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ABSTRACT

Methods for Analyzing Physics Student Retention and Physics
Curricula

John D. Hansen

Retention of students in college has been a concern of academic institutions for many
years. In the last two decades, the focus on student retention in STEM fields has intensified.
The current graduation rate of students in science, technology, engineering and mathematics
(STEM) fields is well below that required to fill the projected need of STEM profession-
als. The work presented in this dissertation investigates the problem of student retention
in physics programs. Four studies were performed. The first identifies the relationships
between student retention and pre-college and early-college academic factors at an eastern
U.S. university using logistic regression and Bayesian networks. The second uses Bayesian
networks to predict the outcomes of physics course grades, using prior physics and math
course grades as evidence, to assist academic advisors and physics departments as they help
students progress through their physics curriculum. The third part investigates the com-
plexity of physics curricula at 60 U.S. institutions using Curricular Analytics and compares
the differences in complexity of programs with different national rankings. The final part
evaluates a common physics conceptual assessment to determine the structure of knowl-
edge the assessment measures; assessments that accurately measure student knowledge in
physics are essential in designing courses and programs that successfully train future STEM
professionals.
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Chapter 1

Introduction to Physics Education Research



1.1 Introduction

The 2012 President’s Council of Advisors on Science and Technology emphasized the
need to improve STEM student retention to avoid a candidate shortfall of 1 million STEM
jobs [2]. At the time, they estimated that less than 40% of students who enroll in STEM
degrees complete those degrees, and the completion rate is even more concerning for stu-
dents who are under-represented minorities (URM). A decade later we still see the need to
improve STEM student graduation rates to fill jobs in STEM. This has led to increased
focus in Discipline Based Education Research (DBER) to improve retention and graduation
rates of students seeking STEM degrees. Similar concerns in the 1960’s and 1970’s, and
perhaps added pressure from the Cold War space race, prompted government funding into
the new field of Physics Education Research (PER) in hope of increasing the number of stu-
dents seeking careers in the space industry and other physics-related fields [3]. This chapter
will present a brief history of PER, starting with its origins in conceptual understanding,
and moving through the development of conceptual inventories and other research-based
curricular materials and instructional strategies.

The research contained in this dissertation will introduce and demonstrate methods
that can be used to improve student retention to degree completion. While the work here
focuses on the domain of physics, it should also be applicable to other STEM fields. It is
subdivided into four main parts: Part 1 explores patterns of physics student retention at
a public R1 institution while also investigating the attrition points and critical courses in
the physics program; Part 2 uses Bayesian network methodologies to predict physics course

grades, Part 3 int;oduces a new analytic technique to PER, Curricular Analytics, that will



be used to quantify the complexity of physics academic programs; and Part 4 investigates
the knowledge structure of a commonly used conceptual instrument, the Brief Electricity
and Magnetism Assessment (BEMA) and further supports the need to improve instruments
that measure modern physics students understanding so that physics educators can better

serve undergraduate students in physics classrooms.

1.2 Conceptual Understanding

In the 1970’s, physics instructors began to recognize a problem in physics education;
many of the misconceptions that students had about physics before taking a physics course
were still present after successful completion of a physics course [4-6]. These misconceptions,
in theory, should have been remedied by completing a physics course, where students should
have connected the physical laws and principles with real life experiences. This led to an
examination of educational practices; instruction was modified to better serve students, help-
ing them overcome their misconceptions. Prior to these studies, qualitative understanding
had not been emphasized, but rather mathematical logic and reasoning were the focus of
instruction. This focus on qualitative or conceptual understanding led to the development
of several conceptual inventories that measure conceptual knowledge in introductory physics

courses.

1.2.1 Conceptual Inventories

One of the first and the most widely used conceptual inventory was the Force Concept
Inventory (FCI), developed Hestenes et al. to measure conceptual understanding of forces

and kinematics in introductory classical mechanics courses [7]. Other conceptual instruments



have been developed in many different areas of physics, but the most popular are the FCI
and the Force Motion Conceptual Evaluation (FMCE)[8] for classical mechanics and the
Conceptual Survey of Electricity and Magnetism (CSEM) [9] and the Brief Electricity and
Magnetism Assessment (BEMA) [10] for introductory classes in electricity and magnetism.
Each of these instruments have undergone various forms of reliability and validity testing to
ensure they accurately measure conceptual understanding in their specified domain; recent
studies employing Item Response Theory (IRT) have shown that these instruments are less
accurate than initially thought, and the concepts taught in introductory physics courses
are not completely reflected in the conceptual coverage of the instruments [11-14]. These
studies have proposed that the instruments be updated or new instruments be written to
better serve physics instructors and students. One of these studies is presented in Chapter

8 of this dissertation.

1.2.2 Normalized Gain

These conceptual instruments are often employed as a pretest before the respective
introductory physics course and then re-administered as a post-test at the completion of
the course. Often they are used as an evaluation tool to gauge the effectiveness of an
instructor at improving students’ conceptual understanding. This allows the study of the
types of instruction that most improve conceptual understanding. Hake, using FCI scores
from 62 different courses at several institutions, compared instruction types by examining
how much the FCI score increased from pretest to post-test [1]. To compare different student

populations he used:
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which is referred to as the normalized gain or the Hake gain, where (S;) is the class pretest

average and (Sy) is the class post-test average, both on a scale from 0 to 100. This normalized

gain scales the pretest to post-test gain by the maximum possible gain. Hake claimed that

this allowed comparison across institutions.
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Figure 1.1: Results of Gain vs Pretest score in [1]. Lines represent normalized gain thresholds, with steeper
lines representing greater gains. Shaded markers indicate traditional teaching methods, while empty markers
represent reformed instruction or active learning strategies.

Hake showed that instructors who used active learning strategies, or engaged learning

strategies, had greater gain scores at the end of instruction than instructors who used tradi-

tional lecture methods. This is shown in Fig 1.1 where each marker represents the FCI Hake

gain score at one of the 62 courses involved in the study. This study led to increased research



into active learning strategies and their effectiveness, and was instrumental in supporting

the broad adoption of these strategies.

1.3 Research-Based Instructional Strategies

The research in active learning strategies, or research into improving instruction and
curriculum, has led to the development of many research-based instructional strategies
(RBIS). Docktor and Mestre, in their synthesis of PER, divide RBIS into 5 groups: lecture-
based methods, recitation or discussion methods, laboratory methods, structural changes to

classroom environment, and general instructional strategies and materials [15].

1.3.1 Lecture-based Strategies

Lecture-based RBIS center around the goal of improving student interactions with
their peers and their instructors in a lecture setting. One of the most common forms of
lecture-based RBIS is the use of polling technology, often in the form of “clickers”. One of
the earliest methods of using “clickers” was Peer Instruction introduced by Mazur [16]. In
Peer Instruction or other forms of polling, the instructor presents a conceptual or qualitative
multiple-choice question, and students discuss with their nearby peers, and then select an
answer. A class-wide discussion takes place, and together the class arrives at the correct
solution. This method has been shown to be effective in increasing normalized gains in
courses when compared to traditionally taught courses, as well as leading to decreased course
attrition [17]. Interactive Lecture Demonstrations (ILDs) is another lecture-based RBIS |,
where a physical demonstration or experiment is presented to the students. The students, in

discussion with their peers, make a prediction of what will occur during the demonstration,



observe the demonstration, and then compare their predictions to their observations [18].

1.3.2 Recitation-based Strategies

Recitation-based RBIS are designed to make the recitation setting more active for the
students, with the intention of developing conceptual understanding of physics. The Tu-
torials in Introductory Physics (TIP) [19] was developed at the University of Washington
to replace the traditional format of recitations where teaching assistants review homework
problems on the board. A recitation using TIP consisys of pretests, worksheets, and home-
work assignments. Students work in groups of 3-4 and are taken through the process of
understanding and thinking critically about the physics under consideration, while also con-
fronting their misconceptions. Some variations to the TIP curriculum have been published
by researchers at the University of Maryland: the Activity-Based Tutorials (ABT) and the
Open-Source Tutorials (OST) [20, 21]. Each of these tutorial programs showed improved
student understanding and course outcomes, as well as improved normalized gains compared
to traditional recitation methods [22-24]. Another recitation-based RBIS that was shown to
improve problem-solving capabilities is cooperative learning [25], a strategy for collaborative
group problem solving. Students are split into groups of 2 or 3 and collaboratively work on

context-rich problems.

1.3.3 Laboratory-based Strategies

Traditional labs have often been described as “cook book” or “cookie-cutter” because
they require students to follow a step-by-step procedure with little thought required [26]. At-

tempts to rectify these problems included the use of various technological tools such as sonic



rangers or video-analysis software to get real-time data of kinematic motion and to generate
graphical outputs. Students in these types of labs were shown to have greater understanding
of graphs and kinematic concepts [27, 28]. Another strategy is to engage students in the
process of science during their lab; for example, the Investigative Science Learning Environ-
ment (ISLE) labs remove the pre-built nature of traditional labs and students are required
to make their own hypothesis based on a new phenomenon and test them with their own
experiments [29]. Students in ISLE labs showed improved scientist-like thinking, as well
as improved skills associated with scientists, such as data analysis and experiment design.
ISLE labs pose a question of general interest to physics instructors everywhere, which is
“What is the purpose of introductory physics laboratory courses? Should students in these
labs be learning scientific skills in a physics setting, or is the purpose strictly for students
to learn physics concepts?” The overall effectiveness of introductory labs and lab-based in-
struction has been called into question [30], and in a multi-institution and multi-course study
there was no difference on final exam scores between students who enrolled in a lab-course
and those who did not, further calling into question the focus of interventions to improve

laboratory-based courses.

1.3.4 Classroom Environment-Based Strategies

Many studies have analyzed the effect of changing the classroom environment in ways
such as rearranging seating, including technology, and combining laboratory activities with
lecture activities in a workshop-like or studio setting. One of these RBIS is Student-Centered

Active Learning Environment for Undergraduate Programs (SCALE-UP) [31]. In SCALE-

UP classrooms, students sit at round tables and are separated into groups at each table. Each



group has access to a laptop and whiteboards to work collaboratively on hands-on activities
and problems that occur in tandem with lecture. An extension of the SCALE-UP RBIS is the
Technology-Enabled Active Learning project (TEAL) [32]. TEAL uses the same classroom
design as SCALE-UP, where laboratory activities and lecture activities are combined into a
single experience, and expands upon it by implementing technology-enhanced visualizations
and activities. Both methods have been shown to improve conceptual gains and student
completion rates [31, 32]. Students were slightly more favorable toward studio-style classes

than traditional lecture classes.

1.3.5 General Instructional Materials

Several textbooks have been written based on results from PER, such as Understanding
Physics [33] and Physics for Scientists and Engineers: A Strategic Approach [34] and Siz
Ideas that Shaped Physics [35]. Another PER based curriculum is Matter and Interactions
[36], which is intended for introductory calculus-based physics courses. Other materials in-
clude simulation resources such as the University of Colorado’s PhET project, which provides
a range of simulations of phenomena in the sciences, as well as resources for activities that

accompany the simulations [37].

Conclusion

At its core, PER is focused on improving the success of students in physics classes
and physics programs. The past research discussed in this chapter describes much of the
work that has been done to improve student learning and success in physics classrooms. The

inclusion of these RBIS in physics classes will improve the success rate of students in those



classes. At the core of student success in physics programs is the success of students in the
required classes of that program. The following chapter gives a broad overview of research
specific to college student retention, in preparation for the research presented in Chapters

4-7 of this dissertation.

10



Chapter 2

Student Retention and Educational Data Mining
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The research presented in this dissertation is focused on introducing several different
types of analysis that physics and other STEM departments can use to investigate student
retention and to inform decision making regarding curricular changes that improve student
success via degree completion. This chapter presents a literature review of the work that
has been done to recognize patterns in student retention and effective practices to improve
student retention, while also giving a brief overview of the use of educational data mining in

answering questions regarding student retention.

2.1 Retention

While little research into physics major persistence has been performed within PER,
substantial research has investigated general college persistence and success as well as persis-
tence in science, technology, engineering, and mathematics (STEM) majors. Within PER,
a substantial research strand has investigated factors influencing student success in physics
classes, a key component of college retention. The work contained herein focuses on quan-
titative factors that affect physics student retention. As such this review focuses on studies
that examine quantitative factors in retention. There are many studies that examine qual-
itative factors in STEM and general student retention [38-40], as well as the retention of
several demographic groups [41-44]. This qualitative body of research lends greater context

to the factors that ultimately cause a student to leave the sciences.

2.1.1 Physics retention

Some studies have explored the issue of retention in physics including retention of

majors to physics degrees, retention within the introductory sequence, and intention to
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persist in physics. Aiken et al. used a random forest machine learning model to examine
the factors most important in predicting whether a student would earn a physics degree [45].
They found that taking Modern Physics and taking an engineering class were the variables
most important in the prediction.

Zwolak et al. examined the retention of students in a physics course sequence, which
included other scientists and engineers. Zwolak et al. used network analysis to determine
students’ social and academic integration which was used to predict if students who enrolled
in the first course of an introductory physics course sequence would persist to the second
course in the sequence [46]. They found that by using a student’s centrality measures in the
integration network, they could predict a student’s persistence in the sequence at a rate of
seventy-five percent. This is similar to work done by Forsman et al. who used complexity
science in analyzing social and academic networks of students in physics courses to explain
student retention [47].

A largely qualitative study by Stiles-Clark and MacLeod surveyed students after the
second course of a two-course calculus-based introductory physics sequence and asked about
factors that influenced the decision to continue in the physics program or a different program
at the university. They found that the primary reasons for persistence were the student’s
interest in the subject matter, the quality of their physics instructors, and their perceived
career opportunities with a physics degree [48]. The researchers noted the need for physics
faculty to engage students in research-based classroom and lecture techniques, as well, as

the need to combat misconceptions about career opportunities for physics degrees.
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2.1.2 General college retention

College retention and college persistence are major research strands in general educa-
tion research. High school academic preparation is an important predictor of college success.
Composite SAT scores are highly correlated with GPA in the first year of college [49]. Bench-
marks for ACT composite scores have been created indicating the score required for 50%
chance of earning at least a B in introductory college classes [50]. High school GPA is more
variable due to the variety of high school curricula [51] but is still a strong predictor of first
year GPA [52, 53] and overall college GPA [54]. One educational data mining study found
that factors associated with the socioeconomic status and first generation status were highly
predictive of retention after a student’s third year as was a lack of academic preparedness
based on ACT and COMPASS scores [55]. The COMPASS tests are administered by ACT
Inc.; COMPASS scores are designed to help place students in the appropriate college classes.

Research into college student retention represents a major strand in general education
research. A book with a foreword by Tinto [56] reviews the history of the field including
differing models of student retention, economic considerations of student retention, retention
in less traditional colleges such as community colleges and online colleges, as well as suggested
actions to improve student retention. Although several models of student retention have been
postulated, the most widely applied model was developed by Tinto [57, 58]. Tinto proposed
that a student’s persistence depends on their skills, attributes, intentions, commitment, and
interactions with students and faculty within the college. He claimed the most important
factor in student retention was the student’s experiences in the college, and as a student

became more integrated into the academic and social communities at the college the more
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likely they were to persevere until graduation. Social integration refers to student-to-student
interactions and involvement in extra-curricular activities available at the college. Academic
integration is described as the congruence of a student’s abilities, skills, and interests with
the academic demands of the institution and also interactions between the student and
faculty and staff. In 2012, Tinto introduced a framework for institutional actions to improve
student retention [59]. His framework focused on improving teaching methods and classroom
interventions as this is the primary interaction between students and faculty and thus the
primary way they can become integrated into the college’s academic community. While
improving retention is often an institutional priority, a study by Henderson et al. [60]
showed that among physics faculty, only 48% use methods that have been empirically proven

to improve student learning, and only 23% used them at a high level.

2.1.3 STEM retention

The demand for employees having at least a bachelor’s degree in a STEM discipline
continues to grow [61]. Despite the critical need, only 40% of STEM students graduate with
a STEM degree [2]. In a 2014, the U.S. Department of Education reported wide variation
in the attrition rates (defined as leaving the university or the degree) of different STEM
disciplines with an average rate of 48%. Attrition was highest for computer/information
science majors (59%) and lowest for mathematics majors (38%) [62]. This attrition rate
was lower than the attrition rate of students in the humanities or education (56-62%) and
approximately equal to the rate for students in business and social/behavioral science [62].

Many studies have investigated STEM degree retention and methods to improve reten-

tion [63, 62, 64-69]. In general, measures of prior high school preparation (high school GPA
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and ACT/SAT scores) as well as college performance metrics such as credit completion and
college GPA were important factors in predicting student retention. Other factors that have
been found to be important include relationships between faculty and students [70, 71}, the
use of learning communities [72], the implementation of a career planning seminar or career
planning course [73, 74|, a scientific thought and methods course [75], and for engineering
students their grades in introductory physics courses [76]. A study using self-reported sur-
vey data [77] found that an institution’s academic environment was important for students
deciding to stay in STEM: features such as smaller class sizes, more integration of undergrad-
uate student research, faculty teaching skills and whether or not students were engaged in
active learning strategies were important. A review article by Sithole et al. synthesizes many
reforms or changes that have been suggested to improve student retention such as improved
academic advising, blending courses, peer mentoring, instruction in time management and

study habits, and improving high school STEM curriculum and instruction [78].

2.1.4 Physics course success

Many PER studies have examined factors which influence student success in physics
courses (generally introductory courses) using metrics such as final exam grade, course grade,
and conceptual post-test scores. A certain level of success in physics courses is typically
required for persistence in the major. One would also hypothesize that students who are
more successful in their introductory physics courses are more likely to persist in the physics
major. Much of this research has examined either instructional methods to increase success
or remove conceptual barriers (misconceptions) that prevent success. Meltzer and Thornton

provide an extensive review of research into interactive instructional methods and the efficacy
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of these methods [79]. Research into student misconceptions spans the history of PER [80-
83]. In 2014, the National Academy of Sciences published a synthesis of results from many
disciplines showing interactive instruction improved conceptual performance as well as course
outcomes [84]. A further meta-analysis demonstrated the efficacy of these methods at the
college and pre-college level [85].

Recent studies have examined how general high school preparation metrics (ACT and
SAT scores) and prior preparation in physics measured by conceptual pretest scores affect
course outcome measures including final exam grades, overall course grades, and conceptual
post-test scores [86-88]. These studies show that both general high school preparation and
specific preparation in physics are important in predicting student outcomes; they also show
that different factors are of varying importance for different demographic groups. Studies
have also investigated the details of high school physics preparation as well as non-cognitive
variables such as parental support as predictors of success in college physics classes [89].

Success in calculus-based introductory physics courses is also key for engineering and
other science majors, who generally make up the majority of the students in an introductory
physics class. A recent study by Wingate et al. [76] found that success in introductory
physics courses was predictive of success in later engineering courses and persistence to an
engineering degree. Most students who received a high grade in the introductory physics
sequence continued to achieve high grades through the rest of the engineering coursework,

while those who received a lower grade continued to struggle through their remaining classes.
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2.2 Educational Data Mining

Educational data mining (EDM) involves the use of statistical, traditional, and ma-
chine learning data mining techniques to interpret and analyze educational data. With the
advent of university learning management systems and increases in computing power, a very
substantial branch of education research has attempted to use these large data systems and
emerging computer technologies to predict both in-class success and retention to graduation.
These techniques are called educational data mining (EDM) or learning analytics. Multiple
reviews have summarized the efficacy of the numerous algorithms used by EDM to predict
both in-class and overall student performance [90-97]. The application of data mining to
the university retention problem began in the early nineties; Nandeshwar et al. provides
a review of this work [55]. They report that college performance, high school GPA, ACT
scores, and some socio-family factors affect student retention.

These techniques have been used in multiple studies to predict student first-year re-
tention and persistence through graduation for engineering students [98-102, 73, 103]. Engi-
neering students form the majority of the students in the calculus-based introductory physics
classes taken by physics majors. Machine learning has recently be applied in PER to under-
stand student performance in physics classes [104, 105]. The work in Chapters 4-6 of this

dissertation uses EDM techniques in the analyses presented.

Conclusion

It is a responsibility of physics departments to make their curriculum, or program

of study, effective in the retention of, instruction of, and preparation of physics students,
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so those students can pursue meaningful careers in education, industry, or academia. A
failure in any of the areas of retention, instruction, or preparation should be addressed by
physics departments and changes should be made to improve student success. The research
presented in this thesis is intended to inform university physics departments on methods to
analyze the picture of retention in their department so they have better information to make

decisions regarding changes to their program’s course structure, instruction, and advising.
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Chapter 3

Statistical Methods
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Statistics is the collection, organization, analysis, interpretation, and presentation of
data. Generally it is divided into two categories: descriptive statistics and inferential statis-
tics. This chapter will introduce several statistical methods or techniques that were used
in the research presented in this manuscript. Additional methods will be introduced in this

manuscript as needed.

3.1 Descriptive Statistics

Generally, the first step in quantitative analysis of data is an exploration of the data.
This often includes visual exploration via scatter plots or bar charts and the calculation of
descriptive statistics for relevant variables. The most important statistics are those that

measure central tendency and those that describe the variability of the data.

3.1.1 Measures of Central Tendency

Central tendency measures include the mean, median, and the mode. These measures
give an estimate of a "typical” value for a certain variable. In the research that follows
hereafter, only the mean and median of a dataset are used. The mean, or average, of a

sample is defined as

M = 2 (3.1)

where the value of a specific variable is summed for all entries in the data, and divided
by the total number of data points in the sample. The sample mean is an estimate of the

population mean, defined as
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(3.2)

where the value of a specific variable is summed for all members in a population, and divided
by the size of the population [106]. The median is defined as the middlemost value of a
variable when the data points are listed in rank order of the variable. This measure splits
the data in half, as 50% of the data points have a value less than or equal to the median,

and 50% of the data points have a value greater than or equal to the median.

3.1.2 Variability

Measures of variability describe how the data is spread about the mean. The sample
variance illustrates this, though the standard deviation - the square root of the variance - is
more useful as it is in the same units as the data and the mean. The standard deviation of

a sample is defined as

SD = |~ i - z;(x — M)? (3.3)

where the denominator of n — 1 is the degrees of freedom, and allows the sample standard
deviation to serve as an un-biased estimator of the population standard deviation, which
would have a denominator of N, the size of the population [106].

When comparing means of different samples in a population, the standard error (SE)
is a more useful measure of variability than the standard deviation. It describes variability

of the sample mean about the population mean. For a normally distributed sample
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SE = STZ (3.4)

where n is the sample size [106]. A confidence interval (CI) gives an estimated range for
an unknown parameter, often a population mean. The confidence level at which a CI is
computed affects the width of the CI. A confidence level of 95% is the most common, though
other levels such as 90% and 99% are common as well, with higher confidence levels typically
giving a wider CI. Samples with a smaller standard error will have a narrower CI. A 95% CI
can be calculated as

CI =M +1.96(SE) (3.5)

where 1.96 is the z-score related to a 95% confidence level (a z-score measures how far an
observation is from the mean in terms of the standard deviation of the sample). A 95%
CI is sometimes described as a range of values that the unknown parameter lies within
at a 95% probability. This is incorrect, but rather the CI is a range of values that are
not significantly different from the estimated unknown parameter, at a level of significance
appropriate to the confidence level (a 95% confidence level would have a level of significance

of 0.05). Significance levels are defined in the following section.

3.2 Inferential Statistics

Inferential statistics are methods that allows the researcher to test assumptions about
the data, such as testing how likely an observed difference in mean scores happened by

chance.
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3.2.1 Hypothesis Testing

Hypothesis testing, or null hypothesis significance testing, is one of the most common
forms of inferential statistics. Generally it is used to compare the means of two samples or
the mean of a sample to the population mean. To do this one states a null hypothesis H
(e.g. the means of the samples are not significantly different, Hy : M; = Ms). One then
selects a mutually exclusive assumption, the alternate hypothesis H;. This hypothesis could
be one-sided (e.g. the mean of sample 1 is greater than the mean of sample 2) or two-sided
(e.g. the mean of sample 1 is different than the mean of sample 2, meaning it could be either
greater than or less than). Testing the hypothesis consists of assuming the null hypothesis is
true and then calculating a test statistic. The distribution of the test statistic is known; the
probability p that the calculated test statistic value occurred by chance is then computed.
The p-value is compared to the chosen significance threshold, «, and results where p < « are
considered to be significant. In these cases the null hypothesis is rejected, and the alternate
hypothesis is accepted. There are several common test statistics such as the ¢-score, the

z-score, and the F-score.

ANOVA

Analysis of variance (ANOVA) is a hypothesis testing method for comparing the means
of two or more groups within a sample. ANOVA uses the F' test, which calculates the ratio
of the explained variance to the unexplained variance to determine if the group means are
significantly different from each other. In this manuscript, one-way ANOVA testing is used,

which determines if group means are different, where the groups are defined based on a
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specific factor. In this case, the null hypothesis takes the form Hy = py = po = s = ... = g
where k is the number of groups. The alternate hypothesis H; simply states that all or some
of the means of the groups are not equal. Like general hypothesis testing, the F-statistic is
compared to a critical value, determined by « and the degrees of freedom of the groups, and

if the F-value is greater than or equal to the critical value the null hypothesis is rejected.

3.2.2 Effect Size

While hypothesis testing estimates whether or not a difference is significant, it cannot
be used to determine whether a difference is practically meaningful, nor can it be used to
determine the functional size of the difference. Cohen introduced the “effect size” which
provides a measure of the size of the difference in two random variables [107]. Effect sizes
classify differences in means as small, medium, or large effects. For differences in means, the

most common effect size is Cohen’s d, which is defined as

M, — M,
N o

d (3.6)

where the numerator is the difference in the means and the denominator is the pooled
standard deviation. The criteria for the effect size of d is that a value of 0.2 is considered a
small effect, 0.5 is considered a medium effect, and 0.8 is considered a large effect.

The uncertainty of the difference between means can be calculated with the standard

error for the difference between means, defined as

SD?  SD2
+ .
1 %)

SEn, s, = (3.7)
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3.2.3 Error

Two types of error can occur during hypothesis testing; Type I and Type II errors.
A Type I error occurs when the null hypothesis is rejected when it should not be, when
there is actually no difference in the means. This is defined as a false positive and occurs
due to random fluctuations in the data being interpreted as an actual effect. When using a
significance threshold of o = 0.05, this error should occur once in 20 statistical tests. The
most common correction for this type of error is the Bonferroni correction, which adjusts the
significance threshold based on the number of statistical tests performed. Type II errors are
defined as false negatives, where the null hypothesis is accepted when it is actually false. A
common source of Type II errors is insufficient sample size, which leads to a lack of statistical
power. To avoid this type of error, one can perform a power analysis to determine whether

the sample size is sufficient to reliably detect the effect and significance.

3.2.4 Beyond Significance Testing

The correct use and interpretation of statistical methods is central to the effectiveness
of PER. As such the PER community should be up to date in the latest advancements
and changes in statistical research. In the last decade the topic of hypothesis testing and
reporting significance determined by p values has been called into question, to the point
that some journals discourage the use of null hypothesis significance testing (NHST). One
journal has even banned the use of p values in its publications [108]. One of the biggest
arguments for the elimination of p-value reporting is that it is so poorly understood and

often incorrectly interpreted so that many faulty conclusions are drawn from valid statistical
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work [109]. Greenland et al. [108] summarizes many of the misinterpretations that plague
p-values, as well as misinterpretations of confidence intervals and power testing. Other issues
arise with the use of p-values, such as dichotomous thinking that something is significant
or not significant based on a p-value being above or below a fairly arbitrary value of 0.05.
This dichotomous thinking has led to misrepresentation of statistical analyses, where only
studies that find significance are reported while those that do not find significant results
are not reported [109]. An effect that is found to be significant in several studies may, in
fact, be insignificant in many other studies, but because the insignificant findings were not
reported, the public receives a skewed or misleading interpretation of findings. Cumming
[110] sets forth a program for nearly eliminating the reporting of p-values and significance
testing and suggests studies focus on effect sizes and estimation. Other studies [111] suggest
the use of a Bayesian approach that focuses on posterior distributions as opposed to the
frequentist NHST approach. These changes in the use of statistics for research purposes are

not widespread in PER.

3.2.5 Boot-strapping

Boot-strapping is a re-sampling technique that removes the need to assume that a
distribution is normal in hypothesis testing. Boot-strapping creates many sub-samples from
a sample (with replacement). The desired test statistic can be be calculated for every sub-
sample, which produces a distribution of the test statistic, which will follow the normal

distribution by the central limit theorem.
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3.3 Regression Analysis

Regression analysis is a category of inferential analysis that quantifies how one variable
will change with respect to another variable or variables. Perhaps the two most common

types are linear regression and logistic regression.

3.3.1 Linear Regression

Linear regression is used to model the variation of a continuous dependent variable
with a linear combination of independent variables, which can be continuous, dichotomous,
or categorical variables. An example of a multivariate linear regression model is shown in

Eqn. 3.8

y = Bo+ Brvr + Pay 4 oo+ Bun + € (3.8)

where y is the dependent variable, z; refers to the various independent variables, and ;
refers to the regression coefficient of variable z;, [, is the intercept and e represents the error
of the regression equation. The variance not explained by the predictors is the mean square
€. Linear regression minimizes the error € in the regression equation by optimally finding
the regression coefficients ;. This essentially maximizes the explained variability in the

distribution of the continuous dependent variable, minimizing the unexplained variability.

3.3.2 Logistic Regression

Logistic regression models how the probability distribution of one of the levels of a

dichotomous variable depends upon the independent variables. These models are generally
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more difficult to interpret than linear regression models, and are explained in more detail in

Chapter 4.

3.4 Factor Analysis

Factor analysis, introduced by Spearman [112], uses a smaller set of unobserved or
unobservable variables to explain the variance in the observed variable; the unobserved
variables are called latent variables. Often these observed variables are item scores on an
assessment instrument, such as a conceptual instrument, and factor analysis describes the
internal structure of the instrument. These unobservable variables are referred to as latent
variables, and are the factors extracted by the analysis. They represent the constructs
measured by the instrument, e.g. Newton’s second law in the FCI. There are two types of

factor analysis: exploratory factor analysis (EFA) and confirmatory factor analysis (CFA).

3.4.1 Exploratory Factor Analysis

In EFA, a set of linear relationships between the items (observed variables) is proposed
where the variables y;; represent the score on item j by participant 7. A set of latent traits
(factors), z;, explains the variation in y. The latent trait x;, is the trait of participant i
associated with factor k. The factor loadings f relate the latent traits measured by an item
j to the factor k based on the observed data. These linear relationships are shown in Eqn.

3.9
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Y1i = f1171 + fre®e + fisxsi + u;.

Yoi = fo1%1; + foao; + fazs + ug;.

Yni = [n1%1i + fn2®oi + frs®si + us;.

where uy; is the residual error for student 7 on item 1. In EFA, items are allowed to load
onto any factor, and are not constrained by any input from the researcher. Generally EFA
creates a set of models where each model extracts one more factor than the previous model,
and these models are compared based on a set of model fit statistics, and the best fitting
model is retained. One of the goals of EFA is to maximize the variance explained with the
fewest number of factors.

The results of EFA form a set of coordinate vectors in the K-dimensional space defined
by the K factors. This coordinate system can be arbitrarily rotated to be easier to interpret.
Many factor rotations exist. A common rotation is varimax rotation which seeks factor
loadings with a few large values and as many zeros as possible and leads to orthogonal
factors. In EFA other rotations allow factors to be correlated (this is theoretically reasonable
in many cases). The goal of rotation is to find the simplest structure of the correlation matrix
that gives easily interpretable results and retains all the pertinent correlations [113]. The
simplest structure possible is one where each item loads only on one factor, and there are no
interfactor correlations. Rotation methods should be carefully chosen, as many researchers

oversimplify the structure through rotation and lose valuable interfactor correlations. For a
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much more in depth review of rotations in EFA and how to select a method see Sass and

Schmitt [113].

3.4.2 Confirmatory Factor Analysis

In CFA, a model is chosen, based on theoretical considerations, a priori to the analysis
and is compared to the observed data. Adjustments are made to the model to try to improve
model fit to the observed data. Generally the model consists of a set of constructs (factors)
that the instrument purports to measure and each item is assigned to load onto a subset of
factors. The model is adjusted by adding or removing items from loading onto factors. To
ensure robsustness, models are often compared using a set of model fit statistics. Common
statistics or fit indices include the root mean square error of approximation (RMSEA), the
comparative fit index (CFI), and the Tucker-Lewis index (TLI). These statistics are explained

in greater detail in Chapter 8.

3.5 Machine Learning

Machine learning algorithms build models from sample data, often called training data,
and then make decisions or predictions based on what they ”learned” from the data. Often
in PER, machine learning algorithms are used for classification tasks or predicting some type
of outcome, though it has also been applied to intelligent tutoring systems and automated
grading of assignments [114]. When machine learning is applied to educational systems,
it is classified as part of the broader field of educational data mining. There are several
approaches to machine learning that are used depending on the task at hand. Here only

supervised learning will be discussed.
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3.5.1 Supervised Learning

In supervised learning, the training data contains both the input information and
the output associated with specific inputs. Perhaps the most common types of supervised

learning algorithms are classification algorithms.

Prediction and Classification

Prediction algorithms attempt to learn characteristics from a set of data, and then
predict the target variable of those data points based on their characteristics. The algorithm
processes the training set or input, recognizing patterns between the independent variables
and the known dependent variables. Once training is complete, the model can be used to
process data where there are no values for the dependent or target variable. The model
“predicts” or assigns a value to the dependent variable. Typically, if the dependent variable
is categorical this is process is referred to as classification. The main goal of prediction
and classification models is to maximize some type of predictive accuracy (different types of
accuracy are discussed in the following section). A commonly used method for improving
predictive accuracy is to use a group of theoretically independent models instead of a single
model. Each individual model “votes” on the prediction and the majority decides the final

prediction. These types of predictors or classifiers are referred to as ensemble predictors.

Model Validation and Evaluation

To ensure that models are learning effectively from the data, some type or several types
of model validation should be employed. These methods generally are used to measure and
improve model prediction accuracy. The holdout method splits the data into a training set
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and a test set. The model learns from the training data, which includes the labels or values
for the dependent variable. The model then is “tested” on the test dataset, where the values
of the dependent variable are hidden from the model, and the model predicts or classifies
the dependent variable. The model prediction can then be compared to the true observed
values, and accuracy can be assessed.

Results of a classification algorithm are summarized in a confusion matrix, as displayed

in Table 3.1.

Actual Negative Actual Positive
Predicted Negative True Negative (TN) False Negative (FN)
Predicted Positive  False Positive (FP)  True Positive (TP)

Table 3.1: Confusion matrix.

For a dichotomous classification, the algorithm predicts the observation to be “positive”
or “negative”, which are assigned to the dichotomous outcome of the target variable by the
researcher. The elements of a confusion matrix are used to calculate most performance
statistics or metrics. The most straight forward metric is the overall classification accuracy,

which is the fraction of correct predictions and shown in Eq. 3.10:

TN+TP

) 3.10
Ntest ( )

accuraccy =

where Nyooy = TP +TN + FP + FN is the total size of the test dataset. The true positive
rate (TPR) or “sensitivity” (Eq. 3.11) is the fraction of positive observations that were
correctly classified, and characterizes the accuracy of the model in predicting the positive
class. Its converse is the true negative rate (TNR) or “specificity” (Eq. 3.12), which is the

fraction of negative observations that were correctly classified.
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TP

b= TP+ FN (3.11)
TN
B2 = TN+ FP (3.12)

In Eqns. 3.11 and 3.12, f3; is the sensitivity and Js is the specificity.

Another common metric is the balanced accuracy, which is the arithmetic mean of the
sensitivity and the specificity. It is a good indicator of how well the model predicts both the
positive and negative class, and is particularly of importance if the dataset is imbalanced or
heavily favors one of the two dichotomous classes. Balanced accuracy can range from 0 to 1
(or 0% to 100%); a balanced accuracy of 0 indicates that there were no correct predictions in
the model, and a balanced accuracy of 1 indicates a model that predicted each observation
correctly. For a model that predicts every observation to be the majority class, the balanced
accuracy would be 0.5, and the overall accuracy would be equal to the ratio of the frequency
of the majority class to the sample size of the test set. The balanced accuracy B is shown
in Eq. 3.13.

B+ B2

B=—7 (3.13)

Cross-validation is a resampling method that trains a model in different iterations based
on different splits of the data. A common form is K-folds cross-validation which randomly
partitions the data into K subsets, and then the model is trained K times where each training
uses one of the subsets as the test set and the other K —1 subsets are used as the training set.

Cross-validation gives an estimate of the accuracy of a predictive model. Other methods are
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also common, and often methods are combined. Different sampling techniques can also be

used to improve model stability, such as bootstrapping, which is discussed in Section 3.2.5

Conclusion

The methods in this chapter are common quantitative tools used in PER, and are
used throughout this manuscript. Other methods used in the research presented herein,
such as survival analysis, Bayesian networks, decision trees, curricular analytics, and multi-
dimensional item response theory, are specific to particular analyses and will be discussed in

the chapters in which they were used in the analysis.
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Chapter 4

Exploring the Retention of Physics Students

*Parts of this chapter were published in “Stewart, J., Hansen, J., & Burkholder, E. (2022). Visualizing
and predicting the path to an undergraduate physics degree at two different institutions. Physical Review
Physics Education Research., 18(2), 020117.”
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4.1 Introduction

Since its inception, Physics Education Research (PER) has investigated issues of critical
importance to university physics departments and to the physics community in general.
Much of this research has explored issues specific to the teaching and learning of physics
[15]. A second more recent strand has explored another central issue, the promotion of
diversity, equity, and inclusion in physics programs and physics classes [115, 116]. A third
issue of central and sometimes existential importance to physics departments is the retention
of physics majors to degree. While the American Institute of Physics maintains detailed
data on the number of physics graduates [117] as well as junior and senior undergraduate
physics enrollment, little is known about how many students enter physics programs and fail
to complete the degree. For many programs, because of the relation between the number
of physics majors and university economic support for the department, the retention and
recruitment of physics majors represents one of the most important departmental priorities.
For some programs, because of state laws closing smaller academic units, retention of majors

is a matter of survival [118].

4.1.1 Research Questions

This work explores physics major retention at one institution with a student body
with an average level of high school academic preparation. This work investigates factors
influencing students departing physics programs through two modes: leaving college entirely

and changing to a different major while staying in college.

RQ1: At which point in their undergraduate physics career are students most at risk of

37



leaving the physics major? How does this differ by modes of leaving the major?

RQ2: What pre-college academic factors influence a student’s risk of leaving the major
through each mode? How does this change if first semester GPA is added as an

independent variable?

This work focuses on pre-college academic factors because these factors largely control the
students progression through the first year of college, which will be shown to be key to
retaining physics majors. These factors determine the first mathematics classes in which a
student enrolls which largely sets the progression of future courses the student must take.
Pre-college factors such as ACT scores also form the primary data available to physics
programs to inform the adjustment of course structures and the placement of students in
those structures to allow more students to succeed.

This work also introduces a number of methods to visualize physics retention which

may be useful for physics departments to understand and improve the retention of majors.

4.1.2 Results of prior research

Student retention is a topic of great importance to institutions of higher learning, and
has been discussed frequently and extensively in academic publications. Little research has
explored physics student retention. The aim of this study is to begin the quantitative analysis
of physics student retention within PER. For a brief synopsis of retention research in physics

and higher learning, see Chapter 2.
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4.2 Methods

4.2.1 Sample

This study investigates retention using samples drawn from a single institution which
will be referred to as Institution 1 throughout this chapter. Institution 1 is a large land-grant
research university in the eastern United States with total undergraduate enrollment in fall
2020 of 20,500 students. The overall demographics of the undergraduate population were
82% White, 4% Black or African American, 4% Hispanic/Latino, 4% non-resident alien, 4%
two or more races, with other groups 2% or less. The ACT composite scores range was 21
to 27 for the 25th percentile to the 75th percentile of students scores [119]. This range of
ACT composite scores represents a range of ACT percentile scores of 21 (59%) to 27 (85%).
Thirty-one percent of undergraduate students were eligible to receive Pell grants. Pell grants
are only given to students of lower socioeconomic status (SES) and are a common measure
of the fraction of low SES students.

The dataset included all students who elected a physics major at any point in their
undergraduate career from the spring 2001 semester to the fall 2019 semester. The univer-
sity undergraduate population grew during this time from 16,000 in 2001. The university
became more diverse over the time period; White students formed 90% of the undergraduate
population in 2001. The ACT score range increased slightly over this period. The details of
the filtering of this raw dataset to the analysis dataset are given in Sec. 4.3.1 to show the
reader some of the complexities of working with institutional data.

This work discusses four classes commonly taken by physics majors. Calculus 1 is the

first semester calculus course introducing integration and differentiation. Physics 1 is the in-

39



troductory calculus-based mechanics class taken by physical scientists and engineers. Physics
2 is the introductory calculus-based electricity and magnetism course. Modern Physics is
taken primarily by physics majors and covers multiple topics including relativity, quantum
mechanics, and statistical mechanics. Physics 1 and 2 are presented in the large lecture

format with a required co-requisite laboratory session.

4.2.2 Variables

This work uses a set of variables drawn from institutional records. This study used high
school GPA (HSGPA), ACT/SAT mathematics percentile score (ACTM), ACT/SAT verbal
percentile scores (ACTV), a variable indicating the number of transfer courses for which a
student had credit (TranCount), a variable indicating the number of Advanced Placement
(AP) courses for which a student had credit (APCount), dichotomous variables indicating
whether a student had credit for any AP physics or math courses (APMath, APPhys), and
a dichotomous variable MathReady. MathReady was one if the student enrolled in Calculus
1 or a more advanced mathematics class his or her first semester of college, zero otherwise.
APPhys and APMath were one if the student had AP credit for any physics or math class
regardless of whether the class was required for the physics major, and were zero otherwise.
Taking Calculus 1 the first semester of college was required by the four-year physics degree
plans. Later, the analysis was repeated with the inclusion of one college-level variable;

cumulative GPA after a student’s first semester (CGPA).
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4.2.3 Statistical and Graphical Methods

This work presents a number of graphical representations of retention and statistical
methods to characterize retention. Each will be introduced as it is used. All analyses were

performed with the “R” software system [120].

Sankey Plots : Sankey plots give an overall visual picture of retention in physics, drawing
retention patterns as flows through a series of semesters. The Sankey plots were drawn

with the “ggalluvial” package [121] in “R”.

Survival Analysis : Survival analysis was used to calculate a student’s risk of leaving the

physics major each semester.

Logistic Regression : Logistic regression was used to predict the probability of several
outcomes including graduation, one-year persistence, and persistence from Calculus 1

to Modern Physics.

Decision Trees : Decision trees were used to characterize the variables that are the most
important in predicting whether a student will persist as a physics major to their

sophomore and junior years.

4.3 Results

4.3.1 Descriptive Analysis

This section presents basic descriptive statistics for the various datasets used in the
study. To study retention, one must restrict the temporal range of the data to allow time
for persistence or graduation. Different time windows were applied for different outcomes
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Math ACTC ACTM  ACTV Grad Grad Not Surv  Surv

# Filter N  Ready 9 9 % HSGPA CGPA Phys Other Grad Soph Junior
% 0 0 ° % % % % %
Institution 1 - Complete Dataset
1.1 None 586 63 2.99
1.2 Grad 411 68 3.01 38 29 32
1.3 Grad, HS 352 68 80 7 3.58 3.00 37 31 32
Institution 1 - Admit Code Dataset
1.4 None 463 63 3.00
1.5  Grad 314 68 3.00 36 30 35
1.6 Grad, HS 296 69 80 7 3.59 2.99 36 30 34
1.7 Grad, P1 198 68 76 74 3.51 2.91 31 31 38
1.8  Grad, HS, P1 187 69 81 78 3.60 2.90 31 32 37
1.9 1Year, HS, P1 247 66 79 78 3.63 2.92 64
1.10 2Year, HS, P1 231 67 79 78 3.62 2.91 64 46
1.11 3Year, P1 227 66 75 74 3.53 2.93 64 46
1.12 Grad, P1, First Fall, FTF 143 68 2.94 34 28 38 64 43

Table 4.1: Descriptive statistics applying a variety of filters for Institution 1. Filters are abbreviated:
HS (high school) for students with HSGPA and ACT or SAT scores, P1 (Physics first) for students whose
first declared major is physics, FTF (First-Time Freshman) students admitted as first-time freshmen, Fall
First, students whose first semester was the fall semester. Different windows were also applied to investigate
persistence and graduation. Grad (Graduation) removes the last six years of records, 1Year (One year)
removes the last year of records, 2Year (Two year) the last two years, and 3Year (Three year) the last three
years. Columns are abbreviated: ACTM% (ACT or SAT mathematics %), ACTV% (ACT or SAT verbal
%), HSGPA (high school GPA), CGPA (college GPA), Grad Phys % (percentage of student graduating with
a physics degree), Grad Other % (percentage of student graduating with a degree other than physics), Not
Grad % (percentage of students who do not graduate with any degree), Surv Soph % (percentage of students
enrolled as physics majors in their sophomore year), and Surv Junior % (percentage of students enrolled as
physics majors in their junior year). Note, Grad Phys %, Grad Other %, and Not Grad % should add to
one; for rows in which they do not, it is a result of the cumulative rounding of the numbers.

(i.e. graduation or first-year retention) generating datasets with different overall averages.
Further, not all variables were available for all students; restricting to complete records may
change the overall average of some variables. The general descriptive statistics are shown in
Table 4.1.

One goal of this work is to inform readers interested in replicating this analysis about
some of the complexities they may encounter in working with institutional data. The dataset
studied included all students who elected a physics major at any time during their under-
graduate career from the spring 2001 semester to the fall 2019 semester and course taking
data for the same time period, a total of N = 659 students. For students early in the

dataset, additional course records were obtained to ensure a complete academic record was
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available for all students. Of these, 30 students elected the physics major prior to attending
the university but were never enrolled as physics majors for a semester in which they took
classes; 23 students never took a class in a semester where they were enrolled as a physics
major. These students were removed leaving 606 students. An additional 20 students elected
a physics major only after completing a degree in another discipline and did not complete
the physics major. These students were also removed, leaving 586 students. Descriptive
statistics for this set of students are included in the Complete Dataset section of Table 4.1
(Dataset 1.1).

Students were admitted to the university under 11 different admission codes (Admit
Codes). The largest group was First-Time Freshman (FTF), 356 students, followed by stu-
dents readmitted to the university, 76 students, and transfer students, 70 students. Students
with admit codes suggesting they might have academic trajectories distinct from other stu-
dents were removed to form the Admit Code Dataset in Table 4.1. Students without an
Admit Code (N = 7) were removed as well as visiting students (N = 5), transfer students
(N = 70), non-degree students (N = 13), and second degree students (N = 18). This re-
sulted in a dataset with 463 records (Dataset 1.4, Table 4.1). Transfer students would be a
fascinating cohort to study, but there were not enough of them in the dataset for statistical
analysis.

High school academic control variables, HSGPA, ACTM, and ACTV, were not available
for all students. Descriptive statistics for students for which these variables were available
are shown in the HS rows of Table 4.1. To investigate graduation or persistence to either
sophomore year (1l-year persistence), junior year (2-year persistence), or Modern Physics

(3-year persistence), the latest records must be removed so all students have the same time
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to either graduate or persist; the data must be windowed. On sequence students should take
Modern physics in the spring sophomore semester; however, Modern is only offered once per
year, and therefore off sequence students must often wait until their junior year to take the
class. Removing these records changed the overall statistics of the sample little as shown in
Table 4.1. A six-year window was used to investigate graduation. With this window applied,
the percentage of students graduating with a physics degree (Grad Phys %), graduating
with a degree in another discipline (Grad Other %), and not graduating (Not Grad %) was
calculated. Each of these outcomes is approximately equally likely in both the Complete
Dataset and the Admit Code dataset. One-year and two-year persistence was studied by
windowing the data to remove the final one year or two years of records (the codes 1Year
and 2Year in Table 4.1). For the one-year, two-year, three-year, and graduation window,
the fraction of students surviving to sophomore year as physics majors was calculated (Surv.
Soph. %). For the two-year, three-year, and graduation window, the fraction of students

surviving to junior year as physics majors was calculated (Surv. Junior %).

4.3.2 Visualizing Retention

College retention is intrinsically a time-dependent process. One method of visualizing
the transitions students make between majors and into college outcomes is a Sankey plot.
The Sankey plot using the admit code filtered datasets with a graduation window (Table
4.1, Dataset 1.5) are shown in Fig. 4.1. Students’ active majors are classified as physics, en-
gineering, other STEM, and non-STEM. Students’ outcomes are classified as leaving college,
graduate physics, and graduate other. The height of the bar in the Sankey plot represents

the number of students in each category each semester. Semesters are numbered from 1
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(fall freshman) to 12 (spring year 6); summer semesters have been suppressed. Two vertical
bars represent an academic year. Curves are drawn showing transitions between semesters;
the color of the curve shows the classification in the later semester; the width of the curve

represents the number of students making the transition.

Physics Major Survival by Semester

300

200

Number of Students
3
[

Semester Number

Other STEM Major . Graduate Other
Non—STEM Major

Physics Major Leave College

Graduate Physics Engineering Major

Figure 4.1: Sankey plot showing major changing and graduation patterns for students who elect a physics
major at any point in their undergraduate career. Each group of two bars represents an academic year; fall
semesters are odd numbers, spring semesters even.

Grad Grad Not
Sequence Phys Other Grad
% % %
Physics 54 (54%) 0 (0%) 46 (46%)
Other - Physics 50 (76%) 1 (2%) 15 (23%)
Other - Physics - Other 0 (0%) 31 (62%) 19 (38%)
Physics - Other 0 (0%) 61 (68%) 29 (32%)

Physics - Other - Physics 8 (100%) 0 (0%) 0 (0%)

Table 4.2: Institution 1 major election sequences.

Table 4.2 summarizes the patterns observed in Fig. 4.1. These use the same dataset
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which was used to construct the Sankey plot. Only 100 of the 314 students are physics majors
for their entire undergraduate career; these students graduate with a physics degree 54% of
the time. Unfortunately, 46% of these students do not earn a college degree. This college
graduation rate is lower than that of the 90 students who start in physics and leave the
major for another degree; these students earn college degrees 68% of the time. A substantial
group of students, N = 66, begin college in other majors and switch to physics; these
students graduate with physics degrees 76% of the time and graduate college 77% of the
time. One student in the “Other-Physics” pathway earned a degree in another discipline,
but not physics. This student was a physics major until the end of their undergraduate

career, but applied to graduate with a different major once classes were over.

4.3.3 Survival Analysis

The time dependent nature of college retention and retention to major can be thought
of as the process of surviving to graduation. As such, survival analysis, a statistical analysis
method originally developed to model the survival of patients with life threatening diseases,
represents a promising method to model the process of successfully graduating with the
physics major.

Normally, survival analysis attempts to make predictions about a continuous random
variable T" which represents the time a state-changing event happens (such as dying or quit-
ting school). The variable has probability density f(¢) and cumulative distribution function
F(t)= ffoo f(t)dt = P(T < t); F(t) is the probability the event has already happened. The
survival function S(t) = 1 — F(t) = [ f(t)dt is the probability the event happens after ¢

t

or the probability you have survived to t.
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The hazard function A(¢) is the probability the event happens in the range [¢,t 4+ At]
given the event has not already happened at ¢, the rate the event is happening at time ¢ as

shown in Eqn. 4.1.

Pt <T <t+AtT >t)
At—0 At

(4.1)

Survival through college to earn a physics degree is an intrinsically discrete process
because information on changing majors and leaving college only exists at the semester
level. For the discrete case, Eqn. 4.1 simplifies dramatically. For example, the leaving
college hazard in semester j, AJLC, is the ratio of the students enrolled in semester j who
have left college by semester j +1, AN fﬁrh to students enrolled in semester j, N;, as shown
in Eqn. 4.2.

ANEC

Lc _ Jj+1

J

A similar definition can be given for the changing major hazard, )\jCM . The graduation
hazard is the fraction of students enrolled in semester j who graduate that semester, N jG;
X = NE/N;

For the survival analysis, the data were filtered to a set of maximally homogeneous stu-
dents after applying a graduation window. The admit code dataset was restricted to include
only students who began in the fall semester, who were admitted as first-time freshmen, and
who elected physics as their first college major (Table 4.1, Dataset 1.12, N = 143). This
strong filter was necessary because students who enter in a semester other than the fall have
less time until the critical first summer semester. Students who are not initially physics
majors may have different course trajectories and require more time to graduate. For this

analysis, three modes of leaving the physics major were considered: changing to another
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major while staying in college (Change Major), leaving college without earning a degree
(Leave College), and graduating with a physics degree (Graduate Physics). The fraction of
students in this dataset that leave physics through each mode is shown in Fig. 4.2. The
figure shows that approximately twice as many students starting with a physics major leave
physics by changing to a different major than those who leave physics by leaving college.
The fraction of students leaving college is not directly comparable to the Not Grad % in
Table 4.1 because the plot shows the fraction who leave college while still enrolled as physics
majors. Note, these results are somewhat different than those shown in the Sankey plot.
These differences are a result of the different datasets used. The students used in the survival
analysis are students who have the general academic trajectory (first-time freshmen entering
in fall semester) around which the undergraduate physics program was designed and are a
particularly interesting subpopulation.

The hazard function for all three modes of leaving physics is shown in Fig. 4.3. Note,
the graduation hazard (rate) is plotted against the right axis. There is a strong peak in the
leaving college hazard at Semester 2. This hazard is understandable; students not thriving
at college return home after their freshman year and do not return. There is a peak in the
change major hazard at Semester 3, the fall sophomore semester. This likely results from
students returning from the summer between freshman and sophomore years and changing
their major upon their return. All semesters plotted in the hazard plot enroll at least 50
students.

Also of interest to many academic departments are the courses that may lead to a
student leaving the major. An approach that could be used to identify these courses is a

form of the hazard function. The per course hazard, A\:C, is defined as the hazard of a
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Figure 4.2: Fraction departed or graduated for students entering the university declared as physics majors.

student leaving college immediately after taking a particular course 7 as shown in Eq. 4.3.

AN
MO = 4.3
i N, (4.3)

which is the ratio of the students who enrolled in course i who left college directly after
completing the course (i.e., before taken a subsequent course i+ 1), ANlﬁ»ﬁl, to students who
enrolled in course 7 as a physics major, N;. Similarly the hazard of changing majors after a
particular course, A{™ | is the ratio of students who enrolled in course i who changed majors

before enrolling in a subsequent required course to students who enrolled in course i as a

physics major. The graduation hazard of a course is the ratio of students who graduated the
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Figure 4.3: Hazard functions. The graduation hazard is plotted on a different scale shown by the right
vertical axis. For Institution 1, each semester plotted has at least 50 students enrolled as physics majors.

semester they took course 7 to students who enrolled in course 7. These ‘course hazards’ are
shown in Fig. 4.4. The analysis for these hazard functions was done using the same dataset
used for the semester hazard functions (Table 4.1, Dataset 1.12, N = 143). Twenty of the
students contained in the dataset left the physics major, either through changing majors or
leaving college, before they took a physics or math course. These students are not reflected
in Fig. 4.4.

The greatest hazard for students leaving college occurs in preparatory math courses
such as college algebra, trigonometry, and the stretch calculus course. The stretch calculus

course is a course designed for students not yet ready to take Calculus 1, which stretches

50



0.3
. 0.6
0.2
(@)
Q 3 HazardType
@© a
o -04 8 -@ Change Major
ie) =
E 8 Graduate Physics
®©
T Q;,U Leave College
0.1 @
.\t/.\ 0.2
0.0 l . 0.0
o L o 29 £ 4 o T = 2 o
2 28 5 5 °o ¢ 8 wwe e £z g SFc s
SESsss55Lz22835352:23573
Course

Figure 4.4: Hazard function for required physics and math courses at Institution 1. The hazard in this

case is calculated as the number of students who departed the program after taking the course over the

number of students who took the course. The axis for leaving the program through graduation is on the

right. The abbreviations in the figure are for various subjects in physics: Classical Mechanics 1 & 2 (CM1 &

2), Electricity and Magnetism 1 & 2 (EM1 & 2), Quantum Mechanics 1 (QM1), and Statistical Mechanics

(SM).

the content of Calculus 1 over two semesters, Calcla and Calclb in Fig. 4.4, and includes
pre-calculus content. Students enroll in these courses because they are not ready to enroll
in Calculus 1, and as such experience a more difficult path to the completion of the physics
degree due to the increased number of required math courses. The leaving college hazard
also spikes after students take Physics 1, and then settles down near zero for upper level

physics courses. The hazard for changing majors in also greatest for the preparatory math

classes and spikes after the second semester of the stretch calculus course. The pre-requisite
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math courses for the physics major (Calculus 1, Calculus 2, and Calculus 3) also have a
relatively high hazard for changing majors, as does Physics 2, after which the hazard drops

near zero.

4.3.4 Logistic regression

Logistic regression allows the modeling of how factors affect a dichotomous dependent
variable. Logistic regression predicts the probability of the high level of the dichotomous
variable (Y = 1); the variable Y is coded so the low level is zero and the high level is
one. The probability that Y = 1 is observed for student ¢ is modeled by the probability
function P;(Y = 1). The odds of the Y = 1 outcome for student i is then calculated as
odds; = P(Y =1)/(1 — P,(Y = 1)), the ratio of probability of ¥ = 1 being observed to the
probability of Y = 0 being observed. The range of the odds is from 0 to co. To project this
quantity into an unbounded range, the log-odds is calculated as log-odds, = In(odds;). The
log-odds is then predicted with a set of independent variables very much as a continuous
dependent variable would be in linear regression (but with differing underlying statistical
assumptions). For example, Eqn. 4.4 predicts the log-odds using two independent variables
X7 and X5. To do this, an intercept 3y and two slopes 3; and (35 are estimated.

P(Y =1)

log-odds =In | ———————~
og-odds n(l—P(Yzl)

) = Bo + £1 X1 + f2Xo (4.4)

The intercept predicts the log-odds when X; and X5 are both zero. The slope (3 is the
change in log-odds for a one unit increase is X;. Log-odds, however, is a fairly difficult

quantity to interpret qualitatively. It is much more intuitive to discuss changes in the odds.
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To calculate the odds, both sides of Eqn. 4.4 are exponentiated yielding Eqn. 4.5.

odds = —P(Y =1 = M . A1 X1 X2 (4.5)
As such, % is the base odds when X; = 0 and e multiplies this base odds when X; = 1.

Logistic regression was used to explore factors influencing persistence to the sophomore
year, the junior year, and to graduation. For this analysis, the admit code dataset was filtered
to retain only students electing physics as their first college major for whom high-school-level
data were available; the data were then windowed for each outcome variable.

This produced the three datasets shown in Table 4.1: 1-year persistence, Dataset 1.9,
N = 247; 2-year persistence, Dataset 1.10, N = 231; graduation, Dataset 1.8, N = 187).
Table 4.3 presents the logistic regression results for several outcome variables: leaving college
by the sophomore year, leaving college by the junior year, leaving the physics major but
staying in college though the sophomore year, leaving the physics major but staying in college
through the junior year, and graduating with a physics degree. These models were initially fit
using HSGPA, MathReady, ACTM, ACTV, TranCount, APCount, APMath, and APPhys as
independent variables. The models were fit again using the same independent variables with
the addition of the college-level independent variable CGPA. The full regression equations

are shown in Eq. 4.6 and Eq. 4.7.
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log-odds(OQutcome) =0y + 1 - HSGPA + By - ACT M+
B3 - ACTV + B4 - MathReady + B - TranCount+ (4.6)

Be - APCount + 3; - APMath + Bs - APPhys

log-odds(Outcome) =5y + 1 - HSGPA + 5 - ACT M+

B3 - ACTV + B, - MathReady + B5 - TranCount+
(4.7)

B¢ - APCount + 87 - APMath + (s - APPhys+

By - CGPA

where [ is the intercept, [3; are the slopes, and Outcome is one of: graduation in physics,
leaving college by sophomore year, leaving college by junior year, leaving physics while
staying in college by sophomore year, and leaving physics while staying in college by junior
year.

For all models, the model using the independent variables was a statistically signifi-
cant improvement over the null model. For logistic regression, the null model is the model
including only the intercept term. Once the full model shown in Eqn. 4.6 was fit, it was
examined for statistically insignificant independent variables. A variable i is determined to
be statistically insignificant if its slope [; is not significantly different from 0. Changing
the value of an independent variable with a slope that is not significantly different from zero

would have no significant effect on the log-odds of the dependent variable, indicating that the
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independent variable does not give any useful probabilistic information about the outcome
of the dependent variable. These variables were removed producing a more parsimonious
model. An ANOVA test showed the model removing insignificant independent variables
was not significantly less well fitting than the full model in all cases. This model is shown
in Table 4.3. For the majority of models only one variable was retained; however, models
predicting graduating with a physics degree and passing Physics 2 or Modern Physics as a

physics major retained more than 1 variable.

Variable 15} SE z D e’
Leave College by Sophomore Year (N = 247)
(Intercept) -2.12 0.22 -9.62 0.0000 0.12
HSGPA -0.69 0.19 -3.65 0.0003 0.50
Leave Physics Stay in College by Sophomore Year (N = 247)
(Intercept) -0.39 0.22 -1.73 0.0827 0.68
MathReady -1.32 0.31 -4.25 0.0000 0.27
Leave College by Junior Year (N = 231)
(Intercept) -1.83 0.20 -8.94 0.0000 0.16
HSGPA -0.72 0.18 -3.93 0.0000 0.49
Leave Physics Stay in College by Junior Year (N = 231)
(Intercept) 0.34 0.23 1.47 0.1404 1.41
MathReady -1.29 0.29 -4.40 0.0000 0.28
Graduate Physics (N = 187)

(Intercept) -1.64 0.40 -4.14 0.0000 0.19
HSGPA 0.91 0.23 4.02 0.0000 2.49
MathReady 0.88 0.45 1.96 0.0504 2.41
Enroll Calculus 1 - Pass Physics 2 as Major (N = 132)
(Intercept) 0.25 0.21 1.19 0.2323 1.29
APCount 0.72 0.28 2.53 0.0114 2.05
TranCount 0.48 0.23 2.10 0.0358 1.61
HSGPA 0.89 0.21 3.58 0.0003 2.44
Enroll Calculus 1 - Pass Modern as Major (N = 132)
(Intercept) -0.65 0.22 -2.94 0.0032 0.52
APCount 0.68 0.24 2.83 0.0047 1.98
HSGPA 91 0.27 3.39 0.0007 2.48

Table 4.3: Logistic regression. All regressions are significant improvements over the null model (p < 0.001).
[ is the normalized regression coefficient, SE is its standard error, z is the z-score of the coefficient, p the
probability a value larger than z occurred by chance, and e” is the odds ratio.
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Using only the pre-college independent variables, the results for persistence in physics
were quite different than the results for persistence in college. Persistence in college while
leaving the physics major was most strongly related to math readiness (being able to enroll
in Calculus 1 the first semester of college). The base odds of leaving physics while staying in
college (the odds, ef, of the intercept) was reduced by a factor of 0.27 for the sophomore year
and 0.28 for the junior year for math ready students. As such, being math ready decreases
the odds of leaving the major by (1/0.28 — 1) - 100% = 260%. In other words, it reduces the
odds of leaving the major by a factor of 2.6. The relation of math-readiness to leaving the
physics major but remaining in college is very understandable; non-math-ready students have
to take a sequence of mathematics classes, often a year and a half of mathematics classes,
before ever enrolling in their first physics class. They also are very unlikely to complete
their degree in four years. These factors make them very hard to retain and add financial
pressures to the student to change to a less math intensive major. This is also reflected in
Fig. 4.4, where the preparatory math courses (those before the traditional Calculus 1 course)
have the highest hazard rates for leaving the major but staying in college.

The variables important in predicting whether a physics student would leave college by
the sophomore or junior year were quite different; HSGPA was the most important variable.
While high school classes and curricula are extremely variable, HSGPA provides a measure of
how successful a student has been in the high school academic system. This success is an im-
portant indicator of whether the student will successfully navigate college. Both MathReady
and HSGPA were important in predicting graduation with a physics degree (MathReady was
p = 0.0004, below the 0.05 significant threshold). A student who graduates with a physics

degree must avoid both leaving the major and leaving college, so it is reasonable that both
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factors are involved. Both factors have similar odds ratios in predicting graduation; math
readiness increased the odds of graduating with a physics degree by (2.41 —1)-100% = 141%

and a one standard deviation increase in HSGPA increases the odds by 149%.

Variable 15} SE z D e’
Leave College by Sophomore Year (N = 247)
(Intercept) 228 024 947  0.0000 0.10
CGPA -0.94 0.18 -5.35 0.0000 0.39
Leave Physics Stay in College by Sophomore Year (N = 247)
(Intercept) -0.39 0.22 -1.73 0.0827 0.68
MathReady -1.32 0.31 -4.25 0.0000 0.27
Leave College by Junior Year (N = 231)
(Intercept) -1.96 0.22 -8.88 0.0000 0.14
CGPA -0.98 0.18 -0.57 0.0000 0.37
Leave Physics Stay in College by Junior Year (N = 231)
(Intercept) 0.34 0.23 1.47 0.1404 1.41
MathReady — -1.29 0.29 -4.40 0.0000 0.28
Graduate Physics (N = 187)

(Intercept) -1.34 0.26 -5.21 0.0000 0.26
CGPA 1.79 0.37 4.81 0.0000 5.98
Enroll Calculus 1 - Pass Physics 2 as Major (N = 132)
(Intercept) 0.09 0.25 0.36 0.7190 1.09
APCount 0.59 0.29 2.06 0.0394 1.80
TranCount 0.66 0.28 2.32 0.0203 1.94
CGPA 1.62 0.39 4.18 0.0000 5.08
Enroll Calculus 1 - Pass Modern as Major (N = 132)
(Intercept) -1.07 0.31 -3.43 0.0006 0.34
APCount 0.57 0.25 2.32 0.0203 1.77
CGPA 1.95 0.50 3.87 0.0001 7.04

Table 4.4: Logistic regression including first semester GPA. All regressions are significant improvements
over the null model (p < 0.001). S is the normalized regression coefficient, SE is its standard error, z is the
z-score of the coefficient, p the probability a value larger than z occurred by chance, and e? is the odds ratio.

This picture is changed, however, by including the college-level independent variable
CGPA. As shown in Table 4.4, the significant variable for staying in college but leaving
physics is still MathReady, but the significant variable for leaving college is now CGPA for
leaving college by the sophomore year and the junior year. CGPA is significant in graduating
with a physics degree, but MathReady is not. It is not surprising that a student’s college GPA
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would be more important than their high school GPA in determining their persistence; college
GPA indicates how successfully a student traverses the university or college academic system,
and would be a more accurate measure of success than high school GPA. Interestingly, it
is still a student’s math readiness that is predictive of whether they will leave the physics
major by their sophomore and junior year, indicating that calculus ready students are better

equipped to navigate the physics major through the first two years of college.

4.3.5 Decision Trees

Decisions trees are a common machine learning algorithm that are used for describing
data and classification tasks. A decision tree predicts the outcome of a target variable based
on a model built from the input of independent variables. The algorithm takes the dataset
or “root node” and splits it by each independent variable, and measures which variable splits
the data into the “most” homogeneous subsets (each subset should be heavily weighted to
one of the outcomes of the target variable). The criterion associated with a split is the
threshold the tree uses to make a decision for the split; for example, whether a student has
a CGPA greater than or equal to 3.5. Each subset is then split using the same method, and
the process continues until the final subsets are perfectly homogeneous. This creates a tree
of nodes, where each internal node represents a subset of a prior split and is characterized by
the criterion that splits the subset in a way that maximizes homogeneity. Typically decision
trees are “pruned back” so as to balance complexity with predictive power, and the terminal
nodes or “leaves” are not always purely homogeneous. Decision trees are a good indicator
of the relative variable importance for a model, as variables that appear closer to the root

node are more important in predicting student outcomes. Decision trees are less susceptible

58



to multicollinearity when compared to other common PER statistical methods such as linear
regression.

A decision tree was formed for the three outcomes of surviving as a physics major to the
sophomore year, surviving as a physics major to the junior year, and graduating as a physics
major. In these analyses, students who have a negative outcome (“NotSurvive” for surviving
to sophomore and junior year and “NotPhysGrad” for graduating as a physics major) for
the target variable could have left the program either by leaving college or changing majors.
This differs slightly from the logistic regression analyses, where only one method of leaving
the physics program was investigated at a time. CGPA was not included as an independent
variable in constructing these decision trees, with the intent of identifying the variables
which are useful in predicting when students may struggle in the physics program before
those students begin classes.

Fig. 4.5 shows the decision tree for predicting whether a student persists as a physics
major to their sophomore year. Each node is labeled by the majority class of that sub-
set, either “Survive” or “NotSurvive”, and the percentage at the bottom of the node is the
percentage of the original dataset the node represents (the root node shows 100%). The
middle numbers show the distribution of the node for the target variable (surviving to the
sophomore year in this case) and the text below each node indicates the variable and associ-
ated criterion for the subsequent split or “decision”. Unsurprisingly, MathReady is the most
important variable in determining whether a student will be retained in the physics program
by their sophomore year, agreeing with the outcome in the logistic regression analysis of
whether a student leaves physics but stays in college by their sophomore year. With the

decision tree, we can see the difference being math ready makes; 75% of students who are
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Figure 4.5: Decision tree for persisting in physics to the sophomore year

math ready are retained while only 40% of students who are not math ready are retained.
Students who are not math ready but have taken some college transfer courses (generally
as a dual-enrollment course in high school) are 40% more likely to be retained in physics by
their sophomore year than students who did not have college transfer credit and were not
math ready. Other important variables in “deciding” whether a student is retained by their
sophomore year include ACTSATM and HSGPA.

Fig. 4.6 presents the decision tree of persistence to junior year, and overall a student
starting in physics is more likely to leave physics by their junior year. MathReady is still the
most important variable, with the same 40% increase between surviving and not surviving

based on whether or not a student was ready for calculus in their first semester. In this
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Figure 4.6: Decision tree for persisting in physics to the junior year

case, instead of the number of transfer courses a student has credit for being important, the
number of AP classes they earned credit for is important, followed by whether they took an
AP math course, HSGPA, and ACTSATYV.

Fig. 4.7 shows the important variables for determining whether an incoming freshman

will graduate as a physics major. HSGPA is the most important variable, and students with
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Figure 4.7: Decision tree for persisting in physics to graduation

a HSGPA greater than 4 are 42% more likely to graduate in physics that those with a lower
HSGPA. Typically, if a student has a GPA higher than four it is indicative that their school
district uses a bonus point system, where AP courses, dual-enrollment courses, and other
college preparatory courses are worth more than the traditional four GPA points of a regular
high school course. A HSGPA greater than four indicates the student has enrolled in and
done well in these types of courses, whether they earned transfer credit and AP credit or

not.

62



4.3.6 Traversing the course network

As a student persists in college they traverse a network of required courses. For a
physics major at Institution 1, the key sequence of courses early in college is Calculus 1,
Physics 1, Physics 2, then Modern Physics. The logistic regression analysis was repeated to
explore the factors influencing whether a student who enrolls in Calculus 1 persists to either
Physics 2 or Modern Physics.

HSGPA, APCount, and TranCount were the most important predictors of a student
who enrolled in Calculus 1 passing Physics 2 as a major as shown in Table 4.3. The same
is true for passing Modern Physics as a major, except TranCount is not retained in that
model. A one standard deviation higher HSGPA increased the odds of staying a physics
major through Modern by 150%. For the set of models that include CGPA, a similar result
is found, except HSGPA is replaced by CGPA (see Fig. 4.4). In this case, a one standard
deviation higher CGPA increased the odds of staying a physics major through modern by
600%.

Examining the progression of students through the network also provides additional
insights. Figure 4.8 shows the progression of students who enter Institution 1 declared
as physics majors through Modern Physics and to graduation. For this analysis, a 3-year
window was applied to the admit code filtered dataset (Table 4.1, Dataset 1.11, N = 227).
Students first enrolling in Modern Physics or a more advanced physics class were removed
(8 students); students who never took a mathematics class were also removed (10 students)
leaving 209 students for analysis. The figure uses the abbreviations “<Calc” for students

whose first mathematics class is less advanced than Calculus 1, “Calc” for students whose
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first mathematics class is is Calculus 1, and “>Calc” for students whose first mathematics
class is more advanced than Calculus 1.

The figure starkly shows the importance of math readiness for this population. Of
the 209 students, 41% first enroll in a mathematics class less advanced the Calculus 1; 59%
of these students leave physics before enrolling in Physics 1. Of the 37% of the students
who first enroll in Calculus 1; only 26% of these leave physics before enrolling in Physics
1. Students with AP or transfer credit for Calculus 1 first enroll in a mathematics class
more advanced than Calculus 1; only 7% of these students fail to enroll in Physics 1. The
advanced math entry students have a persistence advantage over other students through
Modern Physics. Once either a non-math-ready or a Calculus 1 entering student enrolls in
Physics 1, they persist to Physics 2 at about equal rates. This indicates that pre-college
factors are most important in allowing students to persist to enroll in a physics class; once
the student successfully enrolls in physics, pre-college factors become less important. From
Physics 2, the non-math-ready student persists to Modern at a somewhat lower rate than
the Calculus 1 entry student. Of the 209 initial physics majors, 19 of the 82 non-calculus-
ready students enroll in Modern Physics as a physics major, 23%; 44 of 84 Calculus 1 entry
students enroll in Modern Physics, 52%); 28 of the 43 advanced math entry students enroll
in Modern Physics, 65%.

For the graduation probabilities after enrolling in Modern Physics in Fig. 4.8, a 6-year
window was applied (Table 4.1, Dataset 1.7, N = 198). As before, students who first enroll
in Modern or a more advanced physics class and students who never enroll in a mathematics
class were removed leaving 181 students. Figure 4.8 presents the graduation probability of

these students once they enroll in Modern Physics. The graduation rates for all math entry
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Figure 4.8: Traversing the major from entry to Modern Physics for students at Institution 1 who elect

a physics major in their first semester.

The figure uses the abbreviations <Calc for students whose first

mathematics class is less advanced than Calculus 1, Calc for students whose first mathematics class is is
Calculus 1, and >Calc for students whose first mathematics class is more advanced than Calculus 1.
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points are approximately equal; all students who persist to Modern have an equal chance of
graduating with a physics degree.

For the graduation filtered dataset, overall graduation probabilities in physics were
calculated for each stage of the progression through the network. Of the 181 students who
initially enrolled as physics majors, 31% graduated with a physics degree. Disaggregating by
math readiness, of the 65 students not ready to take Calculus 1, 15% graduated; of the 76
students who initially enrolled in Calculus 1, 34% graduated with a physics degree; and of
the 40 students who initially enrolled in a mathematics class more advanced than Calculus
1, 53% graduated with a physics degree. Of the 100 students who enrolled in Physics 1 as
a physics major, 50% graduated with a physics degree (<Calc 1 42%, Calc 1 46%, >Calc
1 65%). Of the 107 students who enrolled in Physics 2 as a physics major, 53% graduated
with a physics degree (<Calc 1 45%, Calc 1 53%, >Calc 1 58%). Of the 79 students who
enrolled in Modern Physics as a physics major, 65% graduated with a physics degree (<Calc
1 67%, Calc 1 64%, >Calc 1 68%). As such, the additional advantage confirmed by a
more enriched high school STEM experience was important in the early years of college, but
ceased to be important once a student progressed to their advanced coursework. We note
the 65% graduation rate for students who enroll in Modern Physics is much smaller than

the department would like and this will be one target of retention efforts.

4.4 Discussion

This study sought to answer two research questions; they will be addressed below.

The detailed results were discussed above; the following will synthesize the most important
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points.

RQ1: At which point in their undergraduate physics career are students most at risk
of leaving the physics major? How does this differ by modes of leaving the major? The
risk (hazard) profiles for the two modes of leaving the physics major (leaving college or
leaving the major while staying in college) were quite different as shown in Fig. 4.3. At
Institution 1, there was a peak in the leaving college hazard in the spring freshman semester
as students failed to return to campus for the fall sophomore semester. This hazard decreases
dramatically after this point.

This hazard for leaving the major while staying in college peaked in the fall sophomore
semester. Students made the major-changing decision when they returned to campus for
their sophomore year. The hazard declined after this point, but did not reach zero until
the fifth year. Students who do leave physics appear to enter both STEM and non-STEM
majors at similar rates; non-STEM majors approximately equal STEM majors (including
engineering) as alternate majors selected by physics students in Fig 4.1.

The course hazard function in Fig. 4.4 mirrors this. For on-sequence students, Physics
1 and Calculus 2 are typically taken together in the second semester and these courses have a
similar hazard for leaving college, which mirrors the result of the spike in Fig. 4.3 for leaving
college after semester 2. This holds for Physics 2 and Calculus 3, which are typically taken
together in semester 3 and have a similar hazard for leaving physics but staying in college,
and mirror the spike in leaving physics but staying in college for semester 3 in Fig. 4.3.
Calculus 1 has the greatest hazard for leaving college and leaving the major out of all of the
required courses for physics major. It appears that once a student has completed Calculus 2

and Physics 1 they are far less likely to leave college, and once a student completes Modern
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Phyiscs and Differential Equations they are less likely to leave the major. Unfortunately,
the hazard of leaving the physics major by either leaving college or changing majors is
still non-zero for the upper-level physics courses, indicating that students are still facing
challenges within the program after completing the introductory course sequence and math
prerequisites. The hazards for the preparatory math courses (College Algebra, Trigonometry,
Pre-Calculus, Calculus la, and Calculus 1b) are some of the highest in the figure, but there
are far fewer students who enrolled in those courses as physics majors; between 20 and 10
students enrolled in College Algebra, Trigonometry, Pre-Calculus, Calculus 1a, and Calculus
1b, whereas there are between 120 and 50 students for the other courses in Fig. 4.4.

RQ2: What pre-college academic factors influence a student’s risk of leaving the major
through each mode? How does this change if first semester GPA is added as an independent
variable? The factors influencing different outcomes, one year persistence, two year persis-
tence, and graduation, differed between the different modes of leaving the major. These
factors were explored using logistic regression as shown in Table 4.3. Leaving the major
while staying in college was most strongly related to math-readiness. The odds that a math
ready student would leave the physics major for another major were 260% lower than a non-
math-ready student. Not being math ready increases time to degree and delays entry into
physics classes, making retention difficult, and other majors with less restrictive mathemat-
ics requirements more attractive. Leaving college was more related to general high school
preparation and success measured by HSGPA. Each standard deviation increase in HSGPA
lowered the odds of leaving college by the junior year by 100%.

Table 4.4 explored the same outcomes as Table 4.3 except it included first-semester

college GPA as an independent variable. The results were the same, except CGPA replaced
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HSGPA as the significant variable in predicting if a student leaves college by their sophomore
and junior year. This indicates that once a student has some college experience, their
performance in college is more predictive than their high school preparation in determining
whether they will stay in college. A standard deviation increase in CGPA lowers the odds
of leaving college by the junior year by a factor of 1.7. CGPA also is the single significant
variable in predicting whether a student graduates in physics, with each standard deviation
increase of CGPA increasing the odds of graduation by 500%. For this dataset (Dataset
1.8 in Table 4.1) the standard deviation of first semester college GPA is 1.1, or roughly one
letter grade.

The decision tree analysis presented in Sec. 4.3.5 examined the effect of the variables
on a simplified outcome of leaving physics (either by leaving college or leaving the major) at
a specified point. Students who enter college ready to take Calculus 1 are 35% more likely
to persist to their sophomore year as a physics major. Of those students who are not math
ready, if they have some transfer credit, they are 40% more likely to persist in physics to
their sophomore year. The MathReady variable continued to be the most important variable
in predicting a student’s persistence in physics to the junior year, as students who were math
ready were 40% more likely to persist in physics.

The progression through the major and the role of math readiness was further explored
by examining the progression through the course network in Fig. 4.8. At this institution,
41% of students enrolled as physics majors their first semester were not ready to enroll in
Calculus 1; 59% of these students left physics without ever enrolling in Physics 1. Only 15%
of these students graduated with a physics degree. For students whose first mathematics

class was Calculus 1, 34% graduated with a physics degree; for students who first enroll in
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a mathematics class more advanced than Calculus 1, 53% graduated with a physics degree.
This illustrates the importance of access to advanced high school course offering to success in
physics. Some students underrepresented in physics may have limited access to these courses
[122]. There were few differences in physics graduation rates for students who remained in
the major long enough to enroll in Modern Physics. This is somewhat reflected in the
variable importance as found in the decision tree analysis for graduating physics (Fig. 4.7).
For graduating in physics, if a student had a HSGPA greater than or equal to four they were
42% more likely to graduate in physics; MathReady was not a significant variable. Once
a students enrolls in Modern Physics, math readiness ceases to be important, and HSGPA
becomes the most important characteristic of students who are retained and students who

are not.

4.5 Implications

For Institution 1, the analysis suggests three points where retention efforts could be
directed. Non-math-ready students succeed in the major at very low rates and often leave the
major before taking Physics 1. Exploring methods to allow these students to begin taking
physics while they catch up in mathematics might retain more to the major. This might
involve allowing these students to take the algebra-based physics sequence and accepting
these for the calculus-based Physics 1 and 2 with successful completion of Modern Physics
and Calculus 1. There is a continuous slow attrition of majors after semester 4 (spring
sophomore semester) when students are taking their advanced coursework. This suggests

Institution 1 should examine the features of their advanced undergraduate program that
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cause students to leave late in the program. Finally, the institution loses majors at the
highest rate after the spring freshman semester to the leaving college hazard and after the
fall sophomore semester to the changing major hazard (the changing major decision may have
been made the semester before). This suggests substantial efforts be focused on retention
in the first year of college. Efforts currently under discussion include a redesigned freshman
seminar course focused on retention, a freshman research experience with a cohort building

element, and an introductory laboratory section for physics majors taught by faculty.

4.6 Limitations and Future Work

This study was performed at one institution with a relatively small physics undergrad-
uate program. This work should be replicated at other programs, both at larger programs
and similar programs with different demographic composition, so as to map out the spectrum
of physics retention. This work was unable to explore differences in retention of demographic

groups underrepresented in physics; these differences should be explored in future studies.

4.7 Conclusions

This work examined the retention of physics majors through multiple points in their
undergraduate career at one institution. At Institution 1, many students arrive on campus
who are not ready to enroll in Calculus 1. There was a peak in the risk of leaving the physics
major by leaving college in the spring freshmen semester. The changing major risk was
highest in the fall sophomore semester. Math readiness emerged as the key factor predicting

changing to major other than physics while staying in college; students who were math
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ready were 260% more likely to be retained in physics up to their junior year. Math ready
students are prepared to enroll in Calculus 1 or a more advance mathematics class their first
semester of college. 41% of students electing a physics major their first semester were not
math ready; only 15% of these graduated with a physics degree; 37% of incoming physics
majors enrolled in Calculus 1 their first semester; 34% of these graduated with a physics
degree. This analysis also suggested advanced high school college preparatory curriculum
was important in physics student success; 22% of incoming physics majors had high school
credit for Calculus 1 and enrolled in a more advanced class; 53% of these students graduated
with a physics major.

Different factors were important in predicting leaving college and graduating. High
school GPA was the most important factor in predicting retention to college and graduation
with a physics degree; math readiness was the most important factor predicting leaving

physics while staying in college.
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Chapter 5

Examining the Conditional Probabilities of Physics

Student Retention with Bayesian Networks
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5.1 Introduction

In the study presented in the prior chapter, two critical points were identified in which
the hazard of leaving the physics program of Institution 1 was greatest; at the end of a
student’s first year for leaving college, and at the start of a student’s sophomore year for
switching majors. Surviving in the physics program beyond these two points can be con-
sidered a “milestone” in a student’s academic progress towards completion of the physics
program. Enrolling in introductory Physics 2 (PHYS 112), the second course in the calculus-
based introductory sequence at Institution 1, roughly co-incides with this milestone. PHY'S
112 is usually taken in the fall of a student’s sophomore year, though it is often taken in the
spring of a student’s sophomore year as well, depending on the student’s math readiness.
Students who enroll in PHYS 112 have survived past these two critical points of attrition.
Another critical point in the progression of physics students was the enrollment of students
in Modern Physics, or PHYS 314 at Institution 1. It was at this point that the effect of a
student’s pre-college math preparation diminished, as students who enrolled in PHYS 314
completed the degree at roughly the same rate regardless of math readiness. Enrolling in
PHYS 314 could be considered another milestone in student progress.

The study presented in the previous chapter identified a kind of “hierarchy” to the pre-
college academic factors that influence if and when a student is likely to leave the physics
program at Institution 1, with HSGPA and a student’s math readiness being the most influ-
ential. This study examines the probabilities of students reaching particular milestones in the
physics curriculum based on their pre-college academic factors. To be able to determine the

probability of retaining a student, or of the student reaching the milestones discussed above,
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could be of great value to physics departments. Students with different pre-college charac-
teristics likely have different probabilities of reaching specific milestones. Knowing which
students will struggle to reach a particular milestone gives physics departments the ability
to offer an intervention or change the structure of their program to retain more students.
The implementation of an intervention that successfully improves students’ probabilities of

reaching these milestones has been reserved for future research.

5.1.1 Research Question

This study investigates critical points of progression in the physics curriculum at Insti-
tution 1. The critical points or milestones investigated are enrolling in PHYS 112, enrolling

in PHYS 314, and graduating from the physics program.

RQ1: What is the probabilistic relationship between various points of progression in a physics
curriculum and pre-college academic factors? How do these relationships change when

physics course grades are added to the model?

The relationship between reaching these milestones and pre-college factors is investigated
because the pre-college factors are available as soon as a student enrolls in the university.
The addition of some physics course grades gives an indication of how the usefulness of the
pre-college academic factors changes as a student progresses in the program.

This study also introduces Bayesian networks into PER. Bayesian networks encode
the global probability distribution of a set of random variables, and are an useful tool in

determining the conditional probabilities between variables.

5



5.1.2 Bayes’ Theorem

One of two main theoretical underpinnings of Bayesian networks is Bayes” Theorem or

Bayes’ Rule developed by Rev. Thomas Bayes [123]; it is shown in Eqn. 5.1

P(A|c)x P(B|Ac)

P(A| B,c) = F BT

(5.1)

The term P(A | B,c) represents the probability of some observation A given some evidence
B and background context ¢, and is known as the “posterior probability”, P(A | ¢) is the
“prior probability” of event A with regard to the background context ¢, and P(B | A, ¢) is the
“likelihood” and returns the probability of the given evidence B on the assumption that A
occurred and the context c is true. The denominator, often regarded as a normalizing factor,
is the probability of the evidence given the context alone [123]. Each of the probabilities
in Eqn. 5.1 is a conditional probability; a probability of one event occurring assuming that
another event has already occurred. Often Bayes’ theorem is simplified as

P(A) x P(B | A)

P(A| B) = 5

(5.2)

This simplification comes from assuming that the background context ¢ remains constant
throughout the analysis.

For a set of random variables X, the global probability distribution of X given the
context ¢, P(X | ¢), gives the probabilities of all possible occurrences of all the variables
X, € X. This joint probability function is calculated using the chain rule, or probability

product rule:
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P(X|e)=][]P&Xi| X1,.... Xi1,0). (5.3)

i=1

Eqn. 5.3 is easily decomposed for small sets of random variables. Imagine a set X with
variables A, B, and C. The global probability distribution can be decomposed to P(X) =
P(A| B,C)P(B | C)P(C). Each P(X; | Xi,...,X;-1,¢) in Eqn. 5.3 can be considered as
the posterior probability in Eqn. 5.1 and can be calculated using Bayes’ theorem. Bayesian
networks simplify the global probability distribution of a set of random variables by identify-
ing the conditional dependencies and independencies between variables. This identification

of conditional dependencies and independencies allows the global probability distribution to

be decomposed to a set of local probability distributions.

5.1.3 Bayesian Networks

Graph theory is the other main theoretical foundation of Bayesian networks. A graph
G contains a set of nodes V and a set of arcs A which are identified by the two nodes the
arc connects, e.g. a;; = (v;,v;), where a;; € A and v;,v; € V. For a given V, G is uniquely
defined by A, with the assumption that there is no more than one arc between a pair of
nodes in V. For a Bayesian network, the arcs contained in A must be directed; each arc
must point from one node to another. Bayesian networks are also acyclical; if one starts at
any node v; in the graph and moves along the directed arcs in the graph, it is impossible
to return to node v;. Because of these criteria, the structure of a Bayesian network is a
directed acyclic graph, or DAG. A Bayesian network, B, is a combination of a DAG G and

the global probability P(X | ¢) of a set of random variables. The set of nodes V in G must
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have a one-to-one correspondence with the variables in X. One of the benefits of Bayesian
networks is they allow the decomposition of the global probability distribution to the set of
local probability distributions ©. © is referred to as the parameters of a Bayesian network
B. These local probability distributions are the conditional probabilities of each random
variable with respect to the other random variables in X, and so for every X; there is a
local probability distribution such that P(X; | X, ¢) € ©. In its simplest form, the Bayesian
network B = (G, O).
The relationship between G and © illustrates another benefit of Bayesian networks.
For each local probability distribution in ©, the probability of variable X; is determined
based on outcomes in each of the remaining variables in X. For sets of many random
variables, this quickly becomes extremely difficult to calculate. The Markov property of
Bayesian networks, which is a direct application of the probability chain rule, simplifies the
conditional probabilities in O, so the conditional probability of variable X; is only dependant
on the set of variables that make up the “parents” of X; [124, 125]. The parent nodes of
a given variable X; have an arc pointing to X;, which is considered the “child” node. This
simplifies Eqn. 5.3 to
N
P(X|¢)=]]P(X; |1y, 0). (5.4)
i=1
where Ily, is the set of parents of X;, and each P(X; | Ilx,,c) is a local probability distri-
bution in ©. A parent child relationship, or an arc, in the DAG G represents a conditional
dependence, or a direct probabilistic relationship, in ©. The direction of an arc indicates the

direction of the conditional dependence. Given the correct assumptions, the direction of an

arc can indicate causality. However, in this study and the work in the following chapter, no
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causality assumptions are made, and an arc’s direction is determined by the network score
in learning the network structure (see Sec. 5.2.2).

If a parent-child relationship does not exist between two nodes in G, then the corre-
sponding variables X;, X; have a nuanced relationship that is determined by the structure
of the network. Fig. 5.1 shows an example of a simple Bayesian network with six random

variables A, B, C, D, E, and F. Fig. 5.1 includes three key node structures. The first is a

A

Figure 5.1: Sample network with variables A, B, C, D, E, & F.

sequential or serial structure: C' — B — F. In this structure, F' is considered conditionally
independent from C' given B. However F' and C are not considered independent; if no in-
formation was known about B, knowing C' would influence the probability of F', and vice
versa. The joint probability of the three variables is P(C, B, F) = P(F | B)P(B | C)P(C)
[126]. The second structure is called a converging structure: C'— B < D. In a converging
structure, the parents are considered independent; knowing information about C' does not
affect the probability of D. However, the parents are not conditionally independent. Know-
ing information about B and D would affect the probabilistic outcome of C', and vice versa.
The joint probability of C, D, B is P(B,C,D) = P(B | C,D)P(C)P(D) [126]. The third
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key structure is a diverging structure: A < B — F. In this structure, A and F are not
independent; given some information about A, information can be inferred about B and then
a probabilistic outcome of F' can be determined. A and F' are conditionally independent;
knowing B affects the probabilistic outcome of A and F', but the probabilistic outcome of
A is not affected by the probabilistic outcome of F', and vice versa. The joint probability
distribution of the variables A, B, F'is P(A,B,F) = P(A | B)P(F | B)P(B) [126]. The
variable E is not connected to any other variable and is considered independent from all
variables, as such it is considered to be excluded from the network.

For a set of random variables and its associated Bayesian network B, Eqn. 5.3 and
Eqn. 5.4 are exactly equivalent if and only if the Bayesian network has the correct set of
parent-child relationships between the nodes in B; the arcs in B must correctly described
the independence and dependence relationships between the variables in X. The Bayesian
network is considered to be the “true” network if this is the case. These independence
and dependence relationships are not always known, and so the structure of the Bayesian
network must be determined either through a learning algorithm or with expert knowledge.
This action of finding the Bayesian network structure is referred to as “structure learning”
and is considered to be the most important step in probabilistic modeling with Bayesian

networks by some [127]. Structure learning is discussed in greater detail in Sec. 5.2.2.

5.1.4 Prior Studies of Bayesian Networks in Retention

While Bayesian networks have not been used in PER, Bayesian networks have been
applied in many educational research fields. Bayesian networks have been used in the de-

velopment of intelligent tutoring systems (ITS) [128, 129]. An ITS is software with which a
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student interacts; as the student completes modules and assignments, the I'TS learns the stu-
dent’s knowledge deficiencies and then assigns additional modules in areas the student needs
to improve. Using Bayesian networks as part of an ITS is an extension of using Bayesian
networks to assess student learning and performance [130, 131], another common research
strand in educational research fields. Bayesian networks have been applied in student as-
sessment research including using Bayesian networks to model students’ test responses and
identify common mistakes [132], whether they are using proper problem solving techniques
and physical principles correctly [133], and to give personalized feedback to students on
engineering design tasks [134].

There has been a substantial amount of work applying Bayesian networks to the prob-
lem of college student retention, with the majority of these studies focused on identifying
the variables that have the greatest effect on student retention [100, 55, 135, 102, 136], and
predicting student retention [135, 102, 136-139]. Different studies investigated the effects of
different types of variables, such as pre-college academic factors, college academic factors,
and demographic and socio-economic factors. McGovern et al. [100] investigated the factors
related to retention among minority engineering students. They found that HSGPA was
important in predicting retention, as well as student ethnicity. The amount of engineering
related work experience a student had also positively affected retention. Nandeshwar et al.
[55] examined important factors affecting retention of students at a mid-sized U.S. university;
good high school performance metrics, such as ACT scores and HSGPA, positively affected
retention. Other factors that positively impacted student retention were if the student lived
on campus, and if the student or student’s family had a higher income. In a studying ana-

lyzing the retention of computer science students, Lacave et al. [102] found that how many
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courses a student had passed positively impacted their retention. Arcuria applied Bayesian
networks to community college retention, analyzing the factors that affected retention for a
student’s first six terms. They found that students who received more need-based financial
assistance, attempted fewer credits in the prior term, and enrolled in more daytime courses
were more likely to be retained term-to-term. The studies that predicted student retention
noted that models that included college-level academic factors were better predictors of stu-
dent retention [135, 136, 102, 139]. These studies predicited general college retention with
two exceptions; one study predicted computer science student retention [102] and another

predicted engineering student retention [100].

5.2 Methods

This section discusses the methods and processes used to construct and query Bayesian
networks. All of the networks were built using the bnlearn package [140] as implemented in

the R software system.

5.2.1 Sample

The sample used in this study is the same sample that was used in the previous
chapter as described in Sec. 4.2.1. Because the analysis presented in this chapter examines
probabilistic relationships between academic factors and specific milestones in the completion
of the physics degree, the analysis for each milestone uses a filtered subset of the original
data, with each filter including only students who have been enrolled for an amount of time
that reasonably allows them to have met the milestone. The applications of these filters to

the original data and the subsequent descriptive statistics are shown in Table 5.1.
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Math Enroll Enroll Grad

# Filter N HSGPA Ready P112 P314 Physics
% % % %

1.1 None 586 63

1.2 2year, HS, P1 274 3.6 64 58

1.3 3year, HS, P1 267 3.6 66 42

1.4 Grad, HS, P1 236 3.6 69 31

1.5 3year, HS, P1, P112 148 3.8 82 70

1.6 Grad, HS, P314 171 3.7 84 67

Table 5.1: Descriptive statistics for data from Institution 1 after applying filters. Filters are abbreviated:
HS (high school) for students with HSGPA records, P1 (Physics first) for students whose first declared major
was physics, P112 (PHYS 112) for students who enrolled in PHYS 112, and P314 (PHYS 314) for students
who enrolled in PHYS 314. Different windows were used to ensure that the samples only included students
who could have met a particular milestone: 2year (Two year) removes the last two years of records, 3year
(Three year) removes the last three years of records, Grad (Graduation) removes the last six years of records.
HSGPA is the average High school GPA of the sample, and Math Ready % reports the percentage of students
ready to take Calc 1 or higher upon enrollment. The last three columns report the percentage of students
who met one of the three milestones.

The pre-college academic variables in this study are similar to those used in the prior
chapter, except they have been adjusted to be categorical variables to permit the use of
discrete Bayesian networks. ACTSATM and ACTSATV are three-level ordinal variables
with categories “High”, “Mid”, and “Low”. The breaks for these categories were derived
from the tertile breaks of the ACTSATM and ACTSATYV continuous percentile scores; for
ACTSATM the breaks are 89 and 74, for ACTSATYV the breaks are 89.5 and 73. HSGPA is
an ordinal variable with classes 2, 3, 4, and 5. These variable levels were discretized from the
continuous HSGPA (cHSGPA) scores, with the following discretization bins: a cHSGPA score
greater than 4 became HSGPA 5, cHSGPA between 3.5 and 4 became HSGPA 4, cHSGPA
between 3 and 3.5 became HSGPA 3, and any cHSGPA score less than 3 became HSGPA
2. APPhys and APMath are dichotomous variables that indicate whether the student has
any AP Math or Physics credits, with a 1 indicating that the student does have credit and

a 0 indiciating no credit. MathEntry is a 3-level variable with levels “<Calcl” indicating
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the student was not calculus ready, “Calcl” indicating the student’s first math course was
Calculus 1, and “>Calcl” indicating the student’s first college math course was Calculus 2 or
a more advanced math course. The outcome variables, or the variables that indicate whether
a student reached a milestone in the program, are TakeP112, TakeP314, and EndPhys. Each
of these are dichotomous variables, with a 1 indicating that the student reached the milestone
of enrolling in PHYS.112, enrolling in PHYS.314, and graduating from the physics program,
respectively.

A second analysis was performed for the probabilities of enrolling in PHYS 314 and
graduating in physics. In this analysis, the course grades of PHYS 112 were included as a
variable (P112) in the model for enrolling in PHYS 314, and the grades for PHYS 112 and
PHYS 314 (P314) were included as variables in the model for graduating in physics. In the
case of enrolling in PHYS 314, the data was filtered to include students who had enrolled in
PHYS 112 and had started their college career as a physics major; in the case of graduating
physics, the data was filtered to include students who had enrolled in PHYS 314. These

variables had categories corresponding to course grades: A, B, C, D, and F.

5.2.2 Building Bayesian Networks

One function of a Bayesian network is to identify the joint probability distributions and
conditional probability distributions of a set of random variables [124]. These conditional
probabilities can give insight to how states of an independent variable affect outcomes in the
dependent variable. A Bayesian network was constructed for the three milestones to identify
the conditional probabilities between reaching the milestone and pre-college academic factors.

Two more networks were built to include P112 and P314 as variables for enrolling in PHYS
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314 and graduating physics.

The method of determining the conditional probabilities is referred to as a condi-
tional probability query (CPQ). A CPQ investigates the posterior distributions of a learned
Bayesian network B for a specific outcome of a variable in X based on a piece of evidence
E [125]. There are two types of evidence that can be provided to a CPQ: hard evidence,
which is a new observation of one or more random variables in X, or soft evidence where the
distribution of one or more variables is changed. This study uses CPQs with hard evidence,
where the outcome X; is whether a student reaches the milestone, and the hard evidence X;
is the value of a pre-college factor or a prior course grade. A CPQ returns the probability
for all possible values of the target variable, as shown in Eqn. 5.5.

where X;, represents the k™ level of the target variable X;, and X, represents the k' level
of variable Xj;.

The structure of a Bayesian network can be learned with a structure learning algo-
rithm or it can be manually defined. Structure learning algorithms fall into three categories:
constraint-based algorithms, score-based algorithms, and hybrid algorithms. Constraint-
based algorithms use various statistical tests to learn the conditional independence relation-
ships (or “constraints”) found in the data [127]. Score-based algorithms build many different
DAG structures and measure the likelihood of the data given the proposed DAGs, selecting
the DAG that maximizes the likelihood of the data [127] (i.e. the DAG with the struc-

ture that best fits the data [141]). Hybrid algorithms are a mixture of the score-based and
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constraint-based algorithms, in that they conduct conditional independence tests to learn at
least part of the conditional independence relationships in the data, and then try to maxi-
mize the goodness of fit based on the found constraints [125]. Manually defining a Bayesian
network is often referred to as “expert elicitation”, and consists of an expert determining the
inclusion and direction of arcs between nodes [142]. In the bnlearn framework, each struc-
ture learning algorithm can be constrained by user input, allowing a network to be created
that is both learned from the data and determined by an expert. The purpose of structure
learning is to determine the true Bayesian network structure associated with the data, and
in turn correctly defining the probabilistic effects between variables. It is often the case that
the true structure can only be approximated for a specific dataset; in these cases, the joint
probability distribution calculated in Eqn. 5.4 is an estimate or approximation of the true
joint probability distribution calculated in Eqn. 5.3.

The networks in this study were built using expert elicitation and the hill-climbing
algorithm in tandem. The hill-climbing algorithm is a score-based algorithm that maximizes
the likelihood of the data given the proposed structure [127, 143]; it begins with an initial
DAG that is typically empty (no arcs), and then adds, deletes, and reverses arcs in the DAG,
retaining arcs that improve the likelihood. Once no arcs can be added, deleted, or reversed to
improve the likelihood, the algorithm selects the remaining DAG as the network structure.
The algorithm measures the effect of structure changes to the likelihood by calculating a
network score. The hill-climbing algorithm can be set to maximize any type of network score;
in this study the network score is based on the Bayesian Information Criterion (BIC). For
more information on BIC, see Chapter 8. Expert elicitation was used to preserve relationships

between pre-college factors and the milestones of the physics program that were found in
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Chapter 4. To do this, a whitelist was constructed for each network. A whitelist is a list
of arcs that is supplied to the hill-climbing algorithm that must be present in the final
network structure. For the networks using only pre-college factors, the whitelist constrains
the network to include an arc from MathReady to the milestone variable, and an arc from
HSGPA to the milestone variable. These variables were found to be the most influential
variables in determining retention in the prior study. For the networks including prior
physics course grades, the whitelist consisted of an arc pointing from the prior courses to the
target outcome, and arcs from MathReady and HSGPA pointing towards the prior course

variable.

5.3 Results

A Bayesian network was constructed for Samples 1.2-1.6 in Table 5.1. Each network
was built using a combination of the hill-climbing algorithm and expert input, and then was
queried to determine the conditional probabilities between the independent variables and
the dependent milestone variables. The networks are discussed in the following section, and

the results of the CPQ are in the section after that.

5.3.1 Bayesian Networks

Each Bayesian network was built using the hill-climbing algorithm and a whitelist to
constrain the structure. The networks using only the pre-college academic factors are shown
in Fig. 5.2. These networks share many of the same arcs; this is unsurprising as the samples
used to construct each network only differ by the window of time used to select them.

Perhaps the most notable difference is the exclusion of the arc from the variable EndPhys
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(a) 1.2, Bayesian network for enrolling in PHYS 112. (b) 1.3, Bayesian network for enrolling in PHYS 314.
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(c) 1.4, Bayesian network for graduating physics.

Figure 5.2: Bayesian networks for the milestones of enrolling in PHYS 112, enrolling in PHYS 314, and
graduating physics. The caption of each network indicates the sample used to build the network. Only
pre-college academic factors are included as variables.

(Fig. 5.2¢) to the variable APPhys. This arc is present in Figs. 5.2a and 5.2b, pointing from

the milestone variables TakeP112 and TakeP314 to APPhys. This is indicative of a direct
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probabilistic relationship between whether a student has AP Physics credit and whether
they reach the milestones of enrolling in PHYS 112 and PHYS 314. This relationship either
does not exist between whether a student graduates in physics and has AP Physics credit or
the probabilistic relationship is conditioned on other variables in the network. The direction
of this arc in Figs. 5.2a and 5.2b may seem counter-intuitive; AP Physics credit would be
earned before a student tries to enroll in either PHYS 112 or PHYS 314, and so the direction
of causation should be the reverse of the direction in the graphs. Similarly, the arc between
MathEntry and ACTSATM is in the opposite direction of what intuition would dictate; ACT
and SAT math scores are used to determine a student’s first math course. The reversal of
some arcs is due to the nature of the nature of the hill-climbing algorithm. The parameters ©
of a Bayesian network should match the conditional dependencies and independencies found
in the global distribution P(X | ¢). When learning the structure of a Bayesian network from
a set of random variables, the hill-climbing algorithm builds a model that has the best fit
to the conditional dependencies in P(X | ¢). It does this by maximizing network score, and
so improvement of network score is the determining factor in the direction of any arc in the
network, and a sense of causality or chronology is ignored by the algorithm.

The networks for reaching the milestones of enrolling in PHYS 314 and graduating
physics that include college physics course grades are shown in Fig. 5.3. These networks are
nearly identical, with the network in Fig. 5.3b including the milestone variable EndPhys,
which is a child node of P314, which replaces TakeP314 in Fig. 5.3a (P314 represents the
earned grade in PHY'S 314, TakeP314 indicates whether the student enrolled in PHYS 314).
The whitelists used in constructing these networks were more constraining than those used

in the networks in Fig. 5.2; they consisted of constraining MathEntry and HSGPA to be
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(a) 1.5, Bayesian network for enrolling in PHYS 314. (b) 1.6, Bayesian network for graduating physics.

!

!
i

:

Figure 5.3: Bayesian networks for the milestones of enrolling in PHYS 314 and graduating in physics. The
caption of each network indicates the sample used to build the network. College physics course grades were
included as variables in these networks, as shown by the P112 nodes and P314 nodes.

parent nodes of P112, constraining P112 to be a parent node of TakeP314 in Fig. 5.3a and

P314 in Fig. 5.3b, and constraining P314 to be a parent node of EndPhys in Fig. 5.3b.

5.3.2 Conditional Probability Queries

The probabilities of successfully reaching a milestone were determined using CPQs.
The outcome variable of the CPQs was the specified milestone variable, and for each mile-
stone variable each level of each variable was used as evidence. The results of these CPQs
are shown in Fig. 5.4, where the probability of reaching the milestone for each variable is
shown.

For each milestone, as the evidence progresses down through a variable’s levels, the
probability of reaching the milestone decreases as expected. Students with a “High” ACT

math score would be more likely to progress to enrolling in PHYS 314 than a student with
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Figure 5.4: CPQ results for each milestone variable and each of its pre-college independent variables. The
probabilities shown are the probabilities of a “1” outcome (i.e. reaching the milestone). Probabilities queried

from the networks in Fig. 5.2.

a “Low” ACT math score. For the milestone TakeP112, a MathEntry value of >Calcl and

having AP Math credit return the highest probability for enrolling in PHYS 112 (Fig. 5.4a).
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For TakeP314, having credit in an AP Physics course returns the highest probability for
reaching PHYS 314, followed closely by a HSGPA of 5 and a MathEntry of >Calcl (Fig.
5.4b). Only 31% of students who begin in physics as freshmen graduate physics (Table 5.1).
As such, for nearly every possible value of the pre-college factors a student is more likely to
leave physics than complete the program (Fig. 5.4c¢). Only HSGPA of 5 returns a greater
probability of graduating physics than not for the milestone variable EndPhys.

If the outcome variable has more than one parent node, a simple CP(Q using only one
parent variable as evidence can fail to capture the intricacies of the interaction of two or more
parent nodes and the child node. To capture these relationships, all possible combinations
of the parent variables were used as evidence in a CP(Q), and a conditional probability table
(CPT) was formed to show these relationships. The milestone variables in the networks
in Fig. 5.2 all have the same two parent nodes of HSGPA and MathEntry. CPTs for the
networks for each milestone variable are shown in Fig. 5.5.

A CPT shows how the probability of the outcome changes with changes of level in one
variable while the other variable is held constant. For example, the right most column in
Fig. 5.5a shows the probabilities of the various levels of HSGPA when MathEntry is held
constant at <Calcl. Moving down the column changes the HSGPA from 2 to 5. In this case,
the probability of enrolling in PHYS 112 increases from 20% with a HSGPA of 2 to 45%
with a HSGPA of 5. Similarly, the second row of Fig. 5.5a shows the changing probabilities
for levels of MathEntry when HSGPA is held at 3. As MathEntry decreases from >Calcl to
<Calcl, the probabilty of enrolling in PHY'S 112 decreases from 75% to 25% for a HSGPA of
3. Generally, each CPT in Fig. 5.5 shows an increasing probability of reaching the milestone
for increasing HSGPA and MathEntry (i.e. moving down the table for increasing HSGPA
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Figure 5.5: Conditional probability tables for each milestone variable and their parent variables. Probabilities
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Probabilities queried from the networks in Fig. 5.2.

and from right to left for increasing MathEntry). Each possible combination of HSGPA and

MathEntry is filled with some fraction of students from the sample that match the criteria.
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The number of observations per possible combination is shown in Fig. 5.6.

MathEntry MathEntry
TakeP112 >Calcl | Calcl | <Calcl TakeP314 >(Calcl | Calcl | <Calcl
2 7 11 27 2 8 11 27
3 8 15 36 3 11 15 35
HSGPA 4 21 38 39 HSGPA 4 22 36 35
5) 23 36 13 5) 23 33 11
(a) Observations per combination of MathEntry and HSGPA (b) Observations per combination of MathEntry and HSGPA
for PHYS 112 for PHYS 314
MathEntry
EndPhys >Calcl | Calcl | <Calcl
2 8 11 23
3 11 15 29
HSGPA 4 22 30 29
5 21 29 8

(c) Observations per combination of MathEntry and HSGPA
for EndPhys.

Figure 5.6: Observations per combination of MathEntry and HSGPA for the CPTs in Fig. 5.5.

The networks shown in Fig. 5.3 that include college physics course grades were also
queried to determine conditional probabilities. These results are shown in Fig. 5.7. Because
the outcome variables of TakeP314 and EndPhys have only one parent node each (P112 and
P314 respectively), a CPT is not reported.

The conditional probabilities for the pre-college factors in Fig. 5.7 are markedly dif-
ferent than those in Fig. 5.4. The different levels of pre-college factors in Fig. 5.7 show very
little variation in probability of reaching the milestone. This indicates that for students who
have reached an early milestone in the physics program (e.g. enrolling in PHYS 112), their
probability of reaching a later milestone such as graduating physics or enrolling in PHYS
314 is mainly affected by their college performance, and any effect that a pre-college factor
may have on reaching a particular milestone is explained by their college performance. Also
of note is the much greater percentage of students that reach the milestones of enrolling in
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PHYS 314 and graduating in physics in samples 1.5 and 1.6, which were used to build the
networks that produced these probabilities. Sample 1.5 is filtered to only include students
who enrolled in PHYS 112. This filter increased the probability of enrolling in PHYS 314
from 42% in Sample 1.3 to 70%, a 170% increase. Similarly, Sample 1.6 is filtered to only
include students who enrolled in PHYS 314. This filter increased the percentage of students

who graduate in physics from 31% in Sample 1.4 to 67%, a 220% increase.

5.4 Discussion

This study sought to answer a single research question. The result and its implications
are discussed below.

RQ1: What is the probabilistic relationship between various points of progression in
a physics curriculum and pre-college academic factors? How do these relationships change
when select physics course grades are added to the model? Fig. 5.4 shows the specific
probabilistic relationships between pre-college factors reaching the milestones of PHY'S 112,
PHYS 314, and graduating physics. For every pre-college factor, the probability of reaching
any milestone decreases as the level of the pre-college factor decreases. However, for every
pre-college factor, regardless of the level of the factor, students are more likely to not reach the
milestone of graduating in physics, with the exception of students who have a HSGPA of 5.
When the college physics courses were included in the models, the relationship between pre-
college factors and the milestones of enrolling in PHYS 314 and graduating in physics changed
dramatically (see Fig. 5.7). These models were built from samples that only included

students who had already met the milestone of enrolling in PHYS 112 (Fig. 5.7a) and the
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milestone of enrolling in PHYS 314 (Fig. 5.7b). Essentially, the probability of reaching a
milestone is the same for all levels of the pre-college factors, with the exception of HSGPA,
where there is a slight decrease in probability of reaching the milestones when the HSGPA
decreases from 5 to 2. For these models, a strong probabilistic relationship exists between
the milestones and the college physics course grades; as the grade in PHYS 112 and PHYS
314 decreases, so does the probability of graduating physics. For the probability of enrolling
in PHYS 314 (Fig. 5.7a), there is a strong drop when moving from a B in PHYS 112 to a C
in PHYS 112, then the probability suddenly rises with a D in PHY'S 112. This inconsistency
is likely due to a lack of statistical power. Only five students in Sample 1.5 received a D in
PHYS 112; against all odds, four of these students enrolled in PHYS 314.

This strong dependence on prior course grades such as PHYS 112 may indicate that
the physics department at Institution 1 should focus on helping incoming students in their
first two to three semesters at the university, especially those who are likely to not enroll
in PHYS 112 or likely to struggle in PHYS 112. This is because once the first milestone of
enrolling in PHYS 112 was met, their college course performance is more probabilistically
indicative of their future outcomes. Fig. 5.4a indicates that pre-college factors are strongly
related with reaching the first milestone of enrolling in PHYS 112, and Figs. 5.7a & 5.7b
imply that it is the grades in prior college physics courses that are strongly related with
reaching the milestones of enrolling in PHYS 314 and graduating physics. Understanding
the relationship of these pre-college factors and the probability of reaching an early mile-
stone in a physics curriculum (like the milestone of PHYS 112 at Institution 1) can help
physics departments to implement the necessary interventions in their program to increase

the fraction of students who reach these early milestones and in turn, increase the number
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of students who successfully reach subsequent milestones.

The strong dependence of reaching the first milestone of PHYS 112 and pre-college
academic factors is somewhat troublesome. The three variable states that had the greatest
probability of enrolling in PHYS 112 were having credit in any AP Math course, having credit
in any AP Physics course, and having a MathEntry point of >Calcl. Having a MathEntry
point of >Calcl typically indicates that a student enrolled in an AP Calculus course in high
school or enrolled in a dual-enrollment course in high school. Often, these college-level high
school courses are considered bonus point courses in the school districts in which they are
offered, and a student can receive up to five GPA points for a successful completion of the
course, as opposed to the typical four GPA points. For a student to have a HSGPA of
5, they need to have attended a school district that offers AP or dual-enrollment courses.
For graduating physics, only students who had a HSGPA of 5 were likely to reach that
milestone; any student without a HSGPA of 5, regardless of their other pre-college factors,
were more likely to leave the physics program. AP courses and dual-enrollment courses are
not options for many students at under-resourced school districts. Persons from traditionally
marginalized communities in STEM fields disproportionately attend these under-resourced
school districts [122]. If this trend found at Institution 1 is universal, then these students are
at a strong disadvantage of reaching early milestones in their physics programs. Assisting
students who are less likely to reach early milestones becomes an issue of equity, and physics
departments have the responsibility to improve their programs to be more equitable and

better serve all students.
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5.5 Conclusion

The probabilistic relationships between reaching specific milestones in the physics
curriculum at Institution 1 and pre-college academic factors were explored by querying a
Bayesian network. The milestones investigated were reaching the courses PHYS 112 and
PHYS 314, and graduating from the physics program. Reaching PHYS 112 had a strong
dependence with college preparation; students with some AP Physics and Math credit were
nearly 40% more likely to reach PHYS 112 than those without credit, and students who
enrolled in a higher math course than Calculus 1 their first semester were nearly 50% more
likely to reach Physics 2. Reaching PHYS 314 had a strong probabilistic relationship between
high HSGPA scores and math readiness. Graduating from the physics program had a strong
probabilistic relationship with high HSGPA scores. When grades from a prior college physics
course were added to the models, these factors had stronger probabilistic relationships with

reaching later milestones than the pre-college factors.
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Chapter 6

Predicting Physics Course Grades Using Bayesian

Networks
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6.1 Introduction

The preceding chapter introduced Bayesian networks as a method to calculate the
probabilities of students reaching a particular milestone in the physics curriculum at Insti-
tution 1. The factors that had the greatest influence on reaching a milestone were students’
grades in a prior physics course. This relationship between grades and reaching a milestone
in the program is not surprising. Receiving a passing grade in a required course allows a
student to continue to progress in the program, while a failing grade requires the student to
re-take the course before they can progress. While Chapter 5 only looked at two courses,
each required course in a physics curriculum can be considered a milestone, and reaching and
passing each course is a necessary step in successfully completing a physics program. This
study extends the analysis in the preceding chapter by finding the relationships between the
grades in required physics courses and their pre-requisite course grades. Specifically, this
chapter uses Bayesian networks to determine the conditional probabilities of a student being
successful in a required physics course based on their grades in prior physics courses.

Determining the probability of student outcomes in a particular course has direct stu-
dent advising applications. Effective student advising is a core responsibility of physics
programs. Advising has been shown to increase rates of student persistence to graduation
[144]. Quality advising has been cited as the second most important responsibility of aca-
demic programs, with quality instruction as the most important responsibility [144, 145].
Quality advising should not only instruct students on which courses they must complete to
qualify for graduation, but also when courses are offered, when and in what sequence to take

courses, and what course combinations are beneficial or detrimental. Knowing the condi-
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tional probability of a successful outcome in each required physics course based on grades in

prior courses could be an extremely useful tool for undergraduate physics advisors.

6.1.1 Research Questions

This study applies Bayesian networks to determine probabilistic relationships between
outcomes in courses required in the physics curriculum at Institution 1. Bayesian networks
are also used to predict student outcomes. These probabilistic dependencies and predictions
are used to determine ways they could be applied by a physics department to improve
its physics curriculum, with the hypothesis that an improved curriculum causes improved

retention.

RQ1: What are the probabilistic dependencies between upper-level physics courses and their

prerequisites?

RQ2: How accurate are Bayesian networks in predicting outcomes in upper-level physics

courses? Which prior course is the most important predictor of the target course?

This study uses prior required physics and math course grades. The study in the pre-
ceding chapter showed that these grades had strong probabilistic relationships with reaching
milestones in the curriculum, such as enrolling in a modern physics course and graduating
the program. This study looks at seven of the required physics courses at Institution 1 and
treats them similarly to the milestones discussed in the previous chapter. These courses are

referred to often as “target courses” in this chapter.
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6.1.2 Bayesian Networks and Grade Prediction

The study of student performance using educational data mining (EDM) and ma-
chine learning (ML) methods is an increasingly popular research strand in many educa-
tional research subfields, such as PER [104, 105, 55]. As discussed in the prior chapter,
the use of Bayesian networks to study retention and student academic performance is not
uncommon. Several studies have used Bayesian networks to predict student course grades
[137, 101, 146, 147]. One of these [101] used an expert elicited Bayesian network to pre-
dict student grades in three core courses of the engineering program at a university in the
midwestern U.S. The courses they predicted (Physics 2, Calculus 2, and Intro to Computer
Programming) were considered “gateway courses” in the engineering program; each was a
required course in the engineering curriculum, and many students leave the engineering pro-
gram after performing poorly in any of these courses. They compared the expert elicited
Bayesian network with other common prediction methods such as random forests, decision
trees, K-nearest neighbors, and others. They found that their expert elicited network out-
performed all other predictive models, predicting Physics 2 outcomes with an accuracy of
70%, Calculus 2 outcomes with an accuracy of 73%, and Intro to Computer Programming
with an accuracy of 36%. They used prior course grades and pre-college academic and de-
mographic factors as independent variables in their predictions. Another study [137] used
Bayesian networks to predict students’ 3rd year overall academic performance at a university
in London, United Kingdom. They used a mixture of data sources as independent variables
in their prediction including pre-college demographic and academic information, final grades

for all first and second year courses, and online and in-person engagement information. Their
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data were highly imbalanced; there were far fewer students who were at a high risk of poor
performance. They showed that using bootstrap aggregation (bagging) improved prediction
accuracy of at-risk students by 15-20%.

Two studies used Bayesian networks specifically to create an advising tool for computer
science [147, 146]. The first of these created a Bayesian network based on the pre-requisite
structure of courses in the computer science program at a university in the eastern U.S.,
with some adjustment from experts (i.e. faculty members). This network was not built with
student data or applied to the prediction of real students, rather the researchers created sev-
eral different simulated students with different characteristics describing their mathematical
and programming abilities, and used the network to predict the simulated students’ out-
comes. They compared the network’s predicted outcomes with the outcomes that various
undergraduate advisors predicted based on the simulated student information. They found
that the network predictions agreed with the advisors predictions in most cases. The other
study [146] was performed at a liberal arts college in the central U.S., and predicted stu-
dent grades in all of the required courses of the computer science curriculum. The Bayesian
network structure was built using the pre-requisite structure of the curriculum; arcs in the
network corresponded to pre-requisite relationships between courses (e.g. there would be an
arc pointing from Calculus 1 to Calculus 2). The network was used to predict each required
course in the curriculum, with varying levels of success. The prediction accuracy of each
course was better than the baseline accuracy of guessing the majority class for every predic-
tion; however, in some cases the prediction accuracy was still less than 40%, and the highest
prediction accuracy was 87% in a senior level computer science course. The work presented

in this chapter is similar to these two studies, though it is the first application of Bayesian
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networks to predict physics course grades.

6.2 Methods

6.2.1 Sample

The sample used in this study is the same sample that was used in the analysis in
Chapter 4 as described in Sec. 4.2.1. The variables used in this study consist of the grades
in some required physics and math courses for physics majors at Institution 1, as well as first
or second-semester college GPA. All variables were ordinal categorical variables, where the
possible categories of a variable are the possible outcomes of the course, or in other words
the grade earned in the course. These variables are shown in Table 6.1. Some of the student
records in the sample had missing data in some of the introductory physics and math courses
(they had no recorded grade for the course.) This happened when some students received
college credit for AP courses or dual-enrollment courses. These data were considered to be
missing at random (MAR), because the missingness of the data does not affect the value
the data would take if it was not missing. It is not missing completely at random (MCAR)
because the reason the data were missing can be explained by the data (the students have
AP or dual-enrolment credit), and it is not missing not at random (MNAR) because the fact
that the data is missing is not explained by the values of the missing data. Because it is

MAR, we can use multiple imputation methods to impute these missing values.
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Reference No. Variable Name Canonical Course Name

1 MATH.155 Calculus 1

2 MATH.156 Calculus 2

3 MATH.251 Calculus 3

4 MATH.261 Differential Equations

) PHYS.111 Intro Physics 1

6 PHYS.112 Intro Physics 2

7 PHYS.314 Modern Physics

8 PHYS.331 Classical Mechanics

9 PHYS.333 Electricity and Magnetism
10 PHYS.341 Advanced Lab

11 PHYS.451 Quantum Mechanics

12 PHYS.461 Statistical Mechanics

13 CGPA Second-semester college GPA
14 CGPA1 First-semester college GPA

Table 6.1: List of courses used as variables in the analyses, as well as the college GPA variables.
Multiple Imputation

Multiple imputation follows a straightforward process. First the missing data are
imputed multiple times to create M full datasets. Second, the analysis is performed on each
dataset, resulting in M results. Lastly, the results are pooled following Rubin’s rules [148]. In
a recent article, it was shown that one can also average the results of the M imputations, and
use the averaged full dataset for the analysis [149]. The imputation method used in this study
is the structural expectation-maximization (SEM) algortihm as implemented by the bnlearn
package [150]. The algorithm has three steps: the algorithm builds a Bayesian network and
fits it to the dataset with missing values, then the missing values are imputed using Bayes’
theorem and the parameters learned in the network, and lastly the algorithm maximizes a
specified network score as it learns a Bayesian network from the completed dataset with a
structure-learning algorithm. SEM was used to perform multiple imputations to handle the

missing data and build models that better represented the conditional probabilities between
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outcomes in the required courses for physics majors at Institution 1.

6.2.2 Identifying Conditional Probabilities

A Bayesian network was constructed for seven required physics courses at Institution
1. These Bayesian networks were built to identify the conditional probabilities between out-
comes in the target course and grades in prior physics and math courses. The outcomes of the
target variable were classified as “Succeed” or “Struggle”, where a student who “Succeed]s]”
is one who earned a grade of A or B, and a student who “Struggle[d]” is one who received
a grade of C, D, F, or withdrew from the course (W). The other courses (independent vari-
ables) used to build the networks had variable levels that corresponded to the grade received
in the course: A, B, C, and DFW, which indicates any failing grade or a course withdrawal.
Second-semester college GPA (or first-semester college GPA in the case of PHYS.112) was
also included as a variable and had levels corresponding to the letter grade associated with
the grade point average (A, B, C, D, F). For each target course, the conditional probabilities
of the target course outcome were calculated only for the courses that are typically taken
prior to the target course. A separate network was built for each target course; in each case,
the data were filtered to include only students who had enrolled in that course.

To determine probabilistic relationships between prior course grades and target course
outcomes, conditional probability queries (CPQ’s) were conducted, as described in Sec. 5.2.2.
In this case, the outcome X;, is the & outcome (Struggle, Succeed) of the target course i,
and the hard evidence X, is a specific grade k (A, B, C, DEFW) in a prior course j. The

CPQ in this case takes the form
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PX|E,B)=P(X;, - ,X, | X;,,G,0). (6.1)

1’..

Asin Sec. 5.2.2, G encodes the characteristics of the directed acyclic graph (DAG) associated
with the Bayesian network B, and © represents the local probability distributions of B.

A network and its posterior probabilities were learned from the available data, and those
probabilities were then used to calculate values for the missing data using Bayes’ theorem.
This was done 100 times; 100 networks were learned from the data and each imputed the
missing data creating a set of 100 imputations. The mode of the 100 imputations was taken
to create a dataset that had multiply imputed data. This multiply imputed dataset was
then used to build the networks and find the conditional probabilities of the target courses

as discussed in the following section.

Structure Building

The networks constructed to determine conditional probabilities of prior grades were
built using the hill-climbing algorithm in conjunction with expert elicitation. One shortfall
of the hill-climbing algorithm is that it can fall into a local maximum, and will fail to identify
the overall best fitting structure [125]. This can be avoided by introducing random restarts
to the algorithm, which causes it to “jump away from” the local maximum. The DAG that
is “jumped to” is a perturbation of the local maximum DAG; some of the arcs in the local
maximum DAG have been added, deleted, or reversed at random.

Expert elicitation was used to constrain the hill-climbing algorithm in the form of a

blacklist. A blacklist is a list of directional arcs that are not allowed to be present in the DAG;
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for example, if an arc from variable A that is directed to variable B is blacklisted, then it will
not be present in the network structure after the hill-climbing algorithm is complete, though
its reverse arc (from B to A) could be present. The blacklist used consisted of arcs that would
violate the prerequisite relationships between courses in the physics program (e.g. Calculus
2 could not have an arc pointing towards Calculus 1). We found that using a blacklist
instead of a whitelist (a list of arcs that must be included in the DAG) allowed the hill-
climbing algorithm more freedom in determining the probabilistic relationships between the
courses, allowing the identification of relationships between classes that were not expected or
reflected in the prerequisite structure of the courses (the prerequisite structure of Institution
1 is shown in Fig. 7.1 in Chapter 7).

In learning the networks for the seven target courses using hill-climbing with random
restarts and expert elicitation, the DAG structure that was determined to be the structure
with the maximum network score was not always the same. To account for this variability,
model-averaging was employed to find the final structure. Model-averaging is a method
that combines a set of DAGs built with a set of random variables and “averages” them by
counting the number of times an arc appears in the set of DAGs and retaining arcs that
appear more times than a specified threshold. Arc directions are determined in a similar
manner; the direction of an arc that appears most often in the set of DAGs is the direction
that arc takes in the averaged DAG. This occasionally may lead to arcs that introduce cycles
to the graph; to avoid this, the least-occurring arc whose deletion would remedy the cycle
was removed from the graph, resulting in a valid averaged DAG. In this analysis, 10000
DAGs were learned for each target course and were averaged, and only arcs that occurred

at least 1000 times were retained.
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6.2.3 Predicting Course Outcomes

A Bayesian network can be used to predict outcomes of new observations. When
the outcome to be predicted is categorical, this is often referred to as classification. This
prediction is made by using Eqns. 5.1 and 6.1, and the model selects the outcome with the
greatest probability, based on the new evidence and the prior distributions in the Bayesian
network. Traditional Bayesian network classifiers include Naive Bayes classifiers and tree-
augmented naive Bayes classifiers. In a Naive Bayes classifier, the target variable has an
arc that points to each of the independent variables, and no other arcs are present in the
DAG [151]. Tree-augmented Naive Bayes are similar, but there are additional arcs between
independent variables that have strong probabilistic relationships. Both of these sacrifice the
interpretability of a traditional Bayesian network for one that fits the data well for predictive
accuracy.

In this study, an ensemble of traditional Bayesian networks (networks that were not
Naive Bayes or tree-augmented Naive Bayes) was used to perform predictions for the seven
target courses. Traditional Bayesian networks were selected instead of typical Bayesian
classifiers after some preliminary predictions were performed, where the naive Bayes and
tree-augmented naive Bayes models were outperformed by traditional networks. The dataset
was evenly split into a training set and a test set, both of whose distribution of the target
variable was the same as the full dataset. The variables used to predict each target course
outcome consisted of the courses that are typically taken prior to the target course, as well
as first or second-semester college GPA, depending on the target course. Students were

predicted to either “Succeed” or “Struggle” in the course, which had the same definitions
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as the similarly named outcomes analyzed in Sec. 6.2.2. When predicting each course, the
dataset was filtered to only include students who enrolled in the target course. The process

for selecting these models is outlined in the following section.

Model Selection

When building an ensemble of Bayesian networks, ensuring that each model in the
ensemble is independent is difficult, as each network is learned from the same dataset and
Bayes’ theorem will create similar network parameters. To avoid this, the models built in
the ensemble were learned through cross-validation, which allowed each model to be learned
from a resampled subset of the training set. A 10-fold cross-validation was used, and the
Bayesian network learned by each fold of the cross-validation was retained as a model for the
ensemble. As such, the ensemble predictor for each target course had 10 Bayesian networks
as part of the ensemble.

To build the networks for the ensembles, SEM with the hill-climbing algorithm was
used as the learning algorithm for each fold of the cross-validated training set. Each network
in the ensemble was learned with the available data in the fold, and as a by product the
missing information in the fold was imputed. The test set was input to each model in the
ensemble; each model imputed any missing values for independent variables in the test set
using the posterior probabilities in the model learned from the training data and the evidence
from the test set. Each model then predicted the dependent or target variable, resulting in
10 sets of predictions. The mode of the ten sets of predictions was then taken to create
the final predictions for the target variable. The purpose of performing the imputations was

to make the parameters of the Bayesian networks more robust, leading to better predictive
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performance. In preliminary analysis, models that used this method of multiple imputation
performed 4-5% better than models built without multiple imputation.

Typically in prediction or classification, the dataset consists of the dependent variable
and the set of independent variables used to predict the dependent variable. However, the
intent of this study in predicting an outcome in a course is not simply to predict that
outcome, but rather to predict that outcome in the context of the entire physics course
network, to better serve advisors in physics departments. The training set used in building
the models for the ensemble predictor contains all available information about required
physics and math courses in the physics major at Institution 1. The test set is filtered
to only include the independent variables used in predicting the dependent variable; these
independent variables are the courses that are typically taken before the target course and
the first or second-semester CGPA. The missing courses in the test set (these would be
upper level physics courses that are taken after the target course, referred to as “post-course
variables”) are treated as missing data and are not included in the evidence E in Eqn.
6.1 used to predict the target course outcome. By including the post-course variables in
the learning and building of the Bayesian networks, the predictive models are able to use
the probabilities associated with those variables in making predictions on the target course.
In preliminary analysis, including these post-course variables in the model building phase
improved predictive performance by up to 10%.

The blacklist used in building the models in Sec. 6.2.2 was implemented in creating
the models for some of the target courses. Its use was determined by whether it improved
predictive performance of the model. A predictor does not necessarily need to be intuitive
and its goal is to predict as best as it possibly can, so constraining the model to maintain
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some form of chronological order of courses was not deemed necessary.

The nature of educational data, especially course outcome data, is often unbalanced.
This is problematic in creating predictive models; because the models are trained on mostly
the majority class, they tend to over fit the model to predict that most observations will fall
into the majority class. As such the accuracy of a model (Eqn. 3.10) may be very high, but
the model is simply guessing that every observation is in the majority class. The balanced
accuracy, the average of sensitivity and specificity and B in Eqn. 3.13, of such a model would
be 50%; the model only predicts the majority class well. For models performing predictions
on unbalanced data, B is a better metric of model performance, as it contains information as
to how well the model predicts both classes, not just the majority class. This is particularly
important in the models constructed in this study, as the vast majority of students in each
of the target courses received an A or B grade. If the models were built with only overall
accuracy as the primary performance metric, then the failing and struggling students would
mostly be ignored. It is precisely the struggling students that we want to identify so some
type of intervention can be used to assist them. By using B as the primary performance
metric, the model that is selected is the model that has the highest B, and as such is that
model that predicts both the majority and minority class the best.

To improve the B of a model, decision threshold tuning was used. In this study,
the Bayesian network predictor receives an observation of independent variables and then
predicts the dependent variable. The prediction is determined by the probabilities of the
possible outcomes based on the evidence contained in the observation; if the probability of
a student receiving a C grade or lower is greater than 50%, that student is predicted to

be a student that will “Struggle”. The 50% threshold is the default decision threshold of
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the model. This threshold can be tuned (changed) to a different value resulting in different
predicted outcomes. For example, if the threshold was tuned to 25%, a student would have
to have a probability of more than 25% of getting an C or lower grade to be determined
as struggling; if their probability of C or lower was less than 25%, they would be predicted
to succeed. By tuning the decision threshold, the model can be adjusted to predict both
the majority and minority classes equally well, resulting in a maximized B. The decision
thresholds of the ensemble Bayesian network predictors were lowered in 5% increments. The
resulting predictions were compared, and the model with the best B was selected. Typically
the model with the highest B had a (; (sensitivity, Eqn. 3.11) equal to its Sy (specificity,

Eqn. 3.12), or nearly so.

6.3 Results

6.3.1 Identifying Conditional Probabilities

A Bayesian network was constructed for the following courses: PHYS.112 (Introduc-
tory Physics 2), PHYS.314 (Modern Physics), PHYS.331 (Classical Mechanics), PHYS.333
(Electricity and Magnetism), PHYS.341 (Advanced Lab), PHYS.451 (Quantum Mechanics),
and PHYS.461 (Statistical Mechanics). A visualization of the averaged network for each
target course was constructed. These are shown in Figs. 6.1 and 6.2. The target course
is highlighted in blue, as well as the incoming and outgoing arcs to the target course. The
linewidth of the arc is representative of the “strength” of the arc, or the frequency of the
arc in the 10000 averaged networks used to construct the network; dashed lines represent

the weakest arcs. Each network was built with only the records of the students who enrolled
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in the target course, and the target course was re-categorized from having classes A, B, C,
DFW to the dichotomous classification of AB and CDFW. The differing network structures
are due to the varying sample size used for each network and the re-categorization of each
target course from a 4-level ordinal variable to a dichotomous variable. This focused the
network on the relationships between the succeed or struggle outcome in the target course
and specific grades in other courses. Nodes that have no incoming or outgoing arcs in the

network are considered “excluded” from the network.

(c) PHYS.331 (d) PHYS.333

Figure 6.1: Bayesian networks for PHYS.112, PHYS.314, PHYS.331, and PHYS.333
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(a) PHYS.341 (b) PHYS.451

(c) PHYS.461
Figure 6.2: Bayesian networks for PHYS.341, PHYS.451, and PHYS.461

The networks were queried to determine the probability of an AB outcome in the target
course based on an outcome in a prior course. The results of these CPQ’s are shown for each
target course in Figs. 6.3 and 6.4.

Each prior course provided a set of 4 probabilities based on the possible grades in that
course. Possible grades in prior courses are A, B C, and DFW. If the set of probabilities for
a prior course is nearly homogeneous (the same or nearly the same probability for an AB

outcome in the target course regardless of grade in the prior course), it indicates that the
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Figure 6.3: Probabilities of receiving an AB grade in a target course based on a grade received in a prior
course.

grade in the prior course has little or no correlation to the outcome in the target course. If
there is significant variation in the set of probabilities for a prior course, it indicates that
there is a relatively strong correlation between the grade received in the prior course and
the the outcome in the target course. For each target course, the probability of a successful
outcome in the target course is the same for each possible grade in MATH.155. In this case,
the probability of a successful outcome in the target course is equal to the distribution of the
target course, or in other words it is equal to the ratio of students who received a successful

outcome in the target course to students who enrolled in the course. This is not surprising,
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Figure 6.4: Probabilities of receiving an AB grade in a target course based on a grade received in a prior
course. CGPA has levels A, B, C, D, and F and the course variables have levels A, B, C, DFW.

118



as MATH.155 is not connected by an arc to another node in any of the networks in Figs. 6.1
and 6.2, indicating that there is not a strong probabilistic relationship between its grades and
outcomes in future courses. This is likely because MATH.155 is typically the first required
course in which physics majors enroll if they are math ready. As majors progress through the
program and take courses that are nearer to the target course, those course grades are more
likely to have a strong probabilistic relationship with outcomes in the target course, and
any relationship between the target course and MATH.155 is explained by the intermediary
courses. Nearly every target course had several prior courses that had a relatively strong
correlation between target course outcome and prior course grade. This was not true for
PHYS.461, the Statistical Mechanics course. CGPA and PHYS.314 (Modern Physics) have
the most variation across their grades for an AB outcome in PHYS.461, followed closely by
PHYS.331 (Classical Mechanics). The other prior courses show very little variation in the
posterior probability of a successful outcome in PHYS.461 across their possible grades (the
range of probabilities is less than 20%). This may indicate that PHYS.461 does not fit well

into the overall course network and should be examined for improvement.

6.3.2 Predicting Course Outcome

An ensemble predictor was built for each of the seven target courses. Each ensemble
model consisted of 10 cross-validated Bayesian network predictors, and final predictions were
based on the mode of the 10 Bayesian network predictions. The predictions for each course
were performed 100 times; the results are averaged in Table 6.3. Table 6.2 shows the sample
size used in each prediction, as well as the dependent variables used in the model. The

dependent variable numbers refer to their numbers in Table 6.1.
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Target Course Dependent Variables Sample Size AB%

PHYS.112 1,2,5,14 318 79.2
PHYS.314 1-3,5,6,13 248 72.6
PHYS.331 1-7,13 241 71.4
PHYS.333 1-7,13 236 64.4
PHYS.341 1-9,13 199 76.9
PHYS.451 1-10,13 184 72.3
PHYS.461 1-11,13 175 81.1

Table 6.2: The sample sizes of each dataset used to predict the target variable, as well as the dependent
variables and the AB% of the dataset. The dependent variable numbers refer to Table 6.1.

Avg. % 957
Target Avg. % Balanced C.I. for ~ Decision Blacklist
Course  Accuracy Balanced Threshold
Accuracy
Accuracy
PHYS.112 76.9 76.8 75.9-77.7 0.15 No
PHYS.314 69.1 72.0 71.0-73.1 0.20 Yes
PHYS.331 73.9 74.0 73.2-74.9 0.25 Yes
PHYS.333 82.6 82.3 81.7-82.9 0.30 No
PHYS.341 73.6 72.9 72.0-73.8 0.20 No
PHYS.451 81.6 81.1 80.3-82.0 0.30 Yes
PHYS.461 73.8 72.6 71.4-73.7 0.20 Yes

Table 6.3: Results of course predictions, averaged over 100 iterations. The decision threshold is the threshold
for the probability that a student will “Struggle”. The Blacklist column indicates whether the blacklist was
used in learning the network structures.

PHYS.333 (Electricity and Magnetism) had the best performance based on the bal-
anced accuracy of its model. It is followed closely by PHYS.451 (Quantum Mechanics).
These are followed by PHYS.112 and PHYS.331, and then PHYS.341, PHYS.461, and
PHYS.314. The last three have a balanced accuracy within one percent of each other.
All models have a balanced accuracy greater than 70%, indicating a model that performs
better than guessing the majority class for every observation (such a model would have a
balanced accuracy of 50%). The decision thresholds for the models range from 0.15 to 0.3;
the lower decision thresholds were used in the models whose dataset was more unbalanced

(i.e. there were more AB students than CDFW students). The decision threshold for each
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model was adjusted to optimize the prediction of the CDFW outcomes. A model with an
un-adjusted decision threshold would err in the direction of predicting AB outcomes more

accurately than CDFW outcomes.

Variable Importance

Once the optimal decision threshold for the balanced accuracy was selected, each model
was checked to see the effect each independent variable had on the balanced accuracy. Each
independent variable was removed from the model, and the balanced accuracy of the model

without that independent variable was determined. Those results are shown in Figs. 6.5 and
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Figure 6.5: Variable importance based on mean decrease of balanced accuracy by dependent variables. The
error bars represent the standard error of the difference between mean balanced accuracies.

The only variable to appear more than once as the most important variable in the
prediction model was CGPA, which was the most important variable for predicting PHYS.314
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Figure 6.6: Variable importance based on mean decrease of balanced accuracy by dependent variables. The
error bars represent the standard error of the difference between mean balanced accuracies.

and PHYS.461. Interestingly, PHYS.314 and PHYS.461 were two of the three courses that
were the most difficult to predict. Some models’ balanced accuracy changed significantly with
the removal of variables, such as the model for PHYS.112 where the removal of MATH.156
resulting in a mean decrease of nearly 7.5%. Conversely, the model for PHYS.451 only showed
a mean decrease of about 1% for the removal of its most important variable PHYS.331. Both
PHYS.112 and PHYS.341 had a math course as the most important variable, though for
PHYS.341 the second most important variable was PHYS.331, which was within a tenth of

a percent of MATH.251.
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6.4 Discussion

This study sought to answer two research questions; they will be addressed below.
The detailed results were discussed above; the following will synthesize the most important
points.

RQ1: What are the probabilistic dependencies between upper-level physics courses and
their prerequisites? The probabilities are shown in Figs. 6.3 and 6.4. As expected, as
the grade received in a prior course decreases, the probability of an AB outcome in the
target course also decreases. This is clearly shown by the probabilities of an AB outcome
in PHYS.451 (Fig. 6.4b). Each of the courses that were not excluded from the network (an
excluded course has no arcs) showed this trend, as can be seen by the clear and obvious
left to right downward trend of the probability columns in the sets of probabilities for the
prior courses. The larger the difference in probability between grades in a specific course
results in a steeper set of columns, and indicates a course whose grade has a strong effect
on the outcomes of the target course, in this case PHYS.451. This is also illustrated in the
probabilities for PHYS.112, PHYS.314, PHYS.331, and PHYS.333, although the trend is
less strong for PHY'S.314 than the others. This is not the case for PHYS.341 and PHYS.461
(Figs. 6.4a and 6.4c). While the prior courses that are not excluded from the network
do show decreasing probability for decreasing prior grade, the difference in probabilities for
decreasing prior grade is much smaller and the set of columns are less steep for these target
courses than the other target courses in the analysis. For example, a student who received
a DFW grade in MATH.261 (Differential Equations) has nearly the same probability of

an AB outcome in PHYS.461 as a student who received an A grade in MATH.261. The
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only variables that seem to have a strong effect on the probable outcome in PHYS.461 are
PHYS.314 and CGPA. This lack of strong dependence on prior course grades on the outcomes
in PHYS.461 and PHYS.341 may indicate that these courses are not well integrated in the
overall course network; they are not building upon the skills and knowledge gained in prior
courses, or they are graded inconsistently with respect to other physics courses. Both of
these courses are typically taken in a student’s last three semesters in the physics program
at Institution 1. Students in these courses have made it through the majority of their
coursework and have been retained in the major regardless of prior course performance. If
the weak dependence on prior grades was due to the course being a senior level course, the
same trend should appear in all senior level courses. PHYS.451 also is typically taken during
a students final three semesters, but PHYS.451 does not show the same weak dependence on
prior grades. PHYS.314 is not a senior-level course, yet it shows trends similar to those of
PHYS.461 and PHYS.341. In Fig. 6.3b, for PHYS.314 we see that each non-excluded prior
course shows the trend of decreasing AB probability for decreasing prior course grades, but
the differences in probabilities are relatively small compared to Figs. 6.3a, 6.3c, and 6.3d.
For each prior course for PHYS.314, a DFW grade results in a probability of nearly 50% for
an AB outcome; students who fail a prior course are just as likely to succeed in PHYS.314 as
they are to struggle in PHYS.314. Similar to PHYS.461, only CGPA shows a strong effect on
the probable outcome of PHYS.314. It also appears to not be well integrated in the overall
course network.

The visualizations of the seven networks also give insight into the overall course network
and how courses fit together within it. In nearly all of the networks, if the weakest three

arcs were removed, the networks would break down into two smaller networks; one with
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the introductory physics courses and required math courses, and the other with the upper-
level physics courses (PHYS.314 (Modern Physics) appears in both of these “subnetworks”,
depending on the target course). The exception to this is the network for PHYS.112 (Fig.
6.1a). The network for PHYS.461 (Fig. 6.2c) may seem to be an exception, but removing
the three weakest arcs creates two networks, one with only upper-level courses and one with
the introductory courses, math courses, and PHYS.461. This implies that the upper level
courses have stronger probabilistic relationships among themselves than they have with the
introductory physics and math courses. The same is true for the introductory courses; they
have stronger probabilistic relationships among themselves than they do with the upper level
courses. This is not altogether unexpected; however, a stronger probabilistic relationship
between the two groups would be preferred. At Institution 1, the introductory physics courses
are not specific to physics majors; other STEM majors enroll in and make up the majority
of students in these classes. This is also true for all of the required math courses for the
physics major. The majority of students in these classes are enrolled in the various programs
of engineering. This weaker connection between the upper and introductory courses may
simply be that grades in courses specific to physics majors are much more probabilistically
dependent on grades in other physics-specific courses. The data used in these courses do not
include the other STEM majors that enroll in introductory physics and math courses; only
physics majors are in the data.

RQ)2: How accurate are Bayesian network predictors in predicting outcomes in upper-
level physics courses? Which prior course is the most important predictor of the target
course? Because of the unbalanced nature of the data, balanced accuracy, B, was used as

the primary performance metric for the prediction models. Each model performed at least
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22% better than the baseline of 50% (a model that predicts the majority class for each
observation). This is indicative of a generally good performance by each of the models. The
range of B for the seven courses was 10.3%. The most predictable course was PHYS.333, and
the least predictable course was PHYS.314, though PHYS.341 and PHYS.461 were nearly as
equally un-predictable. The lower predictability of these courses indicates the outcomes in
these courses do not reflect the grades received in prior courses. These are the same courses
that were discussed in the prior research question as not fitting into the course network well.
It is not inherently bad that a course outcome does not reflect prior grades, though it may be
a cause for concern. If grades are assumed to be a measure of knowledge and skill mastery,
then a course that is unpredictable is not building upon the knowledge and skills mastered
in a prior course, or the knowledge and skills mastered in the prior courses are not sufficient
for the content of the upper level course.

The most predictive variable for each target course was determined by finding the mean
difference in B when the variable was removed from the dependent variables. These results
may be useful to physics departments trying to implement interventions to help students
progress more smoothly through the physics program, and the application will be discussed

in the next section.

6.5 Recommendations

The ability to accurately predict student outcomes in a specific course could be a very
informative tool for academic advisors and instructors in physics departments. If an advisor

was concerned with how difficult an upcoming semester might be for a student, they could
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input the student’s prior course grades to a Bayesian network built from the records of prior
students and get a probability of the outcomes in the various courses the student wishes to
enroll in. Based on these probabilities, the advisor then can suggest to the student to alter
their course load or delay a course to another semester if it is probable that the student
will struggle with one or more of their upcoming courses. As students continue to enroll in
physics courses and progress through the program, the Bayesian network can be updated
with their course outcomes so the conditional probabilities of the network are constantly
adjusted to better fit the data. A predictive model, similar to those built in this study, could
also be built for the purpose of identifying students who may struggle in a course.

Often, there are certain required courses that are almost always taken concurrently in
an academic program, even though there is no co-requisite structure between the courses.
For example, physics students at Institution 1 typically enroll in PHYS.112 and MATH.251
in the same semester. Some of these course combinations have a high level of difficulty, which
may be detrimental to certain students. If the probability of failing one or both courses when
taken in the same semester is high, it may be advantageous for the student to take the courses
separately. Although it was not explored in this study, Bayesian networks could be used to
identify students that may struggle in certain course combinations, and advisors could use
a Bayesian network or Bayesian predictor to find the probability of students’ success in the
course combination. The student could then be advised to delay taking one of the two
courses.

These tools can also be useful to a department trying to reform their curriculum or
improve their course outcomes. As discussed in prior sections, three of the courses that were

analyzed appear to fit poorly in the overall network; PHYS.314, PHYS.341, and PHYS.461
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were the least predictable and their outcomes did not have strong probabilistic dependencies
with prior courses. A department doing a similar analysis could find courses that also are less
predictable or similarly have weaker probabilistic relationships with prior courses. Courses
such as these should be assessed, and perhaps changes need to be made to their content,
instruction, or their place in the course network (i.e. change their prerequisite courses).
The relationship between courses can also be taken into account by departments as they
make decisions that will affect student outcomes. At Institution 1, PHYS.333 is the most
predictable course. It also has the lowest AB%, meaning that it is the course that students
struggle in the most. Although it is the most predictable, it clearly is a course in which
Institution 1 would like to improve student performance. The most predictive course for
PHYS.333 is PHYS.314 (Fig. 6.5d). This is reflected in the CPQ results for PHY'S.333,
where an A in PHYS.314 gives a high probability of an AB outcome in PHYS.333, but any
other grade in PHYS.314 gives a low probability of an AB outcome in PHYS.333 (6.3d).
Academic advisors and instructors could reach out to students who did not receive an A
in PHYS.314, and encourage them to make use of resources in the department such as
attending office hours and tutoring sessions, or encourage them to employ self-regulated
learning techniques or metacognitive techniques. Due to the strong connection between
PHYS.314 and PHYS.333, the physics department at Institution 1 could also adjust some
of the content in PHYS.314 to better prepare students for the content they will see in

PHYS.333.
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6.6 Conclusion

Bayesian networks were used to analyze conditional probabilities between outcomes in
seven physics courses and grades in their prior courses at Institution 1. Higher grades in
previous courses resulted in higher probabilities of a successful outcome in the target courses.
This analysis identified three courses, PHYS.314, PHYS.341, PHYS.461, which were less
well predicted by their prior courses. An ensemble of Bayesian network predictors was used
to predict outcomes in each target course. Balanced accuracy B was used at the metric
of interest because of the unbalanced nature of the data. The predictions of each course
resulted in a B of greater than 70%, with predictions for PHYS.333 having the greatest B of
82.3%. PHYS.314, PHYS.341, and PHYS.461 had the lowest B. These courses may need to
be examined to see if improvement can be made in their structure or instruction to better

fit within the physics curriculum at Institution 1.
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Chapter 7

Identifying Curricular Patterns Using Curricular

Analytics

*The work in this chapter was submitted for peer review and publication in Physical Review: Physics
Education Research. After lengthy review it was rejected, and is currently being revised for re-submission.
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7.1 Introduction

Chapters 4 and 5 analyzed the pre-college factors that influence the retention of physics
students. Chapter 6 analyzed the relationship between physics course outcomes and grades
received in prior courses. Each of these chapters investigated which factors influence the
progression of students through a physics program. The progression of students through
academic programs is central to understanding student retention. Curricular Analytics (CA)
[152] is a quantitative method developed to explore the pathways students traverse as they
complete academic programs. CA is primarily a method to analyze the structure of a pro-
gram’s curriculum in order to quantify a program’s complexity. The central hypothesis of
CA is that, as a program’s complexity is decreased, the student completion rate of the pro-
gram will increase. As such, CA is a method that can inform the restructuring of program
requirements and curriculum to improve student retention.

Physics curricula, the required courses and prerequisite relations in a physics degree,
are superficially independent of issues of diversity and inclusion; however, this study will show
that the complexity of the curriculum changes with the math readiness of the student. For
most institutions, the four-year degree plans of physical science and engineering students
assume a student is ready to enroll in Calculus 1 their first semester; these students are
considered “math ready”. A student’s initial mathematics class is generally determined
by their standardized test scores (ACT or SAT), often supplemented by a mathematics
placement test. Several recent studies have shown that the prior preparation measured by
standardized test score or conceptual physics pretest score of introductory physics students

differs by demographic group [86-88]. This difference mediates the outcomes of students in
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physics classes measured by course grades, final exam scores, or conceptual physics post-
test scores. As such, students without access to advanced high school course offering may
experience curricula with higher complexity than students with more enriched high school
backgrounds. Often students from historically marginalized communities have less access
to advanced high school coursework than other students [122]. Additional factors beyond
academic preparation such as parental support can also influence success in college physics
[89]. Equity is dependent on an institution identifying ways in which it can support timely

graduation of STEM students who have been underserved in high school.

7.1.1 Research Questions

This work employs CA to investigate the program complexity of undergraduate physics
programs. It explores curricular complexity across many institutions throughout the United
States (US) and investigates the role that math readiness and chosen degree track has on
complexity. A degree track is an area of academic focus which can be selected as part
of the physics major such as a biophysics focus. The degree track generally modifies the

requirements for the degree somewhat. This study seeks to answer three research questions:

RQ1: Is there a correlation between program ranking and program curricular complexity

across physics programs in the US?

RQ2: How does a student’s math readiness affect the complexity of their physics curriculum?

RQ3: How do different physics degree tracks alter the curricular complexity? Is the effect of

math readiness different in some tracks than other tracks?

In this study, we only look at a program’s curriculum, the required classes and their
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prerequisite structure. For each student, the curriculum must be converted to an 8-semester
degree plan which takes into account when courses are offered and the student’s college
preparation; this may modify complexity. The effect of converting the curriculum into a

degree plan will be investigated in future works.

7.1.2 Results of prior research

Curricular Analytics represents a new research strand within PER studying the struc-
ture of physics curricula. This study represents the beginning of the strand; future work will
examine how those curricula fit into academic semesters to become degree plans and how
different degree plans predict student success. The purpose of such a research program is to
understand the features of physics programmatic decisions such as the courses required, the
prerequisites of those courses, and how often the courses are offered on the ultimate success
of physics students measured by the rate of obtaining physics degrees. As such, CA will
ultimately be informed by studies examining the retention of physics students to degree and
the general retention of college students. See Chapter 2 for a literature review of student

retention in college and physics.

7.1.3 Curricular Analytics

Student retention research focuses on the improvement of student graduation rates
and retention throughout an undergraduate program. En route to graduating, students
must successfully traverse their program’s curriculum. This progression through a program’s
curriculum is fundamental to a student’s overall academic success. Delays in their progression

through the curriculum such as failing a class or changing majors generally will delay their
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graduation and increase the risk of leaving college. Retention research often focuses on
interventions designed to improve retention which affect student progression through their
program’s curriculum. Heileman et al. [152] proposed a quantitative framework called
Curricular Analytics (CA) for analyzing the structure of a program’s curriculum to improve
understanding of the progression to degree. These analytic methods are used to quantify
the effect of retention interventions on curricular structure and complexity. This approach
to analyzing the sequence of courses and its effect on student retention is not unique to
CA. Other methods that are similar in scope and design have been used to explore student
progression through degree programs and are a growing area of STEM education research
[153].

Curricular Analytics is a quantitative method to analyze curricula so as to inform de-
cisions regarding curricular reform in a way to make curricula more equitable while retaining
quality. The specifics of CA will be explored later in the chapter but, in brief, CA quanti-
fies the structural complexity of a curriculum. This complexity is based on the prerequisite
structure of classes in the curriculum and the sequence of classes that a student must follow,
with a small contribution from the total number of required classes. The structural complex-
ity of a curriculum is part of a curriculum’s overall complexity; instructional complexity, the
instructional practices applied in the courses in the curriculum, also contributes to curricular
complexity. Heileman et al. argue that as curricular complexity is decreased, student com-
pletion rate of the curriculum will increase; a less complex curriculum will be more equitable
with less chance of delay of graduation as students progress through the curriculum.

Curricular Analytics has been used to understand the structural effects of successful

curricular innovations. Klingbeil and Bourne [154] introduced a curricular modification de-
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signed to aid the progression of incoming engineering students through the Calculus 1 and
2 sequence. Many students enter the university not ready to enroll in Calculus 1. These
students require several semesters to complete additional mathematics classes before they
can enroll in their first engineering course. This is a common problem in physics and engi-
neering programs where students must complete the introductory calculus sequence before
entering their program-centered classes. While maintaining ABET standards in the engi-
neering program at the university, an introductory Engineering Mathematics (ENGR 101)
course was introduced. This course focused on hands-on approaches to the most important
mathematics methods that are used in engineering courses. Successful completion of ENGR
101 allowed students to advance to program-centered engineering courses such as the intro-
ductory physics sequence, engineering mechanics and statics, and computer programming
sequences before completing the traditional calculus prerequisites for these courses. This
change nearly doubled graduation rates while narrowly improving average GPA. Students
from historically marginalized communities, including women and minorities, experienced
the largest increase in graduation rate. This change reduced the effect of the introductory
calculus sequence, allowing students to take the introductory calculus sequence at the same
time as their program centered courses. Heileman et al. [152, 155] showed that this change
reduced the curricular complexity for students unprepared to take Calculus 1 upon enter-
ing the program, supporting their argument that less complex curricula lead to increased
graduation rates.

These types of curricular changes and their effects were investigated by Slim et al. [156].
In their study, Markov decision processes were used to quantify the relationship between pro-

gram complexity and graduation rate, and were then used to model how curricular changes
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affect graduation rates. Decreasing the complexity of the curriculum increased graduation
rates.

To further support the benefit of less complex curricula, a study compared the cur-
ricular complexity of Electrical Engineering programs with the ranking of that program to
determine if higher ranking programs were more or less complex than lower ranking programs
[157]. Program ranking was taken from the US News rankings of graduate engineering pro-
grams. Programs with higher rankings had less complex curricular structures than schools
with lower ranking. For clarity, a school ranked 5Hth is considered to have a higher ranking
than a school ranked 95th. This implies that higher-ranking schools had less complex paths
to completion of an Electrical Engineering degree than lower-ranking programs. A similar
study compared program complexity and ranking within Computer Science programs finding
similar results [158]. The relationship between complexity and ranking in disciplines other
than Electrical Engineering and Computer Science has yet to be established.

Other studies have applied CA to analyze the complexity of transfer student pathways
to degree completion, with the result that transfer student pathways are more complex than
standard program pathways [159, 160]. Similarly, one study looked at the complexity of
the suggested path of study that an institution advises students to take and found that
the actual paths that students followed to degree completion were less complex than the
suggested path [161]. The study recommends that universities adjust the complexity of their
suggested paths of study to reflect the least complex curricular structures possible. Other
applications of CA include the use of the structural complexity of a program as a variable
in a geometric probabilistic model that was used to predict graduation rates of students in

different academic programs [162]. Other variables included ACT/SAT scores, HSGPA, and
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course completion rates. The geometric model predictions were within 3 percentage points

of the true 4 year graduation rates.

7.2 Methods

7.2.1 Sample

Curricular complexity was compared across three tiers of physics programs in the US.
Following prior studies in Electrical Engineering and Computer Science, these tiers were se-
lected using program rankings from the 2022 U.S. News and World Report College Rankings
[163] for graduate physics programs. Although it was the undergraduate programs that were
analyzed, we hypothesized that graduate rankings would largely mirror undergraduate rank-
ings with some slight variation. Each of the programs in the ranking offer a doctoral degree,
and there are 188 programs in the ranking. Twenty schools were randomly selected from
the first two deciles in the rankings to make up the upper tier. Each decile of the ranking
contained 19 programs, thus the top two deciles contain programs ranked from 1-38. These
deciles included schools such as Harvard, the University of Washington, and the University
of Texas at Austin (the schools listed here were not necessarily schools included in the anal-
ysis; they are simply representative of the schools in the first two deciles). The middle tier
consisted of 20 schools randomly selected from the fourth and fifth deciles of the rankings
and included schools ranked from 75 to 113. These deciles included schools such as the
University of Nebraska-Lincoln, Brigham Young University, and the University of Oregon.
The lower tier was made up of 20 schools from the ninth and tenth deciles, which included

schools ranked from 150 to 188 such as Portland State University, Utah State University,
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and the University of Alabama-Birmingham. In the random sampling within each tier, if
an institution was selected that did not have a clear, publicly available, delineation of the
requirements to complete their undergraduate physics program, a different institution was
randomly selected. Institutions that operate on a quarter system were also excluded from
the sampling as it was unclear how to modify the complexity of a program in a quarter
system to be comparable to a program in a semester system.

To answer research questions 2 and 3, we focused on the physics curriculum of a single
university from the second tier. A recent study explored the physics retention patterns of
this program [164]; this study is discussed in Chapter 4. The institution is a large public
land-grant with an overall undergraduate population of 20,500. The general undergraduate
demographic composition in fall 2019 was 82% White, 4% Black or African American, 4%
Hispanic/Latino, 4% non-resident alien, 4% two or more races, with other groups 2% or less.
The 25th to 75th percentile range of ACT composite scores range was 21 (59%) to 27 (85%)
for the 25th percentile to the 75th percentile of students scores [119]. Thirty-one percent of
undergraduate students met the eligiblity requirements for Pell grants. This institution will

be referenced as Middle Tier Public University (MTPU) in this study.

7.2.2 Curricular Analytics

Curricular Analytics is a method of quantifying the complexity of of an academic
program’s curriculum, developed with the purpose of quantifying the impact of curricular
reform. For a full treatment of the methods and theories of CA, see the study in which CA
was introduced [152].

The primary metric of CA is the overall curricular complexity. This is composed of
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two components: a structural component and an instructional component. The instructional
component is defined to be a function of a vector of factors of all the instructional properties
of a curriculum. Similarly, the structural component is a function of the vector that contains
all of the structural characteristics in a curriculum. The instructional properties consist of
the instructor quality, course support services such as tutoring and office hours, and any other
property of the instruction. Structural properties include the prerequisite and corequisite
structure of courses, course credit hour totals, etc. The overall complexity of curriculum c is
given by a functional f of the instructional complexity function and the structural complexity

function:

wc = f(CVc: 7c) (71)

with 1. as the overall complexity, a. as the structural complexity function, and ~. as the
instructional complexity function. The primary assertion of CA is that as overall complexity

increases, the completion rate of curriculum ¢ decreases:

Yo T = Bl (7.2)

where [, is the completion rate of the curriculum. The inverse is also assumed, that if
curricular complexity is decreased, the completion rate will increase. Decreasing the overall
complexity can be accomplished in two ways: by improving (decreasing) the instructional
complexity or by lowering the structural complexity.

The structural complexity of a curriculum is quantified by examining the prerequisite

structure of the curriculum. This prerequisite structure is visualized by using a directed
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acyclic graph (DAG), where individual courses are nodes and the edges connecting nodes
are prerequisite or corequisite requirements. This is called a curriculum graph. An example
of a curriculum graph is shown in Fig. 7.1. A program’s curriculum graph contains all of
the pertinent characteristics of the structural complexity of that program. Heileman et al.
defined five characteristics of a program’s structure: the delay factor, the degrees of freedom,
the blocking factor, the reachability factor, and the centrality factor. In the present work,
only the delay and blocking factors, which are required to calculate the structural complexity,
and the centrality factor are discussed. For a full treatment of each factor refer to Heileman
et al. [152].

Required courses in a curriculum are generally part of a required course sequence,
where each course in the sequence must be completed before advancing to the next course
in the sequence. Some courses may be part of several sequences. The delay factor, d,,, of
a course n is defined as the number of courses (or nodes on the curriculum graph) that are
included in the longest sequence that contains course n. For example, in Fig. 7.1 the delay
factor of General Physics 1 would be 6 resulting from the path traversing nodes, Calculus 1,
General Physics 1, General Physics 2, Introductory Modern Physics, Quantum Mechanics 1,
and Quantum Mechanics 2. Often the longest sequence includes courses that act as gateway
courses; courses that are a prerequisite course to many other required courses.

The blocking factor, b,, of course n is the number of courses or nodes for which n is a
prerequisite or equivalently the total number of courses that follow after n in all the course
sequences that include n. For example, the blocking factor of General Physics 1 in Fig. 7.1
is 13; the classes blocked by General Physics 1 are shaded in grey in the figure.

The overall curricular delay factor is the sum of the delay factors of each of its con-

140



2ANI3[3
[elauso

ENIETE| EINIGETE| EINGETE| ENIGETE| EINIGETE| N RETE| EINIGETE|
ZIENED) [esouan ZIENED) ZIEDNED) [eJouan ZIENED) [eJouan
Aineald Ised 8yl ABojouydsa]
EYIGETE EINIBETE| EINGETE| EYNIGETE| B Suy % Ainbuj Zealy % 92UBIDS
lelauas yren |ejaua) |elauas . Auewny sl4°'s'9 -
9yl ‘94 ‘G4 ‘cd

soIsAud yoseasay

o - Aislang - e uonsodwo)) SuonoaUU0D
x_u_cw_w LD cwoﬂm._%,q ? SOIpmS _ ccmﬁ ,o:wssm = o 7
. [eqo[o 24 SUoNEIvSO co:._mOQEoo uononpoU| A12190S 74
z i 7
z soisAud
R T IO T W i P % as
i) Awouoe|3 Aiomoaig | N\ AETEITEEAT] .
m_M%W_._HuMM_ SsolueyIaN z 7 T suonenb3 ninore
. wmuend SolUBYIBIN | solueyoal (% -3t jenusieyiq [« ma___m >__Hw - Z snnojeo | T sninojen
) %%EB:._. A101onponu| [eonaloay ._.7 [eanaioay | Arejuswa|g HEARININ

Figure 7.1: Example curriculum graph for a mid-tier institution. General Physics 1 is shaded red and the
141

courses it blocks are shaded gray. The count of the gray courses is the blocking factor of General Physics 1.
in this case 6. The university divides general education requirements into seven categories labeled F1 to F7

The delay factor of General Physics 1 can be found by counting the number of courses in its longest path,
in the figure.



stituent courses and similarly the overall curricular blocking factor is the sum of each course’s
blocking factor. For each course in the curriculum, the delay factor and the blocking factor
are added to give the individual course complexity v,, such that v,, = d,, +b,. The structural
complexity of a program, a., is given by summing the course complexity of each course in

the curriculum as shown in Eq. 7.3.

Q. = Zvn. (7.3)

The structural complexity can also be calculated by adding the overall curriculum delay
factor and the overall curriculum blocking factor.

The course centrality factor identifies courses that have several important prerequisites
which are also prerequisite for many required courses. The course centrality factor attempts
to measure how critical the progression through a course is for the completion of a curriculum.
The course centrality factor of course n is calculated by summing the length of all the
complete paths p that contain the course n. For a path to be included in the summation,
course n must be an interior node to p, or in other words it cannot be a terminal node on
a path. The most central course to a curriculum, or the course with the highest centrality
factor, is defined to be the course with the most long course sequences. Although the
course centrality factor plays no direct role in calculating the structural complexity, it gives
information as to what courses are especially crucial to successful program outcomes and as
such is of interest to student retention research studies.

The instructional complexity component of a curriculum’s complexity is more difficult

to quantify than the structural complexity. Instructional characteristics are qualitative in
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nature; it is challenging to consistently quantify their effects on student outcomes. Heileman
et al. suggest the use of course grade outcomes or pass/fail rates as an estimation for
instructional complexity [152]; however, this is far from a complete measure. This proposal
originates from the observation that, as students progress through a curriculum, any failing
grade in a class delays their progression in the curriculum. Classes with higher failure rates,
therefore, are problematic courses and increase the complexity of the curriculum and decrease
the completion rate of students. The current work focuses on the structural complexity of
physics programs, and reserves the instructional component for future studies.

To calculate the curricular complexities of the curricula analyzed in this paper, the CA
website was used [165]. This site automates the calculation while providing a rich graphical

representation of the relations in the curriculum.

7.3 Results

7.3.1 Curricular analytics across multiple institutions

The physics program requirements for 60 institutions in the U.S. were analyzed us-
ing CA. These institutions were separated into three tiers based on their graduate physics
program rankings [163]: the upper tier, middle tier, and lower tier. For each program, the
structural complexity was calculated and the central course identified. To find the prereq-
uisite structures of each program, the institution’s catalog was examined for the program
requirements. Most programs included in the analysis have several different degree tracks
available to physics majors. In each case, the degree track that was suggested for students

planning to continue their physics education in graduate school was selected. The program
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requirements consist of a set of core required classes that all students must take and then
a number of physics or mathematics electives with a list of course offerings which fulfill the
elective. To maintain consistency, similar courses were selected for each program’s elective
requirements when possible. For each institution, the first math class required for the major
was Calculus 1; the curriculum was designed for students who were prepared to take Calculus
1 in their first enrolled semester. The effect on the curricular complexity of a student not

being ready to take Calculus 1 in their first semester is discussed in Sec. 7.3.2.

Tier Mean SD  SE 95% CI
Lower 239 39 9 (220, 257)

Mid 224 38 8 (206, 242)
Upper 237 46 10 (215, 259)

Table 7.1: Summary of the structural complexities of each tier. The table presents the mean, standard
deviation (SD), standard error (SE), and 95% confidence interval.

The summary statistics of each tier are reported in Table 7.1. There was not a large
difference between the mean structural complexity of the tiers, with only a 13 complexity
point difference between the upper and middle tier and 15 points between the middle and
lower tiers. The 95% confidence interval is also reported and the intervals for each tier sub-
stantially overlap. The range of complexity scores in each tier is similar, with the upper tier
spanning 160 complexity points, the middle tier spanning 152, and the lowest tier spanning
157. There was some variation of the distribution of each tier, and this variation is illustrated
in Fig. 7.2 where the shaded boxes of each tier represent the 25% to 75% range of that tier.
The dark vertical line is the median and the two light horizontal lines, called whiskers, span
the first and fourth quartile. The full range of the data points in each tier are contained
between the tips of the whiskers. The probability density plot of the tiers is overlaid on the
box and whisker plot for each tier.
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Figure 7.2 shows the range of each tier is similar. Fach tier has one of the three
most complex structures and one of the three least complex structures. The most complex
curricular structure is within the lower tier, the second most complex structure is in the
middle tier, and the third most complex structure is in the upper tier. The least complex
structure is in the upper tier, the second least complex is in the lower tier, and the third

least complex structure is in the middle tier.
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Figure 7.2: Distribution of curricular complexity for physics programs with different rankings.

The means of the structural complexity of each tier were compared using analysis of
variance (ANOVA) and tested against the null hypothesis that there is no difference between
the means of the tiers. The traditional threshold of significance for the F-statistic in ANOVA
is a value above 3.15, which corresponds to a p-value of 0.05. The ANOVA analysis resulted
in a F-statistic of 0.75, well below the threshold of 3.15, as such the null hypothesis is not

rejected. This sampling of possible institutions does not indicate that there is a difference
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between the means of structural complexity of the three tiers of physics programs.

The central course, the course with both a number of prerequisites and a number of
courses for which it is prerequisite, is the most important course to progress to and through
for successful matriculation through the curriculum. For 38 institutions, the central course
was Calculus 2; General University Physics 2 was the central course for 17 institutions, and
General University Physics 3 was the central course for 5 institutions. General University
Physics 2 was the introductory, calculus based, electricity and magnetism course. General
University Physics 3 had a different description at each of the 5 institutions where it was the
central course. At each institution, it had some coverage of wave mechanics and introductory
quantum physics; at two of the institutions, it had some coverage in relativity. One of the

institutions also included basic thermodynamics as part of its description.

7.3.2 The role of math readiness

To investigate the effect of math readiness on curricular complexity (this section) and
the effect of degree tracks on curricular complexity (next section), we focus on one of the
middle tier institutions, called Middle Tier Public University (MTPU). This institution
is situated in a small eastern state with high levels of poverty and low levels of academic
achievement. Its student body is moderately prepared for college based on ACT score ranges
and the institution is not very selective, accepting 90% of its applicants [119]. As such, MTPU
represents an interesting laboratory to study the effect of curricular changes on complexity
particularly for students not ready to enroll in Calculus 1 upon entering college.

Most physics programs offer a suggested plan of study outlining one or more paths a

student could take to earn a physics degree. For physics, these suggested plans of study
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generally assume that incoming students are ready to take Calculus 1 upon entry; however,
this is often not the case for many students. At MTPU, 41% of students who enter enrolled
as physics majors are not ready to take Calculus 1 [164] and are considered to be not math-
ready. The more prepared of these non-math-ready students enroll in a two-course stretch
Calculus sequence, Calculus 1a/b with Precalculus. This sequence replaces the more common
Precalculus to Calculus 1 sequence at many institutions. Students are allowed to progress to
Physics 1 after completing only the first of the two courses in the sequence which then allows
students to enroll in their program specific classes earlier. These students, however, must take
an additional mathematics class not taken by math ready students which may affect their
curricular complexity. Some incoming students are not prepared to take the stretch calculus
sequence and must take additional mathematics classes, usually College Algebra and Plane
Trigonometry before enrolling in Calculus 1a/b with Precalculus further increasing curricular
complexity. The number of additional math courses will vary from institution to institution.
Some students enter college with credit for Calculus 1 either through Advanced Placement
or a similar program or by transferring college credit earned in high school. We only consider
Calculus 2 as a potential first mathematics class in this study, but more advanced classes
are possible.

Figure 7.3 shows the curricular complexity for various levels of math readiness using the
degree track selected by students planning to attend physics graduate school. This is plotted
with the first mathematics class in which a students enrolls as a freshman on the horizontal
axis; the student must also take all mathematics classes to the left of this class on the axis
to complete their degree. The more mathematics courses a student must complete before

taking Calculus 1, the higher the curricular complexity. The additional chain of prerequisite
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math courses increases both the longest path of many courses and their blocking factor. The
additional math courses also, generally, shift the central course of a curriculum. For most
institutions examined in Sec. 7.3.1, for math ready students, the central course was Calculus
2. The central course shifts depending on math readiness to usually the second course in
the math sequence. For example, a student who begins mathematics in the College Algebra
course at MTPU will follow the sequence of 1) College Algebra, 2) Plane Trigonometry,
3) Calculus la with Precalculus, 4) Calculus 1b with Precalculus. In this sequence, Plane
Trigonometry would become the central course of the curriculum.

This additional complexity affects a student’s time to degree. If a student is ready for
Calculus 1 upon entering college, there is enough flexibility in the MTPU physics curriculum
for the student to finish in 4 years even if they fail a course. As math readiness decreases,
that flexibility to traverse a curriculum in the target 4 year period also decreases. At MTPU,
if a student must enroll in College Algebra upon entering, it is not possible for the student
to graduate in 4 years or 8 semesters (assuming he or she does not take summer classes)
because of the prerequisite requirements of the courses. The minimal sequence requires 4.5
years, 9 semesters, assuming the student begins in the fall semester, and they do not take any
electives which have a prerequisite they cannot take until their final term. Failing a course
will generally cause the time to degree to increase. Beyond the effect on time to degree and
program complexity, a student who begins mathematics in College Algebra will not be able
to enroll in Physics 1 until their fourth semester, assuming no delays arise in traversing the
curriculum. MTPU finds it very hard to retain physics students who do not enroll in their
first real physics class until the end of the sophomore year (they do take a 1-credit freshman

seminar class their first semester) [164].
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Figure 7.3: The complexity of the graduate-intending degree track plotted against the first mathematics
class in which the students enrolls.

7.3.3 The effect of degree tracks
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Figure 7.4: The complexities of various degree tracks versus the first mathematics class the student takes in
college.

Many institutions offer degree tracks, sometimes called a concentration area or an area
of emphasis, as part of their plan of studies. Some institutions may require a student to
select a degree track, while others list them as options for students who wish to pursue a

specialization within physics. Each degree track contains different required courses, which
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have different prerequisite requirements. A typical general plan of study for physics usu-
ally involves multiple upper-level physics and mathematics requirements, often allowing the
student to select from a number of options (electives). Should a student choose to pursue
a degree track, those open-ended electives are typically replaced by a set of courses which
are required in order to fulfill the learning outcomes of the track. Some of these courses
may be courses offered outside the physics department, such as mathematics, engineering
or chemistry courses. These additional requirements affect the overall curricular complexity,
either positively or negatively, depending on the required courses. Figure 7.4 plots curricular
complexity of each degree track at MTPU against the first mathematics class in which the
student enrolls. The professional preparation track is the track selected by students plan-
ning on attending graduate school. This was the degree track used, when possible, for the
calculations in Sec. 7.3.1.

The complexity changed substantially by degree track depending on the kinds of addi-
tional courses required. At MTPU, tracks which require more engineering, chemistry, and/or
biology (i.e., Applied Physics or Materials Science) tend to have higher complexities than
tracks which require more computer science and mathematics (i.e., Computational Physics
or Physics Teaching). Engineering courses tend to have similar mathematics requirements
to courses in a physics curriculum and require the same introductory physics courses. While
the mathematics requirements of chemistry courses, particularly introductory courses, vary
across institutions, at MTPU there are not additional mathematics requirements that add
to the complexity; however, the lab grading structure contributes to the higher complexity.
The chemistry courses and accompanying laboratory sections are graded independently; a

passing grade of both the lecture component and the laboratory component are required to
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progress to the next course in the sequence. This is the main factor increasing the complexity
of degree tracks which require chemistry, creating a much longer delay factor. A similar effect
occurs in the biology courses, as well as the engineering courses, which contain a laboratory
component. The mathematics and computer science courses do not have these compounding
effects. The laboratory component of the introductory physics classes is integrated with the

lecture section and graded as a single class.

7.4 Discussion

7.4.1 Research Questions

This work explored three research questions which will be addressed in the order pro-
posed.

RQ1: Is there a correlation between program ranking and program curricular complexity
across physics programs in the US? ANOVA showed that there was no significant difference
between curricular complexity of the three tiers of institutions. Further, the means of each
tier were within a 15 point spread, and the 95% confidence intervals of the means of each
tier overlapped strongly as shown in Table 7.1. There does not appear to be a correlation
between program ranking and program curricular complexity for physics programs. Physics
programs in the US across a broad range of national rankings have fairly similar curricular
structures, as indicated by the similarity of means between tiers.

The greatest difference between the complexity of any two programs in the analysis is
178. In the study by Heileman et al., where electrical engineering programs were compared

across tiers [157], the difference between the least and most complex curriculum analyzed

151



was over 400 complexity points. All of the programs analyzed in the electrical engineering
study were ABET accredited programs and thus their curriculum was constrained by exter-
nal requirements. Physics programs have no such external constraints, and yet have similar
curricula across institutions with substantially different national rankings. Most of the 60
physics programs analyzed require Calculus 1 through Differential Equations, a 2-course in-
troductory, lab-based sequence in physics followed by modern physics and core advanced
classes in classical mechanics, electromagnetism, and quantum mechanics. These advanced
classes are supplemented with a form of advanced laboratory, often multiple forms. The ad-
vanced classes produce most of the differences in curricular structure. These differences are
often in the number of elective courses required beyond the core requirements for a physics
degree; however, some programs had extra intermediate required physics or mathematics
classes such as linear algebra, a second modern physics class, wave mechanics, or mathe-
matical methods in physics. Table 7.2 presents some characteristics of the first and last
complexity quartile of the institutions studied aggregating all 60 institutions. Institutions
with a complexity in the first quartile have on average 5 fewer required physics, math, or

science courses than the institutions with a complexity in the last quartile.

Avg. Required

Quartile COX;&; I;i ty Physics and AVg'PEE}? gest
Math courses
First Quartile 182 19 6
Final Quartile 287 24 8

Table 7.2: Comparison between the first and last quartiles (ignoring tier placement) of the institutions
included in the study

There was substantial variation present in all tiers of institutions; however, the variation

is slightly larger for the upper tier than the middle and lower tiers. This may reflect different
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approaches to student preparation. One approach is to increase the number of required
courses and electives in an effort to increase the coverage of a student’s physics education.
This approach would give students a broader insight into different specialities in physics and
perhaps better prepare them to choose an area of research in post-baccalaureate studies. It
also makes the program more complex, limiting the possible ways a student could traverse
the requirements in a reasonable time and increasing the chance of students dropping out
of physics. The other approach is to require just the most basic core classes in physics and
allow students to pursue additional courses which fit their goals and interests. This approach
may not have the consistent coverage of different areas of physics but it allows students more
freedom in their undergraduate education, allowing them the room to explore other fields and
become more well-rounded students, while also increasing the likelihood that they complete
the physics degree.

If there is not a correlation between program ranking and complexity, then why not
lower the complexity of the curriculum in an effort to retain more physics students? Some
may argue that lowering the complexity will decrease the quality of the education students
receive. To refute this, note that the least complex curriculum analyzed is in the upper
tier. This institution is a private university with an admissions ACT inter-quartile range of
33-35. It is consistently ranked in the top ten universities in the U.S. and internationally
for general undergraduate and graduate education. The result that there appears to be
no significant difference between the mean complexities of the tiers suggests that the more
complex structures of some programs are unnecessary.

The purpose of CA is to allow departments and universities to make informed decisions

on curriculum and pedagogical change based of the quantitative metrics so as to increase
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student retention while maintaining the desired learning outcomes. Physics departments
want to retain and graduate more students. Lowering the curricular structural complexity
can facilitate this goal while maintaining program quality.

RQ2: How does a student’s math readiness affect the complexity of their possible de-
gree plan in physics? The analysis of math readiness (along with the analysis of degree
tracks) showed the overall structural complexity increased as the number of required math
courses increased. Figure 7.4 shows a linear trend of increasing complexity per additional
math course. These additional math courses, which form a chain of prerequisites required to
enroll in Calculus 1, not only add additional complexity to the curriculum, but also delay a
student’s entry into the introductory mechanics course, delaying the point where the student
actually begins taking physics classes. This was evaluated at one institution (MTPU); this
trend should hold for other institutions. The complexity or the delay added at other insti-
tutions will depend on their respective mathematics prerequisite structure, as well as the
requirements for entering Physics 1 (i.e., whether Calculus 1 is required before enrollment
or if it can be taken concurrently to Physics 1).

All institutions should consider the effect of math readiness. There are several fac-
tors which contribute to an incoming student’s math readiness. Some students come from
disadvantaged backgrounds and may not have access to college preparatory high school math-
ematics classes needed to prepare them for a math-heavy field such as physics. Institutions
should examine possible solutions to ease the math transition of those students who require
additional mathematics to complete their physics degree.

RQ3: How do different physics degree tracks alter the curricular complexity? Is the

effect of math readiness different in some tracks than other tracks? While general physics
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curricula are of similar complexity across a range of institutions, many institutions offer
degree tracks to give students the opportunity to specialize in a sub-field of interest in physics
or related fields, such as engineering or computer science. Altering the general curriculum
to accommodate these degree tracks influences the overall structural complexity. At MTPU,
some degree tracks require courses outside of the physics department, which have varying
effects on complexity. Engineering and chemistry courses tend to add more complexity,
especially if they have lab-based courses. These courses often grade the lab separately from
the lecture part of the course requiring the student to pass the lab independently from the
lecture. Math and computer science courses tend to add less complexity.

It is not uncommon for physics students to seek minors and/or a second major in a
related field, such as mathematics, engineering, or computer science. Physics curricula which
have a higher complexity of the physics portion of the curricula not only affect factors such as
time-to-degree for their physics degree, but also make it much more difficult for students to
pursue opportunities outside of the physics programs, such as a minor or additional major.
Should a student suffer a setback in their trajectory, it may become more difficult for a
student to pursue a degree track without jeopardizing their time-to-degree. This effect can
be magnified particularly within smaller programs, as in many cases courses may only be
offered once a year, or once every other year. Increased complexity combined with a decrease
in the availability of course offerings can make it difficult to traverse through the general

physics curriculum, and often more difficult to traverse through a degree track.
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7.4.2 Other Observations

To illustrate how a department might decrease their curricular complexity, a semi-
quantitative comparison of the least complex programs and the most complex programs
included in the analysis is provided. The 15 programs with the lowest complexity scores,
regardless of ranking tier, make up the first quartile of the data, and the 15 programs with
the highest complexity scores make up the final quartile of the data. This comparison is
found in Table 7.2. The difference between the means of the quartiles is 105 complexity
points, which is largely explained by the increased number of required physics and math
courses. These are the courses specifically required by the physics program and exclude the
institution’s general education requirements. The institutions in the final quartile require
5 more courses than those in first quartile. The impact of these additional courses is that
they increase the delay factor of many of the required courses; essentially, they elongate the
paths that a student must complete within the curriculum as shown in the Average Longest
Path column, which presents the average of the longest paths present in the programs in
each quartile. The length of the longest path should not be confused with the minimum
number of semesters required to complete the program. The length of the longest path is a
count of all the courses in the longest path. Courses that are corequisites and are completed
in the same semester both count toward the longest path, and so the minimum number
of semesters to complete a program and the longest path in that program are not always
equal. Some of the programs in the final quartile have longest paths of length 8; students
who arrive at the university ready to take Calculus 1 and who never fail or retake a class

can graduate in 4 years. Any misstep or scheduling conflict will extend their time to degree.
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Several of the programs in the final quartile have longest paths of length 9, and one program
has a longest path length of 10. Students in these programs must complete at least two
courses as corequisites to be able to complete the program in 4 years, and any course failure
or scheduling conflict will extend their time to degree. Shortening the longest paths in a
curriculum is a straightforward solution to decreasing the structural complexity. This can be
done in two ways: by decreasing the total number of required physics and math courses, and
by reorganizing the prerequisite structure of the curriculum. To reorganize the prerequisite
structure, academic faculty should analyze the required prerequisite knowledge of a course
to determine if the prerequisite course is necessary; an example is provided in Nash et al.
[166]. Other tools could also be utilized, such as the Markov decision processes in [156], to

model what effect changes in prerequisite structure will have on graduation rates.

7.5 Simplifying Curriculum by Making Prerequisite Adjustments

This section presents an example of how a physics department could rearrange the
prerequisite structures of their program to reduce complexity. We created a curriculum con-
sisting of 20 physics and math courses that are representative of common requirements for an
undergraduate physics degree. This curriculum is not from a specific institution, but rather
contains common structures that are present in many of the curricula we analyzed. The
initial curriculum had 20 required courses and an overall structural complexity of 290. After
changing the prerequisite structures the less complex curriculum had 20 required courses
and an overall structural complexity of 222, a reduction of 23% percent. Most of the changes

made were changing the prerequisite math course of a physics class to an earlier math course.
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For example University Physics 1 had a prerequisite of Calculus 2; this was changed so the
prerequisite was Calculus 1. All of the prerequisites in the initial curriculum can be found
in various curricula from the institutions we analyzed. Similarly all of the prerequisites in
the less complex curriculum can also be found among the institutions we analyzed.

The example curriculum of 20 physics and math courses with complexity of 290 is
presented in Fig. 7.5. The same curriculum is then presented with an adjusted prerequisite
structure with a complexity of 222 is presented in Fig. 7.6. No courses were dropped from
the curriculum to make this change. We will refer to these as Curriculum A and Curriculum

B.

7.5.1 Curriculum A

The courses in Curriculum A are fairly typical of physics curricula that were analyzed
in the study, and 20 courses is about average for all the programs analyzed in the study. All
of the prerequisite structures used in this curriculum are present in several of the curricula
analyzed in the study, though none of the studied curriculum are an exact copy of the example
curriculum here. Curriculum A has a maximum delay factor of 8; the longest course sequence

in the curriculum contains 8 courses. There are two 8-course sequences.

7.5.2 Curriculum B

Curriculum B contains the same courses as Curriculum A, but the prerequisites of the
courses have been adjusted to shorten the longest course sequences, resulting in a reduced
structural complexity. All of the adjusted prerequisite structures are present in several of the

analyzed curricula in the study. Curriculum B has a delay factor of 6; there are two 6-course
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sequences. The most straightforward change made to Curriculum A to create Curriculum B
was to shift the math prerequisite forward for several classes. In Curriculum A, the prereq-
uisite to take Introductory Physics 1 is Calculus 2. This is not an uncommon requirement,
though most of the analyzed curricula in the study have Calculus 1 as a prerequisite for
Introductory Physics 1. Curriculum B reflects this, and has Calculus 1 as the prerequisite
for Introductory Physics 1. This change also shifted the math prerequisite for several other

classes. These changes and others are detailed in Table 7.3.

Curriculum A Curriculum B

Course Prerequisite/Corequisite  |Course Prerequisite/Corequisite
Calculus 1 Calculus 1

Calculus 2 Calculus 1 Calculus 2 Calculus 1

Calculus 3 Calculus 2 Calculus 3 Calculus 2

Differential Equations Calculus 3 Differential Equations Calculus 2

Linear Algebra Calculus 3 Linear Algebra Calculus 3

Partial Differential Equations

Differential Equations

Partial Differential Equations

Differential Equations

Introductory Physics 1

Calculus 2

Introductory Physics 1

Calculus 1

Introductory Physics 2

Calculus 3,
Introductory Physics 1

Introductory Physics 2

Calculus 2,
Introductory Physics 1

Wave Mechanics

Differential Equations,
Introductory Physics 2

Wave Mechanics

Introductory Physics 2

Modern Physics

Linear Algebra,
Introductory Physics 2

Modern Physics

Introductory Physics 2

Classical Mechanics

Differential Equations,
Introductory Physics 2,
Math Physics

Classical Mechanics

Differential Equations,
Introductory Physics 2

Math Physics

Differential Equations,
Linear Algebra

Math Physics

Differential Equations,
Linear Algebra

Electricity and Magnetism

Wave Mechanics,
Math Physics

Electricity and Magnetism

Differential Equations,
Introductory Physics 2

Electricity and Magnetism 2

Electricity and Magnetism

Electricity and Magnetism 2

Wave Mechanics,
Electricity and Magnetism

Quantum Mechanics

Wave Mechanics,
Modern Physics,
Classical Mechanics

Quantum Mechanics

Linear Algebra,
Wave Mechanics,
Modern Physics,
Classical Mechanics

Quantum Mechanics 2

Quantum Mechanics

Quantum Mechanics 2

Quantum Mechanics

Thermal Physics

Modern Physics,
Math Physics

Thermal Physics

Differential Equations,
Linear Algebra,
Modern Physics

Computational Physics

Modern Physics

Computational Physics

Modern Physics

Advanced Physics Lab

Computational Physics

Advanced Physics Lab

Modern Physics

Advanced Physics Lab 2

Advanced Physics Lab

Advanced Physics Lab 2

Advanced Physics Lab

Table 7.3: Two example curricular structures with differing complexity.

159




ELUEETE] ENNRETE]
[elsusD) [elsusn)
EIDRETE] annoa|3
[elauaD) [GIENED)

c
s21sAyd wsnaubep
JewlayL ?

NIBEETE]
4 T

SOIURYIBIN | SoluRYIBIN

wmuend wnmuend

cqel

< qeq <

pasueApy

EINEETE|
[esauan

BNEETE]
[esousD

T
wsnaubepn |

suopenb3

[enualaylq
fensed

soishud | o

B
Auounos|g

EIVETRE
[eaisseln

EINEETE|
[esauan

BNEETE]
[esousD

elgably

“yrew

SOIURYIBN | o

Jeaur

suonenbg

IV

soI1sAyd

pasueApy

soI1SAYd
jeuol |-
-yeindwod

EINEETE|
[esaua9

BNEETE]
[esousD

anoa|3
|elsus

[enuasoia

2 saishyd

UIdPOn

€ sninafeD

T saIsAud |

Aioyonponu|

EINEETE|
[esaua9

BNEETE]
[esousD

anoa|3
|elsuan

EIGETE]
[CIENED)

oo

Aioyonponu|

Z sninafeD

EINEETE|
[esaua9

BNEETE]
[esousD

anoa|3
|elsuan

EUNGETE]
[EIENED)

T sninafeD

Figure 7.5: Curriculum A, with 20 required physics and math courses, and a structural complexity 290.

160



EYEETE]
[GIENED)

ENEETE]
[GIENED)

ENEETE!
[eilsua

4
SIIV=IVRETN]
wmuend

cqe
pasuenpy

ENEETE]
[GIENED)

ENEETE]
[GIENED)

4
wsnauben |

®
Aoioa|3

T

- SIV=IVRETNY]
wmuend

qe’

A

pasuenpy

ENEETE]
[GIEED)

ENGETE]
[GIENED)

T
wsnaubepy
®

Aoinoa|g

soI1sAyd
lewayl

s2IsAyd
[euol
-reindwod

suonenbg

[enusiayiq
fenred

SolueyIBIN |

[eaissen

soI1sAyd

“yrew

STERE
anepm

EINRETE EINRETE
[GIENED) [esauan
EINRETE| EINRETE|
[GIENED) [GIENED)
suonenbg ENNEETE]
lenuatayid [IJENELS)
eigebly g € sninafed
Jeaur]
SoISAUd | 2 sa1sAyd <
UIapoON Kioyonponu|

ENVEETE]
[GIENED)

ENNGETE]
[GIENED)

BNEETE!
[eJsua

A

Z sninaojed

T soIsAUd |

Aiopnponu||

ENNGETE]
[GIENED)

ENNGETE]
[GIENED)

BNEETE!
|eisua

EINEETE|
|eijsua

T snnafeD

Curriculum B, the adjusted curriculum, with 20 required physics and math courses, and a

structural complexity of 222.

Figure 7.6

161



7.6 Implications

Curricular Analytics provides all academic units with quantitative metrics to charac-
terize the complexity of a curriculum. Physics departments can use these tools along with
others tools to identify problematic course structures and to evaluate potential changes to
program requirements quantitatively. These tools can help ensure all students complete their
academic programs in a timely manner and help mitigate the risk that an academic misstep
will cause a student to leave the program or not graduate.

The average structural complexity of each of the three tiers was approximately the
same for the physics curricula taken by graduate-intending students. This implies that the
additional complexity of some programs may not be necessary. As there was no significant
correlation between program complexity and tier ranking, we recommend that physics de-
partments use the tools provided by CA to determine their program complexity and then
make changes to the curriculum structure that simplify students’ paths to completion. In
making a program’s curriculum less complex, departments should not lose their identity;
rather they should look at the desired outcomes for students who complete the program and
then trim any course or unnecessary prerequisite that does not directly contribute toward
those outcomes.

Because complexity increases linearly with decreasing student math-readiness, depart-
ments should investigate what changes can be made accelerate the progression of non-math-
ready students into physics classes. Students from historically marginalized communities
often do not have access to advanced high school college preparatory course options [122],

and so this problem of increased complexity for non-math-ready students becomes a problem
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of equity. A model where students who are not ready to take calculus are allowed to take
the introductory, algebra-based physics courses instead of the introductory calculus-based
physics courses so they can complete the math requirements while taking physics courses
[164] may be one solution. These students could then be given credit for the calculus-based
introductory classes when they have completed Calculus 1 and some advanced physics class
such as Modern Physics. Another model could be that employed by Klingbeil et al. [154].
An introductory physics course could be created that teaches the basic math skills required
in introductory physics using active learning methods. This course would serve as the pre-
requisite to introductory physics instead of Calculus 1, and students could enter physics
courses before or while they are completing the required calculus sequence. While these are
not the only solutions, they reflect a type of solution that makes the curricular structure
less complex while creating a more equitable path to completion for students with different
levels of college preparation.

The complexity of different degree tracks should also by analyzed. While degree tracks
will have differing complexities due to a difference in elective courses and their prerequisites,
there should not be a large disparity between the complexities of different degree tracks.
Degree tracks allow students to specialize in a particular sub-field of physics, perhaps in
preparation for specific careers or specific areas of research in graduate school. If one degree
track’s complexity is significantly greater than the others, then students seeking to enter
that sub-field are at a disadvantage compared to their peers. Any large disparities in the
complexity of degree tracks should be addressed through curricular reform.

The goal of the present work was to introduce CA to the physics community particularly

the PER research community and to replicate the work of Heilman et al. [152] in physics.
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A program’s curricular complexity is only part of the structural features influencing student
success; each student must fit the curricular requirements into an 8-semester degree plan.
The semester in which a class is offered (spring or fall) and the frequency the class is offered
(every semester, every year, every other year) can further impact time to degree. Transfer
students and students who were not math ready often cannot follow the typical degree plan
prescribed by the department, and are often considered “off sequence”. Required classes
that are offered infrequently (once a year or once every two years) are especially detrimental
to students who are off-sequence, and they often have longer times to degree due to the
necessity of waiting until a required class is offered again. The overall difficulty of each
semester (measured by rate students pass courses and the total credit hours in the semester)
can affect the student’s likelihood of successfully passing all courses in a semester. These

effects will be investigated in a future work.

7.7 Limitations

The rankings of the physics programs in tiers were taken from the 2022 US News
rankings of the best physics graduate schools [163]. These rankings are the product of
a survey conducted by US News that asked department chairs and department directors
of graduate studies to rank schools with physics PhD programs from 1 (marginal) to 5
(outstanding). The response rate for this survey in physics was 27.9%. If a school received
less than ten ratings, it was not included in the rankings. This is not a scientific determination
of hierarchy among physics programs in the US, but rather is a ranking based upon popular

opinion and public perception. We feel this is still a useful tool, and that most would
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agree that the groups of randomly selected institutions in the upper, middle, and lower tiers
are approximately in the same general order as would be accomplished by a more rigorous
classification system.

This study also focuses on structural complexity while ignoring instructional com-
plexity. Instructional complexity may alter the relation of curricular complexity to student
success. The developers of Curricular Analytics recommend using course completion rates
as an estimate of instructional complexity. Instructional complexity encompasses all aspects
of a course’s delivery and environment, and course completion rate may be an oversimplifi-
cation of a complex metric. Development of robust metrics of instructional complexity will

be explored in future work.

7.8 Conclusions

Curricular Analytics (CA) is a quantitative framework for characterizing the complex-
ity of college curricula with the goal of increasing student success. Physics departments
could benefit from applying this framework to optimize course requirements thus giving
every student the greatest possibility of successfully earning a physics degree.

This study applied CA to compare undergraduate physics programs at 60 academic
institutions in the US, separated into three tiers based on the US News and World Report
rankings. There was no significant relationship between program ranking and program com-
plexity. This suggests that the increased complexity of some programs may be unnecessary;
physics departments should consider making their curricula less complex to improve student

retention. The most straightforward way to reduce the complexity of a curriculum is to
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minimize the delay factors in the curriculum, by shortening the longest paths in a curricu-
lum. This can be done by reducing the number of required courses, or by rearranging the
prerequisite structures of courses.

One of the 60 institutions, MTPU, was selected to determine the relationship between
curricular complexity and the level of the mathematics course in which a student first enrolls
in college; there was a linear relationship between the number of math courses taken before
Calculus 1 and the curricular complexity. This was the case for each degree track at MTPU
indicating that students who arrive on campus not ready to take Calculus 1 must traverse a
more complex curriculum than students who are ready to take or have already taken Calculus
1. Physics departments should be aware of the effect that student math-readiness has on
the curricular complexity of their programs and make changes that make their programs
more equitable for students who did not have the opportunity to take college preparatory
mathematics courses.

At MTPU, degree tracks containing increased numbers of engineering and chemistry
courses were more complex than degree tracks containing more mathematics and computer
science courses. Physics departments should be aware of the difference in complexity be-
tween degree tracks and ensure that each track has a reasonable complexity; the additional

requirements of a degree track should still allow graduation in four years.
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Chapter 8

Exploring Student Knowledge Structures in the

BEMA as measured by MIRT

*This chapter was published in “Hansen, J., & Stewart, J. (2021). Multidimensional item response theory
and the Brief Electricity and Magnetism Assessment. Physical Review Physics Education Research, 17(2),
020139.”
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The Brief Electricity and Magnetism Assessment (BEMA) was developed to measure
students’ qualitative understanding of basic concepts in electricity and magnetism [167, 168].
The BEMA and the Conceptual Survey of Electricity and Magnetism (CSEM) [9] have been
used in the majority of Physics Education Research (PER) studies of conceptual under-
standing of electricity and magnetism. Both were developed after Halloun and Hestenes
demonstrated that students leave traditional physics classes with little change in their con-
ceptual understanding [80]. This observation lead to the development of the broadly applied
Force Concept Inventory (FCI) [7] which measured conceptual understanding of Newtonian
mechanics. Using the FCI, Hake demonstrated that the failure of traditional instruction
to foster conceptual learning gains was common to physics classes at many institutions [1].
The introduction of the FCI, CSEM, and BEMA as well as the Force and Motion Concep-
tual Evaluation (FMCE) [8] begin an extensive research strand in PER studying student

understanding with multiple-choice conceptual instruments [15].

8.1 The Brief Electricity and Magnetism Assessment

The BEMA is a 31-item multiple-choice instrument that covers electricity and mag-
netism topics [167, 168]. It includes items covering electrostatics, electric potential, mag-
netostatics, and magnetic induction. This study used the version available from PhysPort
[169]. Unlike the CSEM, the BEMA also includes 6 items involving electric circuits and
4 items asking the students to select responses involving quantitative formulas. The items
present students with a variable number of possible responses with some items using up to

10 responses. Most responses include either a “none of the above” response or a response
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that is zero; these types of responses have been shown to cause psychometric problems in
other instruments [170].

The instrument contains multiple “item blocks” where multiple items refer to a common
item stem or a common description of the physics system. Items {1, 2, 3}, {4, 5}, {8, 9},
{14, 15, 16}, {21, 22}, {26, 27}, and {28, 29} are blocked. Multiple studies have shown that
the practice of item blocking can generate correlations between the blocked items that make
them difficult to interpret [11-13].

The version of the BEMA at PhysPort [169] suggests a scoring rubric which accounts
for some of the relations between the items. Item 3 is to be graded as correct if it is answered
correctly based on the response to item 2 (both involve the forces on two point charges).
Item 16 is to be graded as correct if it is consistent with item 14 and if the answer to item
15 is zero. Items 14 to 16 ask about the potential difference between different points in a
uniform electric field. Items 28 and 29 are to be graded together; the student receives one
point if both are correct, zero otherwise. By grading items 28 and 29 as a group, the total
score on the instrument is reduced from 31 to 30.

The BEMA contains 5 items which are nearly identical to items on the CSEM only
differing by the number of responses. Items 1, 2, and 3 are very similar to CSEM items 3,
4, and 5. These items are blocked in both instruments. BEMA items 30 and 31 are likewise

similar to CSEM items 31 and 32, again differing by the number of responses.

8.1.1 Research Questions

This work is the fourth of a series of papers applying Multidimensional Item Response

Theory (MIRT) to widely used physics conceptual assessments. As in the prior work, MIRT
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will be applied both as an exploratory method and as a confirmatory method by constraining
the MIRT models to a theoretical model developed from expert solutions.

This study seeks to answer the following research questions:

RQ1: What relations between BEMA items are identified by exploratory analyses? What do

these relations imply for the interpretation of the results of applying the BEMA?

RQ2: What is the model of student knowledge measured by the BEMA identified by con-
strained MIRT? What insights can this model provide into the structure of the instru-

ment?

RQ3: How is the model of the BEMA related to the models of other conceptual inventories?

8.2 Item Response Theory

Item Response Theory (IRT) represents a rich set of statistical models which describe
the probability a student selects a certain response in a multiple-choice instrument. Many
IRT models have been used to explore physics conceptual inventories: the Rasch model [171-
173], the 2-parameter logistic (2PL) [174, 175], the 3-parameter logistic (3PL) [176, 177],
nested-logit model [178], the nominal model [179], and MIRT [180, 11-13]. The statistical

properties of each model are reviewed in Sec. 8.5.2.

8.2.1 Prior constrained MIRT studies

Multidimensional IRT was applied as both an exploratory and confirmatory analyses
method to popular physics conceptual inventories. These studies will be referenced as Studies

1, 2, and 3 in this work.
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Study 1 - FCI

The use of constrained MIRT was first introduced by Stewart and Zabriskie to examine
the FCI [11]. The general structure of the instrument was investigated using correlation
analysis, partial correlation analysis, and exploratory factor analysis (EFA) as exploratory
methods. These analyses showed that a substantial part of the factor structure and partial
correlation structure of the FCI could be explained by the practice of blocking items into item
groups all referring to a common stem or where later items in the group directly referenced
prior items. This study then applied MIRT as a confirmatory method constraining the
parameter matrix to a theoretical model of the principles needed to solve each item. This
model was developed from expert solutions. Principles are fundamental reasoning steps in
the solution of the item. Constrained MIRT was then used to explore theoretically motivated
modifications to the initial model to identify the model of best fit. The best-fitting model
revealed that there were four groups of isomorphic items requiring very similar solution
structure: items {4, 15, 16, 28}, {5, 18}, {6, 7}, and {17, 25}. These isomorphic items
explained the factor structure not explained by the item blocks. The best-fitting MIRT

model was far better fitting than the original model of the FCI proposed by its authors.

Study 2 - FMCE

The same methods as in Study 1 were then applied to the FMCE by Yang et al. [13].
The FMCE makes much heavier use of blocking than the FCI, CSEM, or BEMA with all
but one item included in an item block. Correlation analysis and MIRT EFA showed that

these item blocks and combinations of the item blocks explained much of the structure of
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the instrument. Confirmatory MIRT was then used to develop a best-fitting model which
showed the items in the item blocks were generally isomorphic. As such, it was impossible
to determine if the similar solution structure or the practice of blocking resulted in these
items being identified in the same factors by EFA. The confirmatory analysis was then used
to show that the FMCE covered far fewer principles than the FCI and that the principles
covered were used differently with the FMCE containing many items using a single principle

while the FCI generally used items mixing a number of principles.

Study 3 - CSEM

Zabriskie and Stewart applied MIRT to two CSEM datasets drawn from different in-
stitutions [12]. Study 3 identified 3 isomorphic item groups: items {6, 8}, {16, 17}, and
{21, 27}. These isomorphic groups were less important to the exploratory factor structure
with only {21, 27} loading strongly on the same factor. This work also fit a general model
of the instrument using the overall categories: mechanics, electrostatics, electric potential,
magnetostatics, magnetic induction, and superposition. Like the FCI, this general model
was not as well fitting as the best-fitting constrained model; however, unlike the mechanics
instruments, some fit statistics suggested the general model was superior. The best-fitting
models extracted for the two institutions were very similar. Model parameters for the dif-
ferent institutions were different, but still related. This suggests the best-fitting models
extracted may have some generality.

These works have been productively employed by other studies because they produced
a detailed mapping of the concepts measured by the instrument and each demonstrated

the central role of the practice of blocking items in determining the factor structure of the
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instrument [83, 181, 182, 179].

8.3 Prior Studies of the BEMA

The BEMA was introduced in 1997 [168] and has been used in several studies as
an assessment to measure gains in electricity and magnetism conceptual knowledge [183—
185]. A study conducted by Ding et al. [10] explored the reliability of the BEMA as an
assessment tool examining the reliability of the instrument as a whole and of the individual
items. The study looked at five statistics: item difficulty index (the score of each item),
item discrimination index (a measure of how well an item discriminates between high-ability
and low-ability students), point biserial-coefficient (a correlation between a student’s score
on an individual item and their score on the entire test), Kuder-Richardson reliability index
(a measurement of a test’s self-consistency) and Ferguson’s delta (a measurement of the
discrimination of an entire test). Fach statistic indicated that the BEMA was a reliable
instrument with sufficient discrimination between high-ability and low-ability students. A
later study by Ding [186] used Rasch theory to test the construct validity of the BEMA,
and found that the BEMA does measure a unidimensional construct even though the items
cover a broad range of topics in electricity and magnetism.

Kohlmyer et al. [184] used the BEMA to test the knowledge level of students in
two different introductory electricity and magnetism courses: a traditional electricity and
magnetism course and the second semester of the Matter and Interactions (MI) curriculum
[36]. Students enrolled in the MI course had significantly higher post-test scores than the

students enrolled in the traditional electricity and magnetism course at each of the four
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institutions studied.

Ding [173], using a dataset that was collected from students in parallel traditional and
MI electromagnetism courses at the same institution, found five BEMA items with different
averages in the two courses; two were higher in the MI course (items 5 and 7) and three were
higher in the traditional electricity and magnetism course (items 17, 22, and 25). BEMA
items 9 and 17 were also shown to be problematic because of low discrimination. Item 9 asks
about current flow in an ionic channel and requires an answer with mathematical formula
unlike most items in the instrument. Item 17 tests the electric potential in an open circuit.

A recent study by Xiao et al. [177] found that some conceptual instruments, including
the BEMA and CSEM, could be shortened without diminishing the validity and reliability
of assessment. This was done using item response theory. The latent constructs of student
learning in electricity and magnetism that are measured by the BEMA were shown to be

measured with similar reliability by a shortened BEMA assessment.

8.3.1 Studies comparing the BEMA and the CSEM

Xiao et al. [177] also showed that student scores on the BEMA and CSEM can be
compared after linking the assessment scales and appropriately transforming them. This
supports prior work done by Pollock [187]. Pollock compared the CSEM and BEMA and
found them to be fairly equally effective in assessing conceptual understanding [187]; however,
the instruments have somewhat different coverage. Eaton et al. [188] used item response
theory (IRT) and classical test theory (CTT) on the BEMA and CSEM to show that the
assessments were nearly equal in overall difficulty. Any differences found between the two

tests were minimal and potentially caused by differences in the test samples. The circuit
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questions on the BEMA were poorly correlated with other concept areas on the assessment.

Some of the differences in coverage of the BEMA and CSEM were evident in an EFA
comparing the BEMA and the CSEM by Eaton et al. [189]. They concluded the two
instruments cover nearly the same conceptual content, with the exception of a few factors.
The CSEM had an EFA model of six factors while the BEMA had a five-factor model. This
study did not use all BEMA items, removing several items due to low Kaiser-Meyer-Olkin

(KMO) test values which measure how well a sample loads onto different factors.

8.4 The Structure of Knowledge

The current work built a detailed model of the BEMA involving 50 principles of elec-
tromagnetic theory. This model shares many features with earlier models of physics problem
solving constructed using the paradigm of cognitive research introduced by Simon and Newell
[190]. This paradigm dominated research into problem solving for 30 years and is reviewed
by Ohlsson [191]. The paradigm built exceptionally detailed, computationally functional
models of the problem solving process. These models could then be run on computers to
reproduce the problem solving sequence of participants. The technique was used to under-
stand expert-novice differences in problem solving in physics and many other fields [192, 193].
This paradigm ultimately lost favor because it was difficult to explore general features of
complex problem solving; however, in Physics Education Research (PER) it is often the
goal to understand specific features of the physics problem solving process. As such, the
detailed models produced by this method may be productive. Reif and Heller also produced

a fine-grained model of physics problem solving, but this model did not meet the test of
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being computationally functional [194]. These models involved identifying the fundamental
transformations, called principles, needed to navigate the problem space. These principles
are closely related to the principles identified in the theoretical MIRT model; the MIRT

principles take their name from these earlier works.

8.5 Methods

8.5.1 Sample

The sample for this study was collected at a large western land-grant university in the
United States serving 34,000 students. Fifty percent of the undergraduate student popula-
tion had ACT scores in the range 25 to 30. The demographic composition of the general
undergraduate population was 67% White, 12% Hispanic, 6% Asian, 6% two or more races,
6% International, 2% Black with other races less than 1% [195].

The aggregate dataset was drawn from 22 semesters of an introductory, calculus-based,
electricity and magnetism class. It contains 9666 BEMA post-test records. Any record that
contained one or more missing responses was removed, as well as records that had suspicious

response patterns, e.g., “A” repeated or “ABCDE” repeated.

8.5.2 Item Response Theory

Item response theory (IRT) encompasses a broad collection of statistical models of the
response patterns to multiple-choice instruments. These models estimate the probability of
either selecting the correct response or each response in terms of a latent student-level trait

called the ability. This latent trait represents the general facility of each student with the
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material tested by the instrument. Unidimensional IRT, estimating a single latent ability, has
been used in many PER studies of the FCI, FMCE, and CSEM [176, 171, 196-198, 174, 199
201]. These studies are summarized in detail for the individual instruments in Studies 1 to
3.

Multidimensional IRT (MIRT) is a generalization of unidimensional IRT which es-
timates multiple latent abilities for each student. It was used as both an exploratory and
confirmatory method in Studies 1 to 3. MIRT was also used by Scott and Schumayer [180] to
perform an exploratory factor analysis of the FCI. MIRT provided similar, but not identical,
results to an earlier work on the same dataset using traditional factor analysis [202].

An exploratory analysis allows the model to be deduced from the data without the
input of a theoretical model. A confirmatory analysis begins with a theoretical model and
seeks to determine how well a set of data is described by the model. Studies 1 to 3 and
50 years of social science research [203, 204] argue that purely exploratory analyses are
susceptible to misinterpreting random fluctuations in the data as real effects.

MIRT estimates the probability m;; that student ¢ will answer correctly on item j. For
each item, MIRT estimates a parameter d; related to the overall difficulty of the problem.
Items with larger d; are answered correctly more often. More difficult problems have smaller
d;, easier problems larger d;. MIRT also estimates K discrimination parameters aj; for each
item and K ability traits #;; for each student. The discrimination and the ability can be

written as K element vectors, a; and 6;. The MIRT probability model is shown in Eqn. 8.1.

o expla; - 0; + d;]
Yo 1 +exp[a]~ . 01 +dj]’

(8.1)
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Figure 8.1: Probability of selecting the correct response, 7(6), versus ability 6 using d =0 and @ = 1. The
dashed line represents the slope at § = 0 and has slope a/4 = 0.25.

Some qualitative understanding of the features of the probability function are helpful
when interpreting the MIRT models. For this discussion, consider a model with one discrim-
ination parameter (K = 1). If a > 0, the probability curve has the characteristic S-shape
shown in Fig. 8.1. The figure shows the probability curve drawn with d = 0 and a« = 1. With
this choice of parameters, the probability of answering correctly is 0.5 at § = 0. In general,
the 01/ where the probability is 0.5 occurs when the argument of the exponential is zero,
01/ = —d;/a;; therefore, a combination of a; and d; determine the ability at which a student
has a 50% chance of answering the problem correctly. The slope of the probability at 6, /, is
a;/4; therefore, the discrimination a; is related to how fast the probability is increasing when
the students have a 50% chance of answering correctly. If a; is larger, the transition from
low probability to high probability is faster, the item discriminates between low and high

ability students more strongly. If a; = 0, the probability curve is flat, low and high ability
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students have equal chances of answering correctly, a characteristic of a problematic item.
More problematic are items with a; < 0; for these items the S curve inverts and students
with low ability have a higher probability of getting the item correct than students with high
ability.

The MIRT models were fit using the “mirt” package [205] which is part of the R software
system [120]. Models were fit using the Metropolis-Hastings Robbins-Monro (MHRM) algo-
rithm [206] which uses stochastic methods to maximize the likelihood function. Maximum

likelihood estimation does not require the assumption of an underlying normal distribution.

8.5.3 Model Fit Statistics

The parameters in a MIRT model are estimated using maximum likelihood (ML) meth-
ods where the parameters are selected to make the observed response pattern the most prob-
able using Fqn. 8.1. Maximum likelihood methods calculate the likelihood function, L, the
probability the observed response pattern occurred given the MIRT probability model and a
set of parameters. The parameters are modified until L is maximized. A broad collection of
model fit statistics have been developed to characterize and compare ML models. This study
reports Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), the
Root Mean Square Error of Approximation (RMSEA), the Comparative Fit Index (CFI),
and the Tucker-Lewis Index (TLI). These statistics are explored in detail in Study 3 and are
summarized below.

AIC (Eqn. 8.2) and BIC (Eqn. 8.3) measure the relative information lost between the
model fit and the true model; better fitting models lose less information and thus minimize

AIC and BIC. Both penalize for the addition of parameters with BIC penalizing additional
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parameters more strongly.

AIC = 2k — 2In(L), (8.2)
BIC = kln(n) — 2In(L), (8.3)

where £ is the number of parameters estimated and n is the sample size. Both AIC and BIC
depend on the logrithm of the likelihood, so small changes in either measure large changes
in likelihood. Raftery provided criteria for the effect size of differences in BIC: ABIC < 2
as “weak,” 2 < ABIC < 6 as “positive,” 6 < ABIC < 10 as “strong,” and ABIC > 10
as “very strong” [207]. The definition of AIC and BIC are very similar; therefore, this work
also adopts Raftery’s convention for AIC.

RMSEA, CFI, and TLI are measures of model fit or misfit derived from the chi-
squared (x?) statistic. For a N-item dichotomously scored instrument, there are C' = 2V
possible response sequences. To calculate chi-squared, the probability of each possible re-
sponse sequence, P,, is compared to the observed frequency of the sequence, O,, x? =
nzg (O. — P.)/O. where n is the number of observations. For the BEMA with N = 31
items and for most multiple-choice instruments of reasonable length, it would require an
enormous amount of data to estimate x? accurately. As such, MIRT uses an approximation
to x? called M, to approximate x? [208, 209].

RMSEA (Eqn. 8.4) characterizes badness of model fit on a scale of 0 to 1 using y?
normalized by the number of degrees of freedom (df) [210]; models with larger RMSEA
represent worse fitting models. RMSEA less than 0.05 represents good model fit; RMSEA

above 0.10 represents poor model fit [211].
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CFI (Eqn.8.5) and TLI are incremental goodness-of-fit statistics which characterize how
much the model differs from a null model [210]. The null model used by MIRT constrains
the discrimination matrix to zero, @; = 0, and fits the model containing only d;. CFI and

TLI values above 0.95 represent good model fit [212].

x* —df

CFlI=1— +*+~—"~——
X?mll — dfpun

(8.5)

The equation for TLI contains a slightly modified combination of the null and fitted models.

Hu and Bentler recommend using multiple fit statistics to compare models [212]. As
such, a superior model has AIC and BIC at least 20 lower than other models, RMSEA near
zero, and CFI and TLI near one.

The relation of RMSEA, CFI, and TLI to the number of parameters fit is complicated.
All three statistics involve the ratio of an effective chi-squared statistic to the number of
degrees of freedom. As more parameters are fit, generally x? decreases, but the number of
degrees of freedom also decreases. Eventually, the decrease in y? is not enough to compensate
for the decrease in the degrees of freedom and the statistics begin to increase as the models

become sufficiently complex.
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8.6 Results

The BEMA was first examined with two exploratory analyses: correlation analysis and
exploratory factor analysis. The instrument was then examined with a confirmatory analysis

fitting a model based on expert solutions to the instrument.

8.6.1 Exploratory Analyses

Figure 8.2: Correlation matrix. Solid (green) lines represent positive correlations; dashed (red) lines negative
correlations. Thicker lines represent larger correlations.

The BEMA was first examined using the the correlation and partial correlation ma-
trices. The correlation matrix is presented in the Fig. 8.2. The partial correlation matrix,
which corrects for correlations resulting from overall BEMA scores, is shown in Fig. 8.3.
The partial correlation matrix shows five groups of items that are substantially positively
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Figure 8.3: Partial correlation matrix. Solid (green) lines represent positive correlations; dashed (red) lines
negative correlations. Thicker lines represent larger correlations.

correlated after correcting for overall BEMA score: {1, 2, 3}, {4, 5}, {14, 16}, {21, 22}, and
{28, 29}. All groups are part of item blocks. Item 15 is not present in the {14, 16} group.
This group of items asks about the potential difference between various points in a uniform
electric field. Item 15 asks about the potential difference along an equipotential unlike the
other two items.

An EFA was performed using MIRT. To use MIRT as an exploratory method, the
discrimination matrix a; is allowed to vary freely. MIRT was used to extract from 1 to 10
factors; the fit statistics for each model are shown in Table 8.1. Consistent with Studies 1
to 3, the fit statistics do not clearly identify a single best-fitting model. The 6-factor model

minimizes AIC and BIC while the 5-factor model minimizes RMSEA, and maximizes CFI
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Factors AIC BIC RMSEA TLI CFI
1 332,570 333,015 0.07 0.80 0.80

2 325,941 326,601 0.05 0.89 0.91
3 321,556 320,413 0.02 0.95 0.96
4 319,343 320,412 0.02 0.98 0.98
5 318,895 320,158 0.02  0.99 0.99
6 318,657 320,107 0.06 0.85 0.90
7 318,667 320,296 0.06 0.84 0.91
8 318,872 320,674 0.06 0.850.92
9 318,694 320,713 0.06 0.84 0.92
10 318,694 320,818 0.06 0.85 0.93

Table 8.1: MIRT fit statistics for an Exploratory Factor Analysis of the BEMA.

and TLI. The relatively poor RMSEA, CFI, and TLI of the 6-factor model strongly indicates
the 5-factor model is the superior model. The factor structure of the 5-factor model is shown
in Table 8.2. As in prior studies, the factor structure is dominated by the blocked items;
block items form the highest loadings on factors 1 to 4. This is consistent with the correlation
analysis which shows only blocked items are more correlated with each other than with the
total instrument score. This supports the work of Eaton et al. [189] who also reported a

5-factor model as optimal.

8.6.2 Confirmatory Analyses

For a confirmatory analysis, one first develops a theoretical model and then determines
how well the data fit the model. One can also propose a small number of theoretically
motivated modifications to the model. Ideally, these should be proposed before the model is
initially fit. By constraining the analysis to a theoretical model, confirmatory methods are

less likely to erroneously identify structure resulting from random effects.
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BEMA FC1 FC2 FC3 FC4 FC5

Item
1 0.92
2 0.97
3 0.90
4 0.46
5 0.44
6 0.36 0.38
7
8
9
10 0.31
11
12
13 0.40
14 0.87
15 0.44 0.40 0.36
16 0.88
17
18
19 0.31
20  0.44 0.43
21 0.89
22 0.79
23 0.35
24 0.40
25  0.34 0.34
26  0.31 0.42
27
28 0.97
29 0.98
30 0.39 0.31
31

Table 8.2: Factor structure for the five-factor model. Only loadings greater than 0.3 are shown. The factors
are labeled FC1 to FC5.
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Derived CSEM -
Label From Principle BEMA# Principle

Mechanics
L1 26, 27 Newton’s 1st law.
L2 X Newton’s 2nd law.
L3 X 2(2) Newton’s 3rd law.

If a particle is turning in some direction, there is a

c1 L2 % 6, 23 force in that direction.

Electrostatics
L4 X 1, 2(1), 3, 7(2) Coulomb’s law for the electric force (F = ]
L5 X 4(1), 5(1) Coulomb’s law for the electric field (E = b7
LM1 L4 X 4(1), 5(1) Opposite charges attract/likes repel.
DF1 X 4(1), 5(1), 6, 26, 27 Definition electric field (F = ¢E)
LM2 L5 4(1), 5(1), 7(2) Electric field weakens as distance increases.
C2 4(2), 5(2) Electric dipole field shape.
C3 F1, LM2 7(1) Charged object attracts a neutral object.
F1 7(2) An insulator polarizes in an external field.
L6 18 Gauss’s law (g E-ndA = %)
DF2 18 Definition of electric flux (¢ = [, E - idA).
F2 19 Electric field is zero in a conductor.

Electric Potential

DF3 X 19 Definition of electric potential (AV = W;m” = — [ Edz).
LM3 DF3 X 14, 16 Electric field points to lower potential.
LM4 DF3 14, 16 Potential difference in uniform field is (|JAV| = | Ed|).
LMb5 DF3 15, 16 Potential difference is zero perpendicular to the field.
LM6 DF3 16 Total potential difference is the sum of AV over paths.

Magnetostatics
L7 X 24(2), 25(2) Biot-Savart law (dB = 4o 140,
L15 Ampere’s law (§ B - dl = pol).
LM7 L15 31(1) Magnetic field is proportional to current.
L8 X 23, 25(2), 25(3), 26, 27, 30 Lorentz force (.ﬁ = qi x B or dF = Idl x é)
LMS8 L8 X 20 The magnetic force on a stationary charge is zero.
LM9 L7, L8, DF4 X 25(1) Like currents attract/opposites repel.
F3 21, 22, 24(3) Magnetic dipole field shape.
DF4 X 23, 24(2), 26, 27, 30 Right-hand rule for the cross-product.
DF5 X 27 Magnitude of the cross product (|4 x B| = |A]|B]|sin ).
C5h L7, DF4 24(1), 25(3) Right-hand rule for a wire.
DF6 24(3) Right-hand rule for a magnetic moment.
C6 LS, DF4 20 Condu.ctor .moving in a magnetic field experiences a

potential difference.
Induction

L9 X 28,29, 31(1) Faraday’s law (emf = —42).
DF7 x 28,29, 31(1) Definition of magnetic flux (¢ = [ B - ndA).
L10 28, 29 Lenz’ law.
(Or¢ L9, L10 28, 29 Right hand rule for changing flux.
C8 L9, L10 31(2) Mutual inductance (emf = —M4%2).

Superposition
L11 X 4(1), 5(1), 24 Electric and magnetic fields add as vectors.

Table 8.3: Theoretical model tested by the BEMA. An x indicates that the principle is used in the CSEM.

Theoretical Framework
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Derived CSEM o
Label From Principle BEMA+# Principle

Electric Circuits
F4 8,9 Battery produces current flowing from - terminal to + terminal.
Positive current is in the direction of flow of positive

DF8 ) charge or opposite the direction of flow of negative charge.
F5 10 Ammeters have negligible resistance.

C9 10 Current same in series.

F6 11 Brighter light bulb indicates more current.

L12 10, 11, 17 Ohm’s law (AV = IR).

C10 11 Parallel elements have the same potential difference.
C11 11 Resistance adds for resistors in series.

L13 12 Ohm’s law for the electric field (J = oE).

F7 17 Complete circuit required for current flow.

L14 17 Kirchhoft’s Loop Rule.

DF9 13 Definition of capacitance ( C' = %)

F8 13 RC circuits decay.

Table 8.4: A continuation of Table 8.3

A model of the knowledge structure measured by the BEMA is shown in Table 8.3.
This model was developed in the same way that models of knowledge structure were de-
veloped in Studies 1, 2, and 3. Content experts including members of the research team
and instructors of introductory, calculus-based physics courses at the institution where the
analysis was performed were asked to complete the BEMA and write the reasoning used
to solve each problem. These responses were decomposed to the sentence or phrase level.
Sentences and phrases representing the same fundamental reasoning process were grouped;
these groups were called “principles.” As in Studies 1 to 3, the principles were then classified
as a laws (L) representing physical laws such as Gauss’ Law, definitions (DF) introducing
a new quantity, and facts (F) representing physical knowledge that was not as general as a
law. From these primary principles, which define the core physical knowledge tested by the
instrument, secondary principles were derived. The secondary principles included corollaries

(C) and lemmas (LM). Corollaries are important secondary results of the laws, definitions,
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and facts. Qualitative statements in the solutions that interpreted laws, definitions, and
corollaries were called lemmas. Some secondary principles were derived from primary prin-
ciples that were not included in the expert solutions. These principles were inferred and
included in the model in Table 8.3. Some of the principles in Table 8.3 are characterized
with a bold font. These principles are those that are retained in the best-fitting principle
model (M13) found through constrained MIRT. Finally, broad subtopics were introduced;
mechanics, superposition, electrostatics, electric potential, magnetostatics, magnetic induc-
tion, and electric circuits.

Several principles in the electric circuits subcategory are secondary principles that could
be derived from a primary principle. For example, C9 (current is the same throughout a
series circuit) is derived from the law of conservation of charge. None of the expert solutions
used these primary principles and it seemed unlikely that a student would use the primary
principle. Such principles were not included in Table 8.3 and were not explored in the MIRT
analysis.

Some BEMA items had multiple expert solution paths including items 4, 5, 7, 24, 25,
and 31 (item 2 also had a secondary solution path, but was eliminated from the analysis be-
cause of blocking). In Table 8.3, the principles necessary for secondary and tertiary solutions
paths are presented in parentheses with the solution path number within the parenthesis.
For example, the first solution path of item 4 uses L5, L11, LM1, DF1, and LM2; the second
solution path uses only C2. These different solution paths were explored using MIRT to
determine which solution path was the most important to model student thinking.

Some principles were always used together. Borrowing the terminology of factor anal-

ysis, when a principle is used in an item it is said to “load” onto that item. In the BEMA,
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Faraday’s law and the definition of magnetic flux are used together to solve items 28, 29, and
31, but are not used in other items. As such, MIRT cannot resolve them as separate prin-
ciples. In the MIRT analysis, these principles were combined as a single principle labelled
L9-DF7. Similarly, Gauss’ law (L6) and the definition of electric flux (DF2) load together
on item 18 as L6-DF2. Many other combined principles are shown in Table 8.3.

Not all items were retained in the analysis. There are several problem blocks where
multiple problems refer to a common physical system or refer to the same image. Studies 1
to 3 showed that blocked items can exhibit correlations unrelated to the physical reasoning
needed to solve the item. Each item block was examined to determine if the items in the
block were fairly independent. Items 2 and 3 depend on the response to item 1 and were
removed from the analysis. Responses to items 4 and 5 do not depend on each other and
were retained. Item 16 depends on the responses from items 14 and 15 and was removed.
The responses to items 21 and 22 are fairly independent and were retained. Item 27 depends
on the response from item 26 and was removed. The responses to items 28 and 29 are
independent and were retained. The removed items still appear in Table 8.3 but were not
included in the analysis.

Table 8.3 also indicates whether the principle was also tested by the CSEM to facilitate

the comparison of the two instruments.

Model Transformation Plan

In a confirmatory analysis, the theoretical model is fit, then a series of theoretically
motivated model transformations are performed to possibly improve the initial model fit.

Table 8.3 represents the initial model and was fit first. Items 4, 5, 7, 24, 25, and 31 have

189



multiple solutions paths. For each of these items, the first solution path, shown in Table 8.3
with a “(1),” was fit in the initial model. For example, principle L4 is used in solution path
1 of item 2 which is shown as “2(1)” in Table 8.3. The second solution path for each item
was then fit, followed by the third solution paths for items 24 and 25. These model fits were
compared with the original model and any model that was an improvement was retained.

The granularity of student knowledge was then explored to determine if the secondary
principles were needed to understand student thinking. Models were constructed which
removed the secondary principles— the lemmas (LM) and corollaries (C)— by replacing them
with the primary principles from which they were derived. For example, LM1 (opposites
attract /likes repel) can be derived from L4 (Coulomb’s force law). To test whether LM1 was
needed in addition to L4, all items that were set to load on LM1 in the initial model were
set to load on 14 in the transformed model. This model was fit and fit statistics compared
with the original model. This process was called “collapsing” LM1 into L4. Seven models
were transformed in this way; C1 was collapsed into L1; LM1 was collapsed into L4; LM2
was collapsed into L5; LM3, LM4, LM5, and LM6 were collapsed into DF3; and LM8 was
collapsed in L8. In the case of LM3, LM4, LM5, and LM6, any item loading onto one of the
principles was set to load onto DF3. Two additional models were constructed which required
a somewhat more complex transformation. The other two models were slightly more complex
in that the secondary principle was not derived from a single primary principle but rather
from several primary principles. In M15, LM9 was set to load onto L10, DF7, and DF4;
in M16, C7 was set to load onto L9, L10, DF7, DF4. These models were fit; models with
improved fit were retained.

The definition of electric potential (DF3) loads onto item 19 with fact F2 (the electric
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field inside a conductor is zero). These two principles were not combined as a single principle
in the MIRT analysis because during the third set of transformations LM3, LM4, LM5, and
LM6 were all collapsed into DF3. Because of this transformation, F2 and DF3 no longer
load on an item exclusively together, and so to maintain a nested model sequence they were
not combined in the initial model.

The final set of transformations collapsed the principles and items onto the general
topics of electricity and magnetism which form the divisions in Table 8.3. These models
are called “topical models.” The first transformation, M17, collapsed each principle onto
the general topics of electricity and magnetism: mechanics, electrostatics, electric potential,
magnetostatics, magnetic induction, superposition, and electric circuits. To form M18, the
principles involving mechanics and superposition were removed so as to include only topics
specific to electricity and magnetism. This resulted in each item loading onto a single topic
with the exception of item 26 which loaded onto both electrostatics and magnetostatics (a
constant, uniform electric field and a constant, uniform magnetic field are both acting on a

charged particle).

Constrained MIRT

In the exploratory work in Sec. 8.6.1, the MIRT discrimination matrix a; was allowed to
take on any value. To apply MIRT as a confirmatory method, elements of the discrimination
matrix which can not theoretically be involved in solving an item are constrained to zero.
For example, L1 (Newton’s 1st law) is only used in items 26 and 27; a;;; was only be
allowed to be non-zero for items 26 and 27. This constraint means that abilities associated

with the application of principles, not theoretically required for the solution of the item, do
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not influence the probability of answering the item correctly. In this way, the theoretical
model in Table 8.3 is mapped onto the MIRT discrimination matrix. This analysis proceeds
with the 27-item instrument removing some of the blocked items. The reduced instrument
contains items: 1,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 12, 13, 14, 25, 26,
28, 29, 30, and 31.

The transformation plan was carried out in panels: first testing each type of trans-
formation independently to identify those which improved model fit, then combinations of
the transformations which improved model fit were investigated. The results of carrying out
the transformation plan are shown in Table 8.5. The “Transformed Model” column shows
the model number of the model after the transformation has been applied to a prior model
(the “Original Model”); MO is the initial model which implements the model in Table 8.3.
The “Transformation” column summarizes the transformation applied to the original model
to form the transformed model. The fit statistics are then presented for the transformed
model and the best fitting of the two models identified by the fit statistics and indicated
in the “Superior Model” column. The first set of transformations tried alternate solution
paths identified in the expert solutions. Many of these alternate solutions produced superior
models. For item 24, both solution paths 2 and 3 improved model fit with M4 producing
superior fit; of these two transformed models, only M4 was used in further models. The
next set of transformations tried combinations of the transformations in the first stage that
produced superior models. All these combinations failed to improve on model M4. As such,
the only modification to the initial model MO that was retained was using the 3rd solution
path to item 24. Item 24 asks about the magnetic field at the center of two parallel loops of

wire; solution path 3 solved the item using the dipole moments of the loops.

192



Tmﬁfi:’j?ed Transformation %rllfi?l AIC  BIC RMSEA TLI CFI SK{’OCC{;T
Full Model
MO - 289,783 290,536  0.016 0.987 0.990 -
Explore Alternate Solution Paths
M1 Solution path 2 for items 4, 5 MO 289,793 290,496 0.016 0.987 0.990 MO
M2 Solution path 2 for item 7 MO 289,766 290,533 0.016 0.987 0.990 M2
M3 Solution path 2 for item 24 MO 289,767 290,528 0.016 0.987 0.990 M3
M4 Solution path 3 for item 24 MO 289,727 290,488 0.016 0.988 0.991 M4
M5 Solution path 2 for item 25 MO 289,877 290,645 0.016 0.988 0.990 MO
M6 Solution path 3 for item 25 MO 289,752 290,513 0.015 0.988 0.991 M6
M7 Solution path 2 for item 31 MO 289,758 290,505 0.015 0.987 0.990 M7
Combine Alternate Solution Path Models
M8 Combine M2 and M4 M4 289,721 290,496 0.016 0.988 0.991 M4
M9 Combine M6 and M4 M4 289,860 290,628 0.016 0.988 0.990 M4
M10 Combine M7 and M4 M4 289,759 290,512 0.016 0.988 0.990 M4
Collapse Lemma into Primary Principles

Mi11 Combine LM1 with L4 M4 289,746 290,507 0.016 0.988 0.990 M4
M12 Combine LM2 with L5 M4 289,732 290,486 0.016 0.988 0.990 M4
M13 Combine LM3, LM4, LM5, LM6 to DF3 M4 289,684 290,445 0.015 0.990 0.992 M13
M14 Combine LM8 with L8 M4 289,739 290,492 0.016 0.987 0.990 M4
M15 Combine LM9 with L7, L8, DF4 M4 289,826 290,603 0.016 0.988 0.991 M4
M16 Combine C7 with L9, L10, DF7,DF4 M4 289,725 290,500 0.016 0.988 0.991 M4

Topical Models
M17 Collapse all principles into main topics ~ M13 289,471 290,117 0.015 0.989 0.991 M17
M18 Collapse all items into main topics M17 289,435 290,024 0.016 0.989 0.990 MI18

Table 8.5: Model transformation table. Each entry presents the result of modifying a prior model (the
original model) with one of the planned transformations to produce a modified model (the transformed

model). These two models are compared and the model with superior fit statistics identified (the superior
model).

The next set of transformations investigated whether the lemmas were required to
model student thinking. Lemmas are qualitative principles derived from the generally quan-
titative laws and definitions. Studies 1 to 3 found lemmas were retained in the best-fitting
model to a varying degree. In Study 1 of the FCI, all lemmas were removed together which
improved model fit. In Studies 2 and 3, the lemmas were removed individually and some
lemmas were retained in the best-fitting model. Lemmas play an important role in elec-
tromagnetism with LM1 (opposites attract/like repel) often used as part of the solution to
both qualitative and quantitative problems. Only M13 was superior to M4; M13 combined

lemmas LM3, LM4, LM5, and LM6 into DF3. DF3 is the definition of electric potential and
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the lemmas are different properties of electric potential such as the electric field points to
lower potential (LM3) or the potential difference is zero perpendicular to the field (LM5). As
such, most lemmas were important to modeling student reasoning about electromagnetism
with only lemmas involving electric potential removed from the optimal model.

The final set of transformation tested more general models of student thinking using the
general electromagnetic topics which form the divisions in Table 8.3. In M17, the principles
were set to load on the subtopic containing the principle; as such, some items loaded onto an
electromagnetism subtopic and also onto the topics of mechanics and superposition. In M18,
the subtopics of mechanics and superposition were removed and items were only loaded onto
the electromagnetism subtopics. The fit statistics of M18 were superior to all other models.
This result was diametrically opposite to that of Studies 1 to 3 where the MIRT models
involving the individual principles were superior to models using general topics. Possible
reasons for this difference are explored as part of RQ3.

With M18 having superior fit statistics over more detailed models, one might consider
whether the instrument is simply unidimensional with no substructure. A model containing
only the aq discrimination is equivalent to the 1-factor model in Table 8.1. Comparison of the
1-factor model and M18 shows that M18 is a substantially superior model with consistently
superior fit statistics.

As such, M13 was the best-fitting model of student reasoning based on the granular
model in Table 8.3 involving reasoning principles. The principles contained in this model
are bolded in the table. M18 was the overall best fitting model. We note both M13 and
M18 have exceptional RMSEA, CFI, and TLI, and as such, both can provide useful insights

into student thinking. The difference in AIC and BIC likely results from the penalty these
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statistics place on the addition of parameters. The structure of M13 is further explored in

Sec. 8.6.4, the structure of M18 in Sec. 8.6.3.

8.6.3 Topical Model

. Electric Electric . Magnetic

Electrostatics Circuits Potential Magnetostatics In dic ton

Items 1,4,5,6, 7,268, 9,10, 11, 12, 13, 17| 14, 15, 19 (20, 21, 22, 23, 24, 25, 26, 30| 28, 29, 31

Mean + SD | 0.59 +0.24 0.66 = 0.30 0.48 +0.21 0.57 £ 0.27 0.22 +0.30
Cronbach’s «a 0.51 0.38 0.37 0.69 0.54

Table 8.6: Subscale scores for each topic. The mean + the standard deviation (SD) are shown. The mean
calculates the average fraction of item in the subscale answered correctly by the students

The overall best-fitting model, M18, involved only the general electromagnetic topics
which suggests these topics may be used as subscales, coherent measures of the topic. This
model was called the “topical model.” Table 8.6 shows the average fraction of students
answering the items in the general topical groups (subscales) correctly. The electrostatics,
magnetostatics, electric potential, and electric circuits subscales all have fairly similar av-
erages differing by a maximum of 18%. Table 8.7 presents the item-level score (fraction

of students answering the item correctly), d;, general discrimination ajy, and subscale dis-

S
ik

crimination a?,, where j indexes the item and k the subscale. Items within these subscales
have a broad range of average item scores. The parameter d; is related to the probability
of answering the item correctly for students of average ability (5 = 0); items with larger d;
are answered correctly with higher probability by average students of average ability. The
magnetic induction subscale has a much lower average score than the other subscales. It

also contains two items, 28 and 29, with the lowest average score and the most negative

d; of any items in the instrument. Items with negative d; are answered correctly less often
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than an item with average d;. In general, the range of discriminations a;o was more narrow

Item Item Principle Model (M13) Topical Model (M18)
# Score Principles ajo d; Topic aG, o d;
1 083 L4(0.19) 0.64 1.87| electrostatics 0.08 0.58 1.70
4 0.76 DFl(Oié)(OLQl\g)l(Eﬁlt)OIIg/?(O11) 1.35 2.00| electrostatics 0.79 1.35 1.97
5 0.54 DF1(0.21) LML(0.21) L5(0.37) 1.37 0.28| electrostatics 0.58 1.26 0.24
111(0.12)
6 0.57 C1(0.10) DF1(0.28) 1.36  0.44| electrostatics 0.15 1.24 0.38
7 049 C3(0.18) 0.72 —0.03|  electrostatics ~ —0.01 0.53 —0.04
8 0.76 F4(0.08) 0.72 1.32| electric circuits ~ 0.01 0.70 1.28
9 0.30 F4(0.10) DF8(0.19) 0.13 —0.95| electric circuits ~ 0.04 0.11 —0.85
10 0.60 F5-C9(0.18) L12(0.22) 0.97 0.55| electric circuits  0.19 0.87 0.50
11 0.43| L12(0.16) F6-C10-C11(0.22)  0.60 —0.35| electric circuits ~ 0.10 0.53 —0.31
12 0.21 L13(0.18) 0.75 —1.62| electric circuits  0.09 0.69 —1.51
13 0.75 DF9-F8(0.15) 1.02 1.48] electric circuits  0.10 0.93 1.38
14 0.45 DF3(0.28) 0.62 —0.22| electric potential 0.29 0.63 —0.23
15 0.75 DF3(0.50) 1.80 1.99| electric potential 0.48 1.77 1.94
17 0.34 L12(0.07) L14-F7(0.17) 0.36 —0.76| electric circuits ~ 0.10 0.33 —0.71
18 0.55 L6-DF2(0.33) 0.20 0.23| electrostatics 0.01 0.18 0.20
19 0.76 F2(0.15) DF3(0.08) 0.77 1.43| electric potential 0.07 0.73 1.34
20 0.58 LM8(0.28) 1.66 0.52| magnetostatics  0.04 1.45 0.45
21 0.84 F3(1.43) 2.55 4.25| magnetostatics  1.71 2.82 4.77
22 0.66 F3(0.94) 1.76 1.25| magnetostatics 0.84 1.64 1.17
23 0.49 | L8(0.09) DF4(0.08) C1(0.04) 0.83 —0.04| magnetostatics —0.06 0.85 —0.05
24 0.68 | F3(0.11)L11(0.06) DF6(0.11) 0.92 0.94| magnetostatics  0.11 0.87 0.89
25 0.56 LM9(0.13) 1.04 0.31] magnetostatics  0.04 0.97 0.29
DF1(0.18) L8(0.13) DF4(0.16) electrostatics ~ —0.01
26039 L1(0.20) 1.23 =0.67 magnetostatics  —0.06 113 =059
28 0.18 L9-DF7(2.14) C7-C8(3.21) 2.25 —7.51|magnetic induction 5.53 2.44 —7.95
29 0.18 L9-DF7(2.14) C7-C8(3.82)  2.63 —9.24|magnetic induction 5.76 2.40 —8.22
30 0.40 | L8(0.18) DF4(0.11) C6(0.18) 1.31 —0.62| magnetostatics —0.01 1.16 —0.55
31 0.30| L9-DF7(0.07) LM7(0.12)  0.29 —0.92|magnetic induction (0.06) 0.29 —0.87

Table 8.7: Best-fitting principle and topical MIRT models. The first column shows the item number (#).
Not all items of the BEMA were modelled. The discrimination for principle £ on item j, aji, is given by
the number in parentheses following the principle label. The overall discrimination of item j on a knowledge
of electromagnetism is given by ajo. The difficulty of each item is related to dj;; items with larger positive
d; are easier, items with more negative d;, harder. The discrimination of the item on the subtopics of the
topical model is given by aj.

than the range of d;. The discrimination is related to the slope of the probability curve with

respect to 0 at @; - 0; +d; = 0 where the probability of selecting the c correct response is 0.5;
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larger discriminations represent probability curves that are more steeply sloped at this point
and a transition between a low probability of answering correctly and a high probability
over a more narrow range of 6. The item discriminates between low ability and high abil-
ity students more strongly than lower discrimination items. All overall discriminations are
positive, indicating items are generally well functioning. A negative discrimination would
indicate the items was more likely to be answered correctly by lower ability students. The
largest discriminations are associated with the two hardest items (items 28 and 29) involv-
ing magnetic induction and the easiest item (item 21) which asks about the direction of the
magnetic field of a bar magnet. There are windowing effects relating d; and discrimination;
an item with either very high or very low d; has a narrow range of ¢ to transition from low to
high probability leading to high discrimination. Items 15 and 22 both have discriminations
of about 1.5 with moderate item scores; item 15 asks about the electric potential difference
along an equipotential and item 22 is blocked with item 21 and asks about the direction of
the magnetic field of a bar magnet. Because of their moderate d; and high discrimination,
these two items are probably the most effective for discriminating between high and low
ability students. We note, in this context, and throughout this work, ability is narrowly
defined as the facility to answer conceptual electromagnetism questions as presented in the
BEMA.

The d; and overall discrimination of M13 was very similar to that of M18 and, therefore,
the above discussion can be extended to this model as well.

The subscale discrimination, shown as aj, in Table 8.7, represents the amount the item
discriminates on the subscale over its overall discrimination. Most subscale discriminations

were fairly small; three of the largest discriminations were for items 15, 28, and 29 which
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also have large overall discrimination. Item 22, which is blocked with item 21, also has a
comparatively large discrimination. The only two other items that stand out are items 4
and 5 within the electrostatic subscale; the items are blocked and ask about the electric field
direction at two points of an electric dipole. These two items do appear to more synthetically
test for a knowledge of electrostatics than other items in the subscale. Item 26 requires a
knowledge of both electrostatics and magnetostatics and has a subscale discrimination for
both topics; both discrimination are small. This item largely discriminates on a students
general facility with electromagnetism.

Characterizing the internal reliability or consistency of a subscale is a common problem
in Classical Test Theory. One of the most used statistics for internal reliability is Cronbach’s
a which is also presented in Table 8.6 [213]. The « values vary widely and none reach the
threshold of 0.7 required for low-stakes testing. As such, the subscales in Table 8.6 do not
represent a coherent measurement of the subtopic, but rather represent the average of the
student’s knowledge on the individual items making up the subtopic. This is hardly surpris-

ing examining the broad set of reasoning represented by the principles in each subtopic.

8.6.4 Principle Model

The principle model, M13, contains items requiring from 1 to 4 principles for their
solution. Principles that were combined because the MIRT model could not individually
resolve them such as L9-DF7 were counted as a single principle. The overall d; and dis-
crimination a;y of each item was very similar in M13 and M18, and were discussed in Sec.
8.6.3. Table 8.7 shows the principles used in M13 and the discrimination of each principle,

in parentheses, as well as the overall discrimination a;y of the item. Many principles had
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discriminations which were small compared to the overall discrimination; these items test a
general facility with the material measured by the BEMA more strongly than the individual
reasoning required by the principle. Some items had discrimination approximately commen-
surate with the overall discrimination: items 9, 18, 28 and 29. These items discriminate
more strongly on the application of the principle than an overall facility with the material.
The largest principle discriminations (items 20, 21, 28, and 29) were generally associated
with large overall discriminations. These items were discussed in the previous section. Very
little stood out in the principle discriminations; most principles on the same item had similar
discrimination and few items had one principle discrimination substantially different than
the others.

Isomorphic items are items that are solved with the same process, items requiring
the same principles for their solution. Item pairs {14, 15}, {21, 22}, and {28, 29} are
isomorphic. All are also part of item blocks complicating their statistical interpretation.
Items 21 and 22 ask the student about the magnetic field at two different points around a
bar magnet. Items 28 and 29 ask about the induced electric field direction at two points
around a solenoid whose current is increasing. The similarity of items 14 and 15 are less clear.
Item 14 involves the electric potential difference along an electric field line; item 15 involves
the potential difference along an equipotential. Each item was initially coded as requiring
different lemmas. All lemmas associated with the definition of electric potential (DF3) were
collapsed into DF3 to form M13 which improved model fit. To determine if collapsing all
electric potential items simultaneously obscured differences in student reasoning on items
14 and 15, model M13 was modified to include LM5 (the electric potential difference is

zero perpendicular to the field) as a separate principle. This transformation did not improve
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model fit. The students do not differentiate these two principles above their general difference

in overall difficulty and discrimination.

8.7 Discussion

8.7.1 Research Questions

This study investigated three research questions; they will be discussed in the order
proposed. The results of the individual analyses were discussed in the previous section as
these analyses were introduced. This section summarizes and synthesizes the results of these
analyses.

RQ1: What relations between BEMA items are identified by exploratory analyses?
What do these relations imply for the interpretation of the results of applying the BEMA?
Correlation analysis using the partial correlation correcting for overall instrument score (Fig.
8.3) showed that items within item blocks were correlated with each other above the average
level of correlation expected of items testing a general knowledge of electromagnetism. The
larger topical subscales tested by the instrument shown as subdivisions in Table 8.3 were
not substantially correlated controlling for overall BEMA score as shown in Fig. 8.3. The
blocked items stand out as the strongest correlations in the correlation matrix as well (Fig.
8.2); however, substantial positive correlations exist between many items. There is little
evidence that items in the general subtopics in the topical model (M18) are generally more
correlated with each other than with other items in the instrument in either the correlation
or partial correlation matrix.

Exploratory factor analysis supported the conclusion that the blocked items represent

200



the only statistically meaningful substructure of the instrument. Of the 5 factors in the
best-fitting factor model (Table 8.2), the highest loadings in four of the factors were items
within the same item block. The fifth factor had no item with a large loading. Items from
all subtopics except magnetic induction had similar, but small, loadings on factor 5.

The prevalence of the blocked items in all the exploratory analysis strongly implies
these items may be correlated more than would be the case if not blocked. This raises
concerns about interpretation of the results of blocked items and suggests all items except
the first in an item block be discarded. The grading rubric provided with the instrument at
PhysPort [169] does suggest modified scoring rules for items 2 and 3 and items 28 and 29,
all blocked items.

RQ2: What is the model of student knowledge measured by the BEMA identified by
constrained MIRT? What insights can this model provide into the structure of the instrument?
This work presented two models of the BEMA with excellent fit statistics: one featuring a
detailed model of the instrument in terms of reasoning principles (M13) and one involving
general electromagnetic subtopics (M18). Both of these models had similar and excellent
fit statistics (RMSEA, CFI, and TLI). The topical model was better fitting measured by
AIC and BIC probably because these measures penalize the additional parameters more
strongly than RMSEA, CFI, and TLI. The Cronbach’s « of the subtopics did not suggest
they had strong internal consistency and the subtopics were not extracted as factors in factor
analysis. As such, the principle model (M13), derived from a model of expert solutions of the
instrument, may represent the best model of the instrument as a set of items that measure a
broad set of fairly loosely related (in student thinking) pieces of electromagnetic reasoning.

The list of principles forming the initial model in Table 8.3 was extensive, larger than
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that of the FCI, FMCE, and CSEM in Studies 1 to 3. The four models are compared in
RQ3. Most principles, including secondary principles, were retained in the principle model
(M13) indicating that student thinking about the material is composed of many disparate
reasoning fragments. Many of these fragments were tested by single items making it difficult
to explore student thinking in detail; for example, Gauss’ law and the definition of electric
flux are tested together by only a single item. There are a number of these combinations of
principles that are only tested together which does not allow the instrument to determine if
they are understood independently.

The sheer breadth of principles and their variety, combined with the failure to find
evidence that principles in the same subtopic are generally correlated above correlations
through overall test score or to find subtopics as factors suggest that the overall design of
the instrument may need refinement. An instrument with a more top down design around the
five subtopics which focused on testing the most important principles within each subtopic
well might provide instructors with a superior tool to manage their classes.

Classical Test Theory (CTT) suggests that items with either very high or very low
item scores (called “difficulty” in CTT) or items with very low discrimination be considered
problematic [213]. The item scores of items 1, 21, 28, and 29 indicate that they may be
problematic. Qualitatively, both IRT and CTT discriminations are similar measuring how
well the items distinguishes between low and high performing students; however, they are
not directly comparable quantitatively. As such, there is not a well established critical dis-
crimination value for problematic MIRT items. Items with very small MIRT discriminations
have fairly flat probability curves, so low and high ability students have similar probability

of answer correctly. Items 9 and 18 have very small overall discrimination and should be
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investigated further to determine if they are functioning correctly.

RQ)3: How are the best-fitting models of the BEMA, CSEM, FMCE, and FCI similar?
How are they different? This work sought to understand the physical principles tested by
the BEMA. It is the fourth of four papers using constrained MIRT to investigate some of
the most widely applied physics conceptual instruments. To answer this research question,
a comparison of the similarity and differences of the four instruments is provided. The
BEMA is most topically related to the CSEM and specific comparisons to this instrument
are made when appropriate. All four studies investigated three general dimensions: (1) the
exploratory structure found by correlation analysis and factor analysis, (2) the best-fitting
principle model found by constrained MIRT and theoretically motivated modifications of
an initial expert model, and (3) a comparison of the best-fitting principle model to a more
general model of the instrument (the topical model in the case of the BEMA).

Exploratory analyses of the FCI, FMCE, and BEMA proceeded first with a partial
correlation analysis. All studies then employed exploratory factor analysis using MIRT.
Best-fitting factor models were selected by examining fit statistics. The partial correlation
analysis showed strong correlation between many blocked items; however, not all items within
each item block were strongly partially correlated suggesting that, while important, blocking
was not the only feature affecting the correlation structure. This pattern continued in the
BEMA where item 15 was not strongly correlated with the other items in its block, items
14 and 16. Exploratory factor analysis of the four instruments yielded best-fitting factor
models with from 5 to 9 factors: FCI (9), FMCE (5), CSEM-1 (9), CSEM-2 (8), and BEMA
(5); Study 3 presented two samples of CSEM data labeled CSEM-1 and CSEM-2. For all

factor structures, the fit statistics did not clearly identify a single best-fitting model; different
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models were selected by different statistics. For all models, the factor structure had a strong
relationship to the blocking structure of the instrument, but was not fully explained by the
blocked structure. This effect was weaker in the CSEM with only 1 of the 3 item blocks
consistently loading on the same factor in either sample. The strong effect of blocking was
clearly evident for the BEMA; blocked items form the largest loadings on 4 of the 5 of the
factors. The fifth factor includes many items across disparate topics, all with fairly low
loadings. It is unclear what this factor actually measures. Blocked items explained only a
subset of the 9 FCI factors; many of the other factors were related to isomorphic items which
were not blocked. All FMCE factors were related to blocking, but all FMCE items except
one are blocked. Like the FMCE, all isomorphic BEMA items ({14, 15}, {21, 22}, and {28,
29}) are also in item blocks, so the two effects cannot be separated.

The best-fitting principle models for each of the four conceptual inventories (FMCE,
FCI, CSEM, and BEMA) can be compared to develop a greater understanding of the rela-
tionship of these instruments. This comparison may be valuable to practicing instructors
trying to choose a conceptual instrument or to researchers comparing results of studies ap-
plying different instruments. Each study made a number of decisions about the inclusion of
items in the analysis; therefore, the best-fitting principle models generally do not include all
items while the initial theoretical models generally do include all items. Both the CSEM and
BEMA contained combinations of principles where the combination always loaded on the
same items; these combinations were coded as a single loading in MIRT. To compare instru-
ments, these combinations contribute the number of principles in the combination toward
the principle count. Two samples of the CSEM were analyzed producing slightly different

best-fitting principle models. For comparison, CSEM Sample 1 is used, because its principle
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model is the most similar to that of the BEMA. The models of the two CSEM samples differ
only in the handling of the lemmas associated with electric potential.

Table 8.8 presents a comparison of the BEMA and CSEM initial expert models which
cover all items in the instruments. The principles are split into 3 groups: definitions and
laws (DF, L) representing the most general coverage of the instrument, facts (F) representing
specific knowledge needed to solve the instrument, and corollaries and lemmas (C, LM) rep-
resenting qualitative and quantitative reasoning derived from the general principles needed
to solve specific problems. The principles are also split between the subtopics introduced in
Table 8.3. Examining the (DF, L) column shows the BEMA in general covers most of the
general physics covered by the CSEM, but the reverse is not true with the BEMA covering
10 additional principles. The number of principles covered by the other instrument is shown
in parenthesis. Half of this difference involves the coverage of electric circuits. The difference
in the L and DF principles between the instruments are generally localized to only a few
items. For this discussion, differences in the use of mechanics are not considered. The CSEM
includes two items involving the behavior of net charge on conductors and insulators, which
require the law of conservation of charge. The CSEM also requires the student to read an
electric field map which requires the definition of an electric field line. The BEMA contains
a single Gauss’ law item requiring both the application of Gauss’ law and the definition
of electric flux. The general coverage of magnetostatics is even more similar with the only
difference found in the BEMA in one item applying the right hand rule for magnetic moment
along one solution path. The specific coverage of the instruments, captured in the number
of F, C, and LM principles, is fairly different. These principles involve the less general pat-

terns of reasoning required to solve specific individual items. The majority of these types of
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BEMA CSEM

Subtopic Items DF, L. F C, LM Total Items DF, L. F C, LM Total
Mechanics 0  3(2) 0(0) 1(1) 43) 0 3(2) 0(0) 2(1) 5(3)
Electrostatics 8 5(3) 2(0) 4(1) 11(4) 14 5(3) 1(0) 4(1) 10(4)
Electric Potential 4 1(1) 0(0) 4(1) 5(2) 6 1(1) 0(0) 4(1) 5(2)
Magnetostatics 9 6(4) 1(0) 5(2) 12(6) 9  4(4) 1(0) 2(2) 7(6)
Magnetic Induction 3 3(2) 0(0) 2(0) 5(2) 3  2(2) 0(0) 0(0) 2(2)
Superposition 0 1(1) o(0) 0(0) 1(1) 0 1(1) 0(0) o(0) 1(1)
Electric Circuits 7 5(0) 5(0) 3(0) 13(00) 0 0(0) 0(0) 0(0) 0(0)
Total 31 24(13) 8(0) 19(5) 51(18) 32 16(13) 2(0) 12(5) 30(18)

Table 8.8: Comparison of BEMA and CSEM. DF, L, R, C, and LM represent principles in each instrument.
The number in parenthesis is the number of the principles also in the other instrument. The Items column
refers to the number of items in the instrument grouped into the electricity and magnetism subtopics;
Mechanics and Superposition are not subtopics specific to electricity and magnetism, so their Items columns
are 0.

principles are not shared between the instruments, only 5 of the 39 principles are shared. As
such, while the general coverage of the instruments is similar (except for electric circuits),
the specific coverage is quite different. Many more of these specific principles were identified
in the BEMA; the CSEM covers electricity and magnetism at a somewhat more general level.
This has important implications for the generalizability of BEMA or CSEM results because
specific pedagogical choices can affect the detailed coverage of a class, as well as its general
coverage.

One of the benefits of building a detailed model of an instrument such as that in Table
8.3 is the facilitation of new qualitative and quantitative comparisons between instruments.
The general complexity of items in the instrument can be characterized by the average
number of reasoning steps per item. The degree to which the instrument measures a piece
of reasoning with multiple items (providing generally higher reliability) can be characterized
by the number of items per reasoning step.

Table 8.9 presents a general comparison of the best-fitting principle models of all four
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instruments. The principle models did not fit all items (except in the FMCE), but do allow
a more detailed comparison of the instruments on the items fit. The models of the FCI
and FMCE involved two additional types of principles not found in the CSEM or BEMA:
results (R) such as the 3-dimensional kinetic equations for motion under a constant force
and reasoning steps (RS) such as reading a graph. Table 8.9 presents two measures of overall
instrument length: the independent principles representing the number of unique principles
needed to solve the instrument and the total principles representing the number of reasoning
steps required to solve the instrument. Each independent principle may be required to solve
multiple items and thus be counted multiple times in the total principles. As above, the
BEMA involved applying more independent principles (an independent principle represents
one of the rows in Table 8.3) than the CSEM, approximately 40% more independent princi-
ples per item. As such, a greater variety of physical knowledge is needed to solve each item.
A larger fraction of the BEMA items were fairly complex requiring four or five principles
for their solution. These two differences led to generally more complex items requiring 2.3
principles per item on average for the BEMA in comparison to 2.0 principles per item in the
CSEM. As such, the BEMA generally involves applying longer, more complex, patterns of
reasoning than the CSEM. This observation also implies that each principle in the BEMA is
not as thoroughly measured as in the other instruments with only 0.71 items measuring each
independent principle. The FMCE strongly stands out on this metric with each independent
principle in the FMCE measured on average by over 5 items.

All four studies paid particular attention to the role of lemmas in the models. The
other types of principles represent standard content that might be present in most textbooks;

lemmas represent qualitative interpretations of these principles. All studies found that ex-
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BEMA CSEM-1 FCI FMCE

Items analyzed 27 25 20 43
DF, L, R 18 16 9 5
F 7 2 6 1
C, LM, RS 13 6 4 2
Ind. principles 38 24 19 8

Ind. pcpl. per item 1.41 0.96 0.95 0.19
Items per ind. pcpl.  0.71 1.05 1.05 5.38
1 principle items 10 (37%) 8 (32%) 4 (20%) 25 (58%)
2 principle items 5 (29%) 11 (44%) 7 (35%) 15 (35%)
3 principle items 6 (22%) 5 (20%) 7 (35%) 2 (5%)
4 principle items 5(19%) 1 (4%) 1(6%) 1(2%)
5 principle items 1(4%) 0(0%) 1(5B%) 0(0%)
Total principles 63 49 48 65
Total pcpl. per item  2.30 1.96 2.40 1.51

Table 8.9: Comparison of conceptual instruments. DF, L, R, F, C, LM, and RS represent principles in each
instrument. Independent is abbreviated “ind” and principle “pcpl” when needed for spacing.

perts used many lemmas in their solutions; however, it was unclear whether these principles
were needed to model student thinking. In Study 1, all lemmas were removed simultaneously
which improved model fit. In the studies of the FMCE and CSEM, lemmas were removed
in groups, as they were in the present study. The best-fitting model for the FMCE, CSEM,
and BEMA all contained some, but not all, of the lemmas in the initial expert model. The
lemmas remaining in the FMCE involved motion opposite the direction of acceleration and
are associated with a type of problem particularly difficult for students. Many of the lemmas
identified for the electricity and magnetism instruments represent principles central to solv-
ing qualitative (and quantitative) items such as “opposites attract - likes repel.” As such,
it would have been surprising if these principles were not found to be part of the model of
student reasoning.

All studies explored a model more general than the best-fitting principle model. For

the FCI, Study 1 fit a decomposition of the items of the instruments into topics that was
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proposed with the original publication of the instrument [7]. The principle model improved
AIC by 448 and BIC by 226 over the topical model, very strong changes. Study 3 fit a
model similar to the best-fitting principle model of the current study (excluding the electric
circuits topic); for both samples, the topical model had worse model fit than all of the
principle models. For one of the samples, the best-fitting topical model did not meet the
requirements of acceptable model fit [212]. The FMCE uses fewer principles and repeats the
principles more often than the other instruments. As such, rather than proposing general
topical principles, Study 2 grouped FMCE items into subscales. Confirmatory factor analysis
was then performed to determine if this model fit the instrument well; it did not (CFI= 0.80,
TLI= 0.79, and RMSEA= 0.080). So for the FCI, FMCE, and the CSEM, the more general
topical model was substantially less well fitting than the best-fitting principle model. The
results for the BEMA were different; the topical model was better fitting than the best-
fitting principle model with difference in AIC and BIC similar to those observed for the
FCI and larger than the differences observed for either CSEM sample. For context, the

249/2 times

difference in the two model’s AIC was 249, this means the topical model was e
more probable than the principle model. The reason for this difference is unclear; perhaps
the larger number of principles and the fairly weak interconnections of principles within
items generates an instrument which is more a measurement of general topics than specific
information within the topics. The BEMA topical model had similar RMSEA, CFI, and
TLI to the principle model. Correlation and factor analysis also did not support the view of

the instrument measuring independent subtopics; therefore, the best-fitting principle model

may be a better general model of the knowledge measured by the BEMA.
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8.7.2 Synthesis

Through the four studies applying constrained MIRT, some important themes have

emerged. We attempt to encapsulate those themes in this section.

The general quality of the initial expert model

The studies of the FMCE, CSEM, and BEMA reported CFI, TLI, and RMSEA for
each stage of the model transformation process. In general, the initial expert model had ex-
cellent fit statistics. These were improved only slightly through the transformation process.
We revisited the models used for the FCI and a similar pattern of excellent fit throughout
the transformation process was observed. As such, the initial expert models derived from
observations of expert solutions were very good models of the material and could be con-
structed without the need to collect large datasets and without the application of MIRT.
This observation opens the possibility of developing similarly detailed models of an entire
domain such as introductory mechanics or electricity and magnetism. These models would
allow one to quantitatively express the relationship between the conceptual instruments and
the domain they profess to measure. The decisions about item selection and topical cov-
erage used to construct the instruments could be evaluated by the PER community within
this framework. Such a framework could also serve to allow more detailed description of in-
structional innovations by providing a mechanism to specify in detail any changes in topical

coverage resulting from the innovation.
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The negative effect of item blocking

All studies found that blocked items dominated both the partial correlation and ex-
ploratory factor structures. In some instruments, such as the FMCE and the CSEM, blocked
items were often isomorphic. This was not the case in the FCI which strongly suggests that
blocked items have correlations and other statistical properties that are the result of block-
ing, not the physical constructs the items were intended to measure. This and other work
strongly suggests that item blocking should be discontinued in future instruments. It also
suggests that exploratory factor structures extracted from instruments with item blocks in-
cluding the FCI, FMCE, CSEM, and BEMA are strongly related to these blocks and is not
a general measure of the substructure of student reasoning on the topic; conclusions drawn

from these analyses should be interpreted with care.

The granularity of the knowledge measured by the instruments

In the three studies that removed lemmas independently, the best-fitting models con-
tained some lemmas and corollaries, very specific reasoning pieces. Further, in the studies
of the FCI, FMCE, and the CSEM a general topical model was not as well fitting as the
model involving a decomposition into principles. The topical model was better fitting for the
BEMA by AIC and BIC, but had very similar (and sometimes weaker) RMSEA, CFI, and
TLI than the best-fitting principle model. There was very little evidence in the correlation or
factor analysis to suggest the items within the subtopics were more related with themselves
than with items in other subtopics. As such, all of these popular instruments measure a de-

tailed set of reasoning skills as opposed to a general construct such as “Newtonian thinking.”
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This is supported by the analysis of the FMCE and the BEMA which found poor subscale
internal consistency as measured by Cronbach’s o. This has important implications for the
general interpretation of the results of applying the instruments; the instruments may be

susceptible to small changes in the coverage or focus of the courses studied.

The general dissimilarity of the instruments

The constrained MIRT models produced a very detailed picture of the four conceptual
instruments. While the FCI and FMCE, as well as the CSEM and BEMA, cover the same
general topics (Newtonian mechanics or electromagnetism), the pairs of instruments were
quite different through the detailed lens of MIRT. The quantitative differences are explored
in the discussion of RQ3; the qualitative differences are self-evident through a comparison of
the expert models. As such, comparing studies using different instruments should be done
with care and should consider how the detailed differences of the instruments might interact

with the student population or any pedagogical differences between treatments.

8.7.3 Future work

All four MIRT studies identified the blocking of items as a potential problem, gen-
erating correlations between items not related to the physical reasoning needed to solve
the items. Network analytic studies have also identified items where connections between
correct and incorrect responses suggest students may be answering correctly for incorrect
reasons [181, 214, 182]. Multiple authors have suggested alternate scoring rubrics for some
of these instruments in response to these and other problems [215, 216, 169, 182]. Many

classical test theory and item response theory studies have identified items within these in-
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struments with performance outside the suggested range for good psychometric functioning
(174, 175, 198, 199]. Substantial biases have also been identified in some of the instruments
[174]. With the accumulation of evidence that these instruments at the very least should
be revisited and revised, a model of a revised instrument in terms of principles grounded in
a more general model of the domain measured could provide basis for a discussion within
the research community of what should be assessed in introductory physics leading to a new

generation of conceptual instruments.

8.8 Limitations

This work was performed using data drawn for a single institution. The models should

be tested with additional student populations to determine if the conclusions are general.

8.9 Conclusions

This study investigated the structure of the BEMA using correlation analysis and
exploratory factor analysis and, then, explored the models of student knowledge tested by
the BEMA using constrained MIRT. Correlation analysis revealed that items within item
blocks account for nearly all of the substructure of the instrument. Exploratory factor
analysis identified a 5-factor model as having the best fit. The highest loadings in four of the
five factors were items in the same item block, consistent with the correlation analysis. Two
models of student knowledge were presented; one involved 28 detailed reasoning principles
(M13) and the other contained five general electromagnetic subtopics (M18). Both models

had excellent fit statistics. The five topics in M18 were investigated as subscales; however,
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none of the subscales had a Cronbach’s alpha of 0.7 suggested for low-stakes testing. As
such, the model of student knowledge tested by the BEMA consists of a broad collection of
loosely related reasoning pieces.

The best-fitting principle models of the FCI, FMCE, and CSEM had fewer principles
than that of the BEMA. The best-fitting principle model of the BEMA also required more
lemmas and corollaries than any of the other instruments’ models. The coverage differences
between the CSEM and BEMA were largely the result of the coverage of electric circuits
in the BEMA and differences in the coverage of electrostatics. Quantitative comparison of
the four conceptual instruments investigated using constrained MIRT identified substantial
differences in terms of the number of principles and the number of principles per item. As
such, while related, the FCI and the FMCE as well as the CSEM and the BEMA measure
their conceptual domains with different coverage and with items with different intellectual

complexity.
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Chapter 9

Conclusions and Future Work
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The work presented in this dissertation can be split into four main parts.

Physics Student Retention

Physics student retention was explored by applying the statistical methods of logistic
regression, survival analysis, decision trees, and Bayesian networks to student retention and
major progression at an university in the eastern U.S. These tools effectively identified high
school GPA and math readiness as key predictive factors as to whether students will be
retained in the physics program and progress towards graduation. Once a student’s college
performance was added to the retention model, pre-college academic factors were found to

be less predictive.

Physics Course Grade Prediction

Bayesian Networks were also used to predict student outcomes in physics courses using
prior course grades. Each course whose outcomes were predicted with Bayesian networks had
balanced accuracies greater than 70%, but some courses were more predictable than others.
The less predictable courses seem to be less well integrated in the program; this could be
due to inconsistent grading in the courses, inconsistent instruction in the courses, or that
the content in the less predictable courses does not productively build upon the knowledge

and skills learned in prior courses.

Analysis of the Structure of Physics Curricula

The method of Curricular Analytics was used to analyze the physics curricula at 60

institutions in the U.S. Curricular Analytics provides a quantitative framework for analyzing
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the course requirements of an academic program. The range in curricular complexity of the
60 physics programs was nearly 200 complexity points. The increased complexity of some
programs may be unnecessary. A more complex curriculum may take more time to complete,
and students who fail a course or are not math ready will have an extended time to degree.

An extended time to degree may be detrimental to some students’ retention.

Identifying the Structure of Knowledge Measured by a Conceptual Inventory

Multidimensional Item Response Theory (MIRT') was used to build a model of student
knowledge tested by the BEMA. Two models of student knowledge were found that had
excellent model fit statistics: one contained 28 detailed reasoning principles, and the other
involved five general electromagnetic subtopics. The knowledge structure measured by the
BEMA was compared with similar knowledge models developed through MIRT analysis of
three other common conceptual inventories.

One purpose of the work in this dissertation was to apply these methods to the problem
of student retention and report the results in the hope that physics departments will also
apply these methods at their institutions to identify the factors that affect their students’
retention and make changes to courses or program requirements that will improve student
retention. Much of the work in this dissertation only used data from a single institution. It
is likely that the specific findings herein are specific to the institution from which the data
were gathered. For departments to make effective changes in their programs, some of these
analyses should be replicated with local data.

Further research in student retention will be vital to the improvement of student success

in physics in higher education. Future research should continue to identify factors that
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influence student retention in physics, and also begin to test interventions that are designed

to improve student retention. Some possible future projects include:

e Applying logistic regression and survival analysis at institutions with higher and lower
rates of math readiness. Universities with more selective or less selective admissions
requirements will likely have a different dependence on pre-college factors and student
retention; identifying these differences would be of great interest to the PER commu-

nity.

e Implement the prediction of course grades with Bayesian networks for use in physics
student advising and measure the effect on student retention. Accurate grade pre-
dictions give advisors excellent information they can use to advise students on what
classes they should take in a given semester and in what order they should take required
courses. Measuring the effects of implementing Bayesian networks in advising would

provide concrete evidence that grade prediction can be used to improve retention.

e Change the pre-requisite structures in a curriculum with the intent of improving the
retention of physics students. The use of Curricular Analytics to influence curriculum
changes has yet to be proven as a method that increases student retention. Making
curriculum changes that reduce complexity, and then measuring the effect of that
change on student retention support the central claim of Curricular Analytics that

lower curricular complexity increases retention.

e Use MIRT to identify the structure of knowledge measured by a physics course. MIRT
is an analysis tool specific to instrument analysis; however, it, in principle, could be
used to identify the knowledge that an entire physics course measures. Identifying
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the domain of knowledge that a physics course measures would be immensely useful
in course reformation, as courses that don’t actual teach what they purport to teach

could be rebuilt to better support student learning.

219



Bibliography

1]

R.R. Hake. Interactive-engagement versus traditional methods: A six-thousand-
student survey of mechanics test data for introductory physics courses. Am. J. Phys.,
66:64—-74, 1998.

President’s Council of Advisors on Science and Technology. Report to the President.
Engage to Excel: Producing One Million Additional College Graduates with Degrees in
Science, Technology, Engineering, and Mathematics. Executive Office of the President,
Washington, DC, 2012.

K. Cummings. A developmental history of physics education research. In Sec-
ond Committee Meeting on the Status, Contributions, and Future Directions of
Discipline-Based Education Research., 2011. http://www7.nationalacademies.org/
bose/DBER\ _Cummings\_October\_Paper.pdf.

A.B. Champagne, L.E. Klopfer, and J.H. Anderson. Factors influencing the learning
of classical mechanics. Am. J. Phys., 48(12):1074, 1980.

J. Clement. Students’ preconceptions in introductory mechanics. Am. J. Phys.,
50(1):66-71, 1982.

L.C. McDermott. Research on conceptual understanding in mechanics. Phys. Today,
37:24-32, 1984.

D. Hestenes, M. Wells, and G. Swackhamer. Force Concept Inventory. Phys. Teach.,
30:141-158, 1992.

R.K. Thornton and D.R. Sokoloff. Assessing student learning of Newton’s laws: The
Force and Motion Conceptual Evaluation and the evaluation of active learning labo-
ratory and lecture curricula. Am. J. Phys., 66(4):338-352, 1998.

D.P. Maloney, T.L. O’Kuma, C. Hieggelke, and A. Van Huevelen. Surveying students’
conceptual knowledge of electricity and magnetism. Am. J. Phys., 69(S1):S12, 2001.

L. Ding, R. Chabay, B. Sherwood, and R. Beichner. Evaluating an electricity and
magnetism assessment tool: Brief Electricity and Magnetism Assessment. Phys. Rev.
Phys. Educ. Res., 2:010105, Mar 2006.

J. Stewart, C. Zabriskie, S. DeVore, and G. Stewart. Multidimensional item response
theory and the Force Concept Inventory. Phys. Rev. Phys. Educ. Res., 14:010137, Jun
2018.

220



[12]

[13]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

R. Henderson, C. Zabriskie, and J. Stewart. Rural and first generation performance dif-
ferences on the Force and Motion Conceptual Evaluation. Physics Education Research
Conference Proceedings 2018 (accepted)., 2018.

J. Yang, C. Zabriskie, and J. Stewart. Multidimensional item response theory and the
Force and Motion Conceptual Evaluation. Phys. Rev. Phys. Educ. Res., 15(2):020141,
2019.

J. Hansen and J. Stewart. Multidimensional item response theory and the Brief Elec-
tricity and Magnetism Assessment. Phys. Rev. Phys. Educ. Res., 17(2):020139, 2021.

J. L. Docktor and J. P. Mestre. Synthesis of discipline-based education research in
physics. Phys. Rev. Phys. Educ. Res., 10(2):020119, 2014.

E. Mazur. Peer Instruction: A User’s Manual. Prentice Hall, Upper Saddle River, NJ,
1997.

C.H. Crouch, J. Watkins, A.P. Fagen, and E. Mazur. Peer instruction: Engaging
students one-on-one, all at once. Research-based reform of university physics, 1(1):40—
95, 2007.

D. R. Sokoloff and R. K. Thornton. Interactive lecture demonstrations. John Wiley
and Sons, New York, NY, 2004.

L.C. McDermott and P.S. Shaffer. Tutorials in Introductory Physics. Prentice Hall,
Upper Saddle River, NJ, 1998.

M. Wittman, R. Steinberg, E. Redish, et al. The Physics Suite, Activity Based Tuto-
rials, Vol. 2-Modern Mechanics. John Wiley and Sons, New York, NY, 2004.

A. Elby. Helping physics students learn how to learn. Am. J. Phys., 69(S1):S54-S64,
2001.

N.D. Finkelstein and S.J. Pollock. Replicating and understanding successful innova-
tions: Implementing Tutorials in Introductory Physics. Phys. Rev. Phys. Educ. Res.,
1(1):010101, 2005.

E.F. Redish, J.M. Saul, and R.N. Steinberg. On the effectiveness of active-engagement
microcomputer-based laboratories. Am. J Phys, 65(1):45-54, 1997.

H.V. Mauk and D. Hingley. Student understanding of induced current: Using tutorials
in introductory physics to teach electricity and magnetism. Am. J Phys, 73(12):1164—
1171, 2005.

R. T. Johnson and D. W. Johnson. An overview of cooperative learning, creativity and
collaborative learning, volume 25. Baltimore, MD: Brookes Press., 1994.

A. Van Heuvelen. Learning to think like a physicist: A review of research-based
instructional strategies. Am. J. Phys., 59(891), 1991.

221



[27]

[28]

[29]

[30]

[31]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

H. Brasell. The effect of real-time laboratory graphing on learning graphic represen-
tations of distance and velocity. J. Res. Sci. Teach., 24(4):385-395, 1987.

R. J. Beichner. The impact of video motion analysis on kinematics graph interpretation
skills. Am. J. Phys., 64(10):1272-1277, 1996.

E. Etkina, S. Murthy, and X. Zou. Using introductory labs to engage students in
experimental design. Am. J. Phys., 74(11):979-986, 2006.

N.G. Holmes, J. Olsen, J.L. Thomas, and C.E. Wieman. Value added or misattributed?
a multi-institution study on the educational benefit of labs for reinforcing physics
content. Phys. Rev. Phys. Educ. Res., 13(1):010129, 2017.

R.J. Beichner, J.M. Saul, D.S. Abbott, J.J. Morse, D. Deardorff, R.J. Allain, S.W.
Bonham, M.H. Dancy, and J.S. Risley. The student-centered activities for large enroll-
ment undergraduate programs (scale-up) project. Research-based reform of university
physics, 1(1):2-39, 2007.

J. W. Belcher. Improving student understanding with TEAL. Fa. Newsl., 16(8), 2003.

K. Cummings, P. W. Laws, E. F. Redish, and P. J. Cooney. Understanding physics.
John Wiley and Sons, New York, NY, 2004.

R. D. Knight. Physics for scientists and engineers. Pearson Higher Ed., Upper Saddle
River, NJ, 2017.

T. A. Moore. Siz ideas that shaped physics. WCB/McGraw-Hill, New York, NY, 1998.

R. W. Chabay and B. A. Sherwood. Matter and interactions. John Wiley and Sons,
New York, NY, 2015.

K. Perkins, W. Adams, M. Dubson, S. Finkelstein, N.and Reid, C. Wieman, and
R. LeMaster. Phet: Interactive simulations for teaching and learning physics. Phys.
Teach., 44(1):18-23, 2006.

E. Seymour and N.M. Hewitt. Talking about Leaving: Why Undergraduates Leave the
Sciences, volume 34. Westview Press, Boulder, CO, 1997.

S. Tobias. They’re not Dumb, They’re Different. Research Corporation, Tuscon, AZ,
1990.

E. Seymour and A. Hunter. Talking about leaving revisited. Talking About Leaving
Reuwisited: Persistence, Relocation, and Loss in Undergraduate STEM Education, 2019.

B.L. Whitten, S.R. Foster, M.L. Duncombe, P.E. Allen, P. Heron, L. McCullough, K.A.
Shaw, B. Taylor, and Heather M. Zorn. What works? Increasing the participation of
women in undergraduate physics. J. Women Minorities Sci. Eng., 9(3&4), 2003.

222



[42]

[43]

[44]

[49]

[50]

[51]

[52]

[53]

[54]

K. Rosa and F.M. Mensah. Educational pathways of Black women physicists: Sto-
ries of experiencing and overcoming obstacles in life. Phys. Rev. Phys. Educ. Res.,
12(2):020113, 2016.

M. Ong. Body projects of young women of color in physics: Intersections of gender,
race, and science. Social Problems, 52(4):593-617, 2005.

L.T. Ko, R.R. Kachchaf, A.K. Hodari, and M. Ong. Agency of women of color in
physics and astronomy: Strategies for persistence and success. J. Women Minor. Sci.
Eng., 20(2), 2014.

J.M. Aiken, R. Henderson, and M.D. Caballero. Modeling student pathways in a
physics bachelor’s degree program. arXiv preprint arXiv:1810.11272, 2018.

J.P. Zwolak, R. Dou, E.A. Williams, and E. Brewe. Students’ network integration as a
predictor of persistence in introductory physics courses. Phys. Rev. Phys. Educ. Res.,
13:010113, Mar 2017.

J. Forsman, R. Moll, and C. Linder. Extending the theoretical framing for physics
education research: An illustrative application of complexity science. Phys. Rev. ST
Phys. FEduc. Res., 10:020122, Sep 2014.

L. Stiles-Clarke and K. MacLeod. Demystifying the scaffolding required for first-year
physics student retention: Contextualizing content and nurturing physics identity. Can.
J. Phys., 96(4):29, 2018.

P.A. Westrick, J.P. Marini, L. Young, H. Ng, D. Shmueli, and E.J. Shaw. Validity
of the SAT®) for predicting first-year grades and retention to the second year. Coll.
Board Res. Pap., 2019.

Jeff Allen. Updating the ACT college readiness benchmarks. ACT research report
series 2013 (6). ACT, Inc., 2013.

W.J. Camara and G. Echternacht. The SAT I and high school grades: Utility in
predicting success in college. Res. Not., 10, 2000.

S.1 Geiser and R. Studley. UC and the SAT: Predictive validity and differential impact
of the SAT I and SAT II at the University of California. Educ. Assess., 8(1):1, 2002.

P.A. Westrick, H. Le, S.B. Robbins, J.M.R. Radunzel, and F.L. Schmidt. College
performance and retention: A meta-analysis of the predictive validities of ACT®)
scores, high school grades, and SES. Educ. Assess., 20(1):23, 2015.

S. Geiser and M. V. Santelices. Validity of high-school grades in predicting student suc-
cess beyond the freshman year: High-school record vs. standardized tests as indicators
of four-year college outcomes. Research & Occasional Paper Series: CSHE. 6.07. Ctr.
Stud. High. Educ., 2007.

223



[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

A. Nandeshwar, T. Menzies, and A. Nelson. Learning patterns of university student
retention. Fxzpert Syst. Appl., 38(12):14984, 2011.

V. Tinto. College Student Retention: Formula for Student Success. Greenwood Pub-
lishing Group, Santa Barbara, CA, 2005.

V. Tinto. Dropout from higher education: A theoretical synthesis of recent research.
Rev. Educ. Res., 45(1):89, 1975.

V. Tinto. Leaving College: Rethinking the Causes and Cures of Student Attrition.
University of Chicago Press, Chicago, IL, 1993.

V. Tinto. Completing College: Rethinking Institutional Action. University of Chicago
Press, Chicago, 1L, 2012.

C. Henderson, M. Dancy, and M. Niewiadomska-Bugaj. Use of research-based in-
structional strategies in introductory physics: Where do faculty leave the innovation-
decision process? Phys. Rev. Phys. Educ. Res., 8(2):020104, 2012.

National Science Board. Revisiting the STEM workforce: A companion to science and
engineering indicators 2014. National Science Foundation VA, 2015.

X. Chen. STEM attrition: College students’ paths into and out of STEM fields.
Statistical Analysis Report. NCES, 2013.

K. Rask. Attrition in stem fields at a liberal arts college: The importance of grades
and pre-collegiate preferences. Fcon Educ Rev, 29(6):892-900, 2010.

E. J. Shaw and S. Barbuti. Patterns of persistence in intended college major with a
focus on stem majors. NACADA Journal, 30(2):19-34, 2010.

A. V. Maltese and R. H. Tai. Pipeline persistence: Examining the association of
educational experiences with earned degrees in stem among us students. Sci Fduc,
95(5):877-907, 2011.

G. Zhang, T. J. Anderson, M. W. Ohland, and B. R. Thorndyke. Identifying fac-
tors influencing engineering student graduation: A longitudinal and cross-institutional
study. J Eng Educ, 93(4):313-320, 2004.

B. F. French, J. C. Immekus, and W. C. Oakes. An examination of indicators of
engineering students’ success and persistence. J Eng Educ, 94(4):419-425, 2005.

R. M. Marra, K. A. Rodgers, D. Shen, and B. Bogue. Leaving engineering: A multi-
year single institution study. J Eng Educ, 101(1):6-27, 2012.

C. W. Hall, P. J. Kauffmann, K. L. Wuensch, W. E. Swart, K. A. DeUrquidi, H. O.
Griffin, and S. C. Duncan. Aptitude and personality traits in retention of engineering
students. J Eng Educ, 104(2):167-188, 2015.

224



[70]

[71]

[72]

[73]

[74]

[77]

[78]

B.L. Christe. The importance of faculty-student connections in STEM disciplines. J.
STEM FEduc. I. R., 14(3):22, 2013.

7.S. Wilson, L. Holmes, K. Degravelles, M.R. Sylvain, L. Batiste, M. Johnson, S.Y.
McGuire, S.S. Pang, and I.M. Warner. Hierarchical mentoring: A transformative
strategy for improving diversity and retention in undergraduate STEM disciplines. J.
Sci. Educ. Technol., 21(1):148, 2012.

M. Dagley, M. Georgiopoulos, A. Reece, and C. Young. Increasing retention and
graduation rates through a STEM learning community. J. Coll. St. Ret. R. T. P.,
18(2):167, 2016.

C.T. Belser, D.J. Prescod, A.P. Daire, M.A. Dagley, and C.Y. Young. Predicting
undergraduate student retention in STEM majors based on career development factors.
Career Dev. @., 65(1):88, 2017.

C.T. Belser, M. Shillingford, A.P. Daire, D.J. Prescod, and M.A. Dagley. Factors
influencing undergraduate student retention in STEM majors: Career development,
math ability, and demographics. Prof. Couns., 8(3):262, 2018.

K. Koenig, M. Schen, M. Edwards, and L. Bao. Addressing STEM retention through
a scientific thought and methods course. J. Coll. Sci. Teach., 41(4):41, 2012.

K.A. Wingate, A.A. Ferri, and K.M. Feigh. The impact of the physics, statics, and
mechanics sequence on student retention and performance in mechanical engineering.
In 2018 ASEE Annual Conference & FExposition, Washington, DC, 2018. American
Society for Engineering Education.

Y.J. Xu. Attention to retention: Exploring and addressing the needs of college students
in STEM majors. J. Educ. Train. Stud., 4(2):67, 2016.

A. Sithole, E.T. Chiyaka, P. McCarthy, D.M. Mupinga, B.K. Bucklein, and J. Kibirige.
Student attraction, persistence and retention in STEM programs: Successes and con-
tinuing challenges. High. Educ. Stud., 7(1):46, 2017.

D.E. Meltzer and R.K. Thornton. Resource letter ALIP—1: Active-learning instruction
in physics. Am. J. Phys., 80(6):478-496, 2012.

[LA. Halloun and D. Hestenes. The initial knowledge state of college physics students.
Am. J. Phys., 53(11):1043-1055, 1985.

[.A. Halloun and D. Hestenes. Common sense concepts about motion. Am. J. Phys.,
53(11):1056, 1985.

D. P. Maloney, T. L. O’'Kuma, C. J. Hieggelke, and A. Van Heuvelen. Surveying stu-
dents’ conceptual knowledge of electricity and magnetism. Am. J. Phys., 69(S1):S12—-
523, 2001.

225



[83]

[39]

[90]

[91]

[92]

[93]

[94]

J. Wells, R. Henderson, J. Stewart, G. Stewart, J. Yang, and A. Traxler. Exploring
the structure of misconceptions in the Force Concept Inventory with modified module
analysis. Phys. Rev. Phys. Educ. Res., 15:020122, Sep 2019.

S. Freeman, S.L. Eddy, M. McDonough, M.K. Smith, N. Okoroafor, H. Jordt, and
M.Pat. Wenderoth. Active learning increases student performance in science, engi-
neering, and mathematics. P. Nat. Acad. Sci. USA, 111(23):8410-8415, 2014.

C.M. Schroeder, T.P. Scott, T.Y. Tolson, H.and Huang, and Y.H. Lee. A meta-analysis
of national research: Effects of teaching strategies on student achievement in science
in the United States. J. Res. Sci. Teach., 44(10):1436, 2007.

S. Salehi, E. Burkholder, G.P. Lepage, S. Pollock, and C. Wieman. Demographic gaps
or preparation gaps?: The large impact of incoming preparation on performance of
students in introductory physics. Phys. Rev. Phys. Educ. Res., 15:020114, Jul 2019.

R. Henderson, J. Stewart, and A. Traxler. Partitioning the gender gap in physics
conceptual inventories: Force Concept Inventory, Force and Motion Conceptual Eval-
uation, and Conceptual Survey of Electricity and Magnetism. Phys. Rev. Phys. Educ.
Res., 15:010131, May 2019.

J. Stewart, G.L. Cochran, R. Henderson, C. Zabriskie, S. DeVore, P. Miller, G. Stewart,
and L. Michaluk. Mediational effect of prior preparation on performance differences
of students underrepresented in physics. Phys. Rev. Phys. Educ. Res., 17(1):010107,
2021.

Z. Hazari, R.H. Tai, and P.M. Sadler. Gender differences in introductory university
physics performance: The influence of high school physics preparation and affective
factors. Sci. Educ., 91(6):847-876, 2007.

C. Romero, S. Ventura, P.G. Espejo, and C. Hervas. Data mining algorithms to classify
students. In R.S. Joazeiro de Baker, T. Barnes, and J.E. Beck, editors, Proceeding of the
1st International Conference on Educational Data Mining, Montreal, Quebec, Canada,
2008.

A. Pena-Ayala. Educational data mining: A survey and a data mining-based analysis
of recent works. Ezxpert Syst. Appl., 41(4):1432-1462, 2014.

A.M. Shahiri, W. Husain, and N.A. Rashid. A review on predicting student’s perfor-
mance using data mining techniques. Procedia Comput. Sci., 72:414-422, 2015.

P. Baepler and C. J. Murdoch. Academic analytics and data mining in higher educa-
tion. Int. J. Scholarsh. Teach. Learn., 4(2):17, 2010.

R. S. J. D. Baker and K. Yacef. The state of educational data mining in 2009: A
review and future visions. J Educ Data Mining, 1(1):3-17, 20009.

226



[95]

[96]

[97]

[100]

[101]

[102]

103]

[104]

[105]

106
107]

7. Papamitsiou and A. A. Economides. Learning analytics and educational data mining
in practice: A systematic literature review of empirical evidence. J Educ Tech and
Society, 17(4), 2014.

A. Dutt, M. A. Ismail, and T. Herawan. A systematic review on educational data
mining. IEEE Access, 5:15991-16005, 2017.

C. Romero and S. Ventura. Educational data mining: a review of the state of the
art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 40(6):601-618, 2010.

R. Alkhasawneh and R.H. Hargraves. Developing a hybrid model to predict student
first year retention in STEM disciplines using machine learning techniques. J. STEM
Educ. I. R., 15(3):35, 2014.

N. Misiunas, M. Raspopovic, K. Chandra, and A. Oztekin. Sensitivity of predictors
in educational data: A Bayesian network model. In 2015 INFORMS Workshop on
Data Mining and Analytics, Catonsville, MD, 2015. CIP, The Institute for Operations
Research and the Management Sciences.

A. McGovern, C.M. Utz, S.E. Walden, and D.A. Trytten. Learning the structure of
retention data using Bayesian networks. In 2008 38th Annual Frontiers in Education
Conference, page F3D, Piscataway, NJ, 2008. IEEE.

A. Sharabiani, F. Karim, An. Sharabiani, M. Atanasov, and H. Darabi. An enhanced
Bayesian network model for prediction of students’ academic performance in engineer-
ing programs. In 2014 IEEE Global Engineering Education Conference (EDUCON),
page 832. IEEE, 2014.

C. Lacave, A.I. Molina, and J.A. Cruz-Lemus. Learning analytics to identify dropout
factors of computer science studies through Bayesian networks. Behav. Inf. Technol.,
37(10-11):993, 2018.

R. Torabi, P. Moradi, and A.R. Khantaimoori. Predict student scores using Bayesian
networks. Procd. Soc. Behv., 46:4476, 2012.

C. Zabriskie, J. Yang, S. DeVore, and J. Stewart. Using machine learning to predict
physics course outcomes. Phys. Rev. Phys. Educ. Res., 15:020120, Aug 2019.

J. Yang, S. DeVore, D. Hewagallage, P. Miller, Q.X. Ryan, and J. Stewart. Using
machine learning to identify the most at-risk students in physics classes. Phys. Rev.
Phys. Educ. Res., 16(2):020130, 2020.

G.J. Privitera. Essential statistics for the behavioral sciences. Sage publications, 2017.

J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Academic Press,
New York, NY, 1977.

227



108

[109]

[110]

[111]

[112]

113]

[114]

[115]

[116]

[117)

[118]

[119]
[120]

[121]

[122]

S. Greenland, S. J. Senn, K. J. Rothman, J. B. Carlin, C. Poole, S. N. Goodman, and
D. G. Altman. Statistical tests, p values, confidence intervals, and power: a guide to
misinterpretations. Eur. J. Epidemiol., 31(4):337-350, 2016. https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4877414/pdf/10654_2016_Article_149.pdf.

R. J. Calin-Jageman and G. Cumming. The new statistics for better science: Ask how
much, how uncertain, and what else is known. Am. Stat., 73(sup1):271-280, 2019.

G. Cumming. The new statistics: Why and how. Psychol. Sci., 25(1):7-29, 2014.

M. Kubsch, I. Stamer, M. Steiner, K. Neumann, and I. Parchmann. Beyond p-values:
Using Bayesian data analysis in science education research. PARF, 26(1):4, 2021.

C. Spearman. General intelligence, objectively determined and measured. Am. J.
Psych., 100(3):697, 1987.

D. A. Sass and T. A. Schmitt. A comparative investigation of rotation cri-
teria within exploratory factor analysis.  Multivar. Behav. Res., 45(1):73-103,
2010. https://www.researchgate.net/publication/232890796_A_Comparative_
Investigation_of_Rotation_Criteria_Within_Exploratory_Factor_Analysis.

L. Chen, P. Chen, and Z. Lin. Artificial intelligence in education: A review. [EEFE
Access, 8:75264-75278, 2020.

A.L. Traxler, X.C. Cid, J. Blue, and R. Barthelemy. FEnriching gender in physics
education research: A binary past and a complex future. Phys. Rev. Phys. Educ. Res.,
12:020114, Aug 2016.

[. Rodriguez, E. Brewe, V. Sawtelle, and L.H. Kramer. Impact of equity models and
statistical measures on interpretations of educational reform. Phys. Rev. Phys. Educ.
Res., 8(2):020103, 2012.

S. Nicholson and P.J. Mulvey. Roster of physics departments with enrollment and
degree data, 2020. American Institute of Physics, College Park, MD, 2020.

T. Hodapp. The back page: The economics of education: Closing undergraduate
physics programs. APS News, 20(11):8, 2011.

National Center for Education Statistics. https://nces.ed.gov/collegenavigator.

R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria, 2017.

J.C. Brunson and Q.D. Read. ggalluvial: Alluvial plots in “ggplot2”, 2020. R package
version 0.12.3.

P. R. Aschbacher, E. Li, and E. J. Roth. Is science me? High school students’ identities,
participation and aspirations in science, engineering, and medicine. J. Res. Sci. Teach.,
47(5):564-582, 2010.

228



[123]

[124]

[125]

[126]

[127)

[128]

[129]

[130]

131]

[132]

[133]

[134]

[135]

[136]

[137]

D. Niedermayer. An introduction to Bayesian networks and their contemporary appli-
cations. In Innovations in Bayesian networks: Theory and applications, pages 117-130.
Springer, 2008.

M. Scutari and J. B. Denis. Bayesian networks: with examples in R. CRC press, 2021.

M. Scutari. Understanding Bayesian networks with examples in r. University lecture,
University of Oxford.

R. Nagarajan, M. Scutari, and S. Lebre. Bayesian networks in r. Springer, 2013.

S. Beretta, M. Castelli, I. Gongalves, R. Henriques, D. Ramazzotti, et al. Learning
the structure of bayesian networks: A quantitative assessment of the effect of different
algorithmic schemes. Complexity, 2018, 2018.

T. Kaser, S. Klingler, A. G. Schwing, and M. Gross. Dynamic Bayesian networks for
student modeling. IEEE T. Learn. Technol., 10(4):450-462, 2017.

H. M. Seffrin, G. L. Rubi, and P. A. Jaques. A dynamic Bayesian network for inference
of learners’ algebraic knowledge. In Proceedings of the 29th Annual ACM Symposium
on Applied Computing, pages 235-240, 2014.

I. Uglanova. Model criticism of Bayesian networks in educational assessment: A sys-
tematic review. PARE, 26(1):22, 2021.

M. J. Culbertson. Bayesian networks in educational assessment: The state of the field.
Appl. Psych. Meas., 40(1):3-21, 2016.

Y. Tseng, C. Yang, and B. Kuo. Using SVM to combine Bayesian networks for edu-
cational test data classification. Int. J. Innov. Comput. 1., 12(5):1679-1690, 2016.

J. Martin and K. VanLehn. Student assessment using Bayesian nets. Int. J. Hum-
Comput. Int., 42(6):575-591, 1995.

W. Xing, C. Li, G. Chen, X. Huang, J. Chao, J. Massicotte, and C. Xie. Automatic as-
sessment of students’ engineering design performance using a Bayesian network model.
J. Educ. Comput. Res., 59(2):230-256, 2021.

J. C. Dunn. Bayesian networks with expert elicitation as applicable to student retention
in institutional research. PhD thesis, Georgia State University, 2016.

N. Misiunas, M. Raspopovic, K. Chandra, and A. Oztekin. Sensitivity of predictors in
educational data: A Bayesian network model. In 2015 INFORMS Workshop on Data
Mining and Analytics.

M. Al-Luhaybi, L. Yousefi, S. Swift, S. Counsell, and A. Tucker. Predicting aca-
demic performance: a bootstrapping approach for learning dynamic Bayesian networks.
In Artificial Intelligence in Education: 20th International Conference, AIED 2019,
Chicago, IL, USA, June 25-29, 2019, Proceedings, Part I 20, pages 26-36. Springer,
2019.

229



138

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147)

[148]

[149]

[150]

[151]

[152]

P. Arcuria. Applying Academic Analytics Developing a Process for Utilizing Bayesian
Networks to Predict Stopping Out Among Community College Students. PhD thesis,
Arizona State University, 2015.

H. Dissanayake, D. Robinson, and O. Al-Azzam. Predictive modeling for student
retention at St. Cloud State University. In Proceedings of the International Conference
on Data Science (ICDATA ), page 215. The Steering Committee of The World Congress
in Computer Science, Computer ..., 2016.

M. Scutari. Learning Bayesian networks with the bnlearn R package. J. Stat. Softw.,
35(3):1-22, 2010.

D. Margaritis et al. Learning Bayesian network model structure from data. PhD thesis,
School of Computer Science, Carnegie Mellon University Pittsburgh, PA, USA, 2003.

D. Heckerman. A tutorial on learning with Bayesian networks. In Innovations in
Bayesian networks: Theory and applications, pages 33-82. Springer, 2008.

R. Daly, Q. Shen, and S. Aitken. Learning Bayesian networks: approaches and issues.
Knowl. Eng. Rev., 26(2):99-157, 2011.

M. A. Sanders and J. B. K. Advising in higher education. Rad. Sci. Educ., 22(1),
2017.

M. D. Hale, D. L. Graham, and D. M. Johnson. Are students more satisfied with
academic advising when there is congruence between current and preferred advising
styles? Coll. Stud. J., 43(2):313-325, 2009.

A. Anthony and M. Raney. Bayesian network analysis of computer science grade
distributions. In ACM Tech. Symp. Comp. Sci. Educ., pages 649-654, 2012.

A. Dekhtyar, J. Goldsmith, H. Li, and B. Young. The Bayesian advisor project i:
Modeling academic advising,. Technical report, University of Kentucky, 2001.

J. Nissen, R. Donatello, and B. Van Dusen. Missing data and bias in physics edu-
cation research: A case for using multiple imputation. Phys. Rev. Phys. Educ. Res.,
15(2):020106, 2019.

A. Miles. Obtaining predictions from models fit to multiply imputed data. Sociol.
Method. Res., 45(1):175-185, 2016.

N. Friedman. The Bayesian structural EM algorithm. arXiv preprint arXiw:1301.7373,
2013.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Mach.
Learn., 29:131-163, 1997.

G. L. Heileman, C. T. Abdallah, A. Slim, and M. Hickman. Curricular Analytics: A
framework for quantifying the impact of curricular reforms and pedagogical innova-
tions. arXiv preprint arXiw:1811.09676, 2018.

230



[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

R. Molontay, N. Horvéath, J. Bergmann, D. Szekrényes, and M. Szabé. Characterizing
curriculum prerequisite networks by a student flow approach. IEEE T. Learn. Technol.,
13(3):491-501, 2020.

N. W. Klingbeil and A. Bourne. The Wright State model for engineering mathematics
education: Longitudinal impact on initially underprepared students. In 2015 ASEE
Annual Conference € Ezxposition, pages 26-1580, 2015.

A. Slim, G. L. Heileman, C. T. Abdallah, A. Slim, and N. N. Sirhan. Restructuring
curricular patterns using Bayesian networks. In FDM, 2021.

A. Slim, H. Al Yusuf, N. Abbas, C. T. Abdallah, G. L. Heileman, and A. Slim. A
Markov decision processes modeling for curricular analytics. In 2021 20th IEEFE Inter-

national Conference on Machine Learning and Applications (ICMLA ), pages 415-421.
IEEE, 2021.

G. L. Heileman, W. G. Thompson-Arjona, O. Abar, and H. W Free. Does curricular
complexity imply program quality? In 2019 ASEE Annual Conference & Exposition,
2019.

G. L. Heileman, H. W. Free, J. Flynn, C. Mackowiak, J. W. Jaromczyk, and C. T.
Abdallah. Curricular complexity versus quality of computer science programs. arXiv
preprint arXiw:2006.06761, 2020.

D. Reeping, D. M. Grote, and D. B. Knight. Effects of large-scale programmatic
change on electrical and computer engineering transfer student pathways. IEEFE T.
FEduc., 64(2):117-123, 2020.

G. L. Heileman, C. T. Abdallah, and A. K. Koch. The transfer student experience:
It’s a lot like buying a used car. arXiv preprint arXiv:2203.00610, 2022.

A. M. DeRocchis, L. E. Boucheron, M. Garcia, and S. J. Stochaj. Curricular complexity
of student schedules compared to a canonical degree roadmap. In 2021 IEEFE Frontiers
in Education Conference (FIE), pages 1-5. IEEE, 2021.

A. Slim, G. L. Heileman, M. Hickman, and C. T. Abdallah. A geometric distributed
probabilistic model to predict graduation rates. In 2017 IEEE SmartWorld, Ubig-
uitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Comput-
ing € Communications, Cloud & Big Data Computing, Internet of People and Smart
City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1-
8. IEEE, 2017.

US News & World Report: Education. US News and World Report, Washington, DC.
{h}ttps://premium.usnews.com/best-colleges. Accessed 7/23/2022.

J. Stewart, J. Hansen, and E. Burkholder. Visualizing and predicting the path to an
undergraduate physics degree at two different institutions. Phys. Rev. Phys. Educ.
Res., 18:020117, Sep 2022.

231



[165]
[166]

[167]

168

[169]
[170]

171]

[172]

[173]

[174]

[175]

[176]

177]

Curricular Analytics. https://curricularanalytics.org/. Accessed 5/30/2022.

J. Nash, L. E. Boucheron, and S. J. Stochaj. A correlative analysis of course grades as
related to curricular prerequisite structure and inter-class topic dependencies. In 2021
IEEE Frontiers in Education Conference (FIE), pages 1-5. IEEE, 2021.

R. Chabay and B. Sherwood. Qualitative understanding and retention. AAPT An-
nouncer, 27:96, 1997.

The BEMA itself was never published in an archival journal. Early references to the
instrument use Chabay and Sherwood (1997) (Ref 1) to cite the instrument. This is-
sue of the AAPT Announcer is not available electronically. The citation references the
program to the Summer 1997 American Association of Physics Teachers meeting then
published in the Announcer. The page referenced contains Chabay and Sherwood’s
contributed talk abstracts about research applying the instrument. Interestingly, Mal-
oney, O’Kuma, Van Heuvelen, and Hieggelke discussed challenges to developing an
electricity and magnetism instrument in the same session which lead to the CSEM.

Physport. https://www.physport.org. Accessed 8/8/2017.

S. DeVore, J. Stewart, and G. Stewart. Examining the effects of testwiseness in con-
ceptual physics evaluations. Phys. Rev. Phys. Educ. Res., 12(2):020138, 2016.

M. Planinic, L. Ivanjek, and A. Susac. Rasch model based analysis of the Force Concept
Inventory. Phys. Rev. Phys. Educ. Res., 6:010103, Mar 2010.

L. Ding. Applying Rasch theory to evaluate the construct validity of the Brief Elec-
tricity and Magnetism Assessment. In 2011 Physics Fducation Research Conference
Proceedings, volume 1413, pages 175-178, New York, 2012. AIP, AIP Publishing.

L. Ding. Seeking missing pieces in science concept assessments: Reevaluating the Brief
Electricity and Magnetism Assessment through Rasch analysis. Phys. Rev. Phys. Educ.
Res., 10:010105, Feb 2014.

A. Traxler, R. Henderson, J. Stewart, G. Stewart, A. Papak, and R. Lindell. Gender
fairness within the Force Concept Inventory. Phys. Rev. Phys. Educ. Res., 14:010103,
Jan 2018.

R. Henderson, P. Miller, J. Stewart, A. Traxler, and R. Lindell. Item-level gender
fairness in the Force and Motion Conceptual Evaluation and the Conceptual Survey
of Electricity and Magnetism. Phys. Rev. Phys. Educ. Res., 14(2):020103, 2018.

J. Wang and L. Bao. Analyzing Force Concept Inventory with Item Response Theory.
Am. J. Phys., 78(10):1064-1070, 2010.

Y. Xiao, J.C. Fritchman, J.Y. Bao, Y. Nie, J. Han, J. Xiong, H. Xiao, and L. Bao.
Linking and comparing short and full-length concept inventories of electricity and
magnetism using item response theory. Phys. Rev. Phys. Educ. Res., 15(2):020149,
2019.

232



178]

[179]

[180]

[181]

[182]

[183)]

184]

[185]

[186]

[187]

[188]

[189)]

[190]

Youngsuk S. and Daniel B. Nested logit models for multiple-choice item response data.
Psychometrika, 75(3):454-473, September 2010.

J. Stewart, B. Drury, J. Wells, A. Adair, R. Henderson, Y. Ma, A. Pérez-Lemonche,
and D. Pritchard. Examining the relation of correct knowledge and misconceptions
using the nominal response model. Phys. Rev. Phys. Educ. Res., 17(1):010122, 2021.

T.F. Scott and D. Schumayer. Students’ proficiency scores within multitrait item
response theory. Phys. Rev. Phys. Fduc. Res., 11:020134, Nov 2015.

J. Wells, R. Henderson, A. Traxler, P. Miller, and J. Stewart. Exploring the structure of
misconceptions in the Force and Motion Conceptual Evaluation with modified module
analysis. Phys. Rev. Phys. Educ. Res., 16:010121, April 2020.

C. Wheatley, J. Wells, R. Henderson, and J. Stewart. Applying module analysis to
the Conceptual Survey of Electricity and Magnetism. Phys. Rev. Phys. Educ. Res.,
17:010102, Jan 2021.

S. J. Pollock. Longitudinal study of student conceptual understanding in electricity
and magnetism. Phys. Rev. Phys. Educ. Res., 5(2):020110, 20009.

M.A. Kohlmyer, M.D. Caballero, R. Catrambone, R.W. Chabay, L. Ding, M.P. Hau-
gan, M.J. Marr, B.D. Sherwood, and M.F. Schatz. Tale of two curricula: The per-

formance of 2000 students in introductory electromagnetism. Phys. Rev. Phys. Educ.
Res., 5(2):020105, 2009.

M.W. McColgan, R.A. Finn, D.L. Broder, and G.E. Hassel. Assessing students’
conceptual knowledge of electricity and magnetism. Phys. Rev. Phys. Educ. Res.,
13(2):020121, 2017.

L. Ding and R. Beichner. Approaches to data analysis of multiple-choice questions.
Phys. Rev. Phys. Educ. Res., 5:020103, Sep 2009.

S.J. Pollock. Comparing student learning with multiple research-based conceptual
surveys: CSEM and BEMA. AIP Conf. Proc., 1064:171-174, 2008.

P. Eaton, K. Johnson, B. Frank, and S. Willoughby. Classical test theory and item
response theory comparison of the Brief Electricity and Magnetism Assessment and
the Conceptual Survey of Electricity and Magnetism. Phys. Rev. Phys. Educ. Res.,
15(1):010102, 2019.

P. Eaton, B. Frank, K. Johnson, and S. Willoughby. Comparing exploratory factor
models of the Brief Electricity and Magnetism Assessment and the Conceptual Survey
of Electricity and Magnetism. Phys. Rev. Phys. Educ. Res., 15(2):020133, 2019.

A. Newell and H.A. Simon. Human Problem Solving. Prentice-Hall, Englewood Cliffs,
NJ, 1972.

233



[191]

[192]

193]

[194]

[195]

[196]

197]

[198]

[199]

[200]

201]

202]

[203]

204]

[205]

S. Ohlsson. The problems with problem solving: Reflections on the rise, current status,
and possible future of a cognitive research paradigm. J. Prob. Solving, 5(1):7, 2012.

J. Larkin, J. McDermott, D.P. Simon, and H.A. Simon. Expert and novice performance
in solving physics problems. Science, 208(4450):1335-1342, 1980.

J.H. Larkin, J. McDermott, D.P. Simon, and H.A. Simon. Models of competence in
solving physics problems. Cognitive Sci., 4(4):317-345, 1980.

F. Reif and J.I. Heller. Knowledge structure and problem solving in physics. Fduc.
Psychol., 17(2):102-127, 1982.

US News & World Report: Education. US News and World Report, Washington, DC.
https://premium.usnews.com/best-colleges. Accessed 4/30/2017.

L. Chen, J. Han, J. Wang, and Y. Tu. Comparisons of Item Response Theory algo-
rithms on Force Concept Inventory. Res. Edu. As. Learn., 2(02):26-34, 2011.

S. Osborn Popp, D. Meltzer, and M.C. Megowan-Romanowicz. Is the Force Concept
Inventory biased? Investigating differential item functioning on a test of conceptual
learning in physics. In 2011 American Educational Research Association Conference,
Washington, DC, 2011. American Education Research Association.

J. Han, L. Bao, L. Chen, T. Cai, Y. Pi, S. Zhou, Y. Tu, and K. Koenig. Dividing the
Force Concept Inventory into two equivalent half-length tests. Phys. Rev. Phys. Educ.
Res., 11:010112, May 2015.

P. Eaton, K. Vavruska, and S. Willoughby. Exploring the preinstruction and postin-
struction non-Newtonian world views as measured by the Force Concept Inventory.
Phys. Rev. Phys. Educ. Res., 15:010123, Apr 2019.

P. Eaton and S. Willoughby. Identifying a preinstruction to postinstruction factor
model for the Force Concept Inventory within a multitrait item response theory frame-
work. Phys. Rev. Phys. Educ. Res., 16(1):010106, January 2020.

T.I. Smith, K.J. Louis, B.J. Ricci IV, and N. Bendjilali. Quantitatively ranking in-
correct responses to multiple-choice questions using item response theory. Phys. Rev.
Phys. Educ. Res., 16(1):010107, 2020.

T.F. Scott, D. Schumayer, and A.R. Gray. Exploratory factor analysis of a Force
Concept Inventory data set. Phys. Rev. Phys. Educ. Res., 8(2):020105, 2012.

L.J. Cronbach and P.E. Meehl. Construct validity in psychological tests. Psychol.
Bull., 52(4):281, 1955.

L.A. Clark and D. Watson. Constructing validity: Basic issues in objective scale
development. Psychol. Assessment, 7(3):309, 1995.

R.P. Chalmers. mirt: A multidimensional item response theory package for the R
environment. J. Stat. Soft., 48(6):1-29, 2012.

234



[206] L. Cai. A two-tier full-information item factor analysis model with applications. Psy-
chometrika, 75(4):581-612, 2010.

[207] A.E. Raftery. Bayesian model selection in social research. Sociol. Methodol., 25:111—
163, 1995.

[208] A. Maydeu-Olivares and H. Joe. Limited information goodness-of-fit testing in multi-
dimensional contingency tables. Psychometrika, 71(4):713, 2006.

[209] A. Maydeu-Olivares. Goodness-of-fit assessment of item response theory models. Mea-
surement, 11(3):71-101, 2013.

[210] R.E. Schumacker and R.G. Lomax. A Beginner’s Guide to Structural Equation. Rout-
ledge, New York, NY, 2016.

[211] R.B. Kline. Principles and practices of structural equation modeling, fourth edition.
Guilford Publications, New York, NY, 2016.

[212] L. Hu and P.M. Bentler. Cutoff criteria for fit indexes in covariance structure analysis:
Conventional criteria versus new alternatives. Struct. Equ. Modeling, 6(1):1-55, 1999.

[213] L. Crocker and J. Algina. Introduction to Classical and Modern Test Theory. Holt,
Rinehart and Winston, Mason, OH, 1986.

[214] J. Yang, J. Wells, R. Henderson, E. Christman, G. Stewart, and J. Stewart. Extending
modified module analysis to include correct responses: Analysis of the Force Concept
Inventory. Phys. Rev. Phys. Educ. Res., 16(1):010124, 2020.

[215] R.C. Hudson and F. Munley. Re-score the Force Concept Inventory! Phys. Teach.,
34(5):261, 1996.

[216] R.K. Thornton, D. Kuhl, K. Cummings, and J. Marx. Comparing the Force and
Motion Conceptual Evaluation and the Force Concept Inventory. Phys. Rev. Phys.
Educ. Res., 5(1):010105, 2009.

235



	Methods for Analyzing Physics Student Retention and Physics Curricula
	Recommended Citation

	tmp.1701970513.pdf.buMOn

