgroups of Gn:

Lemma 1: For a group G̃, let ϕ : J → G̃ be a homomor-
phism from some group J to G̃. Then ϕ(J) ⩽ G̃. Moreover,
for any subgroup H̃ of G̃ there exists a corresponding group
J and a homomorphism ϕ : J → G̃ such that H̃ = ϕ(J).

Definition 1: Let G be an Abelian group. For p ∈ P(G),
define rp = maxRp(G), and S(G) = {(p, s) | p ∈ P(G), 1 ⩽
s ⩽ rp}.
It is shown in [15] that we only need to consider homomor-
phisms from an Abelian group J to G̃ such that P(J) ⊆
P(G̃), and s ⩽ rq = maxRq(G̃) for all (q, s, l) ∈ G(J).

To construct Abelian group codes of length n over G, let
G̃ = Gn. We have

Gn ∼=
⊕

p∈P(G)

⊕
r∈Rp

Z
nMp,r

pr =
⊕

p∈P(G)

⊕
r∈Rp

nMp,r⊕
m=1

Z
(m)
pr . (2)



Define J as

J =
⊕

q∈P(G)

rq⊕
s=1

Z
kq,s

qs =
⊕

q∈P(G)

rq⊕
s=1

kq,s⊕
l=1

Z
(l)
qs (3)

for some positive integers kq,s. Define k =
∑

q∈P(G)

∑rq
s=1 kq,s

and wq,s =
kq,s

k for (q, s) ∈ S(G).
Definition 2: The ensemble of Abelian group encoders con-

sists of all mappings ϕ : J → Gn of the form

ϕ(a) =
⊕

(p,r,m)∈G(Gn)

∑
(q,s,l)∈G(J)

aq,s,lg(q,s,l)→(p,r,m) (4)

for a ∈ J , where aq,s,lg(q,s,l)→(p,r,m) is the short-hand no-
tation for the mod-pr addition of g(q,s,l)→(p,r,m) to itself for
aq,s,l times, the sum is over Zpr , and

g(q,s,l)→(p,r,m)


= 0 if p ̸= q

∼ Unif(Zpr ) if p = q, r ⩽ s

∼ Unif(pr−sZpr ) if p = q, r ⩾ s

The corresponding group code is defined by

C = {ϕ(a) + V |a ∈ J}, (5)

where V is a uniform random variable over Gn.
The rate of this code is given by

R =
1

n
log |J | = k

n

∑
q∈P(G)

rq∑
s=1

swq,s log q. (6)

C. The Hθ̂ coset

For an Abelian group G defined in (1), denote a vec-
tor θ̂ whose components are non-negative integer-valued
and indexed by (p, s) ∈ S(G) by (θ̂p,s)(p,s)∈S(G), where
0 ⩽ θ̂p,s ⩽ s. Let s denote the vector whose components
satisfy s(p,s) = s for all (p, s) ∈ S(G). Let Θ = Θ(G)

be the set of vectors θ̂ indexed by (p, s) ∈ S(G) such that
0 ⩽ θ̂p,s ⩽ s and θ̂ ̸= s, and denote its size by M ≜ |Θ| .
For θ̂ = (θ̂p,s)(p,s)∈S(G), define a vector θθθ(θ̂) indexed by
(p, r) ∈ Q(G) and(

θθθ(θ̂)
)
p,r

= min
(p,s)∈S(G)

wp,s ̸=0

|r − s|+ + θ̂p,s .

Let Hθ̂ be a subgroup of G defined as

Hθ̂ =
⊕

(p,r,m)∈G(G)

pθθθ(θ̂)p,rZ
(m)
pr . (7)

For a ∈ J and θ̂ = (θ̂p,s)(p,s)∈S(G), let Tθ̂(a) denote the set
of vectors ã ∈ J such that

ãp,s − ap,s ∈ pθ̂p,sZ
kp,s

ps \pθ̂p,s+1Z
kp,s

ps ,∀(p, s) ∈ S(G) .

Then we have
∣∣Tθ̂(a)

∣∣ = ∏
(p,s)∈S(G) p

(s−θ̂p,s)kp,s for all a ∈
J . Therefore, we may write

∣∣Tθ̂(a)
∣∣ = ∣∣Tθ̂

∣∣ without any am-
biguity. Let ωθ̂ be defined by

ωθ̂ =

∑
(p,s)∈S(G) θ̂p,swp,s log p∑
(p,s)∈S(G) swp,s log p

, (8)

we show in Appendix Section B the following result:

log
∣∣Tθ̂

∣∣ = (1− ωθ̂)nR . (9)

For any a ∈ J ,
{
Tθ̂(a)

}
θ̂

is a collection of disjoint sets whose
union is ∪θ̂Tθ̂(a) = J . Hence

∑
θ̂

∣∣Tθ̂

∣∣ = ∑
θ̂

∣∣Tθ̂(a)
∣∣ = |J |.

Exploiting equation (9), we have that
∑

θ̂ 2
(1−ωθ̂)nR = |J |, or

equivalently,
∑

θ̂ 2
(1−ωθ̂) = 1.

Definition 3: For an element x ∈ G there is a one-to-one
mapping x ↔ ([x]θ̂, xθ̂), where [x]θ̂ is the representative of
the coset of Hθ̂ which x belongs to, and xθ̂ ∈ Hθ̂, such that
x = [x]θ̂ + xθ̂.

We use the following notations for the conditional distri-
butions of the codeword and channel output given the coset
information.

Definition 4: Let H = Hθ̂ be a subgroup of G and xr ∈ G.
Let X be distributed according to PX ≡ Unif(X ), the uni-
form distribution over X = G, and W = (X ,Y,WY |X)
be a classical channel. Then, for a representative [xr]θ̂
of a coset of H in G, define P[X]([xr]) ≜ Pr([X] =

[xr]) = |H|
|G| , PX|[X](x | [xr]) ≜ Pr(X = x | [X] = [xr]) =

1
|H| if x ∈ [xr], 0 otherwise, and PY |[X](y | [xr]) ≜ Pr(Y =

y | [X] = [xr]) =
∑

x∈[xr]+H PX|[X](x|[xr])WY |X(y|x) =∑
x∈[xr]+H

1
|H|WY |X(y|x), where we write [xr] and [xr]θ̂

interchangeably when the dependency of θ̂ is clear from the
context.

IV. ONE-SHOT CLASSICAL GROUP CODING

Given a channel W = (X = G,Y,WY |X), let the joint
distribution PXY be PXY = PX · WY |X with PX being the
uniform distribution over X , and PY be the marginal distribu-
tion of PXY over Y . Let H = Hθ̂ be a subgroup of G defined
in (7) and [X] = [X]θ̂ for some θ̂. Define

Iϵ,θ̂H (X; [X]Y ) ≜ Dϵ
H(PXY ∥P[X]PX|[X]PY |[X]). (10)

A. Achievability

We have the first main result of this section.
Theorem 1: Let ϵ and

{
ϵθ̂
}

be given with ϵθ̂ > 0 for all θ̂
and

∑
θ̂ ϵθ̂ ⩽ ϵ. Then there exists a (1, |J | , ϵ′)-code such that

ϵ′ ⩽ ϵ+
∑
θ̂ ̸=s

exp2
{
(1− ωθ̂)R− I

ϵθ̂
H (X θ̂; [X]θ̂Y )

}
,

where the rate R is given in Equation (6).
Proof: Let the ensemble of homomorphisms ϕ from J to G and
the group code C = {ϕ(a) + V |a ∈ J} be given as in Defini-
tion 2 with n = 1. Given a channel W = (X = G,Y,WY |X),
consider a decision region Aϵ ⊂ X × Y , which will be con-
structed explicitly later, such that

PXY (Aϵ) =
∑

(x,y)∈Aϵ

PX(x)WY |X(y|x) ⩾ 1− ϵ, (11)

where PX is uniform over G.
To find an achievable rate, we use a random coding argu-

ment in which the random encoder is characterized by the ran-
dom homomorphism ϕ and a random vector V uniformly dis-
tributed over G. Given a message u ∈ J , the encoder maps it



to x = ϕ(u) + V and x is then fed to the channel. At the re-
ceiver, after receiving the channel output y ∈ Y , the decoder
looks for a unique ũ ∈ J such that (ϕ(ũ) + V, y) ∈ Aϵ. If the
decoder does not find such ũ or if such ũ is not unique, it de-
clares error. Thus, the error event can be characterized by the
union of two events: E(u) = E1(u) ∪ E2(u) where E1(u) is
the event that (ϕ(u) + V, y) /∈ Aϵ and E2(u) is the event that
there exists a ũ ̸= u such that (ϕ(ũ) + V, y) ∈ Aϵ. We can
provide an upper bound on the probability of the error event
as Pr(E(u)) ⩽ Pr(E1(u)) + Pr(E2(u) ∩ (E1(u))

c).
In Appendix C, we show that Pr(E(u)) ⩽ ϵ +

∑
θ̂ ̸=s∣∣Tθ̂(u)

∣∣ exp2 {−I
ϵθ̂
H (X; [X]Y )

}
. The average probabil-

ity of error of the group transmission scheme can be
upper bounded by Pr(error) =

∑
u∈J

1
|J| Pr(E(u)) ⩽

ϵ +
∑

θ̂ ̸=s

∣∣Tθ̂(u)
∣∣ exp2 {−I

ϵθ̂
H (X; [X]Y )

}
. Exploiting equa-

tion (9), we get the desired result in terms of the rate R of
the code.

B. Converse

Toward the converse, we have the following theorem whose
proof is given in Appendix D

Theorem 2: Assume that a group transmission sys-
tem with parameters (1, |J | , ϵ) exists over a channel
(X = G,Y,WY |X), and that the group J takes the form as
in equation (3). Then the rate of the code, R = log |J |, is
bounded as:

R ⩽ min
θ̂ ̸=s

1

1− ωθ̂

IϵH(X θ̂; [X]θ̂Y ).

V. ONE-SHOT CLASSICAL-QUANTUM GROUP CODING

A. Achievability

Consider arbitrary output and input Abelian groups G and
J , a CQ channel {ρx}x∈G, and a subgroup Hθ̂ of G indexed
by θ̂. We assume the uniform distribution on the input of the
CQ channel yielding the input-output joint state as

ρAB =
∑
x∈G

1

|G|
|x⟩⟨x|A ⊗ ρBx , (12)

where A denotes the input space and B denotes the output
space. Define the transversal, the set of coset representatives
of Hθ̂ in G, as Rθ̂. We drop θ̂ from the subscript, when it is
clear from the context.

For any Hθ̂, using the one-to-one mapping x ↔ ([x]θ̂, xθ̂),
the joint state can be viewed as follows1

ρAB = ρ[A]ĀB ≜
∑
[x],x

1

|G|
|[x], x⟩⟨[x], x|[A]Ā ⊗ ρB[x],x,

and we let P[X]([x]) =
|H|
|G| for all [x] and PX(x) = 1

|H| for
all x. Here [A] denotes the space associated with Rθ̂ and Ā
that associated with Hθ̂. Define

ρB[x] ≜
∑
x

PX(x)ρB[x],x , ρĀ ≜
∑
x

PX(x)|x⟩⟨x|Ā

ρ[A]B ≜
∑
[x]

P[X]([x])|[x]⟩⟨[x]|[A] ⊗ ρB[x] .

1Recall that the classical variable (channel input) X with alphabet X is
stored in a quantum register with Hilbert space also denoted as X .

Also define the hypothesis testing mutual information:

Iϵ,θ̂H (X; [X]Y ) ≜ Dϵ
H(ρ[A]ĀB ||ρĀρ[A]B) .

With these definitions, we are ready to state the main result of
this section.

Theorem 3: Let ϵ and
{
ϵθ̂
}

be given with ϵθ̂ > 0 for all θ̂
and

∑
θ̂ ϵθ̂ ⩽ ϵ. Then there exists a (J, ϵ′)-code such that

ϵ′ ⩽ ϵ+
∑
θ̂ ̸=s

exp2
{
(1− ωθ̂)R− I

ϵθ̂
H (X θ̂; [X]θ̂Y )

}
,

where the rate R is given in Equation (6).
Proof: Let ϵ > 0, and consider the optimizing POVM (Π′′)[X]

in [A]ĀB arising in the definition of Iϵ,θ̂H (X; [X]Y ). The
POVM satisifies:

(Π′′)[X] =
∑
[x],x

|[x], x⟩⟨[x], x|[A]Ā(Π′′)B[X];[x],x

tr
[
(Π′′)ρAB

]
⩾ 1− ϵ , tr

[
(Π′′)ρĀ ⊗ ρ[A]B

]
⩽ 2−Iϵ,θ̂

H (X;[X]Y ).

(13)

We use the approach given in [26]. Define B̂ ≜ B ⊗ C2. By
Fact 2 in [26], there are orthogonal projections ΠB̂

[X];x in B̂ that
give the same measurement probability on states σB ⊗ |0⟩⟨0|
that POVM elements (Π′′)B[X];x give on states σB . Let W[X];x

denote the orthogonal complement of the support of ΠB̂
[X];x in

B̂.
Step 1: Consider a new Hilbert space L that is used only as
a quantum register to store classical values, and define the ex-
tended output space

B′ ≜ (B ⊗ C2)⊕
⊕

(p,r,m,k)∈G∗(G)

(B ⊗ C2 ⊗ L(p,r,m,k)).

where L(p,r,m,k) is isomorphic to L.
Remark 1: Define ζ(G) =

∑
(p,r,m)∈G(G) r, the sum of

prime powers in the prime factorization of |G|. Also define
the set G∗(G) ≜ {(p, r,m, k) : (p, r,m) ∈ G(G), 1 ⩽ k ⩽ r}.
We use a vector representation for the elements of G as fol-
lows. First we note that every element of a of Zpr can be
represented uniquely as a r-length vector (a1, a2, . . . , ar) such
that ai takes value in the transversal of pr−iZpr/pr−i+1Zpr .
A shorter vector (a1, a2, . . . , ak) can represent any element
in the subgroup pr−kZpr . This is extended to all of G using
the direct sum operation. We denote this mapping as ν(a).
Hence every element of G is represented uniquely as a vec-
tor of length ζ(G). This is also extended to all subgroups of
G. Furthermore, we use (p, r,m, k) ∈ G∗(G) to index the
elements of a vector. The set formed by the (p, r,m, k)-th el-
ement of the ν(G) is denoted as X(p,r,m,k). This also denotes
the Hilbert space associated with the quantum register that
stores the corresponding classical values, where a direct sum
is replaced with a tensor product.

We extend the space corresponding to the alphabet
of (p, r,m, k)-th element of ν(G) as follows. For every
(p, r,m, k) ∈ G∗(G) define

X ′
(p,r,m,k) = X(p,r,m,k) ⊗ L(p,r,m,k).



This leads to the following extensions. For each subgroup
pr−sZ(m)

pr , s = 1, 2, . . . , r, the extended space is

pr−sZ(m)
pr ⊗

s⊗
k=1

L(p,r,m,k),

and for the transversal of Z(m)
pr /pr−sZ(m)

pr , the extended input
space is given by

(Z(m)
pr /pr−sZ(m)

pr )⊗
r⊗

k=s+1

L(p,r,m,k).

Step 2: Let 0 ⩽ δ ⩽ 1/10. Consider a vector ℓ in-
dexed by (p, r,m, k) for (p, r,m, k) ∈ G∗(G), where
ℓ(p,r,m,k) ∈ L(p,r,m,k), and is a basis element of L(p,r,m,k).
Let ℓ̄θ̂ denote the sub-vector corresponding to the subgroup
Hθ̂, and the complementary sub-vector [ℓ]θ̂ corresponding to
the transversal Tθ̂. For the trivial case Hθ̂ = {0}, we have
[ℓ] = ℓ. Recall that in this case, [X] = X .

For any subgroup Hθ̂ of G, define the tilting map T[X];[ℓ],δ :

B̂ → B′ defined as

T[X];[ℓ],δ : |h⟩ 7→ 1√
1 + ζ(G)δ2

(
|h⟩

+
∑

(p,r,m,k)∈G∗(G)/G∗(H)

δ|h⟩|l(p,r,m,k)⟩
)
.

Note that we are tilting only along the direction of transversal
of Hθ̂ in G. Define a state

(ρ′)B
′

x,ℓ,δ ≜ TX;ℓ,δ

(
ρBx ⊗ |0⟩⟨0|C

2

.
)

Consider the classical–quantum state

(ρ′)A
′B′

≜ |L|−ζ(G)
∑
x,ℓ

PX(x)|x, ℓ⟩⟨x, ℓ|A
′
⊗(ρ′)B

′

x,ℓ,δ . (14)

It can be shown that∥∥∥(ρ′)B′

x,ℓ,δ − ρBx ⊗ |0⟩⟨0|C
2
∥∥∥
1
⩽ 2ζ(G)δ2. (15)

Define the tilted space

W ′
[X];x,ℓ,δ ≜ T[X];[ℓ],δ(W[X];x)

residing in B′. Define the subspace

W ′
x,ℓ,δ ≜

⊕
θ̂∈Θ

W ′
[X];x,ℓ,δ, (16)

and (Π′)B
′

W ′ = (Π′)B
′

W ′
x,ℓ,δ

the orthogonal projection in B′ onto

W ′
x,ℓ,δ . Let ΠB′

B̂
be the orthogonal projection in B′ onto B̂.

Define POVM elements

(Π′)B
′

x,ℓ,δ ≜
(
1B′

− (Π′)B
′

W ′

)
ΠB′

B̂

(
1B′

− (Π′)B
′

W ′

)
, (17)

(Π′)A
′B′

≜
∑
x,ℓ

|x, ℓ⟩⟨x, ℓ|A
′
⊗ (Π′)B

′

x,ℓ,δ . (18)

Define the following states for any subgroup Hθ̂:

(ρ′)B
′

[x],[ℓ] ≜
1

|L|ζ(H)

∑
x,ℓ̄

P (x)(ρ′)B
′

x,ℓ.

(ρ′)B
′
≜

1

|L|ζ(G)

∑
x,ℓ

P (x)(ρ′)B
′

x,ℓ.

We make the following observations using the arguments given
in [26]:

(ρ′)B
′

[x],[ℓ] =
1 + (ζ(G)− ζ(H)))δ2

1 + ζ(G)δ2
T[X];[ℓ](ρ

B
[x] ⊗ |0⟩⟨0|)

+N[X];[x],[ℓ],

for some operators satisfying

∥N[X];[x],[ℓ]∥∞ ⩽
2ζ(G)δ√

|L|
. (19)

Furthermore, using Holder’s inequality we have

∥(Π′)B
′

x,ℓ∥1 ⩽ 2|B|. (20)

We perform random coding and perform error analysis and
show the desired result. The details are given in Appendix E.

B. Converse

Toward the converse, we have the following theorem whose
proof is given in Appendix F.

Theorem 4: Assume that a group transmission system with
parameters (1, |J | , ϵ) exists over a classical-quatum channel
N =

{
ρBx

}
x∈X , and that the group J takes the form as in

equation (3). Then the rate of the code, R = log |J |, is bounded
as:

R ⩽ min
θ̂ ̸=s

1

1− ωθ̂

Iϵ,θ̂H (X; [X]Y ).

VI. GROUP CODING IN THE ASYMPTOTIC REGIME

We leverage the one-shot results for classical channel group
transmission and show the following capacity result.

Theorem 5:

C = min
θ̂ ̸=s

1

1− ωθ̂

I(X;Y | [X]θ̂).

Proof: The proof is provided in Appendix Section G.
Similarly, we provide a characterization of the capacity for

the CQ channel:
Theorem 6:

C = min
θ̂ ̸=s

1

1− ωθ̂

I(X;Y | [X]θ̂),

where

I(X;Y | [X]θ̂) ≜ D(ρAB ||ρĀθ̂ρ[A]θ̂B) .

Proof: The proof is provided in Appendix Section G.
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APPENDIX

A. Hypothesis testing relative entropy

We recall the definition the hypothesis testing relative en-
tropy Dϵ

H(ρ∥σ) from [25]. Let ρ and σ be two possible states
of a system, and Q a positive operator with 0 ⩽ Q ⩽ I . The
hypothesis testing relative entropy Dϵ

H(ρ∥σ) is defined by

Dϵ
H(ρ∥σ) ≜ − log2 inf

Q:0⩽Q⩽I,
tr[Qρ]⩾1−ϵ

tr[Qσ]. (21)

For two distributions P,Q on a classical alphabet X , the hy-
pothesis testing relative entropy Dϵ

H(P∥Q) can be similarly
defined by

Dϵ
H(P∥Q) = − log2 inf

A:P (A)⩾1−ϵ
Q(A),

where A ⊂ X is sometimes called the decision region.

B. More on the Hθ̂ coset

We show the derivation for (9) as follows:

log
∣∣Tθ̂

∣∣ = ∑
(p,s)∈S(G)

(s− θ̂p,s)kp,s log p

= k ·

[∑
(p,s)∈S(G) (s− θ̂p,s)ωp,s log p∑

(p,s)∈S(G) sωp,s log p

]
×

∑
(p,s)∈S(G)

sωp,s log p

= (1− ωθ̂)k
∑

(p,s)∈S(G)

sωp,s log p = (1− ωθ̂)nR. (22)

We recall the following result from [15].
Lemma 2: For a, ã ∈ J , x, x̃ ∈ Gn and for (p, s) ∈

Q(J) = S(G), let θ̂p,s ∈ {0, 1, · · · , s} be such that
ãp,s − ap,s ∈ pθ̂p,sZ

kp,s

ps \pθ̂p,s+1Z
kp,s

ps , i.e., ã ∈ Tθ̂(a).
Consider a random homomorphism ϕ and a dither V with
distribution specified as in Definition 2. Then,

Pr
(
ϕ(a)+V=x,
ϕ(ã)+V=x̃

)
=

{ 1
|G|n

1
|Hθ̂|n

if x̃− x ∈ Hn
θ̂

0 otherwise

C. Proof of Achievability for Classical Channel

Denote by Perr(u) the probability of the event E2(u) ∩
(E1(u))

c, averaged over the randomness of ϕ, V .

Perr(u) ≜ E [Pr(E2(u) ∩ (E1(u))
c)]

=
∑

(x,y)∈Aϵ

W (y|x) Pr
(

ϕ(u)+V=x,∃ũ∈J:
ũ̸=u,(ϕ(ũ)+V,y)∈Aϵ

)
⩽

∑
(x,y)∈Aϵ

∑
ũ∈J
ũ ̸=u

∑
x̃∈G

(x̃,y)∈Aϵ

W (y|x) Pr
(
ϕ(u)+V=x,
ϕ(ũ)+V=x̃

)

=
∑
θ̂ ̸=s

∑
(x,y)∈Aϵ

∑
ũ∈Tθ̂(u)

∑
x̃∈G

(x̃,y)∈Aϵ

W (y|x) Pr
(
ϕ(u)+V=x,
ϕ(ũ)+V=x̃

)
=

∑
θ̂ ̸=s

Perr(u, θ̂), (23)

where Perr(u, θ̂) ≜
∑

ũ∈Tθ̂(u)
Perr(u, ũ) and for ũ ∈ Tθ̂(u),

Perr(u, ũ) ≜
∑

(x,y)∈Aϵ

∑
x̃∈G

(x̃,y)∈Aϵ

W (y|x) Pr
(
ϕ(u)+V=x,
ϕ(ũ)+V=x̃

)
,

(24)
and s denote the vector whose compnents satisfy s(p,s) = s for
all (p, s) ∈ S(G). The term Pr(ϕ(u) + V = x, ϕ(ũ) + V =
x̃) in (24) can be found using Lemma 2. Let x ∈ [xr] be a
shorthand for [x] = [xr], or equivalently, x ∈ [xr] +H . Hence

Perr(u, ũ) =
∑

(x,y)∈Aϵ

∑
x̃∈x+Hθ̂

W (y|x)IAϵ(x̃, y)
1

|G|
1∣∣Hθ̂

∣∣
=

∑
x∈X

∑
x̃∈x+Hθ̂

∑
y:(x,y)∈Aϵ

(x̃,y)∈Aϵ

W (y|x) 1

|G|
1∣∣Hθ̂

∣∣
⩽

∑
x∈X

∑
x̃∈x+Hθ̂

∑
y:(x̃,y)∈Aϵ

W (y|x) 1

|G|
1∣∣Hθ̂

∣∣
=

∑
[xr]

∣∣Hθ̂

∣∣
|G|

∑
x∈[xr]

∑
x̃∈[xr]

∑
y:(x̃,y)∈Aϵ

W (y|x) 1∣∣Hθ̂

∣∣2
=

∑
[xr]

P ([xr])
∑

x̃∈[xr]

∑
y:(x̃,y)∈Aϵ

P (x̃ | [xr])P (y | [xr]) . (25)

Let a set of parameters
{
ϵθ̂
}
θ̂ ̸=s

be given such that ϵθ̂ > 0

for each θ̂ and that
∑

θ̂ ϵθ̂ = ϵ. Let the set A∗
ϵθ̂

be a maxi-

mizer of the right-hand side of (10) for I
ϵθ̂,θ̂

H (X; [X]Y ) , i.e.,
PXY (A

∗
ϵθ̂
) ⩾ 1− ϵθ̂ and

I
ϵθ̂,θ̂

H (X; [X]Y ) = − log2[∑
[xr]

P ([xr])
∑

x∈[xr]

P (x | [xr])
∑

y:(x,y)∈A∗
ϵ
θ̂

P (y | [xr])
]
.

Now we set explicitly Aϵ = ∩θ̂A
∗
ϵθ̂

. The probability of the
event E1(u) can be bounded as:

Pr(E1(u)) = Pr ((ϕ(u) + V, Y ) /∈ Aϵ) = Pr((X,Y ) /∈ Aϵ)

= Pr
(
(X,Y ) ∈ ∪θ̂(A

∗
ϵθ̂
)C

)
⩽

∑
θ̂

Pr
(
(X,Y ) ∈ (A∗

ϵθ̂
)C

)
⩽

∑
θ̂

ϵθ̂ = ϵ.

Since Aϵ ⊂ A∗
ϵθ̂

, the term Perr(u, ũ) in (24) can then be upper
bounded by∑

[xr]

P ([xr])
∑

x̃∈[xr]

∑
y:(x̃,y)∈A∗

ϵ
θ̂

P (x̃| [xr])P (y| [xr])

= exp2{−I
ϵθ̂,θ̂

H (X; [X]Y )},

which leads to the following bound,

Perr(u) ⩽
∑
θ̂ ̸=s

∣∣Tθ̂(u)
∣∣ exp2{−I

ϵθ̂,θ̂

H (X; [X]Y )}. (26)

Therefore, we have

Pr(E(u)) ⩽ ϵ +
∑
θ̂ ̸=s

∣∣Tθ̂(u)
∣∣ exp2{−I

ϵθ̂,θ̂

H (X; [X]Y )}.



The average probability of error of the group transmission
scheme can be upper bounded by

Pr(error) =
∑
u∈J

1

|J |
Pr(E(u))

⩽ ϵ+
∑
θ̂ ̸=s

∣∣Tθ̂(u)
∣∣ exp2{−I

ϵθ̂,θ̂

H (X; [X]Y )} .

Example 2: Let J = Z4, G = Z8. In this example, we have
G(G) = {(2, 3, 1)} and G(J) = {(2, 2, 1)}, k2,1 = 0, k2,2 =
1, k2,3 = 0, and the term g(2,2,1)→(2,3,1) is a uniform random
variable over 2Z8. For simplicity, we write u = u2,2,1 ∈ J
and g = g(2,2,1)→(2,3,1) ∈ Z8. Then r2 = maxR2(G) = 3 and
the set Q(J) = S(G) = {(2, 1), (2, 2), (2, 3)}, and s(2,1) =
1, s(2,2) = 2, s(2,3) = 3. For distinct u, ũ ∈ J , the vector
θ̂ = (θ̂2,1, θ̂2,2, θ̂2,3) for which ũ ∈ Tθ̂(u) must have θ̂2,1 =

1, 0 ⩽ θ̂2,2 < 2, θ̂2,3 = 3. Thus Perr(u) ⩽ Perr(u, (1, 0, 3)) +
Perr(u, (1, 1, 3)).

The set Q(G) = {(2, 3)}, so θθθ(θ̂) = θθθ(θ̂)(2,3) and

θθθ(θ̂)(2,3) = min
(2,s)∈S(G)

w2,s ̸=0

{
|3− s|+ + θ̂2,s

}
= |3− 2|+ + θ̂2,2 = 1 + θ̂2,2.

Case 1: θ̂2,2 = 0, θθθ(θ̂)(2,3) = 1
For ũ ∈ Tθ̂(u), ũ−u ∈ Z4\2Z4, and Hθ̂ = 2Z8. Let A∗

ϵ/2,θ̂

be a maximizer for D
ϵ/2
H (PXY ∥P[X]θ̂

PX|[X]θ̂
PY |[X]θ̂

). Thus
we have

Perr(u, (1, 0, 3)) ⩽
∣∣T(1,0,3)(u)

∣∣ exp2{−I
ϵ/2
H (X; [X]Y )}.

Case 2: θ̂2,2 = 1, θθθ(θ̂)(2,3) = 2 In this case, Hθ̂ = 4Z8, and
we have

Perr(u, (1, 1, 3)) ⩽
∣∣T(1,1,3)(u)

∣∣ exp2{−I
ϵθ̂,θ̂

H (X; [X]Y )}.

Therefore the error probability for a message u is

Pr(E(u)) ⩽ Pr(E1(u)) + Pr(E2(u) ∩ (E1(u))
c)

⩽ ϵ+
∣∣T(1,0,3)(u)

∣∣ exp2{−I
ϵθ̂,θ̂

H (X; [X]Y )}θ̂=(1,0,3)

+
∣∣T(1,1,3)(u)

∣∣ exp2{−I
ϵθ̂,θ̂

H (X; [X]Y )}θ̂=(1,1,3),

where we consider the decision region Aϵ = ∩θ̂A
∗
ϵ/2,θ̂

.

D. Proof of Converse for Classical Channel

Based on Lemma 1, for each group code C ⩽ G, there ex-
ists a group J and a homomorphism such that C is the image
of the homomorphism. Assume now that a group transmis-
sion system with parameters (1, |J | , ϵ) exists over a channel
(X = G,Y,WY |X), and that the group J takes the form in
equation (3). Assume that the homomorphism ϕ for the group
code C is a one-to-one mapping. We have:

C =
{ ⊕

(p,r,m)∈G(G)

rp∑
s=1

up,sg(p,s)→(r,m) + V : u ∈ J
}
.

Let θ̂ be a vector indexed by (p, s) ∈ S(G) with 0 ⩽ θ̂p,s ⩽
s. For an message u ∈ J , construct a one-to-one correspon-
dence between up,s ∈ Zkp,s

ps and the tuple (ũp,s, ûp,s) where

ũp,s ∈ pθ̂p,sZ
kp,s

ps and ûp,s ∈ Z
kp,s

pθ̂p,s
. Let U denote the random

message of the group transmission system of the code. Let Û
denote the part of the random message such that Ûp,s ∈ Z

kp,s

pθ̂p,s
,

for all (p, s) ∈ S(G). Consider the subcode of C:

C1(θ̂, û) =
{ ⊕

(p,r,m)∈G(G)

rp∑
s=1

(ũp,s+ ûp,s)g(p,s)→(r,m)+V :

ũp,s ∈ pθ̂p,sZ
kp,s

ps ,∀(p, s) ∈ S(G)
}
.

Let x = ϕ(u) + V be the channel input and Hθ̂ be given
as in (7). Then C1(θ̂, û) = x + Hθ̂. That is, there is a one-
to-one correspondence between Û and [X]θ̂. Also,

∣∣Tθ̂(u)
∣∣ =∣∣∣C1(θ̂, û)

∣∣∣ = ∣∣Hθ̂

∣∣ for all u ∈ J . Let x ∈ [xr] be a shorthand
for [x] = [xr], or equivalently, x ∈ [xr] +H , where we omit
the θ̂ subscript when it is clear from the context.

Define a one-to-one correspondence between x and the tuple
(x̃θ̂, [x]θ̂) where x̃θ̂ = ϕ(ũ). Consider a genie-aided receiver
which gets access to Û and performs maximum likelihood de-
coding. Equivalently, this receiver has access to the coset in-
formation [X]θ̂ of X and can be written as Dga : ([x]θ̂, y) 7→
x′ ∈ X . Clearly the average probability of error for this de-
coder must be not greater than ϵ. Let X ′ ∈ X be the output
of Dga. For every θ̂ with 0 ⩽ θ̂p,s ⩽ s, θ̂ ̸= s, the average
probability of error for this decoder is∑

û

∑
x,x′

Pr(û)PXX′|Û (x, x
′ | û)1{x′ ̸=x}

=
∑
x,x′

PXX′(x, x′)1{x′ ̸=x} ⩽ ϵ,

where

PXX′|Û (x, x
′|û) ≜ P (x|[x])

∑
y:Dga([x],y)=x′

W (y|x) .

Consider a strategy to distinguish PXX′ and PÛ (PX|Û ⊗
PX′|Û ) as follows. The strategy guesses PXX′ if it sees X =
X ′, and guesses PÛ (PX|Û ⊗ PX′|Û ) otherwise. When PXX′

is the true underlying distribution, the type-I error probability
is exactly the probability that X ̸= X ′ computed from PXX′ ,
namely, the average probability of a decoding error, and is thus
not larger than ϵ. When PÛ (PX|Û⊗PX′|Û ) is the true underly-
ing distribution, the probability of type-II error (misdetection)
is ∑

û

PÛ (û)
∑
x,x′

PX|Û (x | û)PX′|Û (x
′ | û)1{x′=x}

=
∑
[xr]

P ([xr])
∑
x,x′

P (x | [xr])P (x′ | [xr])1{x′=x} (27)

=
∑
[xr]

|H|
|G|

∑
x

P (x | [xr])P (x | [xr])

=
∑
[xr]

|H|
|G|

∑
x∈[xr]

1

|H|
P (x | [xr]) =

1

|H|
,



where (27) follows from the one-to-one mapping between Û
and [X]θ̂. Thus,

Dϵ,θ̂
H (PXY ∥P[X]PX|[X]PY |[X])

⩾Dϵ,θ̂
H (PXX′∥P[X]PX|[X]PX′|[X])

=Dϵ
H(PXX′∥PÛ (PX|Û ⊗ PX′|Û ))

⩾− log2
1

|H|
= log2 |H| = log2

∣∣Tθ̂(u)
∣∣

=(1− ωθ̂)k
∑

(p,s)∈S(G)

sωp,s log p., (28)

where the first inequality follows from the DPI. Equivalently,

Iϵ,θ̂H (X; [X]Y ) ⩾ (1− ωθ̂)R ,

which yields Theorem 2.

E. Proof of Achievability for CQ Channel

Remark 2: We make a general remark here about an arbi-
trary subgroup H of G. We note that [x] = x mod H . Using
the distributive property of mod operation, i.e., [x + y] =
[[x] + y], we note that

[x] = [Φ(u) + β] = [[Φ([u]) + Φ(u)] + β] = [[Φ([u])] + β],

x = x− [x] = Φ(u) + Φ([u]) + β.

Hence [x] depends only on [u], where as x depends on the
entirety of u in general.
Step 3: Probability of Error Analysis: We construct a random
code as follows. We generate the random homomorphism as
stated in the previous section. In addition, we generate for ev-
ery u ∈ J , a random vector ℓ independently and uniformly
such that [ℓ] depends only on [u] and ℓ̄ depends on the entire
u. (Need to show the existence of such a PMF). We start by
computing the average probability of error for a fixed u using
Hayashi-Nagaoka inequality [3] as follows:

EC(P (Error|u)) = ECtr
[(

1B′
− ΛB′

u

)
(ρ′)B

′

u,δ

]
⩽2ECtr

[(
1B′

− (Π′)B
′

(x,ℓ)(u)(ρ
′)B

′

(x,ℓ)(u),δ

)]
+4

∑
θ̂∈Θ

∑
u′∈Tθ̂(u)

ECtr

[
(Π′)B

′

([x],[ℓ])([u′]),(x,ℓ̄)(u′)

× (ρ′)B
′

([x],[ℓ)([u]),(x,ℓ̄)(u),δ

]

We work on the two terms in the right hand side. The first

term can be simplified as follows:

ECtr
[(

1B′
− (Π′)B

′

([x],[ℓ])([u]),(x,ℓ̄)(u)

)
(ρ′)B

′

([x],[ℓ])([u]),(x,ℓ̄)(u),δ

]
=

1

|L|ζ(G)

∑
x,ℓ

P (x)tr[(ρ′)B
′

x,ℓ − (Π′)B
′

x,ℓ(ρ
′)B

′

x,ℓ]

(a)

⩽
4

|L|ζ(G)

∑
x,ℓ

P (x)tr[(I − (Π)B
′

B̂
)(ρ′)B

′

x,ℓ + (Π′)B
′

W ′
x,ℓ

(ρ′)B
′

x,ℓ]

(b)

⩽16ζ(G)δ2 +
4

|L|ζ(G)

∑
x,ℓ

P (x)tr[(Π′)B
′

W ′
x,ℓ

(ρBx ⊗ |0⟩⟨0|)]

(c)

⩽16ζ(G)δ2 +
4(1 + ζ(G)δ2)

|L|ζ(G)δ2

∑
x,ℓ

P (x)

×
∑
θ̂∈Θ

[
1− tr[(Π)B̂[X];x(ρ

B
x ⊗ |0⟩⟨0|)]

]
=16ζ(G)δ2 +

4(1 + ζ(G)δ2)

|L|ζ(G)δ2

∑
x,ℓ

P (x)

×
∑
θ̂∈Θ

[1− tr[(Π′′)B[X];xρ
B
x ]

(d)

⩽16ζ(G)δ2 +
4(1 + ζ(G)δ2)|Θ|ϵ

δ2
,

where we provide the following arguments. (a) follows from
Fact 3 of [26] and (b) from (15). (c) follows from Proposition
2 [26] by using l = |Θ|, and α = δ2

1+ζ(G)δ2 . (d) follows from
(13).

Next we look at the second term as follows. Note that

Tθ̂(u) = {u′ : [u′] = [u], u′ ̸= u}.

For any u′ ∈ Tθ̂(u), we have

ECtr
[(

(Π′)B
′

([x],[ℓ])([u]),(x,ℓ̄)(u′)

)
(ρ′)B

′

([x],[ℓ])([u]),(x,ℓ̄)(u),δ

]
=

1

|L|ζ(G)+ζ(H)

∑
[x],[ℓ],x,ℓ̄

∑
x′,ℓ̄′

P ([x])P (x)P (x′)

× tr[(Π′)B
′

[x],[ℓ],x′,ℓ̄′
(ρ′)B

′

[x],[ℓ],x,ℓ̄,δ]

=
1

|L|ζ(G)

∑
[x],[ℓ],x′,ℓ̄′

P ([x])P (x′)tr[(Π′)B
′

[x],[ℓ],x′,ℓ̄′
(ρ′)B

′

[x],[ℓ]]

(a)

⩽
∑

[x],[ℓ],x′,ℓ̄′

P ([x])P (x′)

|L|ζ(G)

× tr[(Π′)B
′

[x],[ℓ],x′,ℓ̄′
T[X];[ℓ](ρ

B
[x] ⊗ |0⟩⟨0|)] + 4ζ(G)δ|B|√

|L|
(b)

⩽
∑

[x],[ℓ],x′,ℓ̄′

P ([x])P (x′)

|L|ζ(G)
tr[(I − (Π′)B

′

W ′
[x],[ℓ],x′,ℓ̄′

)

× T[X];[ℓ](ρ
B
[x] ⊗ |0⟩⟨0|)] + 4ζ(G)δ|B|√

|L|
(c)

⩽
∑

[x],[ℓ],x′,ℓ̄′

P ([x])P (x′)

|L|ζ(G)
tr[(I − (Π′)B

′

W ′
[X];[x],[ℓ],x′,l̄′

)

× T[X];[ℓ](ρ
B
[x] ⊗ |0⟩⟨0|)] + 4ζ(G)δ|B|√

|L|



(d)
=

1

|L|ζ(G)

∑
[x],[ℓ],x′,ℓ̄′

P ([x])P (x′)tr[(I − (Π)B̂W
[X];[x],x′

)

× (ρB[x] ⊗ |0⟩⟨0|)] + 4ζ(G)δ|B|√
|L|

=
∑

[x],[ℓ],x′,ℓ̄′

P ([x])P (x′)

|L|ζ(G)
tr[(Π′′)B

[X];[x],x′(ρ
B
[x])] +

4ζ(G)δ|B|√
|L|

(e)

⩽2
(
2−Iϵ,θ̂

H (X;[X],B)
)
,

for large enough L, where (a) follows from (19), (20), (b) from
using (17), ((c) from using (16), (d) from the fact that T[X];[ℓ]

is an isometry, and hence

tr[(Π′)B
′

W ′
[X];[x],[ℓ],x′,ℓ̄′

T[X];[ℓ](ρ
B
[x] ⊗ |0⟩⟨0|)]

= tr[(Π)B̂W
[X];[x],x′

(ρB[x] ⊗ |0⟩⟨0|)],

and (e) from (13). Combining the three terms we obtain the
average probability of error for a fixed u as

EC(P (Error|u)) ⩽ 16ζ(G)δ2 +
4(1 + ζ(G)δ2)|Θ|ϵ

δ2

+8
∑
θ̂∈Θ

|Tθ̂|2
−Iϵ,θ̂

H (X,[X];B).

for large enough L.

F. Proof of Converse for CQ Channel

Based on Lemma 1, for each group code C ⩽ G, there exists
a group J and a homomorphism such that C is the image of the
homomorphism. Assume now that a group transmission sys-
tem with parameters (1, |J | , ϵ) exists over a classical-quantum
channel N =

{
ρBx

}
x∈X , where X = G is an Abelian group,

and J =
⊕

p∈P(G)

⊕rp
s=1Z

kp,s

ps . Assume that the homomor-
phism ϕ for the group code C is a one-to-one mapping.

Let θ̂ be a vector indexed by (p, s) ∈ S(G) with 0 ⩽ θ̂p,s ⩽
s. For an message u ∈ J , construct a one-to-one correspon-
dence between up,s ∈ Zkp,s

ps and the tuple (ũp,s, ûp,s) where
ũp,s ∈ pθ̂p,sZ

kp,s

ps and ûp,s ∈ Z
kp,s

pθ̂p,s
. Consider the subcode

C1(θ̂, û) of C as defined in the classical channel case. Let
x = ϕ(u) + V be the channel input and Hθ̂ be given as in
(7). Then C1(θ̂, û) = [x]θ̂ = x+Hθ̂. That is, there is an one-
to-one correspondence between Û and [X]θ̂. Also,

∣∣Tθ̂(u)
∣∣ =∣∣∣C1(θ̂, û)

∣∣∣ = ∣∣Hθ̂

∣∣ for all u ∈ J .
Define a one-to-one correspondence between x and the tuple

(x̃θ̂, [x]θ̂) where x̃θ̂ = ϕ(ũ). Consider a genie-aided receiver
which gets access to Û and denote it by Dga. Equivalently,
this receiver has access to the coset information [X]θ̂ of X

and can be realized by a family of POVMs
{
E

[x]
x

}
. Clearly

the average probability of error for this decoder must be not
greater than ϵ. Let X ′ ∈ X be the output of Dga. For every
θ̂ ̸= s, the average probability of error for this decoder is∑

û

∑
x,x′

Pr(û)PXX′|Û (x, x
′ | û)1{x′ ̸=x} ⩽ ϵ,

where PXX′|Û (x, x
′|û) ≜ PX|[Xr](x|[x])tr

[
E

[x]
x′ ρx

]
.

Note that the decoding POVM can be viewed as a CPM.
This CPM maps ρAB to the (classical) state PXX′ denoting
the joint distribution of the transmitted codeword X and the
decoder’s guess X ′. Similarly, it maps ρĀρ[A]B to PÛ (PX|Û ⊗
PX′|Û ). Hence, it follows from the DPI for Dϵ

H(ρ∥σ) that

Dϵ
H(PXX′∥PÛ (PX|Û ⊗ PX′|Û )) ⩽ Dϵ

H(ρ
AB∥ρĀρ[A]B) .

Consider the strategy to distinguish PXX′ and PÛ (PX|Û ⊗
PX′|Û ) as given in the classical channel case, under which the
type-I error probability is not larger than ϵ, and the probability
of type-II error (misdetection) is 1

|H| . That is,

Dϵ
H(ρ

AB∥ρĀρ[A]B) ⩾ Dϵ
H(PXX′∥PÛ (PX|Û ⊗ PX′|Û ))

= log2 |H| = log2
∣∣Tθ̂(u)

∣∣ . (29)

Using (9), we may rewrite (29) compactly as Iϵ,θ̂H (X; [X]Y ) ⩾
(1− ωθ̂)R.

G. Proofs for Section VI

Proof of Theorem 5:
Achievability– We use the n independent copies of the chan-

nel, and make the observation that S(G) = S(Gn) for all
n ⩾ 1. Using this and Theorem 1, we see that there exists a
(n, |J | , ϵ′)-code such that

ϵ′ ⩽ ϵ+
∑
θ̂ ̸=s

exp2

{
(1− ωθ̂)nR− I

ϵθ̂
H (X

n

θ̂ ; [X]n
θ̂
Y n)

}
,

where the rate R is given in Equation (6), and the joint dis-
tribution of the input and the output of the channel is given
by

P (Xn = xn, Y n = yn) =

n∏
i=1

PX(xi)WY |X(yi|xi),

where PX(x) = 1
|G| . Then we have the random vec-

tors will have the following distributions. For xn
r =

(xr,1, xr,2, . . . , xr,n) ∈ Gn, [xn
r ] denotes the coset repre-

sentative of xn
r + Hn in Gn, and the product conditional

distribution Pn
Y |[X] is defined as

Pn
Y |[X](y

n | [xn
r ]) ≜

n∏
i=1

PY |[X](yi | [xr,i])

=
∑

xn∈[xn
r ]+Hn

Pn
X|[X](x

n|[xn
r ])W

n
Y |X(yn|xn),

where P[X] and PX|[X] are given in Definition 4 and used in
the one-shot case.

Pn
[X] =

|H|n

|G|n
, Pn

X|[X](x
n | [xn

r ]) =

{
1

|H|n if xn ∈ [xr]
n,

0 otherwise.

Now since all distributions are in a product form, we can use
AEP [25] for hypothesis testing relative entropy as: for all ϵ >
0, and all θ̂,

lim
n→∞

1

n
Iϵ,θ̂H (X

n

θ̂ ; [X]n
θ̂
Y n) = I(X θ̂; [X]θ̂, Y ) = I(X θ̂;Y |[X]θ̂).

This gives the desired achievability result. Theorem 5
Converse– The converse follows from [15].



Proof of Theorem 6:
The achievability follows by exploiting the product nature

of the input distribution and the quantum Stein’s lemma [27,
Theorem 2]. We skip the details due to lack of space. We skip
the proof of the converse due to lack of space. The complete
details will be provided in the longer version of the paper.
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