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ABSTRACT

An Exploration of Misconceptions in Introductory Physics

Christopher M. Wheatley

The study of student misconceptions about physics concepts has long been an impor-
tant area of inquiry in physics education research (PER). The research discussed in this
dissertation builds upon the developments in PER by exploring the prevalence of consis-
tently held undergraduate student misconceptions in introductory calculus-based physics.
This thesis explores the nature of student misconceptions, mistakes, and naive answering
patterns in both introductory undergraduate Newtonian mechanics and electromagnetism
by applying a network analytic technique called module analysis to student responses to
different concept inventories from institutions of various levels of incoming physics prepara-
tion. Each study applying these methods also demonstrates how they can also be used to
inform future inventory development. Network analysis was also used to study the growth
and evolution of the First2 Network, a project with the goal of doubling the retention rate
of STEM students in West Virginia, with a particular emphasis on rural and first-generation
students. The final part of this thesis compares students’ performance and attendance in an
introductory electricity and magnetism course before and after the COVID-19 pandemic.
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Chapter 1

Introduction to Physics Education Research
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In their 2014 review of physics education research (PER), Docktor and Mestre [1] sep-

arate physics education research into six broad categories; conceptual understanding, prob-

lem solving, curriculum and instruction, assessment, cognitive psychology, and attitudes and

beliefs about teaching and learning. The research discussed in this dissertation would pri-

marily fit into conceptual understanding, as such, this chapter provides a brief introduction

to discipline-based education research (DBER) in physics focused on the study of concep-

tual understanding and how those studies led to the development and implementation of

research-based instructional strategies (RBIS).

1.1 Conceptual Understanding of Physics

The study of the existence and the cause of common difficulties in student concep-

tual understanding in physics (e.g. that heavier objects do not fall faster) in the late 1970s

and early 1980s could be considered the beginning of modern physics education research

(PER) [2–5]. Difficulties in student conceptual understanding have many names in PER;

alternative conceptions, naive conceptions, preconceptions, and misconceptions are the most

commonly used terms, each with slightly different definitions. The modern accepted def-

inition of misconception generally includes at least some of the following four attributes;

they are deeply rooted cognitive structures that are stable in time, they affect how students

interpret scientific explanations, they differ from expert explanations of concepts, and they

must be eliminated to master the subject [6].

Early studies identified and compiled the most common misconceptions in introductory

physics [2, 3]. These studies also began to introduce new instructional strategies to better
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target these misconceptions and move students towards more rigorous scientific reasoning.

One of the most popular ways to measure a student’s change in conceptual understanding

from the beginning to the end of a physics course was through conceptual inventories.

1.1.1 Concept Inventories

In 1985, Halloun and Hestenes [7] developed an instrument called the mechanics di-

agnostic test (MD), to determine students’ initial knowledge of mechanics when entering

an introductory mechanics course. This test measured student conceptual understanding

of basic dynamics and kinematics. Halloun and Hestenes found that students’ MD scores

predicted their final course grades and that students gained very little in their conceptual

understanding by the end of a traditional lecture course. Immediately after this study, Hal-

loun and Hestenes conducted another study where they interviewed students as they were

taking the mechanics diagnostic test. They separated student comments into the categories

“principles of motion” and “influences on motion” [8].

These two studies, along with the misconception research by Clement [2] and McDer-

mott [3], identified the need for the development of research-based assessments in physics

education. Research-based assessments were designed both to study misconceptions about

the physical world that students held when entering introductory mechanics courses and to

study the misconceptions retained by the end of the course.

In 1992, Hestenes et al. developed the first widely distributed physics concept inven-

tory, the Force Concept Inventory (FCI) [9], by heavily revising the mechanics diagnostic

test using data from student interviews. The FCI uses 30 items (questions) to test students’

conceptual understanding of kinematics in one and two dimensions and Newton’s three laws.
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Each item in the FCI includes four incorrect responses and one correct response. Many

incorrect responses are intended to be attractive responses (distractors) that correspond

to common misconceptions. The FCI remains the most popular, transformative, and well-

studied physics assessment today, 32 years after its inception. The version of the FCI used

today, after its revision in 1997 [10], can be found at PhysPort [11].

The introduction of the FCI into PER led to the development of many new research-

based assessments in physics. Many well-vetted instruments have been made to test student

conceptual understanding of Newtonian mechanics [12], electricity and magnetism [13, 14],

quantum mechanics [15, 16], thermodynamics [17, 18], waves [19], and astronomy [20–22].

There have also been physics instruments developed to test students’ mathematical reasoning

ability [23, 24], beliefs/attitude about science [25, 26], and scientific reasoning [27]. Other

than the FCI, some of the most popular physics conceptual inventories include the Force

and Motion Conceptual Evaluation (FMCE) [12], the Conceptual Survey of Electricity and

Magnetism (CSEM) [13], and the Brief Electricity and Magnetism Assessment (BEMA) [14].

1.2 Reformed Instruction

One of the most influential uses of a physics concept inventory was in Hake’s [28]

analysis of FCI scores to compare modes of instruction between 62 different courses from

various institutions. Hake introduced the normalized gain, Equation 1.1, to compare the

effectiveness of a given course at encouraging conceptual understanding.

⟨g⟩ = ⟨Sf⟩ − ⟨Si⟩
100− ⟨Si⟩

(1.1)
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The normalized gain ⟨g⟩ utilizes the average post test score over the class ⟨Sf⟩ and the

average pretest score over the class ⟨Si⟩, both scored out of 100, to calculate a score that

represents the actual improvement students made in a course over the maximum possible

improvement that could have been made in the course given the class average pretest scores.

Although the normalized gain was introduced using FCI responses, it can be calculated for

any instrument. Like the effect size in many significance tests [29], a low normalized gain is

described as ⟨g⟩ < 0.3, a medium gain as 0.3 ≤ ⟨g⟩ < 0.7, and a large gain as ⟨g⟩ ≥ 0.7.

Figure 1.1: Gain vs. pretest scores for 62 courses comparing traditional instruction with interactive engage-
ment. [28]

Figure 1.1 compares traditional lecture instruction with interactive engagement (IE)

instruction, sometimes called active learning. Data from 62 courses were plotted, with 14 of

them utilizing traditional lecture instruction and 48 utilizing interactive engagement. The

y-axis displays the average gain over a class ⟨Gain⟩, which is just the numerator of the
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normalized gain shown in Equation 1.1, while the x-axis displays average pretest scores over

a class. Any slope drawn on this figure represents a normalized gain. Dashed lines are

drawn to show the thresholds for small, medium, and large normalized gains and a solid line

is drawn to show the upper limit. Two darker solid lines are drawn to compare the average

normalized gains from institutions taught with interactive engagement to institutions taught

in a traditional lecture environment. Hake’s work provided clear evidence that interactive

engagement instruction had measurable benefits over traditional lecture instruction, and it

motivated many instructors to adopt various forms of reformed instruction, often referred to

as research-based instructional strategies (RBIS).

1.2.1 Research-Based Instructional Strategies

In their 2012 resource letter on active learning instruction in physics, Meltzer and

Thornton [30] classified “research-based active learning instruction” as any teaching method

that is derived from research in physics education, that integrates interactive activities re-

quiring students to express their reasoning about physics, and that has evidence of improved

student learning in real classroom environments. Research-based active learning instruction,

usually shortened to active learning, will be used synonymously with interactive engagement

instruction, research-based instructional strategies, and reformed instruction for the remain-

der of this document. Modern active learning instruction can be very broadly placed into

three categories; instruction that incorporates active learning into a traditional lecture en-

vironment, instruction that incorporates active learning strategies into the laboratory, and

instruction that either incorporates active learning into recitations/discussion sections or

transforms the structure of the learning environment to be better fit for student engage-
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ment.

Reformed Lecture

The most popular type of active learning instruction in physics has been the reform

of the traditional lecture. Traditional lecture reforms retain the classroom structure of

a traditional lecture, often with an instructor lecturing and students taking notes, but it

transitions the passive environment to an active one [31]. Actively involving students in the

lecture usually includes some type of small group work or polling system that can be used

both to gauge students’ level of understanding in real time and to increase the level of focus

and participation in the classroom. The most popular way of increasing student engagement

in physics lectures has been through the use of clickers [32, 33]. Clickers are small, portable

devices that allow students to select a multiple-choice response posed to the entire classroom.

Many courses that utilize clickers have recently transitioned to phone applications that serve

the same purpose rather than providing or requiring separate clicker devices.

In 1997, Eric Mazur published a user manual to Peer Instruction, an active learning

method that heavily involved the use of clickers [10]. Peer Instruction utilizes cycles of

about ten minutes lecturing followed by a clicker question. For each of these clicker ques-

tions, students are given time to think and respond to the question individually, then they

are prompted to discuss their responses with neighboring students, explaining their reason-

ing and coming to some common ground about the principles applied. Students then report

their revised responses and the instructor elicits explanations from students, reasoning with

them and pointing them in the direction of the correct response until a general consensus of

understanding is met across the class. Significantly higher normalized gains have been mea-
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sured from courses taught with Peer Instruction relative to a traditional lecture environment

[34].

Reformed Laboratory

Laboratory experiments have long been conducted outside of lectures for introductory

physics courses. In a 1991 review of RBIs in physics [35], Alan Van Heuvelen emphasized

that traditional labs were having no measurable effects on student learning outcomes. Tra-

ditional labs focus on knowledge acquisition through formulaic experiments. Reformed labs

broadly reorient the focus to an exploration of the physical processes in an experiment,

rather than providing students with the requisite physics knowledge then having them con-

duct the experiment themselves. One particularly well-established reformed lab curriculum

is Investigative Science Learning Environment (ISLE) [36]. The purpose of ISLE is to treat

students as novice scientists; prompting them to observe, explain, design, and test their

own experiments instead of going through a structured lab manual. For ISLE-based labs,

students design experiments before the concept is taught in lecture. Guiding questions are

included to aid the process of experimental design. Further experiments are then designed

to test the explanation developed from earlier experiments, or from models provided by an

instructor. These experiments are performed in small groups and findings are discussed with

the whole class toward the end of the lab.

Labs taught from an ISLE framework have been shown to improve students’ facilities

with data collection and analysis, experimental design, and science communication [37, 38].

Some educators argue for utilizing labs as a means to increase scientist-like skills and reason-

ing abilities, rather than to improve content knowledge, after multiple studies demonstrated
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that many labs provide no added value for learning course content [39, 40]. Holmes et al. [40]

evaluated nine labs from three different institutions with varying instructional techniques.

For each of these courses, students could opt out of taking the lab portion of the class with-

out penalty to their grade. The researchers compared performance between those who opted

in to the labs and those who did not and they found no measurable difference between the

two samples. This study implies that non-laboratory environments may be better suited for

instructional interventions if the goal is explicitly improving course outcomes.

Reformed Environment

One particularly successful type of active learning instruction in physics has been mod-

ifying the environment to allow for more interactive engagement. Designing physics class-

rooms in a way that fosters teamwork and small-group cooperation allows for integrating

different aspects of lectures, labs, and recitations into a single classroom setting [1]. There

are many curricula designed around implementing small-group cooperative work, reducing

in-class lecture time, and increasing the level of faculty-student interaction within small class-

rooms, but far fewer for large introductory classes. One curriculum designed specifically for

large classroom settings is the student-centered active learning environment for undergrad-

uate programs (SCALE-UP). Developed by Beichner and collaborators at North Carolina

State University in 2007, SCALE-UP is an integrated learning environment designed for

large-enrollment physics classes with up to 100 students [41]. A typical SCALE-UP course

includes very little time for lecture, relegating information transfer to assigned readings out-

side of class. This leaves class time for cooperative group problem solving, experiments,

and answering questions. Students work in groups of three, each with access to a laptop, a
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whiteboard, and any other material needed for assignments or experiments in a given class

period. SCALE-UP, and other curricula that combine labs into the lecture by transforming

the educational environment, allows for more classroom time collaboratively constructing

knowledge of the material, rather than taking notes. Studies have shown improved exam

scores, improved concept inventory gains, more positive attitudes toward the class, and re-

duced course attrition in classes that use SCALE-UP relative to traditional lecture settings

[41, 42].

1.2.2 Adoption

In 2012, Henderson et al. [43] showed that out of 722 surveyed physics faculty across

the United States, less than 50% of them were currently implementing some research-based

instructional strategy. While the vast majority of surveyed individuals knew about some

active learning method, over a third of those who had ever attempted to implement an

RBIS discontinued it. Henderson et al. found that the knowledge or use of RBIS was

correlated with factors such as reading teaching-related journals and attending talks and

workshops about teaching. However, they also found that during these talks and workshops,

the success and ease of implementation of these teaching methods were often exaggerated

and their difficulties not fully explained. This led to a misalignment of expectations with the

reality of implementing these new strategies for many faculty members. Another commonly

quoted reason for abandonment was a lack of support after initial implementation. Many

RBIS have nuances or complexities that faculty members have no ability to consult experts

about. Another difficulty with implementing RBIS at a university level is the cost [44].

Nearly any method that increases interactive engagement will come at some cost to the
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university, and reformed environment methods can come at a substantial cost.

1.2.3 Conclusion

Since Hake’s initial study demonstrated the efficacy of reformed instruction, many new

research based instructional strategies have been developed, validated, and analyzed in the

classroom. The effects of reformed instruction in different STEM (science, technology, engi-

neering, and mathematics) disciplines were compiled by Freeman et al. in 2014 [45]. They

analyzed 225 studies across Biology, Chemistry, Computer Science, Engineering, Geology,

Mathematics, Physics, and Psychology and found that reformed instruction had statistically

significant increases in exam scores and concept inventory scores and decreases in failure

rates across the board. The effect size varied significantly between disciplines, but most dis-

ciplines had at least a medium effect size when comparing student performance in reformed

instruction courses with traditional lectures.

The research discussed in this dissertation builds upon the developments in PER de-

scribed in this chapter by exploring the prevalence of consistently held student misconcep-

tions in introductory physics. Chapters 3-7 explore the nature of student misconceptions,

mistakes, and naive answering patterns in both introductory undergraduate Newtonian me-

chanics and electromagnetism by applying a network analytic technique called module anal-

ysis to student responses from multiple concept inventories. The methodology for this explo-

ration is refined in each successive study. These methods can also be used to inform future

inventory development. The remainder of the thesis covers other projects like studying the

growth and evolution of a West Virginia STEM education network with network analysis

(Chapter 8) and comparing students’ performance in an introductory electromagntism course
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before and after the COVID-19 pandemic (Chapter 9).
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Chapter 2

Statistical Methods
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Statistics provide a framework to understand the underlying properties of datasets.

Statistics are necessary to infer information about a population from a randomly selected

sample within that population. A population describes the entirety of a group of interest,

while a sample describes a subset of that population from which data can be collected. Sam-

ples are often drawn from a population in such a way (large enough sample size and random

selection) that statistics calculated from the sample serve as an acceptable approximation of

the population statistic.

Statistics will be used to characterize and analyze samples of student data throughout

this work. This chapter summarizes some of the most common statistical methods used

throughout the document. Additional statistical methods will be introduced as needed.

2.1 Descriptive Statistics

Descriptive statistics are a set of techniques used to summarize general properties of

datasets. These techniques generally include measures of central tendency and variability.

2.1.1 Central Tendency

Measures of central tendency describe a distribution of data by its most “average”

value. The three most frequently applied measures of central tendency are median, mean,

and mode. The mode measures the observation that appears the most frequently within

the distribution; describing the “average” as the value most likely to be chosen by random

sampling of the dataset. The median measures the middle point of an ordered distribution;

describing the “average” as the value with an equal number of values greater than it and

an equal number less than it. The mean, given by Equations 2.1 and 2.2, is computed by
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summing each data point and dividing by the number of data points summed; describing

the “average” as the value arithmetically closest to every value in the distribution.

Depending on the distribution of the data, these measures can vary substantially.

For many distributions, each statistic provides unique descriptive information. The mean is

particularly susceptible to outliers or distributions that are substantially non-symmetric [46].

In which case, it may be more appropriate to report the median instead. In this document,

however, the mean is frequently applied to samples of student data. The sample mean,

shown below as Equation 2.1, sums over all data in the sample. The population mean is also

provided in Equation 2.2,

x̄ =

∑
i xi

n
(2.1)

µ =

∑
i xi

N
(2.2)

where xi is a value for individual i, n is the size of the sample, and N is the size of the

population. The sample mean is almost always reported because collecting data from every

member of the population is often impossible.

2.1.2 Variability

The most central value provides incomplete information about a distribution without

some description of the width of the distribution. The variance of a sample, Equation 2.3,

provides a description of the spread of the distribution.
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s2 =

∑
i(xi − x̄2)2

n− 1
(2.3)

The square root of this value, s, is called the standard deviation and is often reported

alongside the mean to further describe the distribution. For normally distributed data, if s

is small, values within the distribution tend to be close to the mean and the distribution is

narrow. If s is large, some values are far from the mean and the distribution is wide.

2.2 Inferential Statistics

Inferential statistics describes a set of methods used to infer information about popu-

lations based on samples taken from those populations.

2.2.1 Hypothesis testing

A hypothesis test is a method of statistically deciding whether the studied data sup-

ports a hypothesis. Hypothesis testing involves presenting two competing hypotheses; the

null hypothesis, which asserts that the effect in question does not exist, and the alternate

hypothesis, which asserts that it does exist. Significance tests are then applied to the data

to determine if an apparent effect would better be attributed to random chance; the null

hypothesis, or to a real relationship between two variables; the alternate hypothesis. If every

observation is independent and equally likely to occur, then any measured effect would be

due to random chance. The first step in significance testing is to calculate the test statistic.

Test statistics compare the distribution of data with the distribution predicted under the

null hypothesis, which differs by the significance test being used. The result of a significance
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test provides the likelihood that the calculated test statistic exists under the null hypothesis,

so if that chance is sufficiently small, then the null hypothesis can be rejected and the level

of confidence in the alternate hypothesis can be determined.

This manuscript makes use of Welch’s t-test [47] for hypothesis testing. The indepen-

dent two-sample t-test is a significance test used to evaluate the null hypothesis that there

is no difference between the mean of two independendt groups. The t-test is a parametric

statistic, a statistic that requires certain distributional conditions should be satisfied for its

use. Non-parametric hypothesis tests, tests that make no assumptions about the distribution

of the data, are used and explained in Chapter 9. The conditions that must be met for a

t-test are as follows; the data should be normally distributed and each observation within the

data should be independent from one another. Welch’s t-test is an adaptation of Student’s

t-test [48] that does not require the variance of the samples to be the same.

The t-statistic and its associated degrees of freedom can be calculated and compared

to the t-distribution to determine a p-value. The equation for calculating Welch’s t-statistic

is shown in Equation 2.4,

t =
∆x̄

s∆x̄

=
x̄1 − x̄2√
s2x̄1

+ s2x̄2

(2.4)

where sx̄j
=

sj√
nj

is the standard error of sample j’s mean. The standard error of the sample

mean gives an indication of how accurately the sample data represents the population. The

degrees of freedom of the t-statistic can be calculated as in Equation 2.5.

ν =
(
s21
n1

+
s22
n2
)2

s41
n2
1(n1−1)

+
s42

n2
2(n2−1)

(2.5)
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A p-value for Welch’s t-test between two independent samples represents the probability of

observing a difference in means between the samples at least as large as the observed differ-

ence assuming the null hypothesis is correct. Given that the p-value represents a probability,

researchers generally choose a p-value threshold that allows them to be reasonably confident

that the results are not a product of chance. In 1925, Fisher suggested a p-value threshold

of p < 0.05, deviations greater than two standard deviations from the mean, as a convenient

significance threshold [49]. He argued that with this threshold, the null hypothesis would

falsely be rejected only 1 in 22 experiments. This threshold has widely been adopted as the

standard threshold of significance, though p-value threshold, usually referred to as α, of 0.01

or 0.1 are sometimes used as well [50]. Hypothesis testing allows for the identification of

statistically noteworthy effect, but it does not quantify the magnitude of those effects.

2.2.2 Effect Size

An effect size is often reported alongside a p-value to indicate the magnitude of a

significant effect. Cohen’s d [29] is an appropriate effect size when measuring the difference

between two independent sample means. Cohen’s d is defined in Equation 2.6

d =
x̄1 − x̄2

sp
(2.6)

where sp is the pooled standard deviation between the two independent samples defined in

Equation 2.7.

s2p =
s21(n1 − 1) + s22(n2 − 1)

n1 + n2 − 2
(2.7)
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The criteria for characterizing effect sizes is that d > 0.2 is a small effect, d > 0.5 a medium

effect, and d > 0.8 a large effect. There are many other effect sizes used to quantify the

magnitude of effects, but the only other one relevant to this manuscript will be discussed

with non-parametric hypothesis testing in Chapter 9.

2.2.3 Error and Correction

Statistical hypothesis testing categorizes errors as Type I, false positives, and Type II,

false negatives. For Type I errors, the null hypothesis is incorrectly rejected. In other words,

a measured effect resulting from chance is falsely claimed to be a real effect. By choosing a

p-value threshold, α = 0.05, researchers accept that there is a 5% chance of falsely claiming a

meaningful result. When an experiment makes multiple statistical inferences, the probability

of making a Type I error in at least one of those tests increases. A common correction to

this is to decrease the threshold on each subsequent hypothesis test. This process is called

the Bonferroni correction [51]. A Bonferroni correction reduces the threshold value by the

number of statistical tests. For a study applying m statistical tests, the original α value

becomes α/m for the mth test. Though it is a solution to the problem of Type I error

inflation, the Bonferroni correction is sometimes criticized for overcorrecting, or being too

conservative for large numbers of statistical tests [52].

A Type II error occurs when the null hypothesis is incorrectly not rejected. In other

words, a real effect is falsely claimed to be the result of random fluctuation. The probability

of making a Type II error is directly related to the statistical power of the dataset. Statistical

power is given by 1−β, where β is the likelihood of making a Type II error. Statistical power

is heavily dependent on sample size, so for large samples, Type II errors are less likely to
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occur. It is worth noting that if the Bonferroni correction overcorrects for Type I error, there

will be a higher rate of Type II error, essentially turning false positives into false negatives

[53].

2.2.4 Bootstrapping

Bootstrapping is a method of random sampling with replacement. In the same way

that inferences are made about a population using sample data, bootstrapping can be used

to make inferences about sample data with sub-samples. The benefit of this process is that

the accuracy of the inference between the sub-sampled data and the sample data can be

measured, while the accuracy of the inference between the sample data and the population

is unknown. If the bootstrapped data offers a good approximation of the sample data, then

the sample data should offer a good approximation of the population. Bootstrapping is used

in this manuscript to account for random deviations in the sample by effectively increasing

the sample size with bootstrapped replications. Bootstrapping is one of the steps in module

analysis that is used throughout this manuscript and described in the next chapter.
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Chapter 3

Introduction to Module Analysis

The following Chapter introduces the necessary information for the methods Modified

Module Analysis and Modified Module Analysis - Partial that will be used throughout this

document.
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3.1 Background

Students’ conceptual understanding of physics and coherently applied errors in that

understanding, misconceptions, have long been important research areas within Physics Edu-

cation Research (PER). This research has been fostered by the introduction of multiple-choice

conceptual instruments such as the Force Concept Inventory (FCI) [9], the Force and Motion

Conceptual Evaluation [12], the Conceptual Survey of Electricity and Magnetism (CSEM)

[13], the Brief Electricity and Magnetism Assessment (BEMA) [54], and the Quantum Me-

chanics Concept Assessment (QMCA) [15]. Recently, network analytic techniques, called

Modified Module Analysis (MMA) or Modified Module Analysis - Partial (MMA-P), have

been applied to the FCI and FMCE [55–58] and have identified common student incorrect

answering patterns as well as potential flaws in the instruments.

Chapters 4 and 6 discuss the application of MMA and MMA-P to the CSEM and the

BEMA. Chapter 5 compares misconception structures across institutions with these same

methods with the FCI. This chapter serves as an introduction to the method and provides

the background for its application to physics conceptual inventories.

3.1.1 Theories of Knowledge

Physics Education Research has investigated common student difficulties with con-

ceptual physics since its inception. These difficulties have often been conceptualized as

“misconceptions” or “alternate conceptions/hypotheses.” Early work [2, 59, 60] analyzed

common alternate views of force and acceleration. Halloun and Hestenes [7, 8] extended

these works by developing a taxonomy of “common sense concepts” representing incorrect
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reasoning about Newtonian mechanics. The FCI was developed partially with the goal of

measuring these incorrect reasoning patterns [9]. The authors of the FCI provide a detailed

description of the misconceptions measured by the instrument. This description was refined

by Hestenes and Jackson [61] to produce a complete taxonomy of misconceptions measured

by the FCI. This taxonomy is also used in Chapters 4 and 5.

The misconception model of incorrect reasoning was important in the development of

many conceptual physics instruments, particularly the FCI and FMCE. Other models of

incorrect thinking have also been used to explain student reasoning in physics. Two of the

most important models are ontological categories [62–64] and knowledge in pieces [65, 66].

The ontological categories theory explains incorrect student reasoning as the misclassifica-

tion of some quantity [62–64], for example the misclassification of force as a substance. If

that substance can be used up, then one would predict that an object in motion after the

application of a force would come to a stop as the force was used up. The knowledge-

in-pieces framework suggests that student incorrect and correct reasoning is composed of

small pieces of reasoning that are activated either singly or collectively to address a prob-

lem [65, 66]. Many researchers have explored variations of this model, conceptualizing the

reasoning fragments as phenomenological primitives (p-prims) [65, 66], facets of knowledge

[67], or resources [6, 68, 69].

Scherr provides a definition that contrasts the knowledge-in-pieces and misconcep-

tions views which we adopted in this work [70]. The misconception view is “a model of

student thinking in which student ideas are imagined to be determinant, coherent, context-

independent, stable, and rigid,” [70] while knowledge-in-pieces models student conceptions

“as being at least potentially truth-indeterminate, independent of one another, context-
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dependent, fluctuating, and pliable” [70].

MMA and MMA-P are quantitative methods that identify consistently selected re-

sponses to a multiple-choice instrument. They cannot identify the correct theory of knowl-

edge to represent the student thinking that generated the consistent responses. For brevity,

communities of incorrect responses are often discussed as resulting from misconceptions. The

communities identified in the FCI and FMCE were often associated with misconceptions from

Hestenes and Jackson’s taxonomy [61]. The identification of communities of incorrect re-

sponses as misconceptions in the CSEM or the BEMA is far less clear. A more nuanced

discussion of the classification of the incorrect communities is provided in Chapters 4-6.

3.2 Network analysis

Network analysis is a versatile set of techniques that have been applied across many

different research areas. A network is a series of nodes (vertices) interconnected by edges

to form a graph. Numerical weights may be associated with the edges representing some

feature of the relationship between the nodes. These techniques have been used in a variety

of studies outside of education, such as mapping electrical signals in the brain as functional

networks [71], the difference between passing patterns in different teams at the World Cup

[72], plants’ response to bacterial infection [73], and the probability of becoming a homicide

victim when living within a disadvantaged neighborhood [74]. Network analysis has also

been fruitful within education research to study the structure of classrooms through the

social interactions of students and teachers [75], undergraduate student representations of the

relatedness of physics concepts through concept maps [76], and the difference between high
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school students’ and interdisciplinary professionals’ emotional perception and conceptual

knowledge of STEM [77].

3.2.1 Social network analysis in physics education research

Analyzing social structures through social network analysis has been the primary appli-

cation of network analysis in PER. In a social network, actors, usually students or educators,

are represented by nodes in a network, with edges representing some social interaction be-

tween the actors. Social networks have been used in physics education to characterize and

test active learning environments [78–80], to predict future performance [81, 82], to predict

retention and persistence within a degree program [83, 84], to explore physics self-efficacy

and anxiety [85, 86], to explore interactions between lab groups by gender [80], to study

conceptual change in student responses and discussions [87, 88], to determine the effect of

informal learning environments and out of class relationships on class involvement and com-

mitment [89, 90], and to explore the change in co-authorship behaviors in PER over time

[91]. For an overview of network analysis in PER, see the review by Brewe [92].

3.2.2 Module Analysis in physics education research

Module analyses are a set of network analytic techniques used to analyze multiple-

choice instruments [55–58, 93]. Module analysis was introduced by Brewe et al. as module

analysis for multiple choice responses (MAMCR); MAMCR was applied to the responses

of 143 first year physics students’ FCI post-test results at a university in Denmark [55].

A network was formed in which the nodes represented incorrect responses and the edges

represented the frequency of selection of both incorrect responses by the same student. When
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the correct responses were included in the network, a single community appeared that hid

any interesting structure; as such, only incorrect responses were retained. Nine communities

were identified in this analysis, but only three were found to represent a coherent, underlying

incorrect concept.

MAMCR inspired a series of further studies of conceptual instruments with modifi-

cations to the algorithm. Wells et al. attempted to replicate the MAMCR analysis and

found that in their case, the algorithm did not scale to large datasets [56]. To produce a

scalable algorithm, the frequency of common selection was replaced by the correlation of

selection. To calculate this correlation, the selection of each response to the instrument is

dichotomously scored producing a vector of 150 values (the FCI has 30 items, each with 5

responses). Correct responses are removed leaving a vector with 120 entries. The correlation

matrix of this vector forms the edge weights in the network. The modified algorithm was

called modified module analysis (MMA) [56]. The communities extracted by MMA are gen-

erally small, which simplifies the identification of the reasoning which led to the responses

being selected together. MMA was applied to 4500 responses to the FCI from an introduc-

tory calculus-based physics class [56]. The resulting communities were composed of blocked

items and items consistently applying a variety of misconceptions: the circular impetus mis-

conception, the largest force determines motion misconception, the motion implies active

forces misconception, and two Newton’s 3rd law misconceptions. All of these are described

in detail in Hestenes and Jackson’s [61] taxonomy of Newtonian misconceptions measured

by the FCI.

As with other quantitative methods such as cluster analysis or factor analysis, the

identification of the possible reasoning behind communities extracted in module analysis
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relies upon the interpretation of the researchers. This process is greatly aided for the FCI by

the detailed description of the instrument as it was introduced [9], the detailed description

of misconceptions measured by the instrument provided by Jackson and Hestenes [61], and

the detailed mapping of the granular knowledge measured by the instrument provided by

Stewart et al. [94].

Like MAMCR, MMA was not productive in examining correct and incorrect responses

in the same network. To remove this restriction, Modified Module Analysis-Partial (MMA-P)

was developed by Yang et al. [58]; MMA-P replaces the correlation between the 120 dichoto-

mously scored responses with the partial correlation correcting for overall instrument score

for all 150 responses. Some responses may be correlated because only very high performing

students choose them, and others may be correlated because only the lowest performing stu-

dents choose them; the items are correlated through the overall instrument score. MMA-P

corrects for these correlations by controlling for overall instrument score. The network pro-

duced by MMA-P includes communities of incorrect responses as identified by MMA, but

also communities with a mix of correct and incorrect responses and communities with en-

tirely correct responses. Yang et al. applied MMA-P to the same sample of FCI responses as

used by Wells et al. and found very similar incorrect communities. The mixed communities

indicated that some FCI items were not functioning as intended, and the completely correct

communities were composed primarily of blocked items or isomorphic items. The module

analysis algorithm applied in Chapters 4-6, MMA-P, is the same algorithm as developed by

Yang et al. [58]; this algorithm will be used to construct the networks.
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3.3 Methods

Chapters 4-6 are presented in chronological order and developments to MMA-P are

made in each subsequent application. In this introduction, MMA-P will be presented as it

is used in Chapter 4 and the developments to the method will be presented as they appear

in subsequent chapters.

3.3.1 Correlation and Partial Correlation

The correlation, rXY , between response X and response Y , measures the degree of

association of the responses and is calculated using Equation 3.1 for two continuous random

variables X and Y ,

rXY =
E[(X − µX)(Y − µY )]

σXσY

, (3.1)

where E[X] is the expectation value, µi is the average of variable i, and σi is the standard

deviation of the same variable. The expectation value is defined as E[X] =
∑N

j=1
Xj

N
, where

j indexes the observations of X and N is the number of possible item responses.

The partial correlation rXY |Z between response X and response Y , controlling for the

total instrument score Z represents the degree of association between X and Y that does

not result from Z. The partial correlation is defined in Equation 3.2:

rXY |Z =
rXY − rXZrY Z√
1− r2XZ

√
1− r2Y Z

(3.2)

Partial correlation can be understood by considering linear regression. Linear regres-

sion can be used to control for the effect of Z on X or the effect of Z on Y , where Z is a
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variable related to both X and Y . Using X as the dependent variable and Z as the inde-

pendent variable of the regression, the residuals of the regression represent the portion of X

not explained by Z. The partial correlation is the correlation between the residuals of the

linear regression of X and Z and the residuals of a linear regression of Y and Z.

3.3.2 Modified Module Analysis and Modified Module Analysis - Partial

Module analysis begins by forming a network of the responses to a multiple-choice

instrument. Each response forms a node in the network. The responses for each student

i are formed into a vector Vi of length k · n where n is the number of items and k is the

number of responses per item. Each entry in this vector codes whether student i selected

response l to item j; the entry is one if the response was selected, zero otherwise. The

nodes in the network represent individual responses; response A to item 7 becomes node

7A. MMA and MMA-P differ in the way they construct the edges connecting the nodes

in the network. In MMA, an edge connects two nodes if the correlation between the two

responses r is larger than some threshold. Only incorrect responses are analyzed in MMA.

In MMA-P, an edge connects two nodes if the partial correlation rXY |S controlling for total

CSEM score S exceeds some threshold. In most previous studies utilizing modified module

analysis, r > 0.2 was used. This threshold was selected to produce compact communities

with theoretically understandable structure. The threshold also naturally removed the large

negative correlations between different responses to the same item and ensured that each edge

retained in the network represented a significant correlation. The application of techniques to

reduce the complexity of a network, such as applying the threshold, is called sparsification

in network analysis [95]. Some operations, such as requiring that nodes are selected by
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some minimum number of students, directly remove nodes; most remove edges, but once all

edges to a node are removed, the node itself is removed from the network. Item responses

selected by fewer than 30 students were removed as statistically unreliable. Each edge was

also checked for significance at p > 0.05 after a Bonferroni correction was applied. The

sparsification process and its relation to sample size is discussed in more detail in Chapter

7.

Once the network is constructed, a community detection algorithm (CDA) is applied

to identify communities within the network. In network analysis, a community is a set of

nodes more closely related to each other than to nodes outside of the community. In this

manuscript, very strong levels of sparsificaiton are used to produce compact disconnected

subgraphs; a disconnected subgraph is called a “component” in network analysis. Different

levels of sparsification would generate more connected structure; as such, we continue to use

the term community. MMA and MMA-P use a global sparsification method which does not

attempt to preserve structure resulting from responses selected by very few students. For

networks with important structure on many levels, this may result in the removal of interest-

ing structures [96]; however, for networks formed of conceptual inventory responses it seems

likely this low level structure results from student mistakes when bubbling scantron sheets,

unserious answering, and random noise. As such, global sparsification seems theoretically

justified. The fast-greedy CDA was applied [97] to identify communities within the network.

Wells et al. [56] showed that other community detection algorithms produced similar results

to the fast-greedy CDA in most cases. The CDA was applied to 1000 bootstrap replications

sampling the dataset with replacement. The community fraction C is defined as the fraction

of times any two nodes appeared in the same community. Communities were retained for
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analysis when C > 80%; the community was identified in 80% of the bootstrap replications.

The boot package [98] in “R” was used for bootstrapping and the igraph package [99] in “R”

was used for the community detection.

3.3.3 Misconception scores

Wells et al. [56] used the consistently selected incorrect responses identified by module

analysis to define a misconception score which quantitatively captures the average fraction

of misconceptions of each type selected by a student. This statistic measures the frequency

of applying different misconceptions and should be related to how strongly they are held.

Misconception scores represent the number of responses chosen that are associated with

a misconception out of the total number of item responses that a student could possibly

choose associated with the same misconception. For example, if responses 6A and 7A are

associated with a misconception; a student can select either 0, 1, or 2 of these responses

resulting in a misconception score of 0%, 50%, or 100% respectively. The score calculated

for this misconception is the average of each student’s misconception score.

R1

0 1

R2
0 A B
1 C D

Table 3.1: 2× 2 contingency table

Misconception scores can be calculated from the contingency table between two item

responses, R1 and R2, as shown in above in Table 3.1. There are four possible combinations

for two item responses: choosing neither, choosing R1 and not R2, choosing R2 and not

R1, and choosing both. For example, if 600 students selected neither response (R1 = 0 and
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R2 = 0), A would equal 600. If 250 students selected response R2, but not response R1, then

C would equal 250.

The misconception score is calculated with Equation 3.3.

M1 =
B + C + 2D

2N
(3.3)

where N = A + B + C + D is the total number of students responding to the instrument.

The numerator of Equation 3.3 is derived by summing the “1’s” in Table 3.1: B + D for

R1 and C + D for R2. The 2N represents the total number of times either response could

be selected. In other words, this provides the fraction of the misconception group that is

chosen on average and should be associated with the likelihood for a student to apply that

misconception.

The methods described in this chapter will be applied in Chapters 4, 5, and 6 and

expounded upon in Chapter 7.
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Chapter 4

Applying Module Analysis to the Conceptual Survey

of Electricity and Magnetism∗

∗This chapter presents the work published in Physical Review Physics Education Research [93]. This
work was constructed with collaborative efforts from James Wells, Rachel Henderson, and John Stewart. It
was supported in part by the National Science Foundation as part of the evaluation of improved learning
for the Physics Teacher Education Coalition, PHY0108787. Data collection for this work was supported by
National Science Foundation Grants No. EPS-1003907 and No. ECR-1561517. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.
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4.1 Introduction

This chapter applies Modified Module Analysis (MMA) to the CSEM to investigate

coherent patterns of student responses to the instrument. MMA forms a network where the

responses to the items in a multiple-choice instrument are the nodes and the edges represent

the correlation between the responses. Network analysis identifies “communities” within

the network of responses that are often selected together by a student. Two versions of

MMA have been used to explore conceptual physics instruments, one using the correlation

matrix (MMA) [56], the other the partial correlation matrix (MMA-P) [58]. The current

work applied both versions to two large samples of CSEM responses from two different

institutions. This chapter explored the following research questions:

RQ1 What community structure is identified by network analysis of the CSEM? How are

the communities associated with previously identified features of the instrument?

RQ2 Does the community structure of the CSEM have communities related to Newtonian

mechanics? If so, how do these communities compare to the communities identified in

the FCI or the FMCE?

RQ3 How do the communities identified by the two versions of Module Analysis, MMA

and MMA-P, compare? How do the communities identified at different institutions

compare?

This work identified a rich ecology of diverse types of incorrect reasoning, much broader

than that identified in the FCI or FMCE. It used the community structure identified to

calculate scores representing the relative strength of types of incorrect reasoning and offered
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a modified scoring rubric for the CSEM which corrects for the relations found between items.

4.1.1 Prior Studies

This work makes extensive use of the results of four prior studies which will be refer-

enced as Study 1 to Study 4.

Study 1

In Study 1, Maloney et al. [13] introduced the CSEM, provided a classification of

items in the instrument, and discussed common errors made by students both pre- and post-

instruction. The CSEM is an instrument with 32 items that measures a student’s knowledge

of concepts in electricity and magnetism. The instrument includes questions about topics

commonly covered in introductory electricity and magnetism courses, such as conductors

and insulators, Coulomb’s law, superposition, electric fields, magnetic fields, and magnetic

induction. Questions from two prior surveys about electricity and magnetism by Hieggelke

and O’Kuma [100] were combined to create the CSEM. This study uses the version available

at PhysPort [11].

Study 1 provided a general classification of the items in the CSEM: charge distribution

on conductors/insulators (items 1, 2, 13), Coulomb’s force law (items 3, 4, 5), electric force

and field superposition (items 6, 8, 9), force caused by an electric field (items 10, 11, 12,

15, 19, 20), work, electric potential, field, and force (items 11, 16, 17, 18, 19, 20), induced

charge and electric field (items 13, 14), magnetic force (items 21, 22, 25, 27, 31), magnetic

field caused by a current (items 23, 24, 26, 28), magnetic field superposition (items 23, 28),

Faraday’s law (items 29, 30, 31, 32), and Newton’s 3rd law (items 4, 5, 7, 24).
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Study 1 also discussed common errors made by students; these errors were not referred

to as misconceptions, but were often made on multiple items suggesting coherently applied

incorrect knowledge. Students confuse the behavior of conductors and insulators (items 1

and 2). Students do not fully understanding the shielding of the electric field by conductors

(items 13 and 14). Responses to item 14 also show a failure to understand Newton’s 3rd

law; this misunderstanding is also detected on items 4, 7, and 24. Students apply the

larger object exerts more force misconception [61] on item 4; this misconception was also

identified within the FCI in Study 3 and the FMCE [57]. On items 8 and 9, response D,

students misunderstand how the addition of another charge affects the field. In the current

study, response D to item 8 is abbreviated as response 8D. Students confuse the behavior of

electric and magnetic fields in responses 23B, 23C, and 26B. Response 10B represents the

force proportional to velocity misconception [61] also detected in the FMCE [57]. On items

19 and 20 students confuse the relation of changes in electric potential to the direction of

the electric field.

Study 2

Prior network analytic studies have made extensive use of Constrained Multidimen-

sional Item Response Theory (MIRT) models of the correct physical reasoning needed to

solve the items in the FCI [94] and FMCE [101]. This work utilized a similar study of the

CSEM [102] which is referenced as Study 2 in this work. All three studies identified the

practice of “blocking” items into item groups as a source of correlations within the responses

to the instrument. A group of items is blocked if all items in the group refer to a common

stem describing the physical system or if one item explicitly refers to a prior item in the
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block. The CSEM contains 3 item blocks {3, 4, 5}, {10, 11}, and {17, 18, 19}. In Study 2,

items 4, 5, and 11 were eliminated from the analysis and only the first item in the block was

retained because the answers to the latter items in the group directly depended on the earlier

items. Items 18 and 19 were retained because it was felt that all items in the block could

be answered independently. Study 2 also identified 3 groups of isomorphic items {6, 8},

{16, 17}, and {21, 27}. Isomorphic items all require the same solution process. In the prior

network analytic studies of the FCI and the FMCE, responses to isomorphic items have often

been detected both in the same correct communities and the same incorrect communities.

Study 3

In Study 3, Wells et al. introduced the modified module analysis (MMA) technique

to study the FCI [56]. MMA uses the correlation between the responses to form edges in

the network, which scales to larger networks better than than the original module analysis

method used in PER, module analysis for multiple choice responses (MAMCR). The com-

munities that result from MMA tend to only include a pair or a small number of responses,

which allows the underlying idea that may lead a student to select those responses to be

identified. MMA was applied to 4509 pretest and 4716 post-test FCI records of students

in a introductory calculus-based physics class. Some of the structure found by MMA was

due to blocked items within the instrument. Excluding these blocked items, there were five

communities on the post-test that represented Newton’s 3rd law misconceptions, the mo-

tion implies active forces misconception, the motion implies active forces for the centrifugal

force misconception, the circular impetus misconception, and the largest force determines

motion misconception, as described in Hestenes and Jackson’s taxonomy of misconceptions
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measured by the FCI [61].

Study 4

In Study 4, in order to include both correct and incorrect responses in a module

analysis, modified module analysis using partial correlations (MMA-P) was developed by

Yang et al. [58]. In MMA-P, the partial correlation matrix is used to connect each pair

of responses, controlling for the effect of total score. MMA-P can identify communities

that include only correct responses, only incorrect responses, or both correct and incorrect

responses. As such, a richer set of communities are found with MMA-P than with MMA.

MMA-P was applied to the same sample of FCI responses as in Study 3. The completely

incorrect communities were very similar to those identified by MMA. The completely correct

communities generally involved blocked items or were identified as isomorphic by MIRT [94].

The mixed communities suggested some items in the FCI were not functioning correctly.

4.1.2 Studies informing the construction of the CSEM

Mechanics instruments such as the FCI were written after a great deal of research

had been performed on students’ conceptual understanding of mechanics. Substantially less

research had been performed on electricity and magnetism before the CSEM was published.

This section summarizes some of the work that informed the construction of the CSEM.

Maloney [103] performed a study using activities that tested students’ conception of

magnetic poles post-instruction in a general physics course and found that the majority

of students had an alternate conception based around the idea that “magnetic poles are

charged.” Guruswamy et al. [104] studied student understanding of the transfer of charge
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between conductors through a small set of questions about simple charge transfer experi-

ments. The vast majority of students tested, from 8th grade to physics majors in senior-level

university physics courses, could not correctly explain or predict what happens when charged

conductors come in contact with each other. Törnkvist et al. [105] investigated the under-

standing of electric fields of introductory college students. They concluded that the majority

of students personify field lines as isolated entities in real space, rather than a set of curves

that represent mathematical properties of space. Galili [106] studied high school student

difficulties with the field concept in electricity and magnetism. Students often regressed in

their understanding of mechanics concepts that were previously understood when learning

about the concept of fields in electricity and magnetism. Studies on student reasoning about

and understanding of the superposition of electric fields have shown that many students

struggle with causality in electricity and magnetism [107, 108]. Most notably, some students

do not recognize the existence of a field unless there is some motion caused by the field.

4.1.3 Prior studies of the CSEM

While not as thoroughly studied as the FCI, multiple studies have used the CSEM to

explore student conceptual thinking about electricity and magnetism.

Planinic [109] compared Croatian students to American students in a study that intro-

duced six overarching conceptual areas measured by the CSEM. In order to produce groups

large enough for analysis, Planinic qualitatively grouped the eleven concepts reported in

Study 1. These areas include electric charge and force (items 1, 2, 3, 5, 6, and 8), Newton’s

laws (items 4, 7, 10, 24, and 27), electric field and electric force (items 9, 12, 13, 14, 15),

electric potential and energy (items 11, 16, 17, 18, 19, 20), magnetic field and magnetic force
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(items 21, 22, 23, 25, 26, and 28), and induction (items 29, 30, 31, 32). The difficulty of the

individual items in each group was very similar for the two populations [109].

Performance differences between men and women on the CSEM have also been ex-

plored. A difference in CSEM test performance by gender was measured by Kreutzer and

Boudreaux [110] and was greatly reduced by pedagogical changes. Gender differences on the

CSEM were also examined by Kohl and Kuo [111] through a transition to studio physics.

Studio physics is a model of instruction where students take an active role in learning by

doing hands-on activities and group work during instruction rather than in separate labs.

They found the gap in normalized gain was reduced by this transition [112]. Henderson et

al. examined gender difference in performance on the CSEM and compared these to gender

differences in other multiple-choice problems in a university physics class [113]. A 5% dif-

ference in CSEM post-test scores was measured; however, the difference in conceptual test

questions was only 3% with no difference observed in quantitative test questions. For a more

complete summary of gender differences in conceptual understanding of physics see Madsen,

McKagan, and Sayre [114].

Other studies have analyzed a subset of items in the CSEM. Leppävirta examined

Newton’s 3rd law using items 4, 5, 7, and 24 and showed that the number of students with

an incorrect model of Newton’s 3rd law decreased from 20% to 10% from pretest to post-test

[115].

Changes from pretest to post-test were also explored by Meltzer using items 18 and

20 to investigate how electric field concepts intersect with potential concepts [116]. Meltzer

reported that students’ conflation of electric field magnitude with potential slightly increased

post-instruction. Study 1 also reported the conflation of electric and magnetic fields. All
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other incorrect response pairs between items 18 and 20 decreased post-instruction, while the

correct response pairs significantly increased.

Karim et al. [117] used the CSEM to study the degree to which graduate teaching as-

sistants (TA) could predict introductory physics students’ alternate conceptions in electricity

and magnetism. TAs were told to choose the response that they thought would be the most

chosen incorrect response by the students in the introductory course. The TAs were likely

to choose responses that included both correct and incorrect concepts, but their choices did

not correspond to the most frequent incorrect responses by students in the course.

4.1.4 Misconceptions

In the current work, network analysis identified two types of Newtonian mechanics

misconceptions described by Hestenes et al. [9]. Within the “Active Force” group of miscon-

ceptions, the “velocity proportional to applied force” misconception showed that Newton’s

2nd law was not well understood. A student applying this misconception reasons that the

velocity of a particle in motion will be equal or proportional to the force applied to the object.

This misconception was also identified in the FMCE by Wells et al. [57] using MMA.

Two misconceptions involving a misunderstanding of Newton’s 3rd law were identi-

fied as forming the “Action/Reaction Pairs” group of misconception by Hestenes et al. [9]:

“greater mass implies greater force” and “most active agent produces greatest force.” Stu-

dents applying greater mass implies greater force misconception reason that the larger or

heavier object exerts more force than the smaller or lighter object. Students applying the

most active agent produces greatest force misconception assume an active object produces

more force than an inactive object; for example, a small car pushing a large truck exerts more
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force on the truck than the truck exerts on the car. Module analysis identified both miscon-

ceptions in the FCI (Study 3) and the FMCE [57]. In both studies, responses demonstrating

both Action/Reaction Pairs misconceptions were found in the same community.

The FCI and FMCE were developed within the misconception framework and network

analysis largely supported this framework identifying only one community which was better

described as a phenomenological primitive within the knowledge-in-pieces model of student

knowledge. The CSEM was not developed from a robust framework of misconceptions, but

rather responses were taken from common open-response answers to the items. No robust

taxonomy of misconceptions of electricity and magnetism similar to Hestenes and Jackson’s

taxonomy of misconceptions of mechanics [61] has been published. This offers the possibility

that a broader set of structures not identifiable as misconceptions may be identified using

MMA.

4.2 Methods

4.2.1 Sample

This study was performed on samples from two US institutions.

Sample 1

Sample 1 was collected from spring 2003 until spring 2012 at a southern land-grant

university with a total enrollment of about 25,000 students. The demographics of the un-

dergraduates at the university were 77% White, 8% Hispanic, 5% African American, 2%

Asian with other groups composed of no more than 3% [118]. The overall undergraduate
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population had ACT scores ranging from 23-29 (25th to 75th percentile) [118].

The CSEM post-test was given in the introductory calculus-based electricity and mag-

netism courses serving scientists and engineers. Only students with complete post-test re-

sponses were retained for the study (N = 2538). The CSEM was given as a quiz after

instruction and the student’s scores were recorded for part of their course grade. The same

professor taught the course for the total period studied. The course implemented a number

of interactive engagement instructional practices in both the lecture and laboratory.

Sample 2

Sample 2 was collected from fall 2015 to spring 2019 at an eastern land-grant university

with a total enrollment of about 30,000 students. The overall undergraduate demographics

were 80% White, 6% international, 4% Hispanic, 4% African American, 4% reporting two

or more races, 2% Asian with other groups composed of no more than 1% [118]. The overall

undergraduate population had ACT scores ranging from 21-26 (25th to 75th percentile)

[118].

The CSEM post-test was given in the introductory calculus-based electricity and mag-

netism courses serving scientists and engineers. Only students with complete post-test re-

sponses were retained (N = 3595). The CSEM was given as a quiz post-instruction and

graded for a small amount of course credit. The course was managed by a single lead in-

structor in the time studied who taught the majority of the lecture sections. Interactive

engagement methods were applied in both the lecture and laboratory.
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4.2.2 Modified Module Analysis

Modified Module Analysis (MMA) and Modified Module Analysis - Partial (MMA-P),

as described in Study 3 and 4, were applied to the CSEM. These methods are described in

Chapter 3.

4.3 Results

Modified Module Analysis and Modified Module Analysis - Partial were applied to

the CSEM; Figure 4.1 shows the communities detected with their respective correlation

thresholds. Three of the four analyses were performed with r > 0.15 instead of the r > 0.20

threshold used in Study 3 and 4. The threshold was adjusted to provide a fairly disconnected,

but rich, set of communities. The nodes of the networks that correspond to correct responses

are labeled with an asterisk (*). The magnitude of the correlation or partial correlation

between nodes in Figure 4.1 is proportional to the line thickness.

The total scores of the two samples were quite different. For Sample 1, the CSEM

post-test percentile score was 61.8 ± 15; for Sample 2, the post-test percentile score was

45.5± 18.

Table 4.1 provides a summary of the communities as well as a possible explanation

of the common reasoning applied. A number of the communities identified were composed

of items within item blocks. There is substantial evidence that the practice of blocking

items produces correlations between the items that are not related to consistently applied

reasoning [94, 101]. These groups are labeled “blocked items” and are discussed separately.

The communities are divided into three classes: communities composed entirely of incorrect
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Figure 4.1: Communities detected in the CSEM. Figure (a) shows the correlation network for Sample 1.
Figure (b) shows the correlation network for Sample 2. Figure (c) shows the partial correlation network for
Sample 1. Figure (d) shows the partial correlation network for Sample 2. The strength of the correlation or
partial correlation is represented by the line thickness.

responses, mixed communities composed of both correct responses and incorrect responses,

and communities composed entirely of correct responses. Some smaller communities appear

in one community but also appear as a part of a larger community. These sub-communities
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Table 4.1: Communities identified in CSEM responses. Communities labeled × are sub-communities of
another community. Sample 1 is abbreviated S1; Sample 2, S2. Responses in parenthesis are completely
connected. Responses separated by dashes are only connected to each other. Blocked items are marked
consistent if later items apply correct reasoning to an incorrect earlier item.

Community
Correlation Partial

Misconception/Principle/ExplanationCorrelation
S1 S2 S1 S2

Completely Incorrect Communities
1C, 2B ⊗ ⊗ ⊗ Conductor and insulator misconceptions.
3A, 4A ⊗ ⊗ Blocked items - consistent.
3D, 5D ⊗ Blocked items - (5D) E ∝ 1/r.

3C, 4C, 5A, 5B ⊗ ⊗ ⊗ × Blocked items - (3C, 4C) consistent -
(5A) consistent - (5B) E ∝ 1/r.

5A - (3C, 5B, 4C) ⊗ Blocked items - see text.
- 7C - 24B (7C, 24B) - Newton’s 3rd law misconceptions.

4D, 5E ⊗ ⊗ × ⊗ Blocked items - consistent.
14E - 7C - 24B ⊗ Newton’s 3rd law misconceptions.
8A, 9A ⊗ Charge on axis produces zero field.
8D, 9D ⊗ × ⊗ ⊗ Interaction between charges modifies superposition.
9C - 8D - 9D ⊗ Interaction between charges modifies superposition.

10B, 21A ⊗ ⊗ (10B, 21A) Velocity proportional to applied force.
(21A) Electric-magnetic field undiscriminated.

10E, 11B ⊗ ⊗ ⊗ ⊗ Blocked item - consistent.
13A, 14A × ⊗ Conductor does not shield electric field.
13A - 14A - 13B ⊗ Conductor does not shield electric field - (13B) Like charges attract.

17C, 18C ⊗ Equipotential spacing proportional to electric
field (18C); Electric field proportional to work (17C).

18E, 20C ⊗ ⊗ × Electric field-potential undiscriminated.
19B, 20B × × ⊗ × Electric field points to higher potential.

20A - 19B - 20B ⊗ ⊗ ⊗ Electric field points to higher potential.
(20A) Electric field-potential undiscriminated.
(20A) Electric field proportional to equipotential spacing.

23C, 26B ⊗ Electric-magnetic field undiscriminated.
23D, 26C ⊗ ⊗ Left hand rule.

Mixed Correct and Incorrect Communities
5D - (4B*, 5C*, 3B*) ⊗ Blocked items. See text.

- 7C - 4D - 5E
(6E*, 8B*, 9B*, 10C*) - 21B ⊗ (10C*, 21B) Electric-magnetic field undiscriminated.
13E*, 14B ⊗ Shielding works symmetrically.
17B - 18D* - 20D* ⊗ Work proportional to electric field.
17E* - 18E - 20C - 19A* ⊗ (18E, 20C) Electric field-potential undiscriminated.

19A*, 20C × ⊗ (20C) Electric field-potential undiscriminated.
(19A*, 20C) Field points to lower potential.

Completely Correct Communities
(3B*, 4B*, 5C*, 7B*) - 13E* ⊗ Coulomb’s law.
8B*, 9B* ⊗ × Coulomb’s law and superposition.
15A* - 17E* - 16E* ⊗ See text.

- (25D*, 21E*, 24C*, 27E*)
18D*, 20D* × ⊗ Relation of equipotential spacing to field.
21E*, 27E* ⊗ × Zero velocity implies zero magnetic force.
23A*, 26A* ⊗ ⊗ Magnetic field of wires.

are marked by × to show the continuity between communities more accurately. Examination

of Figure 4.1 shows that while many communities are completely connected, some are not.

In order to display the connectivity of individual communities in Table 4.1, responses that

are completely connected are shown in parenthesis, while responses that are only connected
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to each other are separated by dashes.

The items in the CSEM can be broadly divided into 4 topics: electrostatics (items 1

to 15), electric potential (items 16 to 20), magnetostatics (items 21 to 28), and magnetic

induction (items 29 to 32). No communities were detected that involved the magnetic in-

duction items. Examination of these items suggests that items 29, 30, and 32 should require

related reasoning; failure to find responses to these items in the same community may in-

dicate that the items are not functioning as intended. Generally, communities were formed

within these broad topics with a few notable exceptions. Communities were identified that

involved misconceptions of Newtonian mechanics that involved both electrostatic and magne-

tostatic items. Some students also answered questions about the electric and magnetic field

in the same way producing communities representing the electric-magnetic field undiscrimi-

nated misconception. Study 3 and 4 also identified both blocked items and isomorphic items

as important in contributing to the formation of communities. The electric-magnetic field

undiscriminated terminology was selected to mirror that of the misconception classifications

of the FCI in Hestenes and Jackson’s taxonomy [61].

4.3.1 Blocked Items

The CSEM contains 3 item blocks {3, 4, 5}, {10, 11}, and {17, 18, 19}. In the first

two blocks, the answers to later items in the block are dependent on the answers to the

earlier items in the block. Items 17, 18, and 19 can be answered independently, but could

be correlated if a student misinterpreted the shared description of the physical system. The

items in an item block are often found in the same community in Table 4.1. Both Study

3 and 4 also found that items within item blocks often were found in the same community
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in the FCI and FMCE. In Table 4.1, communities largely composed of blocked items are

labeled blocked items. When the responses to later items would have been correct if the

response to the earlier item was correct, the community is labeled “consistent.”

Many correct, mixed, and incorrect communities contain combinations of responses to

items 3, 4, and 5. The common stem of this set of items presents the student with two

objects each with charge Q which exert a force F on each other. The charge of one of the

objects is then increased to 4Q. Item 3 asks about the new force on the object of charge

Q. Item 4 asks about the new force on the object of charge 4Q. Item 5 asks about how

the force on the 4Q charge changes if the objects are moved 3 times farther apart. Many

of the later responses in these communities are the correct response if an earlier response

were correct as in communities {3A, 4A}, {3C, 4C, 5A}, and {4D, 5E}. The community

{4D, 5E} is found independently and as part of a larger mixed community. The responses

to item 3 in these communities all represent a failure to understand the relation of electric

charge to electric force. The correct answers to items 3, 4, 5 were found both in a mixed and

a completely correct community. In the mixed community, 5D is also associated with the

correct responses (3B*, 4B*, 5C*) demonstrating the E ∝ 1/r misconception. Response 5B

in the community {3C, 4C, 5A, 5B} also applies the E ∝ 1/r misconception. Response 5D

in community {3D, 5D} may also apply this misconception except the student mistakenly

selected F/4 instead of 4F for item 3 (this is the most straightforward way to reconcile these

two inconsistent responses). Communities mixing items 3, 4, and 5 with other items were

also identified and are discussed later.

Blocked items 10 and 11 are only found together in one incorrect community, {10E,

11B}; response 11B is the correct response if response 10E were correct. As in prior work,
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the practice of blocking items generates relations, correlations, between items that make the

score of the items difficult to interpret. A simple correct or incorrect scoring of items 4,

5, and 11 almost certainly understates a student’s understanding of the items; a modified

scoring rubric that takes into account relations between the items is proposed in Sec. 4.3.10.

4.3.2 Mechanics misconceptions

Multiple communities were identified where the responses represented misconceptions

about Newtonian mechanics. Students continue to apply some non-Newtonian misconcep-

tions identified with the FCI and FMCE in introductory mechanics courses in introductory

electricity and magnetism courses. Three responses, 7C, 14E, and 24B, as well as inconsis-

tent responses to items 3 and 4 show that Newton’s 3rd law is not well understood. Hestenes

and Jackson [61] identified two Newton’s 3rd law misconceptions in the FCI; greater mass

implies greater force and most active agent produces greater force. While neither is com-

pletely appropriate for the CSEM, some responses to item 4 and responses 7C and 24B seem

more aligned with the greater mass implies greater force misconception; response 7C applies

a greater charge implies greater force reasoning, while response 24B applies greater current

implies greater force reasoning. Response 14E, which involves an asymmetric application of

the shielding by a conductor of the electric field, does not fit the larger implies more force

model. All three responses indicate that the student does not apply Newton’s 3rd law in a

variety of contexts. The identification of these responses as misconceptions requires further

study. It may be students’ thinking is better modeled by the knowledge-in-pieces framework

where the student is applying a p-prim such as “large implies large.”

Response 7C was also associated with different combinations of the item 3, 4, 5 block in
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completely incorrect community {5A - (3C, 5B, 4C) - 7C - 24B} and mixed community {5D

- (4B*, 5C*, 3B*) - 7C - 4D - 5E}. The inclusion of 7C in these communities is unusual; item

4 can be answered either using Newton’s 3rd law or Coulomb’s law. Response combinations

{3B*, 4B*} and {3C, 4C} represent a correct application of Newton’s 3rd law, though in

the latter Coulomb’s law is not applied correctly. It is unclear why incorrect applications

of Newton’s 3rd law, 7C and 24B, should be associated with its correct application. This

may indicate item 4 is being answered using some reasoning pattern other than Newton’s

3rd law.

The responses in the community {10B, 21A} apply the force proportional to velocity

misconception identified in Hestenes and Jackson’s taxonomy [61].

4.3.3 Isomorphic items

Study 2 identified 3 groups of isomorphic items {6, 8}, {16, 17}, and {21, 27}. Iso-

morphic items require very similar reasoning for their solution. In both Study 3 and 4,

isomorphic items often formed both incorrect and correct communities. The isomorphic

items were less important in forming communities in the CSEM. All three sets of isomorphic

items were identified together in a completely correct community or as correct items in a

mixed community. Only items 21 and 27 were identified independently as a correct com-

munity; there was no corresponding incorrect community. These items ask for the magnetic

force on a stationary charge; students are consistently reasoning correctly, but do not apply

consistent incorrect reasoning. The students may not hold misconceptions for these items.

While items 6E* and 8B* were identified in a mixed correct community, item 8 was

more consistently associated with item 9 in incorrect communities. These two items may
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be described as nearly isomorphic; item 8 involves the change in electric force on a point

charge as a third charge is added to the system; item 9 also uses two point charges and adds

a third asking about the electric field. In Study 2, the solution of the items differ only by

the application of the relation between the force and field (F⃗ = qE⃗). The point charge expe-

riencing the force is a positive charge, and therefore force and field are parallel. Responses

8D, 9C, and 9D were found in incorrect communities in all samples; all explicitly test the

misconception that the addition of an additional charged object somehow modified the total

field beyond simply adding the field of the new object. It seems likely this misconception is

responsible for the formation of the communities that include items 8 and 9.

Items 23 and 26 differ only by the principle of superposition. Item 23 asks about the

addition of the fields of two wires; item 26 asks for the direction of the field of a single

wire. Study 2 found item 23 discriminates very weakly on the principle of superposition; as

such, these items may be effectively isomorphic explaining their identification as a correct

community {23A*, 26A*} and as an incorrect community {23D, 26C} where the students

incorrectly apply the right hand rule.

Items 16 and 17 are only found in one correct community connecting disparate items.

Both are coded as applying the definition of electric potential in Study 2. While this is

true, the items are fairly different with item 16 applying the principle that only differences

in electric potential are physically important while item 17 asks to rank the work needed to

move through a field where the equipotentials are given. Study 2 did not test the principle

that only differences in electric potential are important; it seems likely, given the failure to

find items 16 and 17 in the same communities, that this was an oversight and they may not

actually be isomorphic.
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4.3.4 Electric-magnetic field undiscriminated

Study 1 reported that students often conflated electric fields and magnetic fields in

items 23 and 26. The community {23C, 26B} is consistent with their analysis. The wires in

these items seemed to be viewed as charges with magnetic field pointing either away from or

toward the wire in the incorrect community. There could be a reverse conflation of electric

fields and magnetic fields in the community {10E, 11B} where students seem to apply the

Lorentz force law to electric fields. This connection is less clear; response 10E states that a

charged particle released in an electric field remains at rest. There could be many reasons

for the selection of this response. Mixed community {10C*, 21B} also contains responses

that were answered symmetrically for the electric and magnetic fields, where a uniform field

produces a constant acceleration on a charge released in the field.

4.3.5 Electrostatic communities

Items 13 and 14 appear in two completely incorrect communities, {13A, 14A} and

{13A - 14A - 13B}, and one mixed community {13E*, 14B}; these communities demonstrate

different incorrect ideas about conductors and shielding. The two completely incorrect com-

munities show the student does not understand that conductors shield the electric field. The

mixed community applies the principle of shielding symmetrically reasoning that conductors

not only shield their interior from external electric fields, but their exterior is also shielded

from internal electric fields.

The completely correct community {(3B*, 4B*, 5C*, 7B*) - 13E*} is curious. Items

3 to 7 all apply Coulomb’s force law; however, the connection of this group with item 13
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is unclear. Item 13 correctly applies the principle of the shielding of a conductor’s interior

from electric fields and forces.

4.3.6 Electric potential communities

Items 16 to 20 all require the definition of electric potential. Item 16 was discussed

as part of the isomorphic group formed of items 16 and 17 and is only identified in one

community which mixed electric potential and magnetostatic items. The remaining elec-

tric potential items are found in a large number of communities. The composition of these

communities can shed light on how these items are functioning. The completely correct com-

munity {18D*, 20D*} includes responses that correctly represent the relation of equipotential

spacing and field strength, 18D* and 20D*, and the relation of equipotential magnitude and

electric field direction, 20D*. Mixed community {17B - 18D* - 20D*} connects 17B to 18D*

which may indicate the student believes work is proportional to electric field independent

of distance. The mixed community {19A*, 20C} is identified independently and as part of

the larger community {17E* - 18E - 20C - 19A*}. Both responses 19A* and 20C correctly

capture the concept that electric field points toward lower electric potential; response 20C

applies the electric field-potential undiscriminated misconception. Responses consistent with

the electric field proportional to the electric potential may indicate a student applied this

misconception. This implies a student being scored as incorrect on 20C is demonstrating

some of the knowledge the correct students are demonstrating. This pair is connected with

response 18E in mixed community {17E* - 18E - 20C - 19A*}; 18E also represents the electric

field-potential undiscriminated misconception. The combination {18E - 20C} is also identi-

fied as an independent community. Response 17E* is the correct response that work is the
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difference in potential, but the connection to 18E suggests the student does not understand

the relation of electric field to potential and may be reasoning that work is proportional to

electric field. The connection of the correct response to the incorrect response suggests the

item 17 may not be functioning as intended.

Many completely incorrect communities that are not part of mixed communities were

also identified. In community {17C, 18C}, 18C applies the misconception that electric field

magnitude increases with equipotential spacing; this suggests 17C may apply the work is

proportional to electric field misconception. All items in the community {20A - 19B - 20B}

suggest the student believes electric field points to higher potential. Item 20A could also

represent the electric field magnitude increases with equipotential spacing or the electric

field-potential undiscriminated misconception.

4.3.7 Magnetostatic communities

Incorrect communities {23D, 26A} and correct communities {21E*, 27E*}, {23A*,

26A*} were discussed earlier as examples of isomorphic or nearly isomorphic item groups;

response 24B was discussed as applying Newton’s 3rd law misconceptions. Response 21B

was identified as applying the electric-magnetic field undiscriminated misconception. The

only other community formed of magnetostatic items combined these items with electric

potential items and is discussed in the following section.

4.3.8 Other communities

The community {15A* - 17E* - 16E* - (25D*, 21E*, 24C*, 27E*)} mixes electric

potential and magnetostatic items. The physical reasoning linking these items is unclear.
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One possible explanation for this community is that many of the responses are of a type

preferentially avoided by students [119] for non-physical reasons. Response 16E is a “none

of the above” response, responses 17E and 24C reports all the quantities are equal, response

21E and 27E are “zero” responses, and response 25D have the quantities in ascending order.

4.3.9 Misconception scores

Table 4.2: Misconception Scores. Items not in parenthesis represent independent misconceptions. Items in
parenthesis represent a misconception only if both items are selected and are counted as one response.

Misconception Responses Misconception Score
Sample 1 Sample 2

Conductor and insulator misconceptions 1C, 2B 10.0% 18.1%
Electric field proportional to 1/r (3A, 4D), (4B,5D), (4C, 5D) 12.8% 17.2%
Newton’s 3rd law misconceptions (3 ̸= 4), 7C, 14E, 24B 17.6% 26.5%
Charge on axis produces zero field 8A, 9A 2.5% 4.4%

Interaction between charges modifies superposition 8D, 9C, 9D 17.3% 31.1%
Velocity proportional to applied force 10B, 21A 12.9% 24.5%

Shielding misconceptions 13A, 13B,14A 27.8% 56.2%
Electric field-potential undiscriminated 18E, 20C 32.3% 31.4%
Electric-magnetic field undiscriminated (10B, 21A) (10C*, 21B), 23C, 26B 2.2% 13.3%
Electric field points to higher potential 19B, 20A, 20B 13.0% 29.5%

Left hand rule 23D, 26C 4.6% 8.7%

Misconception scores are presented in Table 4.2. A misconception score is a percentage

representing the number of responses a student selected that are identified with a given

misconception out of the total number of CSEM responses identified with that misconception.

This work refines the calculation of misconception scores by identifying combinations of

items which taken together represent a misconception; these combinations are counted as a

single instance of a misconception and represented by two items in parenthesis in Table 4.2.

Multiple combinations of responses to items 3 and 4 represent a failure to apply Newton’s

3rd law; one misconception is counted for each time the response to item 3 is different to the

response to item 4.

Sample 2 had consistently higher misconception scores than Sample 1 for all categories
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excluding electric field-potential undiscriminated, which was commensurate for both samples.

This was expected given the average CSEM score for each sample. The high misconception

score of 56.2% for Sample 2’s shielding misconceptions category along with the lack of com-

munities composed of items 13A, 13B, and 14A in Sample 2’s networks could be explained

by a general misunderstanding of shielding by conductors. The high misconception score for

both samples’ electric field-potential undiscriminated misconception as well as the commu-

nity appearing in both samples’ networks indicates that the conflation of electric fields and

potentials could be a strongly held misconception among many students post-instruction.

Communities with a very low misconception score such as {8A, 9A} and {23D, 26C}

contain responses chosen by very few students. The correlation coefficient, which is used to

define the relation between responses, is fairly insensitive to sample size. The identification

of these communities selected by few students implies those students who select one response

in the community also selected the other response.

4.3.10 Alternate Scoring Rubric

The consistent answering patterns on blocked items and the existence of isomorphic

groups of items suggest an alternate scoring rubric for the CSEM might be appropriate.

Items 3, 4, and 5 are blocked items all measuring the understanding of Coulomb’s force law.

We propose item 4 be counted as correct if it is consistent with the response to item 3 or

is itself correct. Likewise, item 5 should be counted as correct if it is answered consistently

with item 4 or is itself correct. Repeated instances of the response E, “other,” for items 3,

4, and 5 should not be considered consistent for the grading of items 3, 4, and 5. Items 10

and 11 are blocked items involving the motion of a charged particle in a uniform electric
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field. Response 11B should be counted as correct if response 10E was selected; both assert

the particle remains at rest. Items 21 and 27 both test whether the student understands the

magnetic force on a stationary charge is zero; we suggest grading these two items as a block

where one point is received if both are correct. This would also serve to lower the weighting

of this relatively specific piece of knowledge on the overall score.

Item 4 could either be answered using the same reasoning as item 3 using Coulomb’s

law or by applying Newton’s 3rd law to the result of item 3. The majority of communities

identified involving item 4 do not consistently contain the other Newton’s 3rd law items.

Because the reasoning applied is ambiguous, it seems unfair to penalize the student for an

answer which may have involve correct reasoning based on a prior incorrect answer.

An alternate rubric for the BEMA is available at PhysPort [11]. CSEM items 3 to 5

are very similar to items 1 to 3 on the BEMA; the alternate scoring of item 5 suggested

is consistent with the suggestions for the BEMA. The modified rubric to the BEMA also

suggests grading one pair of isomorphic items as a block where the student receives one point

if both are correct.

With the modified scoring producing a score out of 31, the Sample 1 CSEM percentage

score became 62.2 ± 15 and the Sample 2 CSEM percentage score became 46.4 ± 18. The

modified scoring resulted in a 0.4 percentage point increase in average CSEM score for Sample

1 and a 0.9 percentage point increase in average score for Sample 2.
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4.4 Discussion

4.4.1 Research questions

This work explored three research questions which will be addressed in the order pro-

posed.

RQ1: What community structure is identified by network analysis of the CSEM? How

are the communities associated with previously identified features of the instrument? The

community structure identified by MMA and MMA-P was discussed in detail in the previ-

ous section. Communities of incorrect responses or mixed correct and incorrect responses

were identified in electrostatics, electric potential, and magnetostatics but not in magnetic

induction. Most communities connected items within the individual topics; however, com-

munities of items incorrectly applying Newtonian mechanics and communities applying the

same reasoning to electric and magnetic fields included items from multiple topics. This

indicates Newtonian misconceptions continued to be applied to multiple contexts involving

both electricity and magnetism. The isomorphic items identified in Study 2 were much less

important to the community structure than in the FCI or FMCE in Studies 3 and 4. This

indicates the consistent incorrect reasoning patterns were more independent from the correct

reasoning in electricity and magnetism than they were in mechanics.

Blocked items were included in many communities offering additional evidence that the

practice of blocking items makes an instrument difficult to interpret statistically. Unlike prior

studies, analysis of patterns of blocked responses were useful in further understanding the

answering patterns of students. This suggests a simple all or nothing scoring of each CSEM

item may fail to correctly capture the student’s understanding of electricity and magnetism.
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An alternate scoring scheme that grades items contingently based on the responses to earlier

items might produce a more accurate reflection of student understanding. One such scheme

was proposed in Sec. 4.3.10. While some individual students scores were modified, the

overall CSEM average changed little.

Many of the communities identified represented consistent application of incorrect rea-

soning identified in the introduction of the instrument in Study 1. Network analysis showed

that students were applying similar incorrect reasoning across multiple contexts. There was

a substantial variety of incorrect reasoning possibly indicating the CSEM is a superior in-

strument to the FCI for exploring the structure of incorrect physical understanding. Some

communities represented failure to broadly understand general concepts: shielding miscon-

ceptions and conductor-insulator misconceptions. Some represented naive conceptions where

two disparate quantities were assumed to behave in the same manner: electric-magnetic

field undiscriminated, electric field-potential undiscriminated, or electric field proportional

to work. Some seemed to represent simple mistakes: incorrectly applying the right-hand rule

or believing the electric field points toward higher potential. There were also a few miscon-

ceptions that assumed additional properties of the electric field not consistent with physics:

interaction between charges modifies superposition and a charge on the axis produces zero

field. It seems likely that all these general types of consistent incorrect reasoning are also

present in mechanics but are not detected by the FCI which was developed explicitly to

detect common misconceptions.

Most completely correct communities involved items requiring either the same reason-

ing or very similar reasoning. Many of the mixed communities involved chains of items where

members of the community are only connected in pairs. Many of the mixed communities
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involved electric potential. Most of these communities were only identified in Sample 1. This

may indicate that electric potential is not being effectively covered for the students in Sample

1; this is supported by a misconception score for the electric field-potential undiscriminated

in Sample 1 that is much more similar to the weaker performing Sample 2 than other miscon-

ception scores. The mixing of correct and incorrect responses for electric potential in Sample

1 may indicate the correct responses are being selected without correct understanding and

that the scores on these items may overstate student knowledge. Some mixed communities

were also formed when an incorrect response required multiple reasoning steps; the student

may reason correctly on one step and incorrectly on another step ultimately selecting the

incorrect response. This can be seen in the community {19A*, 20C} where the student

correctly reasons that electric field points to lower potential but does not understand the

relation between equipotential spacing and field strength.

RQ2: Does the community structure of the CSEM have communities related to Newto-

nian mechanics? If so, how do these communities compare to the communities identified in

the FCI or the FMCE? Two general groups of mechanics misconceptions were identified in

the CSEM by module analysis. The first, responses {10B, 21A}, applied the velocity propor-

tional to applied force misconception and were identified by both MMA and MMA-P, but

only in the lower performing Sample 2. Communities testing this misconception were also

identified in the FMCE by Wells et al. [57]. These responses had moderate misconception

scores of 12.9% for Sample 1 and 24.5% for Sample 2. As such, while this misconception

does persist after instruction in mechanics, it is not one of the most applied misconceptions

in the electricity and magnetism class.

Four items are potentially related to an incorrect application of Newton’s 3rd law:
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7C, 14E, 24B, and inconsistent responses to items 3 and 4. These items were identified in

communities in a number of combinations. All communities containing 24B also contain 7C.

Two of the three communities containing 7C also contain 24B. The only community con-

taining 14E also contains 7C and 24B. Response 7C is also found in communities containing

incorrect responses to item 4, either response 4C or 4D. Responses 7C and 24B are consistent

with a greater charge/current implies greater force misconception which is analogous to the

“greater mass implies greater force” misconception in mechanics. Response 14E only states

the forces are different; the relative charges of the two objects involved are not given and,

therefore, it is not possible to determine if a modification of greater mass implies greater

force is being applied. The inconsistent association of 7C to responses to item 4 and the

failure to associate either responses 14E or 24B with these items seems to indicate incon-

sistent responses to items 3 and 4 are selected for reasons other than applying Newton’s

3rd law incorrectly. The communities formed by all four items are very different than the

communities of Newton’s 3rd law items identified in Study 3 and Wells et al. [57] which were

tightly interconnected. The Newton’s 3rd law responses in the current study were sparsely

connected. This seems to indicate that students’ application of incorrect reasoning about

Newton’s 3rd law is far less consistent when applied to electricity and magnetism or that

these items measure reasoning beyond Newton’s 3rd law.

RQ3: How do the communities identified by the two versions of Module Analysis, MMA

and MMA-P, compare? How do the communities identified at different institutions compare?

A total of 20 completely incorrect communities were identified by MMA or MMA-P in the

two samples; only 6 were identified by both techniques in both samples. Four of these were

responses to blocked items. MMA identified 19 communities in the two samples, 8 were
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identified in both samples. Sixteen communities were identified in the higher performing

Sample 1, while only 11 were identified in the lower performing Sample 2. All MMA-

P communities identified in Sample 1 were also identified as MMA communities. The 8

communities identified by MMA-P in Sample 1 were substantially fewer than the 16 identified

by MMA suggesting many of the communities identified by MMA in Sample 1 resulted

from correlations through total test score. This, and the facility to include correct answers,

suggests MMA-P is a superior technique for exploring consistent student answering patterns.

For Sample 2, only one fewer community was identified by MMA-P than MMA. All

MMA-P communities in Sample 2 were also identified by MMA except {5A - (3C, 5B, 4C)

- 7C - 24B}. The additional community is curious because it mixed incorrect application of

Newton’s 3rd law in responses 7C and 24B with a correct application in the pair 3C and 4C.

As such, the MMA-P algorithm produced a simplified community structure and removed

many communities which were correlated through total CSEM score.

There was very little similarity between the mixed communities in the two samples;

only one community was identified in both samples. Many more mixed communities were

identified in Sample 1. Both mixed communities for Sample 2 involved confounding different

concepts through the electric-magnetic field undiscriminated and the electric field-potential

undiscriminated misconceptions. Application of naive conceptions is consistent with the

overall low performance of the sample and shows students continue to have a fundamental

misunderstanding of the central concepts of electricity and magnetism post-instruction.

Four of the six completely correct communities were consistent between samples. One

of the inconsistent communities {15A* - 17E* - 16E* - (25D*, 21E*, 24C*, 27E*)} may

be related to issues of test logic such as avoiding “none of the above responses” with little
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relation to physical reasoning. The other inconsistent community is curious {(3B*, 4B*,

5C*, 7B*) - 13E*}; four of the responses are related to Coulomb’s force law while response

13E* involves understanding that a conductor shields its interior from the electric field.

4.4.2 Other Observations

This work used the term misconception for the reasoning generating incorrect response

communities. This is almost certainly too broad a classification. In the work introducing

the FCI, Hestenes et al. differentiated naive conceptions from misconceptions and reported

that some misconceptions were weakly held and some were strongly held [9]. They separate

naive conceptions of kinematics where various combinations of position, velocity, accelera-

tion, and force are not differentiated in student thinking from more robust incorrect models

similar to medieval theories of motion. Many incorrect communities resulted from the naive

application of reasoning associated with one concept to a different concept: electric-magnetic

field undiscriminated and electric field-potential undiscriminated. A number of communities

seem to result from simple mistakes which seem unlikely to represent strongly held beliefs:

electric field points to higher potential and the left hand rule. Other communities do not

seem to represent a single consistent fragment of incorrect reasoning, but more general topics

that are not well understood: conductor and insulator misconceptions and that the conduc-

tor does not shield the electric field. Many communities could be explained by an alternate

framework of student knowledge. The “larger implies larger” p-prim might explain the elec-

tric field-potential undiscriminated, the electric field points to higher potential, the electric

field proportional to work, and the Newton’s 3rd law misconceptions. However, if this was

the case one might expect these items to appear together in more communities.
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It seems unlikely that any of the incorrect reasoning about electricity and magnetism

resulted from the students’ lived experiences. It also seems likely that similar differences

in strength and kind of incorrect reasoning are found in mechanics. It is important to

understand these differences because effective and efficient methods of addressing incorrect

thinking may differ depending on the origin and degree the student has internalized the

misconception. For example, a misconception rooted in a robust naive theory applicable and

productive across many contexts may require substantial instructional resources to overcome;

however, a simple mistake such as using your left hand to do a cross-product might be

corrected by simply pointing out the mistake.

The variety of coherent incorrect responses identified in this study suggests that an

instrument like the FCI developed to measure strongly held misconceptions may miss a

variety of other incorrect answering patterns. Evidence supporting this possibility can be

found in the MMA analysis of the FMCE by Wells et al. [57]. Both the CSEM and FCI

use five responses per item where the responses were developed from interviews and student

responses to open-response applications of the instrument. The FMCE employs a different

strategy offering the student up to nine responses per item where the items generally exhaust

all possible responses. The present study and the MMA analysis of the FCI in Study 3 both

discarded nodes selected by fewer than 30 students producing relatively compact discon-

nected communities with a correlation threshold of 0.15 or 0.20. This was not the case for

the FMCE. When Wells et al. removed only nodes selected by fewer than 30 students, an

exceptionally complex community structure was produced at the r > 0.20 correlation thresh-

old; to reproduce the compact community structure of the FCI, only nodes selected by 20%

of the students were retained. When this threshold was relaxed to 10% of the students, a
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substantially more complex community structure was exposed where the communities gener-

ally could be identified with a pattern of incorrect reasoning. Often this incorrect reasoning

was not represented as a misconception in Hestenes and Jackson’s taxonomy [61]. The work

on the FMCE and the present work on the CSEM suggest there is a much richer ecology

of incorrect conceptions than those measured by the incorrect reasoning on an instrument

such as the FCI which focuses on the most strongly held misconceptions. The relations

identified between items within the CSEM suggested an alternate scoring rubric was needed

to correctly represent student understanding; one such rubric was proposed.

4.5 Implications

Network analysis was successful in identifying consistently selected incorrect and cor-

rect answers in the CSEM. This provides support for the need for a taxonomy of miscon-

ceptions (common incorrect answering patterns) of electricity and magnetism similar to the

taxonomy of mechanics misconceptions provided by Hestenes and Jackson [61]. The variety

of misconception communities identified in the CSEM was commensurate with the variety

of misconception communities measured by the FCI in Study 2 and larger than the number

of communities found in the FMCE by Wells et al. [57]. This suggests the existence of

a rich set of electromagnetic misconceptions; a systematic identification of the full set of

misconceptions would benefit instructors. The calculation of misconception scores similar to

those in Table 4.2 should allow instructors to determine what kinds of incorrect reasoning

most need to be addressed.
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4.6 Conclusion

The CSEM was constructed to assess students’ conceptual understanding of electricity

and magnetism. This study explored the use of MMA and MMA-P as productive ways to

identify communities of correlated responses to individual items within the CSEM. In gen-

eral, MMA-P produced a richer set of communities and eliminated communities of items

correlated through total instrument score. Overall, a number of communities were identi-

fied for the two samples; however, the explanations for the reasoning represented by these

communities varied. A substantial number of the identified incorrect communities consisted

of blocked items providing continued support that the practice of blocking items can pro-

duce correlations that are not related to physical reasoning. The consistent identification

of blocking as generating psychometric problems for the primary conceptual instruments

used in PER may suggest the need for a new generation of conceptual inventories. Multiple

communities were formed of responses where the response to later items would be correct

if the response to an earlier item was correct. This suggests that the scoring rubric to the

CSEM should be modified to include relations between responses. A modified scoring rubric

was proposed, but changed overall CSEM post-test averages little. Most communities of

completely incorrect responses and mixed correct and incorrect responses consisted of items

with the same subtopic, either electrostatics, electric potential, or magnetostatics. Some of

communities connected items in multiple subtopics including misconceptions about mechan-

ics and a failure to differentiate the electric and the magnetic field. The results suggest the

existence of a rich collection of misconceptions about electricity and magnetism which are

consistently applied by students after instruction in introductory physics. This collection
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was much more diverse than those identified by the FCI and FMCE which may indicate

these instruments do not fully characterize the scope of coherent incorrect reasoning.
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Chapter 5

Comparing Conceptual Understanding Across

Institutions with Module Analysis∗

∗This chapter presents the work published in Physical Review Physics Education Research [120]. This
work was constructed with collaborative efforts from James Wells, David E. Pritchard, and John Stewart.
This work was supported in part by the National Science Foundation as part of the evaluation of improved
learning for the Physics Teacher Education Coalition, PHY0108787. Data collection for this work was
supported by National Science Foundation Grants No. EPS-1003907, No. ECR-1561517, and No. HRD-
1834569. Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foundation.
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5.1 Introduction

The Force Concept Inventory (FCI) is an instrument used to evaluate students’ con-

ceptual understanding of Newtonian mechanics using items which test Newton’s three laws,

one-dimensional kinematics, and two-dimensional kinematics [9]. The FCI has been one of

the most commonly used and, accordingly, studied conceptual instruments in physics since

its introduction in 1992. The FCI along with the catalog of common misconceptions it

measures [61] has been transformative to PER. Hake collected FCI data from multiple insti-

tutions to show traditional teaching methods were broadly ineffective at improving student

understanding [28]. The Hake study provided the impetus for the ongoing effort to move to

active learning strategies in all physics classes. Recent studies across many institutions have

continued to demonstrate the efficacy of these methods [45]. Eliminating misconceptions,

stable context insensitive alternate scientific theories, continues to represent a significant

challenge for PER. An overview of research using the FCI is provided in Sec. 5.1.3.

There have been many quantitative studies of the FCI, the Force and Motion Concep-

tual Evaluation (FMCE), and the Conceptual Survey of Electricity and Magnetism (CSEM).

Many of these studies have applied factor analysis and have been largely ineffective at ex-

tracting meaningful substructure from the FCI [94, 121–124]. The authors of the FCI argue

that the instrument was not constructed to factor [9, 125]. The reason for this is evident

in the correlation matrices presented by Stewart et al. [94]; the FCI items are deeply inter-

connected often mixing different physical principles in different ways. Factor analysis also

only considers the correct responses, not the incorrect responses representing misconceptions

around which the FCI is built. Module analysis, which can identify complex substructures
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and relations within both the correct and incorrect responses to an instrument, has been con-

sistently productive at identifying theoretically explainable structures within the responses

to multiple-choice instruments. Further, module analysis identifies consistently selected cor-

rect and incorrect responses allowing the determination of incorrect thinking that is applied

across multiple contexts. These incorrect ideas, misconceptions, may indicate areas where

instructional interventions may most productively be directed.

5.1.1 Research Questions

In recent research, patterns in students’ incorrect responses to these instruments have

been identified by network analytic techniques applied to the FCI, FMCE, CSEM, and

QMCA [55–58, 93, 126]. The current work applied the network analytic technique called

Modified Module Analysis-Partial (MMA-P) to five samples of FCI responses from five dif-

ferent U.S. institutions. Prior work using module analysis has been restricted to single

samples in most cases and two samples in a study of the CSEM. These samples came from

institutions with student populations with fairly commensurate levels of incoming high school

preparation. The five samples used in the present study were drawn from institutions with

a broad range of student high school academic preparation and prior knowledge of physics.

As such, the present study should advance the understanding of whether module analysis

results are fairly universal across institutions with differing student populations. Further,

when two samples were available, comparison of the community structure was primarily

qualitative. Network analysis offers a wealth of quantitative comparison metrics, some of

which are applied in the current work. This work will apply some of these metrics to pro-

vide the quantitative comparisons of the five samples not available in prior studies. Module
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analysis, like other network analysis methods, requires the setting of a number of parameters

to control the density of the network. These parameters have been set qualitatively in past

studies; the present study will investigate a possibly productive means of setting the primary

parameter, the correlation threshold, more systematically.

The following research questions were explored in this study:

RQ1 How does the community structure of the FCI identified through module analysis

compare across multiple institutions? What does this community structure imply

about student understanding of mechanics?

RQ2 How can the primary parameter required by module analysis be selected quantita-

tively?

RQ3 What quantitative network analytic metrics are productive for characterizing institu-

tional differences and similarities identified by module analysis? What do these metrics

imply about the student understanding of mechanics?

5.1.2 The Force Concept Inventory

The FCI contains 30 items, each with four incorrect responses and one correct response.

Many of these incorrect responses were specifically constructed to be attractive to students

applying common misconceptions. The version of the FCI used in this study was released

in 1995 [127] and can be found at PhysPort [11].
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5.1.3 Prior studies of the FCI

A thorough summary of the prior research using the FCI was presented in previous

module analysis studies [56, 94, 128]. An overview is provided below.

The structure of the FCI

When formulating the FCI, Hestenes, Wells, and Swackhammer separated the intro-

ductory physics curriculum on forces into six unique conceptual dimensions and described

which concepts each FCI item was created to measure. Soon after the introduction of the in-

strument, other researchers challenged whether this internal division was actually measured

by the FCI.

Several studies have applied Exploratory Factor Analysis (EFA) to understand the

structure of the FCI. These studies dichotomously scored each item as correct or incorrect.

Huffman and Heller applied EFA to 145 high school student responses to the FCI [121]. This

analysis identified only two out of the six factors described by Hestenes et al.: “Kinds of

Forces” and Newton’s 3rd law. When EFA was applied to 750 students at the university

level, the only factor identified was “Kinds of Forces” [121]. Scott et al. performed a factor

analysis of 2150 college student post-test responses and found five factors were required for

the optimal model; one factor explained much of the variance [123]. Using a related dataset,

Scott and Schumayer repeated the factor analysis using multidimensional item response

theory (MIRT) also identifying the five factor model as optimal [124]. Semak et al. also

reported an EFA of the FCI using 427 pretest and post-test responses finding six factors

were required for the optimal model [122]. Stewart et al. also performed a factor analysis
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using MIRT on 4716 post-test responses [94] showing a nine factor model was optimal. The

factors identified were strongly related to the practice of item blocking or chaining and the

existence of a small number of isomorphic groups of items in the instrument. An item

block is a group of items that all refer to a common stem. Two problems are isomorphic

if they both can be solved by the same reasoning. None of these analyses recovered the

structure proposed by the authors of the FCI; many of the extracted factor structures mixed

items requiring different reasoning for their solution. These factor analyses examined only

the correct answer structure of the FCI; additional techniques are required to examine the

incorrect answers along with the correct answers. Module analysis is one such technique.

Misconceptions

The FCI was created within a misconceptions framework. The misconceptions frame-

work holds that students have a belief system of commonsense alternative ideas that are

stable, largely context-independent, and resistant to change. Misconceptions are fundamen-

tally scientific hypotheses that happen to be false and not errors in reasoning. Examples of

misconceptions identified by Hestenes, Wells, and Swackhamer include impetus dissipation

and active forces [9].

Impetus is an internal motive force that continues to carry an object forward after the

initial external force no longer acts. Impetus dissipation is the idea that this impetus will

dissipate and the object will stop unless it is replenished, somewhat analogous to gasoline

in a car. When students apply this to circular motion (circular impetus) the students are

applying the idea of “training,” where objects continue to do what they “learned” when

given the initial impetus [9]; the object remembered it was traveling in a circle.
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The active force misconception is the idea that only active agents, usually living or in

motion under their own power, can exert forces and cause motion. This explains not only

the motion of objects (a couch moves because a person pushes it), but also the interactions

between objects (a moving car exerts a force on a parked car, but not vice versa) [9].

5.2 Methods

5.2.1 Sample

This work examined FCI pretest and post-test responses from five U.S. institutions.

These will be denoted as Samples 1 to 5 in what follows. Demographic data, undergrad-

uate populations, and ACT 25th-75th percentiles for all institutions in these samples were

obtained from the National Center of Education Statistics [129]. All samples contained only

matched pretest/post-test responses with no missing responses.

Sample 1: 49% White, 22% Hispanic/Latino, 9% non-resident alien, 8% Asian, 5% two

or more races, 4% Black or African American, and 1% American Indian or Alaska Native.

Sample 2: 75% White, 9% Hispanic/Latino, 4% two or more races, 4% Black or African

American, 3% non-resident alien, 3% Asian, and 1% American Indian or Alaska Native.

Sample 3: 73% White, 18% Black or African American, 3% Hispanic/Latino, 2% two

or more races, 1% non-resident alien, 1% Asian, and 1% American Indian or Alaska Native.

Sample 4: 32% White, 26% Asian, 16% Hispanic/Latino, 12% non-resident alien, 7%

Black or African American, and 5% two or more races.

Sample 5: 38% White, 18% Asian, 12% Hispanic/Latino, 12% non-resident alien, 8%

Black or African American, and 6% two or more races.
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The size of the sample N , the total undergraduate population of the institution, and

the 25th to 75th percentile range for the ACT scores of the institution are shown in Table

5.1.

These samples among others were collected by Pritchard as part of a work to improve

item response theory analysis of the FCI [130]. While largely a convenience sample, these

five were used because of both the size of three of the samples and the range of selectivity

of all five institutions measured by ACT score range.

Table 5.1: Sample Description

Sample N Undergraduate ACT 25th-75th
Population Percentile

1 9606 44,000 22-29
2 4360 23,000 23-30
3 1496 19,000 22-30
4 466 4,000 33-35
5 213 10,000 33-35

5.2.2 Modified Module Analysis - Partial

Modified Module Analysis - Partial was applied to pretest and post-test responses to

the FCI. An overview of MMA-P is provided in Chapter 3. Improvements on the method as

it was applied in Chapter 4 are provided below. Note, for the remainder of this chapter, we

will shorten partial correlation to correlation and use r as the partial correlation coefficient

for brevity.

5.2.3 Partial correlation threshold

In MMA-P, a threshold value for the partial correlation coefficient r was used to sparsify

the network. In previous module analysis studies, the sparsification criteria was selected
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qualitatively [55–57, 93, 101]; the minimum value of r was selected which produced networks

with sufficiently small communities that the common reasoning required by items in the

community could be identified. In this work, a more quantitative method was used to

choose the threshold. The MMA-P networks were calculated using a range of r thresholds;

for these networks, the average community size (ACS) was plotted against the total number of

communities (NC). The ACS is the average number of nodes in a community. The correlation

threshold was chosen as the r value for which this plot was changing most rapidly. At this

correlation threshold, the community structure is simplifying rapidly with changing r. This

is similar to selecting the optimal number of factors in an exploratory factor analysis by

examining the scree plot and choosing the number of factors at the “knee” in the plot.

5.2.4 Sparsification and statistical power

Prior MMA and MMA-P studies used single large datasets or two large datasets of

commensurate size. The current study uses five datasets of very different sizes; some elements

of sparsification interact with sample size and need to be considered if the goal is to compare

networks across institutions.

In prior MMA and MMA-P studies, one of the sparsification operations was to remove

nodes selected by fewer than 30 students. These studies all used large samples of at least

2500 students; as such, the 30 student threshold removed only responses selected by less than

approximately 1% of students. This threshold was introduced to remove the inevitable small

background of students who misread questions or bubble scantron sheets incorrectly; these

errors introduce responses not related to physics reasoning. Three of the five samples used

in this work are smaller than in previous studies; two substantially smaller. The purpose of
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this study is to compare MMA-P results across institutions; applying a 30-student response

threshold would represent a substantially different percentage of total responses removed

at the five institutions studied. To allow fair comparison, a response threshold of 5% was

used in this study. This was selected to allow the retention of at minimum nodes with 10

responses in Sample 5. Analysis in Chapter 7 suggests that at even this small sample size,

MMA-P can identify statistically significant structure.

The sparsification operations applied in this study are the minimum student response

threshold (5% in this study), requiring edges represent correlations between nodes with

significance of p < 0.05 after a Bonferroni correction is applied, requiring edges to have pos-

itive correlations, requiring those correlations to be above a correlation threshold (generally

around r > 0.2 where r is the partial correlation coefficient between nodes), and requiring

the edge be detected in the same community in 80% of bootstrap replications. Because the

Bonferroni correction depends on the number of statistical tests performed, the order of these

operations should be investigated. In this study, we chose to apply the Bonferroni corrected

significance threshold first because we felt the highest priority should be to eliminate the

consideration of statistically insignificant structures; however, we acknowledge an argument

can be made for applying the student response threshold first to minimize the number of

statistical tests performed. Chapter 7 present a comparison of the resulting structure if

the student response threshold is applied first or after the Bonferroni corrected significance

threshold. For all samples, the order of the response threshold and the significance thresh-

old does not change the number of nodes in the final network for the post-test; some small

differences are found in the pretest network for Samples 1 to 4. The pretest differences were

more pronounced for Sample 5. As such, MMA-P is generally not sensitive to the order of
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applying the response threshold and the significance threshold. The reason for this is likely

that the r > 0.2 correlation threshold is a very strong criteria (r = 0.1 represents a small

effect and r = 0.3 a medium effect) making the significance threshold unimportant. Even

at the size of Sample 5, a correlation of r > 0.2 is significant with a small p value. The

difference in the number of final nodes between the response threshold of 30 in prior studies

and 5% in this study was also examined. There was little effect for Samples 1 to 4 for the

post-test; however, the number of nodes in Sample 5 changed from 14 with the 5% threshold

to 8 with the 30 threshold. Differences were smaller in the pretest networks.

Naturally, nodes removed by either the 30 or 5% response threshold are selected by a

few students. Chapter 7 also presents an analysis of the correlation of small occupation nodes;

with sufficiently consistent answering, even infrequently selected nodes, can have statistically

significant correlations. This analysis also revealed that, for Sample 5, correlations between

nodes needed to be at least 0.35 to pass the significance threshold test. This and the

inconsistencies observed above suggest that Sample 5 is too small to resolve any but the most

correlated network structure; as such, we focus on comparisons of Samples 1 to 4 and discuss

Sample 5 only as a partially resolved network structure and as an example of the information

which can be extracted by MMA-P even for smaller samples. This is fundamentally an issue

of statistical power; at the size of Sample 5 there is insufficient statistical power to resolve

structure with the same detail as other samples.

5.2.5 Multiplex networks

Multiplex networks are networks composed of multiple layers where each layer is itself

a network. The same node may be present in many layers; nodes in multiplex networks
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are called “actors” [131]. In general, actors may be connected through edges that represent

different types of relations in different layers of the network. As an example, a multiplex

network could be used to represent social and professional connections where actors are

people and different layers represent different mediums in which people interact (work, home,

social media, etc.). For a more complete explanation of multiplex networks consult Dickison

et al. [131] or Kivelä et al. [132].

A multiplex network was formed applying MMA-P to the FCI response data from

each institution studied individually creating 5 distinct networks. These networks were then

added as layers forming a multiplex network. As the networks were computed independently

using the MMA-P algorithm of Yang et al. [58], the different sample sizes did not restrict

their use in a multiplex network. The multiplex network framework is used for the depth of

layer comparison tools available. The actors in this context are item responses and the edges

are the partial correlations between pairs of item responses. While we propose no explicit

interaction between the layers, each layer represents features of the structure of Newtonian

thinking measured by the FCI at a single institution. We will find this thinking extremely

similar across institutions leading to an implicit interaction between the layers in the form

of the general structure of conceptual Newtonian reasoning. The “R” package multinet [133]

was used to construct the multiplex network.

5.2.6 Network comparison metrics

In this work, the primary benefit of combining the five networks into a single multiplex

network is the availability of a rich set of tools to identify common structure in multiplex

networks and metrics to characterize those networks. This work will utilize only a small
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subset of the available analysis methods.

The Clique Percolation Method (CPM) is an efficient means of identifying overlapping

communities in multiplex networks [134]. The CPM identifies communities which share k

edges in m layers. Figures 5.1 and 5.2 show an example of the clique percolation method

with k = 1 and m = 3. Cliques with one edge that appear in the networks of at least 3 of

the 4 largest samples are shaded with the same color. Clique percolation can also be used

to simplify the process of identifying sets for further network comparison metrics, such as

the set of triangle communities with m = 1 and k = 3 [135]. A triangle is a completely

connected sub-network with 3 nodes. As an example, consider the Sample 4 pretest network

in Figure 5.1. The completely connected 3-node communities are {4E*, 15A*, 28E*} and

{17B*, 25C*, 26E*} which each count as one triangle. The completely connected 4 node

community {5B*, 11D*, 13D*, 18B*} contains 4 completely connected 3-node groups and

counts as four triangles; therefore, the Sample 4 pretest network contains 6 total triangles.

Many network comparison metrics are available for multiplex networks. In this work,

we report the Coverage Index (CI) [136] for a variety of structures found in the networks.

The CI measures the similarity between two sets by dividing the size of the intersection of

the sets by the size of each set. The intersection of sets A and B is the set containing all

elements that are found in both sets. For two sets A and B, two coverage indexes can be

calculated: CIA = N(A ∩ B)/N(A) and CIB = N(A ∩ B)/N(B) where the function N(X)

computes the size of the set X. The CI provides a natural measure of the degree to which one

set has members in common with another set. CI is calculated for three network structures:

actors (nodes), edges, and triangles. CI results are represented using the corrplot package

[137] in “R” as shown in Figure 5.4.
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5.3 Results

Table 5.2 shows the sample size, pretest average, post-test average (mean ± standard

deviation), normalized gain, and Cohen’s d between pretest and post-test.

Table 5.2: Descriptive statistics

Sample N Pretest Post-test Normalized d
Average % Average % Gain

1 9606 26.7 ± 13.2 54.1 ± 22.5 0.37 1.49
2 4360 40.9 ± 18.1 71.4 ± 17.9 0.52 1.69
3 1496 31.6 ± 16.4 43.3 ± 20.2 0.17 0.64
4 466 42.7 ± 18.9 61.5 ± 19.3 0.33 0.98
5 213 68.0 ± 19.9 88.5 ± 11.9 0.64 1.25

5.3.1 The networks

The community structure identified by MMA-P is shown for the pretest in Figure 5.1

and for the post-test in Figure 5.2. The figures shade like communities in multiple networks

with the same color. Only communities identified in three of the four largest post-test

samples are shaded. Various combinations of 4E*, 15A*, and 28E* were found in either the

pretest or post-test networks; these have also been shaded. The asterisk indicates that the

response is the correct response. Items 4, 15, and 28 require Newton’s 3rd law for their

solution. For the pretest in Figure 5.1, the communities have been colored consistently with

the post-test in Figure 5.2 to allow comparison. Shaded communities that were not found

in at least three of the four largest samples on the pretest have been outlined in red.

The communities that appear in at least three out of eight pretest or post-test networks

of the four largest samples are summarized in Table 5.3. Only a subset of all communities

are presented to highlight structures that were common across many institutions and to
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Figure 5.1: Pretest networks. Communities are shaded consistently with the post-test networks to allow
comparison. Shaded communities not found in at least three of the four largest pretest samples are outlined
in red. Correct responses are marked with an asterisk. The size of the partial correlation between the
responses is proportional to the edge width.
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Figure 5.2: Post-test networks. Communities found in three of the four largest samples are shaded with the
same color. Correct responses are marked with an asterisk. The size of the partial correlation between the
responses is proportional to the edge width.
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suppress communities that differ by a single edge. To partially capture the rich morphologies

shown in the figures, completely connected communities are shown in parentheses separated

by commas. A community is completely connected when each node in the community is

connected by an edge to every other node in the community. A node that is only connected

to one other node is indicated by a dash. For example, the Sample 1 post-test community

9B-(8A, 21B, 23C) contains a completely connected subgroup (8A, 21B, 23C) and one node,

9B, that is only connected to node 8A. Communities containing only two nodes must be

completely connected and, therefore, the communities 8A-9B and (8A, 9B) are equivalent.

Table 5.3: Communities of FCI responses identified in at least 3 out of 8 pretest or post-test networks of the
four largest samples. Cells with the label × are sub-communities of a larger community or are found with a
different edge structure, while cells labeled ⊗ are explicitly found in the network. Sample 1 is abbreviated
as S1, Sample 2 S2, etc. Responses that are separated by dashes are connected to each other, but not to
other responses in the community. Responses that are in parenthesis are completely connected.

Community
Pretest Post-test

Explanation
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Completely Incorrect Communities
4A - 15C × × ⊗ × × × × Newton’s 3rd law misconceptions.
(4A, 15C, 28D) ⊗ ⊗ ⊗ × ⊗ ⊗ Newton’s 3rd law misconceptions.
5D - 18D ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ Motion implies active forces.
5E - 18E ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ Motion implies active forces: centrifugal force.
6A - 7A ⊗ ⊗ ⊗ ⊗ ⊗ Circular impetus.
8A - 9B ⊗ ⊗ ⊗ ⊗ × × × Blocked items: Last force to act determines motion.

9B - (8A, 21B, 23C) ⊗ ⊗ × 8A-9B: Blocked items. 21B-23C: Blocked Items.
Both: Last force to act determines motion.

17A - 25D ⊗ ⊗ ⊗ Largest force determines motion.
21B - 23C ⊗ ⊗ ⊗ ⊗ × ⊗ × × ⊗ Blocked items: Last force to act determines motion.
23D - 24C ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ Impetus dissipation.

Mixed Correct and Incorrect Communities
8B* - 21C ⊗ × × × 8B* and 21C share a similar trajectory.
21C - 23B* ⊗ × × Blocked Items: 21C and 23B* share a similar trajectory.

Completely Correct Communities
4E* - 28E* × × × × × × × ⊗ Newton’s 3rd law.
15A* - 28E* ⊗ × × × × × × × Newton’s 3rd law.
(4E*, 15A*, 28E*) ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ Newton’s 3rd law.
5B* - 18B* ⊗ × ⊗ ⊗ ⊗ × × ⊗ Centripetal acceleration in a curved trajectory.

(5B*, 13D*, 18B*) × ⊗ ⊗ Motion under gravity;
a force in the direction of motion is not necessary.

11D* - 13D* × × ⊗ Motion under gravity;
a force in the direction of motion is not necessary.

17B* - 25C* × ⊗ × × × ⊗ ⊗ ⊗ Newton’s 1st law; Addition of forces.

17B* - 25C* - 26E* × × ⊗ ⊗ Newton’s 1st and 2nd law; Addition of forces;
(26E*) 1D acceleration.

Some communities appear as independent communities not connected to other nodes in
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some samples and as subgroups of larger communities in other samples. Some communities

also share the same nodes but have different edges in different samples. A community is

marked with an × to indicate it is also contained in a larger community or that it is also

found with an alternate edge structure. For example, the community formed of nodes 8A,

9B, 21B, and 23C is found with two different structures. In the Sample 4 post-test, the

community is completely connected. In the Sample 1 and Sample 3 post-test, the edges

connecting 21B and 23C with 9B are missing. It is also found as two distinct communities

in the Sample 1, 3, and 4 pretest as 8A-9B and 21B-23C.

Table 5.3 also includes a descriptive phrase explaining either the misconception or

correct reasoning principle represented by the community. For incorrect communities, these

were drawn from the taxonomy of Jackson and Hestenes [61] while incorporating changes

to this taxonomy suggested in the original MMA paper [56]. Correct answers are classified

using the detailed model of the FCI constructed by Stewart et al. [94]. The original model

proposed with the publication of the FCI [9] divided the items into six broad categories. The

model by Stewart et al. classifies each item by the set of reasoning principles needed to solve

the item produces a much more detailed model of each item.

A table of all communities that appear in either the pretest or post-test networks is

presented in Chapter 7. On the post-test, the communities identified in the networks of only

one or two institutions differ from those in Table 5.3 by the addition or subtraction of a

single edge. The communities on the pretest found only at 1 or 2 institutions were generally

communities formed of only two nodes.

Figure 5.2 indicates a strong similarity between student responses post-instruction with

most communities identified in three of the four largest samples. All 12 shaded communities
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were identified in Samples 1 and 3; Sample 2 is missing 8A-9B and 6A-7A while Sample

4 is missing 5E-18E and 17A-25D. There was also substantial consistency in those nodes

identified in fewer than three of the four samples. The combination 6B*-7B* was identified

in two of the four samples. Different combinations of responses to items 11, 13, and 30 were

sporadically identified; these items involve the identification of the forces acting on an object

in motion. Blocked responses 26E* and 23B* were also sometimes found attached to other

responses in their item block. As such, the consistency of completely correct, completely

incorrect, and mixed communities was striking at these very different institutions.

The communities identified post-instruction in three of the four samples include all

communities identified in three of the four largest pre-instruction samples; however, generally

less community structure was identified in the pretest networks. Samples 1 to 4 contain only 5

to 8 of the 12 consistently identified (shaded) post-test communities. The structure that was

identified was also less consistent between the 4 largest pretest samples. Figure 5.1 indicates

shaded communities not found in at least three of the four pretest samples by outlining the

nodes in red. The pretest networks contain all consistently identified completely correct

communities identified in the post-test. Communities 17B*-25C* and (4E*, 15A*, 28E*)

were identified in three of the four largest pretest samples; community 5B*-18B* was only

identified in two of the four largest samples.

Interestingly, the post-test networks also contained completely incorrect communities

not consistently found in the pretest: 6A-7A, 5D-18D, and 17A-25D. As the students correct

thinking improved, those still answering consistently incorrectly were those applying a consis-

tent misconception. The pretest also contained no mixed correct and incorrect communities

while 8B*-21C was consistently identified in all four largest post-test samples.

86



Communities formed of incorrect responses to items requiring Newton’s 3rd law for

their correct solution (items 4, 15, 16, and 28) are categorized as “Newton’s 3rd law mis-

conceptions.” These responses apply either the “greater mass implies greater force” or the

“most active agent produces greatest force” misconceptions from Hestenes and Jackson’s

taxonomy [61]. The Newton’s 3rd law items do not allow these misconceptions to be disen-

tangled. This may explain the mixing of items with different combinations of Newton’s 3rd

law items shown in Table 5.3.

Most communities identified and described in Table 5.3 have been identified previously

in the FCI by either Wells et al. [56, 57] or Yang et al. [58]; communities 21C-23B* and

5B*-18B*-13D* had not been reported in prior studies. These will be discussed with the

mixed and completely correct communities.

To understand the communities identified by MMA-P, a detailed understanding of the

structure of concepts measured by the FCI is needed. Stewart et al. identified four groups of

isomorphic items [94]: {4, 15, 16, 28}, {5, 18}, {6, 7}, and {17, 25}. Isomorphic items can all

be answered correctly by the same reasoning process. The FCI also contains 5 item blocks:

{5, 6}, {8, 9, 10, 11}, {15, 16}, {21, 22, 23, 24}, and {25, 26, 27}. The blocking of items can

produce correlations between items not related to the physical principles tested by the items

and make the items difficult to interpret statistically [56]. For example, the correlations

between items in an item block may be generated by the consistent misinterpretation of the

item stem; thus producing a nested structure for the item correlations.

The completely incorrect communities are often formed by incorrect responses to iso-

morphic items. In general, when the same correct reasoning process is needed to solve two

items, the misconceptions related to those items are also similar. The two-node commu-
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nities not formed of responses to isomorphic items (21B-23C and 23D-24C) are both part

of item blocks and both responses in each community share the same misconception based

on Hestenes and Jackson’s taxonomy [61]. It is not possible to separate the contribution of

the blocked structure of the FCI from the effect of holding the “last force to act determines

motion” misconception on students’ selection of these responses together.

The only completely incorrect community with four nodes combines the communities

from two different sets of blocked items: 8A-9B and 21B-23C. All four responses share the

last force to act determines motion misconception [61]. Items 8 and 9 are blocked and ask

the students about the trajectory and velocity of a hockey puck after it is struck at a right

angle to its direction of motion. Items 21 and 23 are also blocked and involve the trajectory

of a rocket; in item 21 the rocket experiences a thrust at a right angle to its trajectory;

in item 23 the rocket continues after the thrust is removed. Responses 8A, 21B, and 23C

present straight trajectories at right angles to initial direction of motion.

One community which mixes correct and incorrect responses was identified in each

of the four largest post-test samples, 8B*-21C. Responses 8B* and 21C both present the

students with straight line trajectories: this trajectory is correct for item 8 and incorrect

for item 21. One mixed correct and incorrect community, 21C-23B*, appears in two post-

test networks and one pretest network. Items 21 and 23 are part of an item block which

asks about a rocket drifting in space which then fires its engine; the responses 21C and

23B* present the same trajectory, a diagonal line. This trajectory is correct for item 23 and

incorrect for item 21. These two communities may show that the selection of the correct

responses 8B* and 23B* does not indicate an understanding of the underlying mechanics

concepts.
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The completely correct communities were generally composed of responses to isomor-

phic items. The identification of these communities by MMA-P suggests that these correct

responses are being selected together more often that one would predict based on the overall

instrument score.

Some completely correct communities were not formed solely of isomorphic items. The

community 11D*-13D* is formed of two items asking about the forces on an object moving

under gravity: item 11 asks about a hockey puck sliding along a frictionless surface and item

13 about an object thrown directly upward. Both items have correct answers that gravity

is one force acting on the object and both present the students with incorrect responses

indicating a force in the direction of motion. In community 17B*-25C*-26E*, the isomorphic

item pair 17 and 25 is joined by item 26; this item only has an edge with item 25. This

community is found in two post-test networks and one pretest network. Items 25 and 26 are

part of an item block which may explain the correlation. The community (5B*,18B*,13D*)

was found in one pretest and one post-test network while 5B*-18B*-13D* was found in one

post-test network. Item 13 asks about the forces on a ball thrown vertically in the air and

has the correct response that only the force of gravity acts on the ball. Items 5 and 18 are

isomorphic and ask about the forces acting on an object traveling in a curved trajectory. A

downward force of gravity is one of the correct forces for both items. The three items may

be selected together because of a correct understanding of the force of gravity. All three

items have incorrect responses which posit a force in the direction of motion; the responses

may also be selected together because the student does not hold the force in the direction of

motion misconception.

Sample 5 shows the kind of information that can be extracted using MMA-P for smaller

89



samples. Both the Sample 5 pretest and post-test networks were smaller than the other

samples likely because the lower statistical power prevented the resolution of more detailed

structure. These networks did contain consistently selected correct and incorrect response

identified in other networks suggesting that while not all structure may be resolvable at this

sample size, the structure that is resolved is reliable. We note that some of failure to identify

more structure may result from the very high general performance of this sample on the FCI.

5.3.2 Partial correlation threshold

The partial correlation threshold for each network was selected by plotting the average

community size (ACS) against the number of communities (NC). The average community

size is the total number of nodes in the network divided by the number of communities.

An example ACS vs. NC graph for the Sample 1 post-test network is shown in Figure 5.3.

Each point is calculated at a different r threshold value. The plot changes slope quickly

near the point with r = 0.21 which was used as the threshold for calculating the Sample 1

communities in Figure 5.2. Plots for other networks are included in Chapter 7.

The correlation thresholds selected using this method for the pretest and post-test are

shown in Table 5.4. The Sample 5 network was independent of r and, therefore, no threshold

was required for this sample. As shown in Chapter 7, this behavior is the result of the sample

size making the resolution of correlations below 0.35 unlikely.

Table 5.4: Partial correlation threshold coefficients used for each sample.

Pre/Post Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Pretest 0.20 0.20 0.16 0.21 N/A
Post-test 0.21 0.20 0.17 0.22 N/A
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Figure 5.3: Plot used to determined the correlation threshold r for the Sample 1 post-test network. Each
point represents a network calculated at the labeled r value.

5.3.3 Layer comparison results

A wealth of network comparison metrics have been developed for multiplex networks.

For this work, we use the coverage index (CI) of the actors (nodes), edges, and triangles

(completely connected 3 node sub-networks) to quantitatively characterize network similar-

ity. Plots of these quantities are shown in Figure 5.4. These plots make use of pie charts

where a completely filled circle represents an index of 1, an empty cell represents an index

of 0, and a half filled circle an index of 0.5. For samples i and j with i < j, the plot

below the diagonal represents CIi = N(Xi ∩ Xj)/N(Xi) and the plot above the diagonal

CIj = N(Xi ∩ Xj)/N(Xj) where X is the set of actors, edges, or triangles. For example,

consider the plot of the pretest coverage edges of Sample i = 1 and Sample j = 2, the circle

below the diagonal plots CI1 = N(X1∩X2)/N(X1) the fraction of the total number of edges

in Sample 1 that are also in Sample 2. Approximately 67% of the edges in Sample 1 are also

in Sample 2. The circle above the diagonal plots CI2 = N(X1 ∩X2)/N(X2), the fraction of
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edges in Sample 2 that are also in Sample 1. The circle is 22% full; therefore, 22% of the

edges in Sample 2 are also in Sample 1.
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Figure 5.4: Coverage actors, edges, and triangles between samples.
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Communities composed of two and three nodes form the majority of communities

identified in all networks; as such, coverage edges and triangles are natural structures to in-

vestigate to characterize similarity. Figure 5.4 shows substantial similarity between networks

for Samples 1 to 4 in actors, edges, and triangles on the post-test. The plots also illustrate

the lower similarity of the pretest networks compared to the post-test networks. There are

no triangles in the Sample 1 pretest.

The CI allows the quantitative exploration of the change in similarity between the

networks from the pretest to the post-test. The average CI, ⟨CI⟩, of the four largest samples

shows an increase in similarity from pretest to post-test (pretest ⟨CI⟩ = 0.63 actors, 0.58

edges, and 0.28 triangles; post-test ⟨CI⟩ = 0.79 actors, 0.72 edges, and 0.66 triangles). As

such, on average, half of the actors and edges found in the pretest network of one sample

are also found in the pretest network of another sample. These averages grow to 79% and

72% on the post-test indicating the structure of consistently selected responses is greater on

the post-test. This is to be expected as physics instruction serves to even out differences

in incoming student preparation. Only Samples 2, 3, and 4 contain triangles in both the

pretest and post-test networks. Averaging the CI for these samples only shows the triangles

change little from pretest to post-test (⟨CI⟩pre = 0.56, ⟨CI⟩post = 0.60). This stability is

partially the result of correct and incorrect responses to Newton’s 3rd law items forming the

majority of the triangles.

5.3.4 Misconception scores

Wells et al. [56] used the consistently selected incorrect responses identified by module

analysis to define a misconception score which quantitatively captures the average fraction
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of misconceptions of each type selected by a student. Misconception scores measure the

frequency of applying different misconceptions and should be related to how strongly they

are held. Misconception scores represent the number of responses chosen that are associated

with a misconception out of the total number of item responses that a student could possibly

choose associated with the same misconception. Table 5.5 presents the misconception scores

for completely incorrect communities found in most post-test networks in Figures 5.1 and

5.2. The misconceptions are classified using the modifications proposed in Wells et al. [56]

to the Hestenes and Jackson taxonomy [61]. Misconception scores are explained in greater

detail in Chapter 7.

Table 5.5: Percentage of students selecting each incorrect response associated with a misconception for the
FCI post-test.

Misconception Scores
Misconception Responses Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Largest force determines motion 17A,25D 40.0% 38.3% 51.3% 45.9% 13.9%
Newton’s 3rd law misconceptions 4A,15C,28D 31.9% 33.5% 42.7% 46.4% 8.6%
Motion implies active forces 5D,11C,13C,18D,30E 31.4% 20.7% 39.3% 33.6% 10.6%
Circular impetus 6A,7A 12.9% 6.7% 15.2% 8.7% 2.8%
Motion implies active forces; centrifugal force 5E,18E 16.9% 7.0% 19.3% 11.5% 0.5%
Impetus dissipation 23D,24C 18.5% 8.5% 17.4% 14.9% 4.5%
Last force to act determines motion 8A,9B,21B,23C 21.4% 6.4% 21.3% 13.6% 4.7%

The misconception score can be converted into the average number of misconception

responses of each type selected by students by multiplying the score by the number of

responses in the group. For example, the Newton’s 3rd law misconception group contains 3

responses, the 31.9% misconception score for Sample 1 indicates that on average students

in this sample select 3 · 0.319 = 0.96 of these responses from each application of the FCI.

That is, even post-instruction, students are on average answering one Newton’s 3rd law item

incorrectly using a common misconception.

The largest force determines motion, Newton’s 3rd law, and motion implies active forces
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misconceptions consistently have the highest score across all five institutions. The average

misconception scores for the four largest institutions are 44%, 39%, and 31% respectively.

These misconceptions are also the most commonly selected, but at a lower rate, by the

very highly performing Sample 5. Students on average select responses related to these

misconceptions 2 · 0.44 = 0.88, 3 · 0.39 = 1.2, and 5 · 0.31 = 1.6 times each time the FCI

is given. These misconceptions are likely some of the most widely held and consistently

applied in mechanics and remain post-instruction at institutions with a broad spectrum of

student populations. The rest of the communities vary greatly between about 1% and 20%.

Misconception score is highly negatively correlated with post-test score, which explains why

Sample 3 consistently has the highest scores (more students selecting responses indicating

misconceptions) and Sample 5 consistently has the lowest scores for each community. Note,

while Sample 5 had insufficient statistical power to fully resolve its network structure, this

should not restrict the validity of its misconception scores.

5.4 Discussion

This work posed three research questions; they will be explored in what follows. Many

of the findings were discussed in the prior section; this section will provide a summary.

RQ1: How does the community structure identified through module analysis of the

FCI compare across multiple institutions? What does this community structure imply about

student understanding of mechanics? Across four U.S. institutions with a range of ACT,

pretest, and post-test scores as well as demographically different undergraduate populations,

the community structure in the pretest and the post-test was very similar. As Table 5.3
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shows, misconceptions related to Newton’s 3rd law, circular impetus, impetus dissipation,

motion implies active forces, last force to act determines motion, and motion implies active

forces - centrifugal force appear in most of the post-test networks and many of the pretest

networks. A large majority of the communities for both the pretest and post-test are found

in at least three samples; the majority of post-test communities in four samples. These

results imply that misconceptions measured by the FCI are coherently applied at a broad

spectrum of U.S. institutions both pre-instruction and post-instruction. The misconception

scores presented in Table 5.5 suggest the largest force determines motion, Newton’s 3rd law,

and motion implies active forces misconceptions are the most prevalent post-instruction.

The incorrect response communities corresponding to misconceptions are also largely

found in Brewe et al.’s original module analysis work, which was applied to 143 FCI re-

sponses from first-year physics majors in Denmark. The modules in that work were much

larger and were interpreted somewhat differently, but the following incorrect response com-

munities identified in the current work were each found in one of their modules as well:

17A-25D related to the largest force determines motion misconception, (4A-15C-28D) re-

lated to Newton’s third law misconceptions, 9B-(8A-21B-23C) related to the last force to

act determines motion misconception, and 5D-18D the related to motion implies active forces

misconception.

Community 5D-18D, corresponding to the motion implies active forces misconception,

community (4A, 15C, 28D), corresponding the Newton’s 3rd law misconceptions, and com-

munity 17A-25D, corresponding to the largest force determines motion misconception, stood

out as particularly problematic post-instruction. All were identified in three of the four

largest samples post-instruction and had the three highest misconception scores indicating
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the misconceptions were still frequently applied post-instruction across a broad spectrum on

institutions. Communities representing the circular impetus, last force determines motion,

impetus dissipation, and motion implies active forces - centrifugal force were also identified

in three of the four largest samples; however, these responses had generally lower miscon-

ceptions scores indicating they are applied less frequently post-instruction. Many of the

incorrect communities identified post-instruction with high misconception scores were iden-

tified pre-instruction much less consistently. This may be because many students answer

incorrectly pre-instruction because they have little knowledge of the correct physics and

thus are not consistent, but students with consistently applied misconceptions retain these

post-instruction.

The similarity of the community structure across the institutions studied suggests

that the sets of consistently applied misconceptions present pre-instruction and remaining

post-instruction may be very consistent across many institutions. Misconception scores

suggest many of these misconceptions are still selected by many students post-instruction

at all but the most highly performing institutions. This observation identifies a group of

misconceptions which may be the most important to target to improve student understanding

of Newtonian physics.

Both the completely correct and completely incorrect community structure was pri-

marily related to groups of isomorphic and blocked items. The isomorphic item communities

show that there are groups of items testing the same concept and generally the same mis-

conception which are answered together more often than one would predict based on total

instrument score; this indicates the FCI measures some more fine grained structure beyond

a single Newtonian force concept. This is consistent with factor analysis work showing that
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between 5 and 9 factors are optimal [94, 121–124]. The practice of the blocking of items con-

tinues to make correlations found in these samples difficult to reliably identify as consistently

applied misconceptions.

The two mixed correct and incorrect communities are of particular interest. For both

communities, the student is selecting responses representing qualitatively similar straight

line trajectories. In both cases, the student selecting the same trajectory for both correct

and incorrect responses may indicate the item being answered correctly is not functioning

properly.

The communities identified in Sample 5 were substantially different than all other

samples both pre-instruction and post-instruction. Far fewer communities were identified

than in the other four samples which was likely the result of the lower statistical power

requiring larger correlations for statistical significance. The smaller networks contained both

completely correct and completely incorrect communities identified in the other samples. It

seems quite likely that, with a larger dataset, the Sample 5 community structure would

resemble that of other institutions, but additional research would be needed to establish

this. The misconception scores of Sample 5 were dramatically lower than those of all four

other samples suggesting that even if the networks were similar at higher sample size, many

fewer students were left consistently applying common misconceptions in the classes from

which Sample 5 was drawn.

RQ2: How can the parameters required by module analysis be selected quantitatively?

This work proposed a new quantitative method to select the correlation threshold r; the

correlation at which edges in the network are retained. In past module analyses, r > 0.2

was most commonly chosen as the correlation threshold [56–58, 93]. In some works, r > 0.2
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yielded a network far too sparsified and r > 0.15 was chosen instead [93]. These values

were chosen by examining the networks at multiple r thresholds and qualitatively determin-

ing a threshold by choosing a network that had theoretically explainable structure while

minimizing r.

To partially eliminate the uncertainty of this method, a number of quantitative ap-

proaches for choosing r were explored with the goal of yielding similar results to the qual-

itative approach. The global clustering coefficient, the number of triangles divided by the

number of triples in a graph [138], and other local transitivity measures within the graph

were examined. A triple is a set of three nodes that are not fully connected; differing from

a triangle by a single edge. These were not productive because of the low number of trian-

gles in the networks. Graphing the average community size (ACS) against the number of

communities (NC) yielded the most promising results out of the metrics tested. Both the

ACS and the NC are calculable for small networks such as those identified by MMA-P for

the FCI. For more complex networks other metrics may be more appropriate.

RQ3: What quantitative network analytic methods are productive for characterizing

institutional differences and similarities identified by module analysis? What do these mea-

sures imply about the student understanding of mechanics? The coverage index for actors,

edges, and triangles proved to be a useful metric for comparing institutional differences and

similarities. Figure 5.4 shows the coverage index for both the pretest and the post-test for

the four largest samples. The coverage indices identified substantial similarity in Samples 1

to 4 in the actors, edges, and triangles identified in the post-test. This is consistent with the

fairly uniform number of communities identified, from 11 to 13 communities. The pretest

networks were smaller and more variable with from 6 to 11 communities in the four largest

99



samples. This variability was captured by the coverage index. For the pretest, the Sample

2 to 4 networks, while less consistent than the post-test, were often not substantially less

consistent. The Sample 1 pretest network was qualitatively different with fewer communities

than the other large samples; this difference was clearly shown in the coverage index plots

of the pretest (the first row).

The coverage index allowed the change from pretest to post-test to be quantitatively

characterized with average coverage index of ⟨CI⟩ = 0.63 for actors and 0.58 for edges on the

pretest which increased to ⟨CI⟩ = 0.79 for actors, 0.72 for edges on the post-test, an increase

but not an overwhelming increase. Many other network comparison metrics are available for

multiplex networks and may be useful in future research.

The average value of the CI for the actors and edges over all samples showed the simi-

larity of the networks increased from pretest to post-test. As such, both the consistently se-

lected correct responses and consistently applied misconceptions became more similar across

four institutions with very different undergraduate populations. This indicates both correct

knowledge that can be applied in multiple contexts and incorrect knowledge that is consis-

tently applied in multiple contexts is fairly similar across U.S. institutions with very different

undergraduate populations, FCI pretest scores, and FCI post-test scores.

The misconception scores show that students are on average selecting about one re-

sponse indicting the application of the largest force determines motion, Newton’s 3rd law, or

motion implies active forces misconception post-instruction each time they take the FCI. The

rate of consistently applying these misconceptions was much lower at the highest performing

institution.
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5.5 Implications

Module analysis was successful in identifying the same communities of consistently

selected correct and incorrect responses within the FCI across a wide variety of institutions.

This suggests that consistently applied Newtonian misconceptions exist prior to and after in-

struction in college physics classes that span the spectrum of incoming student preparation.

These misconceptions persist post-instruction, despite each sample having an improvement

in FCI scores of medium or large effect size from pretest to post-test. The primary mis-

conceptions held by a substantial number of students post-instruction were misconceptions

related to Newton’s 3rd law, largest force determines motion, and motion implies active

forces. It might be productive to focus on this group of misconceptions out of the broad cat-

alog of FCI misconceptions tabulated by Hestenes and Jackson [61] for targeted instructional

interventions.

The FCI contained a number of completely correct communities formed of isomor-

phic items. These items are selected together more than would be predicted based on the

overall instrument score. This suggests that, if additional items measuring these concepts

were developed, it might allow the measurement of sub-dimensions of these Newtonian force

concepts. This would provide instructors with a more fine-grained measurement of student

knowledge.

5.6 Future Work

Module analysis has been productively applied to the FCI, FMCE, and CSEM. These

instruments are traditionally scored where each item has a single correct response. Module
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analysis should also be productive for instruments with more complex scoring rules. For

example, an instrument where students could select multiple responses to a single item. It

might also be productive for more complex instrument structures such as contingent items

where an item is only presented to the student if some response to a prior item is selected.

Module analysis should also be able to be extended to Likert scale survey items and may

provide additional insight into the relations of non-cognitive constructs such as self-efficacy,

belonging, and identity.

The current study is part of a long history of quantitative studies of now venerable

conceptual physics instruments. This work has accelerated in recent years with many new

quantitative methods applied. It seems likely that this burst of quantitative research effort is

nearing the limit of new findings which can be teased from these instruments. This research

has an important secondary effect which may ultimately be more important than the findings

of the studies themselves. These research efforts have lead to the identification of structural

issues within the instruments including a lack of factor structure [121], items which would be

in the range of problematic item functioning in Classical Test Theory (CTT) [139], and the

effects of the practice of blocking or chaining items [94]. Beyond these, substantial issues of

item fairness for some demographic groups have been identified in some of the instruments

[139]. The growing list of concerns makes it imperative that a new generation of conceptual

instruments be constructed and validated in the near future to allow our understanding of

physics instruction to continue to improve and to provide insights that help all students. The

quantitative methods used in recent studies establish a set of expectations that these new

instruments will be expected to meet before broad deployment should considered. The new

instruments should have a reproducible factor structure, have items that are well functioning
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in CTT, not use item chaining or blocking, and have items that pass a quantitative fairness

test for groups of students underrepresented in physics classes. Module analysis adds to

these criteria by implying any new instruments should have community structures which are

theoretically supportable and should be constructed to allow the calculation of misconception

scores for the misconceptions most commonly applied in the topic covered.

5.7 Conclusion

The FCI was constructed under the misconception framework with the goal of mea-

suring students’ conceptual understanding of Newtonian mechanics. This study compared

the structure of consistently applied student misconceptions to responses to the FCI across

five institutions with student populations with differing levels of high school preparation

using MMA-P. The networks identified had substantial similarity for four largest samples in

both communities formed of correct responses and of communities associated with miscon-

ceptions. The study concluded that the smallest sample had insufficient statistical power to

fully resolve the network structure. The cross-institutional similarities found in this work

could motivate the application of module analysis to other multi-institutional datasets to

investigate the similarity of the community structure of other conceptual instruments.

The largest force determines motion, Newton’s 3rd law, and motion implies active

forces misconceptions consistently had the highest misconception scores across all five insti-

tutions. On average, students select a response applying each of these misconceptions each

time they complete the FCI showing they are a substantial part of student reasoning about

mechanics at institutions with very different student populations and FCI outcomes. The
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large number of students still applying misconceptions post-instruction supports a contin-

ued need to transition to research-based instructional methods and to continuously improve

those methods.
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Chapter 6

Applying Module Analysis to the Brief Electricity and

Magnetism Assessment∗

∗This chapter presents the work published in Physical Review Physics Education Research [140]. This
work was constructed with collaborative efforts from James Wells and John Stewart. We thank Steven
Pollock for the collection and curation of this exceptional dataset and his helpful commentary.
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6.1 Introduction

This study explored consistently selected patterns of student responses to the Brief

Electricity and Magnetism Assessment (BEMA) with MMA-P [58].

This study investigated the following research questions:

RQ1 What community structure is identified by network analysis of the BEMA? What

underlying reasoning could explain these response patterns?

RQ2 How does the community structure of the BEMA relate to the community structure

of the CSEM?

6.1.1 The Brief Assessment of Electricity and Magnetism

The BEMA consists of 31 multiple-choice items that test students’ understanding of

electrostatics, magnetostatics, electric circuits, electric potential, and magnetic induction

[141, 14]. Each item has between 3 and 10 possible responses; 23 items have at least 7

responses. Twenty-nine items include some combination of “none of the above” or “zero”

responses, which may cause psychometric problems [119]. The BEMA is a highly blocked

instrument, where the same physical system is used for multiple sequential items. Many

studies have shown that blocking items may produce correlations which make the instrument

difficult to interpret [56, 94, 101, 102]. The BEMA item blocks are: {1, 2, 3}, {4, 5}, {8,

9}, {14, 15, 16}, {21, 22}, {26, 27}, and {28, 29}. The BEMA also includes a number of

semi-quantitative items where the responses are symbolic formulae.

A scoring rubric is provided for the BEMA that accounts for correct student reasoning

beyond a traditional scoring rubric [11]. Item 3 is counted as correct if the response chosen
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follows the inverse square law for Coulomb forces from the response to item 2, regardless of

whether response 2 was correct. Item 16 is counted as correct if item 15 is answered correctly

and the response to item 16 is identical to the response to item 14. Both items 28 and 29

must be correct to receive credit for a single item, resulting in a total instrument score of 30

instead of 31.

6.1.2 Prior studies of the BEMA

The BEMA has been used in multiple large studies to test students’ conceptual knowl-

edge of electricity and magnetism [142–144]. The reliability of the BEMA has been examined

by various studies. Ding et al. tested individual items as well as the instrument as a whole

[54] with five reliability statistics. The difficulty of items 9, 11, 12, 27, and 28 were all below

the threshold of 0.3 for good item functioning in classical test theory (CTT) [145]; difficulty

in CTT is the average score on the item. The discrimination of items 9, 11, 26, and 27

were well below the threshold of 0.3 for good item functioning; discrimination determines

whether the item distinguishes between high performing and low performing students. How-

ever, the average value of each statistic for the entire instrument suggested that the BEMA

reliably tests both higher and lower scoring students. Rasch theory was also used by Ding

[146] to test the BEMA’s construct validity which showed that the BEMA does measure a

unidimensional construct.

The BEMA has also been used to compare gains in two different introductory un-

dergraduate electricity and magnetism curricula [143] implemented at multiple institutions.

The first curriculum used traditional electricity and magnetism instruction and similar text-

books; the second used the Matter and Interactions electricity and magnetism curriculum
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[147]. At each of the four institutions studied, students following the Matter and Interactions

curriculum consistently had higher BEMA post-test scores. In a separate study, Ding [148]

compared BEMA responses from students taking two different electricity and magnetism

courses at the same institution; one a traditional course, the other a Matter and Interactions

course. Students in the Matter and Interactions course performed significantly higher on

two items and significantly worse on three items. The study also showed that items 9 and

17 did not discriminate between high performing and low performing students effectively.

Item response theory was applied to student responses to the BEMA by Xiao et al.

[149]. This study showed that items could be removed from the BEMA without reducing test

validity or reliability and that the resulting concept inventory still measured the same latent

electricity and magnetism constructs. Multidimensional item response theory (MIRT), ex-

ploratory factor analysis, and correlation analysis were also applied to nearly 10,000 student

responses to the BEMA by Hansen and Stewart [150] to explore its structure and determine

a model of student knowledge that it measures. Correlation analysis found that the major-

ity of the instrument’s substructure could be attributed to item blocks. A five-factor model

optimized the model fit for the BEMA. A five-factor model was also reported by Eaton et

al. [151].

6.1.3 The BEMA and The CSEM

The BEMA is one of two popular electricity and magnetism conceptual inventories

often used in PER; the other is the CSEM. The CSEM has 32 items, each with 5 responses.

It covers electrostatics, magnetostatics, electric potential, and magnetic induction. Unlike

the BEMA, it has no coverage of electric circuits and has no items that ask the students to
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select mathematical formulae in their responses.

The problem statement of items 1, 2, and 3 of the BEMA are identical to items 3, 4,

and 5 of the CSEM; however, the responses are somewhat different. All CSEM items have

5 responses, while items 1 and 2 of the BEMA have 7 responses and item 3 has 9 responses.

Items 30 and 31 of the BEMA are nearly identical to items 31 and 32 of the CSEM except

that the BEMA items have 7 and 6 responses, respectively.

The BEMA and the CSEM were compared using item response theory and CTT by

Eaton et al. [152]. They found that both tests had very similar difficulty with differences

indistinguishable from the differences in the samples studied. Pollock [153] compared student

performance on both instruments and found them to be roughly equivalent in measuring

student learning with some differences in the content covered. In another study by Eaton

et al. [151] using exploratory factor analysis, the CSEM was fit with a six-factor model

and the BEMA with a five-factor model. Despite the difference in the number of factors,

the two factor models showed substantial similarity in conceptual coverage between the two

instruments. A recent study developed a method to compare student scores on the CSEM

and the BEMA by linking and transforming assessment scales [149].

The models of student knowledge identified through MIRT of both the CSEM [102]

and the BEMA [150] differed in both coverage and complexity. The best-fitting model of the

CSEM required fewer logical principles than the BEMA. Much of the differences in coverage

of the two instruments can be attributed to the use of electric circuit items in the BEMA

and some differences in electrostatics coverage.
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6.2 Methods

6.2.1 Sample

The sample for this study consists of data collected from Fall 2004 until Spring 2019

from a university in the U.S. with a total enrollment of about 35,000 students. The demo-

graphics of this institution in Spring 2019 were 67% White, 12% Hispanic, 6% Asian, 6%

two or more races, 2% African American/Black, and less than 1% each Native Hawaiian or

Pacific Islander and American Indian or Alaska Native [129]. International students com-

prised 7% of the students enrolled at this institution. The undergraduate population for this

university had ACT scores ranging from 25–31 (25th to 75th percentile).

The BEMA was given in introductory calculus-based electricity and magnetism courses

serving primarily scientists and engineers as a post-test. Only students with complete post-

test responses were included in the study (N = 12, 214).

6.2.2 Modified Module Analysis - Partial

Modified Module Analysis - Partial was applied to the BEMA; an introduction to the

method is provided in Chapter 3. Chapter 5 introduced a method to select the correlation

threshold and a change to the minimum number of required responses before removing an

item response. We employ the same changes to MMA-P in this study. The appendix at

the end of this chapter includes the plot that identified a partial correlation threshold of

rXY |S > 0.17 as optimal. Note, for the remainder of this chapter, we will shorten partial

correlation to correlation and use r as the partial correlation coefficient for brevity.
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6.3 Results

6.3.1 The network

The average BEMA post-test score for the 12,214 students was 53.4% ± 17% which

increased to 55.7% ± 17% after adjusting scores based on the suggested grading rubric. A

table with the average score on each item, as well as the number of times each item response

was selected, is included in the Appendix to this chapter. The difficulty (average score) of

items 12, 27, 28, 29, and 31 were all below the 30% threshold for a well functioning item

suggested in CTT [145].

Figure 6.1 shows the communities identified in the BEMA by MMA-P. Communities

formed of responses from the same item block have been similarly colored. Correct response

nodes are labeled with an asterisk (*). Nodes are connected by edges weighted by the partial

correlation between item responses; larger partial correlations correspond to thicker lines.

The network representation in Figure 6.1 was constructed using the Fruchterman-Reingold

network layout algorithm [154] using the igraph [99] package in R. In this algorithm, Hooke’s-

law-like attractive forces are introduced between connected nodes, where the strength of

attraction is proportional to edge weight. Repulsive Coulomb’s-law-like forces are then

introduced between all nodes. The nodes are randomly placed, then moved until the system’s

energy is minimized. The specific positions of nodes in the network convey no information;

however, nodes more strongly related to each other are placed closer together. The partial

correlations were calculated with a conventional grading rubric. When adjusted for the

suggested scoring rubric, the resulting network differed by one community.

Each community that appears in Figure 6.1 is a part of an item block. Table 6.1
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Coulomb’s Law Items

Electric Dipole Field Items

Potential Difference Items

Magnetic Dipole Field Items

Electric field from Time Varying Magnetic Field Items

Figure 6.1: Post-test BEMA network. Communities formed of responses from the same item group have
been similarly colored. Lines have been added to some nodes to help distinguish the nodes when viewed
in grey scale. Correct responses are indicated by an asterisk (*). Thicker lines represents larger partial
correlation between item responses.

provides a description of the possible common reasoning leading to each community. The

first column in Table 6.1 uses a notation that distinguishes between partially and completely

connected communities. A completely connected community has an edge between every

node in the community. Item responses surrounded by parenthesis represent completely

connected communities. Item responses separated by dashes (-) represent edges between

those two responses. A community of size two is always completely connected. Communities
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with multiple responses derived from the same item cannot be completely connected.

Table 6.1: Communities identified in BEMA responses. Responses in parentheses are completely connected.
Responses separated by dashes are only connected to each other. Responses 1E, 2E, 3C, and 3F are part of
a single community 3C-(1E,2E)-3F, which has been split between two lines.

Community Explanation
Coulomb’s law item block

(1B,2B,3D) 1B-2B - Averaged forces on two charges. 3D - Consistently applies (F ∝ 1/r2).

(1E,2E,3C) 1E-2E - Force not changed when charge changes. 3C - (F ∝ 1/r).
(1E,2E,3F) 1E-2E - Force not changed when charge changes. 3F - Consistently applies (F ∝ 1/r2).

(1A*,2A*,3B*) Coulomb’s law for the electric force.
Electric dipole field item block

4A-5E Electric field lines point out of negative charges and into positive charges: Reversed electric dipole shape.
4E*-5A* Correct electric dipole field shape.

Potential difference item block
16E-14A-16A Electric field lines point in the direction of increasing potential. 16E - Potential is path dependent.
14G-16G-15G* All zero responses – potential is not proportional to electric field.
16F-14B*-16B* Electric field lines point in the direction of decreasing potential. 16F - Potential is path dependent.

Magnetic dipole field item block
21E-22A Reversed magnetic dipole field shape.
21A*-22E* Correct magnetic dipole field shape.

Electric field from time varying magnetic field item block
28A-29B Solenoid as negative linear charge.
28C-29D Solenoid as positive linear charge.
28D-29A Electric field lines in opposite direction of the correct direction.
28E-29E Magnetic field of solenoid, opposite direction.
28F-29F Magnetic field of solenoid, correct direction.
28G-29G All zero response. Solenoid with changing current creates no electric field.
28B*-29C* Correct electric field from changing magnetic field.

Coulomb’s law communities

The first item block {1, 2, 3} involves two small objects each with a net charge of +Q

which exert a force F on each other. The charge on one of the objects is then changed to

+4Q. Item 1 asks about the change to the force on the +Q object; item 2 the change to

the force on the +4Q object. Item 3 asks about the resulting force on the +4Q object if the

the objects are moved 3 times farther apart. In the recommended grading rubric, item 3 is

counted as correct if it is 1/9 the value reported for item 2. This relation is shown in Table

6.1 as “Consistently applied (F ∝ 1/r2)” when the answer is consistent with a 1/r2 distance

dependence contingent on the response to item 2. For the communities identified, response

3D is 1/9 the value in response 2B and response 3F is 1/9 the value in response 2E.
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The community (1B, 2B, 3D) represents students choosing the response 5F/2 (re-

sponses 1B and 2B) for items 1 and 2 and the response consistent with 1/r2 for item 3.

Students who choose 1B and 2B are reporting the average force on the two objects before

and after the modification of the charge. The community 3C-(1E,2E)-3F includes two fully

connected sub-communities of size 3 centered around 1E and 2E. This community has been

split across two lines in the table as (1E, 2E, 3C) and (1E, 2E, 3F) for easier table readability.

Both responses 1E and 2E indicate that the force remains F , that no change occurred when

increasing one of the charges to +4Q. Response 3F is consistent with the inverse square law

response, while response 3E is the response 1/3 the value in response 2E and represents a 1/r

force. Both sub communities indicate a different possible outcome of making the mistake

that charge is not proportional to the force between particles (1E,2E). The network also

includes a completely correct community for this item block, (1A*, 2A*, 3B*).

Two separate types of incorrect reasoning are captured by these communities. The

first involves how electric force scales with electric charge. One community represents the

incorrect reasoning that force and charge are independent while the other community uses

the average of the forces on the charge before and after the modification of one of the charges.

The second type of reasoning involves how force scales with distance. Some communities

use the correct 1/r2 scaling based on a prior incorrect answer while others use the incorrect

1/r distance dependence. This could indicate the students are failing to discriminate electric

force from electric potential.
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Dipole field communities

Two item blocks ask the students about dipole fields: items {4, 5} and {21, 22}. Items

4 and 5 present the students with two charged objects with charge ±q; the objects are spaced

a small distance apart. Item 4 asks about the field along the axis of the dipole; item 5 at

a point perpendicular to the axis of the dipole. Items 21 and 22 present the students with

a bar magnet. The magnet’s north and south poles are not labeled. The direction of the

magnetic field is given by a vector at a point on the axis of the magnet. Item 21 asks for

the direction of the magnetic field at a point along the axis of the dipole; item 22 at a point

on the perpendicular bisector of the dipole. Both item blocks use the same set of responses.

The network includes one incorrect community and one correct community for both item

blocks. Both incorrect communities, 4A-5E and 21E-22A, contain responses where each are

in the opposite direction to the correct response; the field is reversed. The correct community

4E*-5A* was barely above the partial correlation threshold, and when accounting for the

suggested scoring rubric, this community falls below the threshold and is removed from the

network.

Potential difference communities

The potential difference item block {14, 15, 16} presents the students with a uniform

electric field whose direction is indicated by a series of evenly spaced vectors. Four points

labeled 1 to 4 are placed in the field in a rectangle; the width w and a height h of the rectangle

is indicated on the figure. Item 14 asks students for the potential difference between two

points across the width of the rectangle; the electric field points from the first point to the
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second point. The shortest path between the points lies in the direction of the field. Item

15 asks for the potential difference between two points across the height of the rectangle;

the shortest path between these points is perpendicular to the field. Item 16 asks for the

potential difference across the diagonal of the rectangle.

The network includes one completely incorrect community and two mixed correct and

incorrect communities. The completely incorrect community 16E-14A-16A includes all posi-

tive responses, representing the incorrect reasoning that electric fields point in the direction

of increasing electric potential. Conversely, the mixed correct and incorrect community 16F-

14B*-16B* includes all negative responses, which require the correct reasoning that electric

field lines point in the direction of decreasing electric potential. Both communities contain

an incorrect response, 16E (positive) or 16F (negative), indicating the potential difference

is proportional to the length of the path
√
h2 + w2. Students who choose these responses

calculate the potential difference using the total path traveled, rather than the projection of

the path in the direction of the field.

As in the Coulomb’s law communities, two types of incorrect reasoning are present.

The first uses the incorrect relationship between electric field direction and lower electric

potential. The second incorrectly reasons that the electric potential difference is proportional

to the distance between the endpoint regardless of the field direction. The two reasoning

errors seem fairly independent and, as such, it seems reasonable different combinations of

the two are found.

The mixed correct and incorrect community 14G-16G-15G* includes the zero response

for each item; the potential is the same everywhere in a uniform electric field. It is unclear

what reasoning lies behind this community. Many explanations are possible including that
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the students believe the potential is constant or zero when the field is constant. Using the

suggested grading rubric, students choosing zero potential difference for each item in this

block, 14G, 15G*, and 16G, are graded as correct for both items 15 and 16.

There was no community of completely correct responses. This was the result of most

students choosing the correct response to 15 and the incorrect responses to 14 and 16.

Electric field from time varying magnetic field communities

Items 28 and 29 present the students with a fairly complicated problem. The items

involve a solenoid carrying a current increasing in magnitude with time. The current direction

is given and two equidistant points outside the solenoid are indicated. Each item asks for

the direction of the electric field at one of those points. Each item gives the student eight

response choices including zero and “none of the above.” The students score quite poorly on

the two items, getting only 18% of the items correct on average. It should be noted that it is

possible to develop a right-hand-rule which substantially simplifies the reasoning required to

answer the item correctly [147], but this rule is not included in most widely adopted physics

textbooks.

The network includes six completely incorrect communities and one completely correct

community. The first two incorrect communities 28A-29B and 28C-29D are composed of

responses where all field lines point toward the solenoid or out from the solenoid, respectively.

These students seem to be trying to model the system as a linear charge; they have no

correct way to determine the sign of the charge. The community 28D-29A includes responses

consistent with the electric field of the solenoid, but in a direction opposite to the correct

direction. Communities 28E-29E and 28F-29F are composed of responses consistent with the
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magnetic field from the solenoid either in the same direction as the solenoid’s field, 28E-29E,

or opposite that direction, 28F-29F. The community 28G-29G includes responses that both

indicate zero electric field around the solenoid.

This rich set of incorrect communities give a picture of the reasoning process when

students are given a situation they have no idea how to solve (as evidenced by the 18%

success rate on the items). The incorrect communities see the students trying an electric

field model (linear charge), a magnetic field model (the electric field in the same direction

or the opposite direction as the magnetic field in the solenoid), and that there is no electric

field. It is also impossible to determine if the item is answered correctly because the students

apply correct physical reasoning or because they apply the incorrect model of the magnetic

field in the solenoid being equivalent to a current in the solenoid (then applying the right

hand rule).

6.3.2 Completely correct communities

Only three completely correct communities were identified. Items 1 to 3 ask questions

about two point charges; the completely correct community includes responses 1A*, 2A*,

and 3B*. Item 1 requires that the student understand that force is proportional to charge.

Item 2 either requires a knowledge of Newton’s 3rd law or the application of Coulomb’s law a

second time to infer that the force on each charge is equal but opposite. Item 3 is dependent

on the answer to Item 2 and requires the student to apply the 1/r2 dependence of the electric

force.

Items 4 and 5 present the student with two equal but opposite charges spaced a small

horizontal distance apart; the completely correct community contains responses 4E* and
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5A*. The student must correctly select the dipole field direction both along the line of the

dipole and along a perpendicular bisector of the dipole. Items 28 and 29 present the student

with a solenoid which carries a current increasing in magnitude with time. The students are

asked about the induced electric field direction outside the solenoid. The completely correct

community contains items 28B* and 29C*, which represent a circular electric field co-axial

with the solenoid pointing in the correct direction given by Faraday’s law.

The completely correct communities show the instructor places where correct con-

ceptual reasoning is being consistently applied. These areas of well developed conceptual

reasoning may represent resources which could be leveraged to address areas of weakness.

6.3.3 Quantifying common mistakes

Table 6.2: Mistake Scores

Mistake Responses M1 M2 M3

Coulomb’s law item block (75%)
Averaged force of two charges. 1B,2B 7% 8% 7%
Force is not proportional to charge. 1E,2E 9% 14% 5%

Electric dipole field item block (68%)
Reversed electric field direction. 4A,5E 9% 14% 3%

Potential difference item block (49%)
Field lines point in the direction of increasing potential. 14A,16A,16E 29% 37% 22%
Potential difference is not related to electric field. 14G,16G 17% 21% 13%
Potential difference is path dependent. 16E,16F 43% 43% NA

Magnetic dipole field item block (78%)
Reversed magnetic field direction. 21E,22A 10% 17% 3%

Electric field from time varying magnetic field item block (18%)
Solenoid as point charge (negative). 28A,29B 6% 9% 4%
Solenoid as point charge (positive). 28C,29D 16% 20% 13%
Electric field lines (reversed). 28D,29A 23% 26% 20%
Magnetic field of solenoid (correct). 28F,29F 11% 13% 9%
Magnetic field of solenoid (reversed). 28E,29E 7% 10% 5%
Changing magnetic field creates no electric field. 28G,29G 17% 18% 15%

MMA-P reveals a set of mistakes that students consistently make when taking the
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BEMA. In order to compare how often students make these mistakes, and, consequently,

form a hierarchy of the most and least common mistakes students make on the instrument,

three scores were calculated to show both how often students make each mistake, and how

consistently each mistake is made. These scores measure the general frequency of making

the mistake (M1), the fraction of students making the mistake at least once (M2), and the

fraction of students making the mistake consistently (M3).

Table 6.2 presents a list of common mistakes in introductory electricity and magnetism

detected by MMA-P; item responses that correspond to those mistakes are also presented.

The mistakes are organized by item block. The average score of the item block is provided

in parenthesis; the rate at which items in the block are answered correctly. Three “mistake”

scores are provided to quantify the consistency and the frequency of making these mistakes.

These scores are called mistake scores to differentiate them from the misconception scores

that appear in previous module analysis works [56, 57, 93, 120]. A misconception is generally

defined as a stable, alternative schema [6]; the incorrect responses identified seem to more

likely result from simple mistakes or just generally not understanding the concept. Details

of the mistake score calculation are presented in more detail in the Appendix at the end of

this chapter.

The first mistake score, M1, is the same score calculated in previous module analysis

works, called the misconception score in those works. This score represents the average

fraction of responses that are selected out of the mistake response group per exam. M1 gives

insight into the frequency of selection of each mistake per exam.

The second mistake score, M2, measures the fraction of students selecting at least one

mistake in the response group. This statistic measures the percentage of students making
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the mistake at least once on the exam and gives the instructor a better measure of how

prevalent the mistake is than M1. M1 and M2 are very similar metrics. M1 is included to

be consistent with past module analysis works, but M2 is a superior metric for how many

students are making the mistake. For the reversed electric field of a dipole, 14% of these

students select at least one of the responses representing the mistake.

The third mistake score, M3, measures the fraction of students that chose every possible

mistake within a mistake group. M3 represents the percentage of students consistently

making the mistake. For the same example above, M3 = 3%; therefore, 3% of students chose

every response in the mistake group. The “potential difference is path dependent” M3 score

is marked Not Applicable (NA) because the two responses in the group cannot be selected

at the same time.

The ratio of M3 to M2 shows the percentage of students choosing all responses in the

group out of the students who chose at least one response in the group. For the reversed

electric field direction mistake, only 3 out of 14 students, who chose one response, chose

both responses associated with that mistake and 11 out of 14 chose only one response. In

contrast, 7 out of 8 students who make the “averaged force of two charges” mistake choose

both responses in the mistake group.

In summary, M1 measures general frequency of mistake selection, M2 measures fre-

quency of selecting at least one mistake in a mistake group, and M3 measures the con-

sistency of mistake selection. The original mistake score, M1, may be large through two

separate mechanisms: (1) many students could select one of the mistakes in the group or

(2) a smaller set of students could select all the mistakes in the group. M2 measures the

first effect and M3 the second. Comparing M2 to M3 allows an instructor to decide which

121



mode is prevalent in their class. If M2 ≫ M3 then most students are only selecting a few,

possibly one, of the responses in the group. A high number of students are confused about

that concept, and the general topic might need covered for a longer amount of class time

with some minor intervention such as a group problem. If M2 ≈ M3, then students who

are making the mistake are doing so consistently. The concept may require more targeted

instructional time with different instructional methods.

6.4 Discussion

RQ1: What community structure is identified by network analysis of the BEMA? What

underlying reasoning could explain these response patterns? The structure identified by the

application of MMA-P to the BEMA was discussed at length in Sec. 6.3. All 17 communities

identified are associated with 1 of 5 item blocks. The communities of 4 out of the 5 item

blocks include 1 completely correct community containing all correct responses to the items

in the block; the rest of the communities associated are completely incorrect communities.

The other block, the potential difference item block, has 1 completely incorrect community,

2 mixed correct and incorrect communities, and 0 completely correct communities.

The community structure of item blocks found in this work is consistent with the

correlation analysis performed by Hansen and Stewart, [150] which found that the majority

of the instrument’s substructure was centered around item blocks. Two separate studies

[150, 151] applied exploratory factor analysis to the BEMA; each identified a five-factor

model as optimal. Every community identified with MMA-P was composed of items that fit

into one of those five factors: electrostatics, electric potential, magnetostatics, and magnetic
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induction. The fifth factor was electric circuits; no community was identified for the electric

circuit items.

Two item blocks did not have associated mistake communities: item block {8, 9} and

{26, 27}. Item block {8, 9} is related to electric circuits and item block {26, 27} asks about

the magnitude and direction of the external electric field for an electron moving in an electric

field and a magnetic field. The first item in each block is a fairly straightforward qualitative

item; the second item (on which the students score poorly) is a semi-quantitative item asking

the students to select a formula. This combination of a qualitative and a semi-quantitative

item may explain why no correct or incorrect communities are identified for these blocks.

This is consistent with the analysis by Ding et al. [54], which found that items 9 and 27

were both problematic in difficulty and discrimination. Item 27 fell well below the 30% CTT

item difficulty threshold for a well functioning item [155].

Item block {28, 29} stood out as potentially problematic. The average score on both

of these two items was only 18%, also below the threshold suggested by CTT. The mistake

communities show the students applying a variety of inappropriate models, both electric and

magnetic, to the item. It seems likely that the students sampled simply have no idea how to

answer these items. In most physics classes, the topic tested, the induced electric field caused

by a changing magnetic field, receives little class time as compared to other more common

topics in magnetic induction such as the direction of current induced in a coil of wire. As

the next generation of conceptual instruments is constructed, there is likely a better choice

than the inclusion of these or similar items. This item provides an interesting window into

student reasoning when presented with an unfamiliar situation.

The frequency and consistency of selection of the communities identified were charac-
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terized with mistake scores. For items blocks {1, 2, 3}, {4, 5}, and {21, 22}, the fraction of

students selecting at least one mistake from each community (M2) was small, less than 20%,

while those selecting both mistake responses (M3) was very small, less than 10%. For the

course studied, it is unlikely additional instructional time should be directed to eliminating

these mistakes. Mistakes associated with item block {14, 15, 16} were far more common.

Thirty-seven percent of the students selected a response representing the electric field points

to higher electric potential mistake; twenty-two percent consistently selected this mistake.

Forty-three percent also made the mistake of using the overall path length to calculate the

potential difference instead of the path length in the direction of the electric field. It seems

likely the class studied would benefit from investing some additional time on electric poten-

tial.

RQ2: How does the community structure of the BEMA relate to the community struc-

ture of the CSEM? The community structure identified for the CSEM was substantially

richer than that identified for the the BEMA in this work with 13 completely incorrect

communities, 6 mixed correct and incorrect communities, and 6 completely correct commu-

nities. Many completely incorrect communities involved concepts not covered on the BEMA

such as the properties of conductors and insulators, the field direction of an infinite straight

wire, the linear superposition of the electric field, and the shielding of the electric field by

a conductor. Seven of the communities were formed because students failed to discriminate

between electric and magnetic fields or between electric potential and electric field; this type

of incorrect response was not available on the BEMA. Multiple items could involve Newton’s

3rd law in the solution; an incorrect community of these items was identified. The correct

communities were disparate, including the shared Coulomb’s law items (BEMA items 1, 2,
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and 3), the force on a stationary charge is zero, the field of an infinite straight wire, and

correctly interpreting the meaning of the spacing of electric potential.

Most of the overlap in community structure between the two instruments came from

the first item block. Item block {1, 2, 3} in the BEMA uses the same questions as item block

{3, 4, 5} in the CSEM, but the possible responses are different. In the BEMA, items 1 and 2

have 7 possible responses and item 3 has 9, while each CSEM item has 5 possible responses.

Table 6.3 shows the responses to items 1, 2, and 3 on the BEMA and the corresponding

items 3, 4, and 5 on the CSEM. The final response for each item in the item block in both

instruments has the same meaning, but is worded differently: the BEMA uses “None of the

above,” while the CSEM uses “other.” BEMA item 3 responses were written such that every

response from item 2 had a consistent inverse square law response in item 3. CSEM item 5

does not include every inverse square response to CSEM item 4; both F/4 and 16F do not

have an inverse square response in item 5.

BEMA items 1, 2 BEMA item 3
CSEM items 3, 4 CSEM item 5

Response BEMA CSEM Response BEMA CSEM
4F A* B* 4F/9 B* C*
5F/2 B 5F/18 D
3F C F/3 C B
2F D 2F/9 E
F E C F/9 F A
F/4 F D F/36 G
NOTA G NOTA I
other E other E
16F A 4F H

4F/3 A D

Table 6.3: Responses to items 1, 2, and 3 in the BEMA and the corresponding items 3, 4, and 5 in the
CSEM. Responses to items 1 and 2 are ordered by their appearance in the BEMA, while item 3 is ordered
to show the consistent 1/r2 response to items 1 and 2. NOTA denotes the “None of the above.” response.

Applying MMA-P to the CSEM found 5 communities including items from this item
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block. CSEM community 5A-(3C, 4C)-5B appeared in both samples and is identical to

BEMA community 3C-(1E,2E)-3F. This community was discussed in Sec. 6.3.1. The com-

pletely correct community for this item block appeared in both the BEMA and CSEM

networks.

Multiple communities were identified in the CSEM involving items 3, 4, and 5 which

were not found in the BEMA. CSEM community 3A-4A contained responses that were not

included on the BEMA. Both 3A and 4A correspond to a quadratic relation between charge

and force (16F). CSEM community 4D-5E may have resulted from students trying to choose

the consistent inverse square law response F/36 based on their answer to item 4 (F/4), which

was not a possible response on the CSEM, therefore “other” was chosen instead.

Additional communities which appeared in the CSEM networks mixed items within

the 3, 4, and 5 item block with items outside the block. Students who chose the same

response for both BEMA items 1 and 2 or CSEM items 3 and 4 could be using Newton’s

3rd law to determine that the forces on the charges must be equal and opposite. The CSEM

networks included other item responses related to Newton’s 3rd law outside of this block

which appeared in some communities related to items 3, 4, and 5. The BEMA does not

contain additional items applying Newton’s 3rd law and, therefore, these communities were

not available.

The CSEM included a large community of “zero” or “none of the above” responses.

The BEMA included two communities of zero responses, 14G-16G-15G* and 28G-29G, which

were not linked into the same community. Wheatley et al. [93] speculated that the CSEM

community resulted from the reluctance of students to select zero or none of the above

responses. Devore et al. demonstrated that these responses are selected by students at
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a lower rate than would be expected based on the distribution of selection of the other

responses [119].

The community structure of the two instruments differed because the instruments

probe different detailed skills in electromagnetism. For example, the communities 4A-5E

and 21E-22A represent incorrect reasoning about the field of a dipole. The CSEM includes

no items asking about dipole fields. The CSEM contains two items asking for the magnetic

force on a stationary charge; no such items appear in the BEMA.

The CSEM networks, unlike those of the BEMA, included communities of responses

that indicated students were conflating electric fields with magnetic fields as well as electric

fields with electric potential. This failure to distinguish between important physical concepts

was described as a naive conception in the FCI through the “velocity-acceleration undiscrim-

inated” or the “position-velocity undiscriminated” responses [9, 61]. The CSEM has items

that ask the same question with a background electric or magnetic field. The BEMA does

not include similar items, therefore, no communities formed indicating students conflated

the two fields. One can see some evidence of this kind of naive reasoning in the responses

to items 28 and 29 where students use a variety of different models including a linear charge

electric field for the induced electric field of a solenoid.

6.4.1 Other Observations

Many items did not have a response included in any community (items 6-13, 17-20,

23-27, 30, and 31, a total of 20 items). To be included in the network, a response must have

be selected by at least 5% of the students and must have partial correlation with another

response largest than r = 0.17. This represents a small effect size correlation by Cohen’s
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criteria [29]. At the sample size of this study, no edges meeting the correlation threshold are

eliminate by the significance threshold with Bonferroni correction. Items not included have

responses that are not consistently selected with other responses. Given the broad coverage

of the instrument with items measuring many different constructs, the exclusion of many

items from the network communities is not surprising. This was also found in other MMA

works [56–58, 93].

To understand why items may not be included in the network, it is productive to

consider the electric circuit items. No electric circuit item is included in a community. The

six items measure a broad set of generally non-overlapping concepts. Items 8 and 9 ask

the student about an ion channel with item 8 asking for the conventional current direction

and item 9 asking for a formula for the current in the channel. Item 10 includes a circuit

containing a single light bulb and an ammeter and asks about the ammeter reading if the

meter is before the light bulb, after the light bulb, and if the bulb is removed from the circuit.

Item 11 gives the students three circuits which include (1) a single light bulb, (2) two bulbs

in series, and (3) two bulbs in parallel; the item asks the student to rank the brightness

of the bulbs. Item 12 gives the student a single bulb and asks about the electric field in

the filament. Items 13 is an RC circuit item. These items require both different correct

conceptual knowledge to be answered correctly and involve different mistakes generating

small correlations between both the correct answers and the incorrect answers. This is

supported by the results of Hansen and Stewart [150] applying MIRT to the BEMA, which

showed none of the items from 6 to 13 substantially loaded onto the same factor. The

number of missing items is larger than found in other MMA studies; FCI (7 missing [58]),

FMCE (7 missing [57], and CSEM (7 total missing between two samples [93]). This may
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indicate that several items in the BEMA test very specific concepts not well related to a

general conceptual understanding of electromagnetism and that these concepts are tested

by a single item, rather than pairs of items to allow for correlations between the responses.

This would also serve to explain why few completely correct communities were identified.

Both the BEMA and the CSEM were designed to broadly test a student’s conceptual

knowledge of electromagnetism. Module analysis of both the BEMA and CSEM identified

groups of items which allowed the identification of consistently applied mistakes. Except

for an item block shared by both instruments, the consistently applied mistakes differed

between the two instruments. While not the primary purpose of either instrument, the

identification of consistently applied incorrect reasoning either pre- or post-instruction and

the ability to quantify how consistently that reasoning is applied is extremely valuable to

physics instructors. It is very unlikely that the consistently applied mistakes identified in the

two instruments represent a complete catalog of mistakes in introductory electromagnetism.

The MIRT models for the BEMA [150] and the CSEM [102] showed the detailed cov-

erage of the two instruments were quite different. The module analysis studies of the instru-

ments [93] showed the consistently applied incorrect reasoning was also different. It seems

likely that these detailed differences will make the two instruments sensitive to the coverage

of classes in which they are applied; evidence for this can be seen in the performance on

item block {28, 29}. When viewed through the detailed lens of MIRT or MMA-P, some

item choices on both instruments seem ill-advised if the goal is a broad measure of elec-

tromagnetism, producing scores comparable across a variety of classrooms and instructional

contexts.
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6.5 Implications

The differences in conceptual coverage and the kinds of common mistakes measured

identified above have potential implications for research using these instruments. Educa-

tional interventions often change curricula in very local ways, modifying specific laboratory

activities, adding specific group activities. If the conceptual coverage of the intervention

does not align with the instrument used, then the instrument may not measure the effi-

cacy of the intervention properly. Further, an intervention characterized using, for example,

the CSEM may show performance differences when replicated at an institution monitoring

learning with the BEMA simply because of the coverage difference in the two instruments.

Further, because the instruments measure different consistently applied mistakes, an inter-

vention addressing one of these mistakes may be completely mis-characterized by applying

the instrument which does not measure the common mistake.

All these observations suggest the need for a new generation of electromagnetic con-

ceptual instruments which feature both subscales with broad general coverage of the major

subtopics of electromagnetism, but also subscales that capture common mistakes or allow

measurement of finer details of conceptual knowledge. It seems impossible that a single

instrument could meet these goals with an acceptable number of items, which may suggest

a move away from the long, single-construct instruments which have been used in PER, and

onto new testing structures, possibly involving flexible instruments where an instructor could

assemble an instrument from a bank of subscales that target’s their instructional needs.

Module analysis can be an important part of the validation process for these new

instruments adding to more traditional psychometric analysis techniques. MMA augments
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tradition methods by examining combinations of items. While MMA-P did not identify item

combinations in the BEMA which were not well functioning, prior studies of the FCI, FMCE,

and CSEM did identify items that might not be functioning as intended.

6.6 Conclusion

Module analysis of the BEMA identified a set of communities containing consistently

selected correct and incorrect answers. All communities contained items restricted to a

single item block. Mistake scores were introduced to further quantify the consistency and

frequency of selection of these consistent mistakes. Instructors can use the mistake scores

to target instruction to address the most common mistakes made by their students. For

the course studied, the most commonly selected and consistently applied mistakes involved

electric potential difference and the relation of electric potential difference to electric field:

the mistakes that electric field lines point in the direction of increasing potential and that

electric potential difference depends on the total path length not the length of the path in

the direction of the field. Other consistent mistakes were identified, but were applied by a

small number of students.

The BEMA and CSEM share three items with identical stems but different response

choices. Communities were identified in both instruments which involved response choices

not available in the other instrument. In the BEMA, a community where the student reported

the average force on the two charges was identified; it was impossible for students on the

CSEM to select this response. Likewise, the CSEM did not include all responses related to

consistent reasoning about the distance dependence of the force, while the BEMA did. The

131



CSEM did include an “other” response to catch these forms of incorrect reasoning. Both

instruments revealed unique aspects of student thinking because they allowed for different

student responses.

6.7 Appendix

6.7.1 Partial Correlation Threshold

As discussed in detail in Chapter 5, a method to identify the optimal correlation thresh-

old for network sparsification was used in this work. The community structure was calculated

for a range of correlation thresholds from r = 0.1 to r = 0.3; the average community size

(ACS) of each network was plotted against the total number of communities (NC). ACS is

the average number of nodes per community. Figure 6.2 shows ACS plotted against NC; the

points are labeled by the correlation threshold. Networks calculated through MMA-P tend

to be too dense for theoretical description at low r thresholds but become sparse at high

r thresholds. This method is similar to choosing the optimal number of clusters or factors

by identifying the “knee” in a scree plot. From Figure 6.2, r = 0.17 where the curve bends

upward was selected as the threshold applied in this work. A detailed exploration of the

effects of sparsification techniques used in MMA-P is discussed in Chapter 7.

6.7.2 Mistake Scores

R1

0 1

R2
0 A B
1 C D

Table 6.4: 2× 2 contingency table
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Figure 6.2: Plot used to determined the correlation threshold r. Each point represents a network calculated
at the labeled r value.

The mistake scores shown in Table 6.2 can be calculated from the contingency table

between two item responses, R1 and R2, as shown in above in Table 6.4. There are four

possible combinations for two item responses: choosing neither, choosing R1 and not R2,

choosing R2 and not R1, and choosing both.

Mistake score M1 is calculated with Equation 6.1.

M1 =
B + C + 2D

2N
(6.1)

where N = A+B +C +D is the total number of students. The numerator of Equation 6.1

is derived by summing the “1’s” in Table 6.4: B + D for R1 and C + D for R2. The 2N

represents the total number of times either response could be selected.

Mistakes that emerge from multiple responses to the same item, such as the “potential

difference is path dependent” mistake and the “field lines point in the direction of increasing
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potential” mistake, require some nuance in their calculation for M1. M1 is normalized by

the number of items in the response group; the denominator in Equation 6.1 is 2N because

a contingency table is built for a response group of size 2. For the “potential difference is

path dependent” mistake, the only two responses that make up that mistake come from the

same item, 16E and 16F, so the maximum value of the numerator in M1 is B + C = N

because D is always 0 for multiple responses to the same item. For this mistake, M1 is

normalized by N rather than 2N. Likewise, with the “field lines point in the direction of

increasing potential” mistake, the maximum number of responses made per student is two;

14A and 16A or 16E, so M1 is normalized by 2N rather than 3N. Calculating the numerator

in M1 for this mistake is more easily understood as simply summing the number of students

who chose each response, rather than utilizing multiple contingency tables for the possible

combinations of responses.

The second mistake score, M2, measures the fraction of students selecting at least one

mistake in the response group and is calculated in Equation 6.2.

M2 =
B + C +D

N
= 1− A

N
(6.2)

The “potential difference is path dependent” mistake is calculated as shown in Equation

6.2 with D = 0. When D = 0 and the size of the response group is 1, both M1 and M2

measure the same thing because the fraction of students selecting at least one mistake in

the response group (of size 1) is exactly the fraction of responses that are selected out of the

response group; students either selected a the mistake or they didn’t. The M2 calculation

for “field lines point in the direction of increasing potential” mistake can be more easily
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understood with the 1−A/N shown in Equation 6.2, where A is now the number of students

who did not choose 14A, 16A, or 16E.

The third mistake score, M3, measures the fraction of students that chose every possible

mistake within a mistake group and is calculated in Equation 6.3.

M3 =
D

N
(6.3)

M3 measures the percentage of students consistently making the mistake.

The mistake score for the “potential difference is path dependent” mistake is Not

Applicable (NA) because both responses that demonstrate that mistake are responses to

the same item and therefore cannot be chosen together. The calculation for the “field lines

point in the direction of increasing potential” mistake is calculated with a contingency table

between 14A and 16A and one between 14A and 16E. Choosing every possible mistake in the

response group for this mistake means either 14A with 16A or with 16E, so the numerator

in M3 is calculated by summing the two Ds from both contingency tables. Regardless of

the size of the response group, both M2 and M3 are normalized by N because the maximum

value of the numerator is always N.

6.7.3 Item Responses and Scores

Table 6.5 presents the overall score on each item as well as the number of times each

item’s response was selected.
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Table 6.5: Item response frequency (N = 12, 214) and score for each item. The adjusted scores based on
the suggested BEMA grading criteria for items 3, 16, and 28 and 29 are included in parenthesis. The 5%
response threshold for this sample is 611. Item responses that do not appear on certain items are reported
as NA for “Not Applicable.”

Item Score A B C D E F G H I J
1 83.6% 10212 874 111 149 750 95 22 NA NA NA
2 74.8% 9141 902 124 156 1557 278 30 NA NA NA
3 67.6% (87.2%) 887 8257 611 746 136 1228 123 91 135 NA
4 79.0% 1239 107 263 131 9654 171 102 77 406 64
5 57.0% 6959 448 648 170 855 446 100 75 2316 197
6 59.0% 256 2362 303 7208 1096 801 182 NA NA NA
7 50.5% 4492 480 397 564 6174 93 NA NA NA NA
8 77.6% 1937 9483 712 NA NA NA NA NA NA NA
9 30.4% 4635 3720 1963 1383 471 NA NA NA NA NA
10 61.7% 1780 829 1021 263 144 7539 482 94 59 NA
11 44.4% 733 237 718 211 5429 590 1446 2784 65 NA
12 22.0% 1484 554 996 5751 2683 322 415 NA NA NA
13 78.7% 316 476 1264 9609 523 NA NA NA NA NA
14 45.6% 3435 5567 264 209 185 76 2468 NA NA NA
15 77.1% 195 254 1185 844 195 115 9420 NA NA NA
16 25.4% (48.2%) 1536 3100 354 297 2227 3006 1692 NA NA NA
17 32.2% 4536 253 3194 3929 274 NA NA NA NA NA
18 55.3% 2589 6756 1350 1457 NA NA NA NA NA NA
19 77.8% 334 9507 336 998 318 710 NA NA NA NA
20 61.7% 1932 541 460 275 628 458 7533 383 NA NA
21 86.6% 10573 157 163 102 772 130 127 81 82 27
22 68.7% 1625 389 328 509 8390 266 104 146 412 45
23 50.5% 292 865 277 1095 6173 3350 153 NA NA NA
24 70.1% 8563 201 638 261 283 206 1995 64 NA NA
25 58.2% 183 2069 218 7104 1908 239 441 46 NA NA
26 40.3% 2087 3534 569 4919 595 289 203 NA NA NA
27 12.8% 1757 3260 1567 411 3737 520 404 552 NA NA
28 18.0% 727 2200 2032 2776 939 1350 2026 158 NA NA
29 18.1% (15.2%) 2816 823 2212 1946 858 1337 2066 147 NA NA
30 40.8% 905 1488 378 251 2531 4986 1667 NA NA NA
31 29.4% 3894 1932 1069 3588 1019 698 NA NA NA NA
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Chapter 7

More on Module Analysis

This chapter explores module analysis examining the effects of sparsification order,

discrete correlations, statistical power with varying sample sizes, and correlation thresholds.

Examples from Chapter 5 are used throughout this chapter because the varying student

performance provides a good range of realistic response patterns and the varying sample

sizes help demonstrate the necessity of larger sample sizes for this method.
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7.1 Sparsification Analysis

This section presents a summary of the sparsification process for each sample. The

sparsification operations applied with MMA-P are the minimum student response threshold

(5% in Chapter 5), requiring edges represent correlations between nodes with significance of

p < 0.05 after a Bonferroni correction is applied, requiring edges to have positive correlations,

requiring those correlations to be above a correlation threshold (generally around r > 0.2

where r is the partial correlation coefficient between nodes), and requiring the edge be

detected in the same community in 80% of bootstrap replications. For example, using Table

7.1 and focusing on Sample 4, one can follow the sparsification process. Initially there are

150 responses, 1A to 30E; removing edges representing correlations that are not significant

after applying a Bonferroni correction disconnects 6 responses from the network leaving 144

responses. Removing edges representing negative correlations isolates another 29 responses;

removing isolated nodes leaves 115 responses. Applying the correlation threshold requiring

r > 0.2 (for example) removed additional edges isolating 7 more nodes; removing these left

108 nodes. A response threshold requiring at least 5% of the students select the response

was then applied; this removed 65 responses leaving 43 in the network. The dataset was then

bootstrapped 1000 times; a community detection algorithm was applied to each bootstrap

replication. The number of times two nodes were identified in the same community was

calculated. If the two nodes were not identified in the same community on 80% of the

replications the edge was removed; this isolated 14 nodes. Isolated nodes were then removed

leaving 29 responses.

Tables 7.1 and 7.4 present the nodes remaining after each step of the sparsification pro-
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cess of MMA-P as it was applied in Chapter 5. Because the Bonferroni correction depends

on the number of statistical tests performed, the order of these operations should be investi-

gated. In this study, we chose to apply the Bonferroni corrected significance threshold first

because we felt the highest priority should be to eliminate the consideration of statistically

insignificant structures; however, we acknowledge an argument can be made for applying

the student response threshold first to minimize the number of statistical tests performed.

Tables 7.2 and 7.5 present a comparison of the resulting structure if the student response

threshold is applied first or after the Bonferroni corrected significance threshold. For all

samples, the order of the response threshold and the significance threshold does not change

the number of nodes in the final network for the post-test; some small differences are found

in the pretest network for Samples 1 to 4. The pretest differences were more pronounced for

Sample 5. As such, MMA-P is generally not sensitive to the order of applying the response

threshold and the significance threshold. The reason for this is likely that the r > 0.2 cor-

relation threshold is a very strong criteria (r = 0.1 represents a small effect and r = 0.3 a

medium effect) making the significance threshold unimportant. Even at the size of Sample

5, a correlation of r > 0.2 is significant with a small p value.

The difference in the number of final nodes between the response threshold of 30 in

prior studies and 5% in this study was also examined. Tables 7.3 and 7.6 show that there

was little effect for Samples 1 to 4 for the post-test; however, the number of nodes in Sample

5 changed from 14 with the 5% threshold to 8 with the 30 threshold. Differences were even

smaller in the pretest networks. Naturally, nodes removed by either the 30 or 5% response

threshold are selected by a few students.
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Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Bonferroni correction 150 150 150 144 107
Negative correlations 149 148 133 115 87
Correlation threshold 30 50 72 108 87
Response threshold (5%) 28 35 48 43 28
Community fraction 27 32 32 29 14

N 9606 4360 1496 466 213

Table 7.1: The number of nodes retained for each sample at each stage of the sparsification process used in
the current paper for the post-test.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Response threshold (5%) 100 74 115 85 53
Bonferroni correction 100 74 115 84 51
Negative correlations 100 73 97 52 32
Correlation threshold 28 35 48 43 32
Community fraction 27 32 32 29 14

N 9606 4360 1496 466 213

Table 7.2: The number of nodes retained for each sample at each stage of the sparsification process ex-
changing the order of the response threshold and Bonferroni correction for the post-test.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Response threshold (N = 30) 148 128 139 82 35
Bonferroni correction 148 128 139 81 29
Negative correlations 147 124 120 51 21
Correlation threshold 30 41 60 42 21
Community fraction 29 36 32 27 8

N 9606 4360 1496 466 213

Table 7.3: The number of nodes retained for each sample at each stage of the sparsification process using
the 30 item response threshold from previous studies for the post-test.
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Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Bonferroni correction 150 150 149 140 129
Negative correlations 149 146 127 100 93
Correlation threshold 12 39 65 100 93
Response threshold (5%) 12 31 48 54 35
Community fraction 12 26 22 20 8

N 9606 4360 1496 466 213

Table 7.4: The number of nodes retained for each sample at each stage of the sparsification process used in
the current paper for the pretest.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Response threshold (5%) 125 109 125 103 85
Bonferroni correction 125 109 125 101 81
Negative correlations 123 105 102 59 40
Correlation threshold 12 31 48 54 40
Community fraction 12 26 24 20 12

N 9606 4360 1496 466 213

Table 7.5: The number of nodes retained for each sample at each stage of the sparsification process ex-
changing the order of the response threshold and Bonferroni correction for the pretest.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Response threshold (N = 30) 149 144 141 95 51
Bonferroni correction 149 144 141 95 44
Negative correlations 148 139 118 57 26
Correlation threshold 12 37 57 51 26
Community fraction 12 28 24 20 10

N 9606 4360 1496 466 213

Table 7.6: The number of nodes retained for each sample at each stage of the sparsification process using
the 30 item response threshold from previous studies for the pretest.

7.2 Exploring Discrete Correlations

7.2.1 Definition of ϕ

To gain an intuitive understanding of the working of the various module analysis algo-

rithms, it is useful to consider the correlation between dichotomously scored responses, R1

and R2. Each response may have values of 0 or 1 for each student. The correlation between
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the two responses is given by the ϕ coefficient which is calculated from the 2×2 contingency

table shown in Table 7.7.

Response R1

0 1

Response R2
0 A B
1 C D

Table 7.7: 2× 2 contingency table

The contingency table captures how many students select the two responses in each of

the four possible combinations. For example, if 400 students selected both responses (R1 = 1

and R2 = 1), D would equal 400. If 300 students selected response R1, but not response

R2, then B would equal 300. The ϕ coefficient, the correlation between the responses, is

calculated from the contingency table using Eq. 7.1.

ϕ =
AD − BC√

(A+B)(C +D)(A+ C)(B +D)
(7.1)

The odd form of the denominator results from taking all combinations of the marginal sums

of the rows and columns.

To measure a large correlation, most students must either select both responses (D) or

neither response (A), while also not selecting one and not the other (B and C). From the

form of ϕ, one can see that consistency is prioritized by the correlation coefficient.

7.2.2 Relation of MAMCR and MMA

The contingency table (Table 7.7) can be used to understand the relation between

the MAMCR algorithm and the MMA algorithm which sought to extend MAMCR to large
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samples. MAMCR initially constructed a bipartite network containing both students and

responses; it then projected this onto a unipartite network containing only responses where

edge weights are the number of times a student selected both responses. The edge weight in

MAMCR is then the coefficient D in Table 7.7 for R1 and R2. The edge weight in MMA is

the ϕ coefficient. Two example 2× 2 tables illustrate the difference in these two algorithms;

both contain 1000 total responses. Table 7.8 shows the table that results if the two responses

are answered perfectly consistently with 25% of the students selecting both responses.

Response R1

0 1

Response R2
0 750 0
1 0 250

Table 7.8: 2× 2 contingency for perfectly consistent answering; ϕ = 1.

Table 7.9 shows the table that results if students select the two responses completely

at random. For the perfectly consistent table (Table 7.8), MAMCR would use an edge

Response R1

0 1

Response R2
0 250 250
1 250 250

Table 7.9: 2× 2 contingency for random answering; ϕ = 0.

weight of D = 250 between the responses and MMA would use an edge weight of ϕ =

1. For the perfectly random guessing responses in Table 7.9, MAMCR would also use an

edge weight of D = 250 while MMA would use an edge weight of ϕ = 0. This serves to

explain why MAMCR failed to scale to large datasets. If one has a sufficient number of

two responses to two items, even if the selection of the responses together are completely

random, a large number will be selected together by chance and thus the two responses will
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be connected by an edge in the MAMCR network. As MAMCR is scaled to larger datasets, it

progressively identifies more random structure as consistent student thinking. This explains

why MAMCR was productive using the 143 student dataset in Brewe et al. [55] where

it was introduced, but could not be scaled to the large 4500 student dataset by Wells et

al. [56]. The difference in handling the contingency tables represents only one way MMA

and MAMCR differ. MMA uses a global sparsification method which eliminates structure

resulting from responses selected by few students, while MAMCR uses a sparsification process

which attempts to retain meaningful structures at all response levels by applying the locally

adaptive network sparsification (LANS) algorithm, which retains edges which weights are

larger than a percentage of other local edge weights.

7.2.3 Example Contingency Tables

To further illustrate these contingency tables with real data, this section presents some

example contingency tables from Sample 3. Table 7.10 shows the contingency table for a

2-response community identified in Sample 3 with the smallest D, community (8E,21A).

Response 8E
0 1

Response 21A
0 1191 78
1 173 54

Table 7.10: 2× 2 contingency for responses 8E and 21A which were identified as a community in Sample 3.

Compare this with two responses not identified as a community also with fairly small D

in Table 7.11 (responses 3A and 28D). The off diagonal terms for (3A,28D) are much larger

than those of 8E and 21A indicating 8E and 21A are being selected by the same student

more consistently.
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Response 3A
0 1

Response 28D
0 729 406
1 237 124

Table 7.11: 2× 2 contingency table for responses for responses 3A and 28D.

Most incorrect communities that appear look something like 5D and 18D shown in

Table 7.12, where the D term is fairly large and plays a role in offsetting the negative effect

of the B and C terms.

Response 5D
0 1

Response 18D
0 790 300
1 190 216

Table 7.12: 2× 2 contingency table for responses for responses 5D and 18C.

7.2.4 Parameterizing the Contingency Table

A 2× 2 contingency table has four elements A, B, C, D and can be naturally parame-

terized with the ϕ coefficient and three other parameters. The parameters N , f1, f2, and ϕ

define any 2× 2 table where N is the sum of all elements N = A+B +C +D representing

the number of respondents, f1 is the overall rate response R1 is selected, and f2 is the rate

R2 are selected; f1 = (B + D)/N and f2 = (C + D)/N . The three parameters may be

independently chosen where N is a positive integer and fi are real numbers between 0 and

1. While appropriately selecting ϕ, will generate all possible 2 × 2 tables for a selection of

N and fi, not all choices of ϕ will produce positive values for A, B, C, and D.

Figure 7.1 simulates 1,000,000 random 2×2 tables. The figure has been subsampled to

produce a constant density in all regions containing points. The x axis plots f̄ = (f1+ f2)/2

145



and the y axis the correlation coefficient. All positive ϕ values are available for all f̄ ; however,

a range of negative ϕ values are not available for either very uncommonly or very commonly

selected responses. If the simulation had been run to sufficient N without subsampling, the

region ϕ ≥ 0 would have been entirely filled in. MMA filters out negative ϕ values; as such,

the negative correlations are not important to the algorithm.
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Figure 7.1: Plot of ϕ vs. f̄ = (f1 + f2)/2

7.2.5 Exploring Low Frequency Responses

The correlation between dichotomously scored items will be one if A > 0, D > 0 and

B = C = 0. A correlation of one is very large, above a large effect in Cohen’s categorization,

and will be statistically significant for fairly small values of D. In MMA and MMA-P,

restricting responses to those selected by a certain number of students, 30 in prior studies,

5% of N in the present study, eliminates these very small D significant correlations. To

explore the properties of the contingency table which result in a significant correlation with
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small D values, assume the off diagonal terms in the 2× 2 matrix as equal, B = C, and that

the total number of responses is constrained to N . If D is allowed to vary, this constrains

A to be A = N −D − 2B. Figure 7.2 plots the correlation coefficient ϕ against the size of

the off diagonal terms, B, with N = 1000. This plot uses a significance threshold for ϕ of

p < 0.05.
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Figure 7.2: Plot of ϕ vs. B for different levels of D, N = 1000.

Note, even for D = 5, one can meet the ϕ > 0.2 threshold with sufficiently consistent

answering, B = C ≈ 15. As such, consistent structure selected by only a few students can

meet the significance threshold.

7.2.6 Probability Threshold with Bonferroni Correction

Not all correlations shown in Figure 7.2 are significant after a Bonferroni correction

is applied. There are 150 possible responses to the FCI; therefore, the correlation matrix

contains 150 · 149/2 = 11175 unique entries (excluding the diagonal). If an α < 0.05
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significance threshold is used for a single statistical test, the Bonferroni correction adjusts

this threshold to αb = α/11175 = 4.5 × 10−6, a substantial correction. In general, larger

samples will have smaller correlations pass this requirement. This can be seen by restricting

Figure 7.2 to contain only combinations of B and D which pass the significance threshold

with Bonferroni correction. Figure 7.3 shows the Bonferroni corrected significant correlations

for Sample 1 (N = 9606), Figure 7.4 for Sample 4 (N = 466), and Figure 7.5 for Sample 5

(N = 213).
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Figure 7.3: Plot of ϕ vs. B for different levels of D for Sample 1 applying the probability threshold with
Bonferroni correction.

As one might expect, the much higher statistical power of Sample 1 allows the resolving

of smaller occupation significant communities than in Sample 4 or 5. For Sample 4, the

Bonferroni corrected probability threshold retains correlations of about 0.2 and as such has

the same effect as the correlation threshold. This sample is near the minimum sample size

for the adjustment of the correlation threshold to be productive and may explain some of
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Figure 7.4: Plot of ϕ vs. B for different levels of D for Sample 4 applying the probability threshold with
Bonferroni correction.
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Figure 7.5: Plot of ϕ vs. B for different levels of D for Sample 5 applying the probability threshold with
Bonferroni correction.

the unusual features of this sample’s scree plots. For Sample 5, the Bonferroni corrected

significance threshold removes ϕ < 0.35 explaining why this samples scree plot was flat.
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7.3 Correlation Threshold Plots

The figures which follow show the plots of average community size versus the number

of communities used to select the correlation threshold for each network. The Sample 1

post-test graph is shown in the main paper.

0.1

0.11
0.12

0.13

0.14
0.15

0.16

0.17

0.18

0.19 0.2

0.21

0.220.23

0.240.25
2.0

2.4

2.8

0 5 10 15 20

Number of Communities

A
v
er

ag
e 

C
o

m
m

u
n

it
y

 S
iz

e

Figure 7.6: Plot used to determined the correlation threshold r for the Sample 1 pretest network. Each
point represents a network calculated at the labeled r value.
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Figure 7.7: Plot used to determined the correlation threshold r for the Sample 2 pretest network. Each
point represents a network calculated at the labeled r value.
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Figure 7.8: Plot used to determined the correlation threshold r for the Sample 2 post-test network. Each
point represents a network calculated at the labeled r value.
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Figure 7.9: Plot used to determined the correlation threshold r for the Sample 3 pretest network. Each
point represents a network calculated at the labeled r value.
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Figure 7.10: Plot used to determined the correlation threshold r for the Sample 3 post-test network. Each
point represents a network calculated at the labeled r value.
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Figure 7.11: Plot used to determined the correlation threshold r for the Sample 4 pretest network. Each
point represents a network calculated at the labeled r value.
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Figure 7.12: Plot used to determined the correlation threshold r for the Sample 4 post-test network. Each
point represents a network calculated at the labeled r value.

153



7.4 Full Catalog of Communities

Table 7.13 shows all communities identified by MMA-P in Chapter 5.
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Table 7.13: Communities of FCI responses identified in both the pretest and the post-test. Cells with the
label × are sub-communities of a larger community or are found with a different edge structure, while cells
labeled ⊗ are explicitly found in the network. Sample 1 is abbreviated as S1, Sample 2, etc. Responses that
are separated by dashes are connected to each other, but not to other responses in the community, unlike
responses that are in parenthesis, which are completely connected.

Community
Pretest Post-test

Explanation
S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Completely Incorrect Communities
4A - 15C × × ⊗ × × × × Newton’s 3rd law misconceptions.
(4A, 15C, 28D) ⊗ ⊗ ⊗ × ⊗ ⊗ Newton’s 3rd law misconceptions.
5C - 18C ⊗ Motion implies active forces: centrifugal force.
5D - 18D ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ Motion implies active forces.
5E - 18E ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ Motion implies active forces: centrifugal force.
6A - 7A ⊗ ⊗ ⊗ ⊗ ⊗ Circular impetus.
8E - 21A ⊗ 8E and 21A share a similar trajectory.
8A - 9B ⊗ ⊗ ⊗ ⊗ × × × Blocked items: Last force to act determines motion.

9B - (8A, 21B, 23C) ⊗ ⊗ × 8A-9B: Blocked items. 21B-23C: Blocked Items.
Both: Last force to act determines motion

(9B, 8A, 21B, 23C) ⊗ 8A-9B: Blocked items. 21B-23C: Blocked Items.
Both: Last force to act determines motion.

11B - 29A ⊗ Motion implies active forces.
11C - 13C ⊗ × Motion implies active forces.
11C - 30E × ⊗ Motion implies active forces.
13C - 30E ⊗ × Motion implies active forces.
11C - 30E - 13C ⊗ Motion implies active forces.
15D - 16D ⊗ ⊗ Newton’s 3rd law misconceptions.
17A - 25D ⊗ ⊗ ⊗ Largest force determines motion.
21B - 23C ⊗ ⊗ ⊗ ⊗ × ⊗ × × ⊗ Blocked items: Last force to act determines motion.
21C - 22A ⊗ × Blocked items.
23D - 24C ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ Impetus dissipation.

Mixed Correct and Incorrect Communities
8B* - 21C ⊗ × × × 8B* and 21C share a similar trajectory

8B* - 21C - 22A ⊗ 8B* and 21C share a similar trajectory.
22A blocked with 21C.

8B* - 21C - 23B* ⊗ × 8B* and 21C and 23B* share a similar trajectory.
21C-23B* Blocked items.

(8B*, 21C, 23B*) ⊗ 8B* and 21C and 23B* share a similar trajectory.
21C-23B* Blocked items.

21C - 23B* ⊗ × × Blocked items: 21C and 23B* share a similar trajectory.

(21E*, 22B*, (15C), 4A, 28D) ⊗ (4A, 15C, 28D): Newton’s 3rd law misconceptions.
21E*-22B* Blocked items: 15C connection unknown.

Completely Correct Communities
4E* - 28E* × × × × × × × ⊗ Newton’s 3rd law.
15A* - 28E* ⊗ × × × × × × × Newton’s 3rd law.
(4E*, 15A*, 28E*) ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ Newton’s 3rd law.
5B* - 18B* ⊗ × ⊗ ⊗ ⊗ × × ⊗ Centripetal acceleration in a curved trajectory.

(5B*, 18B*, 13D*) × ⊗ ⊗ Motion under gravity;
a force in the direction of motion is not necessary.

6B* - 7B* ⊗ ⊗ ⊗ Instantaneous velocity is tangent to the trajectory.

11D* - 13D* × × ⊗ Motion under gravity;
a force in the direction of motion is not necessary.

11D* - 13D* - 30C* ⊗ Motion under gravity;
a force in the direction of motion is not necessary.

11D* - 13D* - 5B* - 18B* ⊗ Motion under gravity.
17B* - 25C* × ⊗ × × × ⊗ ⊗ ⊗ Newton’s 1st law; Addition of forces.

17B* - 25C* - 26E* × × ⊗ ⊗ Newton’s 1st and 2nd law; Addition of forces;
(26E*) 1D acceleration.

(17B*, 25C*, 26E*) ⊗ ⊗ Newton’s 1st and 2nd law; Addition of forces;
(26E*) 1D acceleration.
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Chapter 8

Social Network Analysis of West Virginia STEM

Education Network ∗

∗This chapter presents the work submitted for publication in Research in Higher Education. This work
was constructed with collaborative efforts from Marjorie Darrah and John Stewart.
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8.1 Introduction

The First2 Network is a collaboration of individuals from industry, higher education, K-

12 schools, government, and federal research labs joined together for the purpose of increasing

undergraduate STEM retention rates in West Virginia. This group has focused on classically

underrepresented groups that are most prevalent in the state; rural and first-generation (FG)

students. The First2 Network was formed with the intention of doubling the number of

STEM graduates in West Virginia within 10 years by building sustainable collaborations

that help support students in STEM as undergraduates and help connect them into the

workforce.

Prior to the First2 Network, many groups within West Virginia were individually im-

plementing programs to support student STEM persistence. The network formed because

a greater impact could be achieved if each of these programs spread information and tech-

niques to improve existing programs and implement new programs at more institutions. The

network quickly expanded to include input from STEM-based industry members and from

rural and FG STEM students.

Rural students who travel far from home for college are less likely to persist than non-

rural students [156, 157]. These students often report feelings of isolation and homesickness

when separated from the communities that they grew up in. These students may also value

family commitment and community relationships more than their own achievement [158].

The First2 Network strives to build a sense of community for rural and FGS students within

their institutions and within their STEM discipline.

The purpose of this chapter is to quantitatively assess the growth and development of
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the First2 Network. The network has focused on building infrastructure to replicate, expand,

and spread promising programs and practices across the state. We hope to understand the

sustainability of these collaborations after the project ends. The following research questions

were the primary focus of this research:

RQ1 How is the overall structure of the network changing?

RQ2 How are collaborative groups forming?

8.2 Background

8.2.1 Theoretical Framework

The First2 Network was formed with the intention of increasing student retention and

persistence in STEM by involving rural and FG students in close-knit community groups

that help develop their science identity and improve their self-efficacy. These methods are

supported theoretically by both Tinto’s Model of Student Departure [159, 160] and by Astin’s

Theory of Student Involvement [161].

Tinto states that the three primary reasons that students withdraw from an institution

are difficulties becoming integrated into communities at the institution, difficulties with

academics, and difficulties with career choice. The model emphasizes the importance of both

formal and informal methods of student involvement in both academic systems and social

systems for student retention. Tinto describes formal academic systems as those directly

related to academic performance, informal academic systems as interactions between students

and faculty/staff, formal social systems as any well-defined extracurricular activities, and

informal social systems as interactions between students and their peer groups. According
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to Tinto, students who have both social and academic connections are more likely to persist

than those who do not.

In 1984, Astin performed a longitudinal study to determine the factors that were

most related to student persistence. He found that students’ level of involvement in their

institution was not only related to persistence, but it was also linked to performance. Astin’s

Student Involvement theory was developed from this study. His theory states that the

quantity and quality of energy that students invest into their college experience is directly

proportional to the amount of personal development and learning a student experiences

in college. Involvement is defined loosely as faculty/staff interactions and participation in

academic work and extracurricular activities. Astin posits that student involvement should

be the primary metric by which effective educational practices or policies are measured.

Both Tinto’s Model of Student Departure and Astin’s Theory of Student Involvement

independently come to the conclusion that students who engage with extracurricular groups

and on-campus activities are more likely to persist at their institutions than students who

are more isolated. These models lay the groundwork for the current study by theoretically

connecting student persistence with student connectedness. This work examines student-

student groups forming as well as students’ participation in the First2 Network as a whole.

These models not only present the underlying argument for the existence of the First2

Network itself, but they also show the importance of the connections studied with network

analysis.

It should be noted that both of these theories have been criticized for neglecting stu-

dents’ lived experiences and for encouraging students to separate themselves from past rela-

tionships in order to make room for new connections at their own institutions [162]. Tinto in
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particular has been critiqued for drawing data from exclusively four-year, public institutions

and generalizing it to all institutions, when it may not apply to smaller institutions or insti-

tutions that serve historically marginalized populations [163]. For our case however, recent

research has shown that, for both rural and first-generation students, maintaining relation-

ships between disconnected social networks (academic and hometown) allowed students to

benefit from mentorship in both spheres [164]. Also, particularly for students who are both

rural and first-generation, connecting students with professional mentors early on in their

college career helps them better understand their interests and, subsequently, choose and

persist in their major [164]. Tinto’s and Astin’s theories can be successfully applied in our

context, then, assuming a rejection of the idea that students must be separated from past

relationships.

8.2.2 Social Network Analysis

Social network analysis (SNA) describes the process of exploring social structures using

principles and practices graph theory. A social network is composed of actors (nodes) who are

connected through some kind of relationships (edges). SNA is often used to investigate the

interchange of resources across a network of actors or to determine patterns of interactions

apparent in the network [138]. SNA can also be used to measure the significance of individual

network members on the size, number of connections, and information transfer within the

network.

One of the benefits of SNA is the diversity of areas it can be used to explore. It has

be used in many different research studies in academia alone. Lukacs and David considered

how students’ personal networks became unstable in the process of college transition [165].
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They studied a group of Roman students and found significant differences between students

in their reliance on certain groups in the process of academic adjustments. Eckles and

Stradley determined relationships in a network by using archived data [166]. They found

that the retention of students’ friends had a greater impact on their retention than did the

performance variables commonly believed to be associated with retention. Almeida et al.

utilized SNA to study social capital in first-generation students’ academic success [167]. They

learned that, for this set of students, social capital with faculty and staff predicted grade

point average. Poldin et al. studied how the achievements of students are influenced by the

achievements of peers in their social network [168]. They discovered that this peer influence

happens chiefly through relationships, such as study partners that share knowledge, and not

as much through mere friendship connections. Another group that studied peer networks

found that peer quality improves student performance and that the breadth and cohesion of

a student’s network positively affects a student’s outcomes [169].

González Canché [170] has recently advanced the use of SNA in education research

by bridging geographical and social network analysis to statistically model structures with

education data. He has also shown how to reveal meaningful structure in qualitative data

with these methods. González Canché and Rios-Aguilar applied SNA to institutional data

from Calizona Community College to study the effects of peers and credit attainment on

underrepresented minority students in community colleges [171]. They found that male

Latino and male African American students benefited from interacting with peers in the

same racial/ethnic group with higher amounts of credits accumulated. There was no effect

found based on the variation of peers’ credit attainment for female Hispanic or African

American students.
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8.3 Methods

8.3.1 Data Collection

A survey was developed internally by the research team of the First2 Network in order

to study the composition of the network each year. The survey was assessed for its face

validity by the First2 Network’s research team and the leadership team before revision and

redistribution to the entire network. Surveys were distributed by email to any individual

who signed up on the First2 Network’s website. Data were collected for five consecutive

years, from 2018 to 2022. Surveys were completed online through the Qualtrics survey

application. An IRB (institutional review board) approved consent form was provided at

the beginning of the survey. Respondents then submitted basic demographic information

such as name, organization, and role (student, faculty, administrator, etc.). Lastly, they were

asked to name other individuals that they collaborated with on projects related to the First2

Network. Given that “collaboration” can mean very different things to different people, and

the degree to which two people collaborate on projects differ, a numeric classification for

levels of collaboration was provided to help participants understand the meaning of each

term. The following scale developed by Hogue et al. [172] and Borden and Perkins [173] was

used;

1. Networking: Aware of Organization, Little Communication, Loosely Defined Roles,

Independent Decision Making

2. Cooperation: Share information, Formal Communication, Somewhat Defined Roles,

Independent Decision Making
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3. Coordination: Share Information Frequently, Defined Roles, Some Shared Decision

Making,

4. Coalition: Frequent Communication, Shared Resources, Shared Decision Making

5. Collaboration: Frequent Communication, Shared Resources, and Mutual Trust. Coor-

dination on Most or All Decision Making.

Over the five years of data collection, 249 individuals either responded or were named

by someone who responded to the survey. One limitation of social network data collected

through virtual surveys is that responding to the survey is entirely voluntary and moderately

time consuming. In order to overcome this limitation, we decided to include any individual

named by any respondent in the analysis as network members even if they did not fill out

the survey themselves.

Network members consisted of undergraduate students, graduate students, student

advisors, industry members, K-12 teachers, university staff members, faculty members, re-

searchers, and administrators. The organizations that these network members collaborated

with were also very diverse including colleges and universities, companies, state-level ed-

ucational agencies, county school systems, nonprofits, and state research organizations. In

addition to the survey data, student persistence and GPA data were collected from the largest

institution in the First2 Network. A list of publications related to the First2 Network was

also collected to form a publication network.
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8.3.2 Network Construction

To explore the structure of connections between First2 Network members, survey re-

sponses were converted into an adjacency matrix. The adjacency matrix turns network

members into nodes and the connections between members of the network into edges. The

reported strength of collaboration forms the edge weight in the network. Individual cells in

the adjacency matrix, aij, represent a weighted edge between two collaborators i and j. If

two survey respondents name each other in the survey, but they respond with a different

strength of connection, then the average reported strength is used in both cell aii and cell aji,

so the resulting matrix is square and symmetric, and the corresponding graph is undirected.

Consequently, if one person names a network member that did not fill out the survey, or did

not name that person in their survey, then the reported strength of connection is averaged

with 0. This allows for network members who did not fill out the survey to still be accounted

for in the analysis, but with a lesser weight than two people who both filled out the survey.

Using the exact reported strength of connection would create a directed adjacency matrix

and would have the potential to reveal more salient and complex information about the

network structure but would require a higher survey response rate for the direction of the

edges to be meaningful.

Another network was constructed from the list of academic publications written about

the First2 Network. Individuals who appeared in one or more publications were included as

nodes and edges were formed between two individuals if they were coauthors on at least one

of the papers. This resulted in an undirected graph. Edges were weighted by the number of

papers two individuals collaborated on.
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8.3.3 Network Statistics

Yearly network statistics were calculated after the adjacency matrix was formed. The

number of nodes (people), the number of edges (collaborative connections), the graph density

(the ratio of the number of edges in the network to the maximum possible number of edges),

and the number of surveys completed was calculated.

In network analysis, a network is composed of a set of nodes and edges with any number

of configurations. When nodes or groups of connected nodes are not connected to other nodes

in the network at all, they form isolated “islands.” These islands are called components. The

component with the largest number of nodes is called the giant component. Many network

statistics, primarily ones related to a distance across the network, are calculated over the

giant component rather than over the entire network itself. This is because distances are

measured by the number and weight of edges across a network, and, given that no edges are

connecting smaller components to the main component, the distance between components

is undefined. Any metric calculated for the giant component can be calculated for smaller

components as well, but for networks where the giant component is significantly larger than

other components in the network, these metrics are usually just calculated for the giant

component. The size of the giant component and the number of components are both

reported for this work. For a network changing in time, these two statistics can provide

an indication of the growth of the main body of the network and how/if the network is

splintering into smaller groups.

Two different centrality metrics were calculated in order to measure the connectedness

of individuals to the larger network. These two metrics are strength (weighted degree)
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and betweenness centrality. Strength is a local centrality measure that shows how closely

connected a node is to its immediate surroundings within a network. Strength is found by

adding the weight of each edge connected to an individual node. Betweenness centrality

is a global centrality measure that accounts for a node’s position relative to each other

nodes’ positions in the network. Betweenness centrality for a node v is found by computing

the shortest path between each pair of nodes, finding the fraction of shortest paths that

include the node v for each node pair, then summing this fraction over all node pairs [174].

Betweenness centrality scales with the number of node pairs in a network, so the statistic

is normalized by dividing by the number of node pairs not including v itself; (N−1)(N−2)
2

for

undirected networks. Including both a local and a global measure should capture most of

the relevant information about the significance of each node in the structure of the network.

Each node has its own strength and betweenness centrality and these are reported for the top

actors in the network. The average strength and betweenness centrality are also computed

for the entire network. A person with a higher betweenness centrality is someone who is the

bridge between unconnected network members, whereas a person with a higher strength is

someone who simply has many connections. People with higher strength tend to have higher

betweenness centralities, and vice versa.

To study the similarity of the First2 Network over the years, the coverage index (CI)

was calculated for the overlap in nodes each year. The CI quantifies this overlap by taking

the ratio of the intersection of the set of nodes in two different years with the total number

of nodes in each year. The intersection of two sets of nodes, set A and set B, is composed of

the nodes that are in both set A and set B. The ratio for the CI involves the total number of

nodes in each year; as such, two different coverage indexes are calculated for each two-year
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pair:

CIA =
N(A ∩ B)

N(A)
(8.1)

CIB =
N(A ∪ B)

N(B)
(8.2)

where N (X) is the size of set X. A coverage index plot uses Equation 8.1 for the value below

the diagonal and Equation 8.2 for the value above the diagonal. In other words, the lower

diagonal represents the yearly overlap in people relative to the earlier year, while the upper

diagonal represents the overlap in people relative to the later year. The CI is presented to

give a natural degree of commonality between the years. The R package corrplot [175] was

used to show yearly coverage indexes.

Maximal clique analysis was used to determine the close-knit groups forming in the

network. A clique is a group of directly connected individuals within the larger graph,

such that each pair of individuals in the clique has an edge connecting them. A clique is

maximal if it includes the largest subgroup of individuals where everyone in the subgroup is

connected. People can belong to more than one clique. The Bron and Kerbosch Algorithm

[176] can be used to find all maximal cliques of each possible size along with the cliques’

members. A clique strictly measures groups of individuals that each reference each other

as a collaborator. Group structures are often more complicated than this. For example,

an institution could have a committee of ten faculty members tasked with assessing the

institution’s social climate. In a group of that size, there is a reasonable chance that not

every member of the group would collaborate with every other member, and they would not
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be counted as a group in a clique analysis, even though they could meaningfully be defined

as a collaborative group.

A community detection algorithm (CDA) was used to determine the grouping structure

of the network beyond the strictly defined, well connected cliques. A community is a set

of nodes such that pairs of nodes in the set are more likely to be connected if they are

both members of the same community than if they were members of different communities.

Since the clique analysis allowed for overlap, a CDA was chosen that did not allow for

overlap in communities to determine if the network divided naturally into groups that were

more connected internally than they were connected externally. The communities were then

analyzed for similarities between network members. The fast-greedy CDA was used for this

work [177]. This algorithm directly optimizes a modularity score, a score that represents how

well a network has been divided into communities. The algorithm can be represented by a

dendrogram (tree plot) where each level indicates a different number of possible communities.

The modularity is calculated at each level in the dendrogram, and the maximum is then found

by the peak in the modularity graph [97].

8.4 Results

In this section, we will examine the First2 Network’s evolution using several social

network analysis tools.

8.4.1 Network Structure and Evolution

Table 8.1 shows several statistics associated with the First2 Network. The number

of individuals responding to the survey increased every year. From the survey responses,
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people were added to the First2 Network in two ways, either they filled out the survey, or

they were named by someone who filled it out. From the table, it can be seen that the

number of connected members (nodes) also grew each year and likewise the total number

of members to date continued to grow. From 2018 to 2021, the network was growing at

relatively commensurate rates in all metrics, but in 2022 the number of connections (edges)

drastically decreased. In 2022, network members were reporting fewer connections with lower

collaboration levels relative to previous years. The average strength of network members is

one of the most robust ways to test the connectivity of a network because it is less susceptible

to the N2 effect of edge density calculations, where smaller networks tend to have higher

densities. The density, the ratio between the actual number of edges and the total possible

number of edges, is included to illustrate this point.

Table 8.1: Network Statistics

Statistic 2018 2019 2020 2021 2022
Survey Responses 25 30 44 62 83

Nodes (Active Members) 48 67 81 105 122
Total Members to Date 48 85 127 182 249

Edges 146 183 215 304 211
Density 0.129 0.083 0.066 0.056 0.029

Average Strength 10.85 10.57 11.62 12.50 7.00
Average Betweenness 0.041 0.037 0.038 0.031 0.032
Giant Component 48 67 75 96 102

Number of Components 1 1 4 4 11
Number of Communities 6 6 6 7 9

From 2018 through 2021, the evolution of the First2 Network was dominated by student

growth, which can be seen in Figure 8.1. This changed in 2022 when the number of students

in the network marginally increased, but the number of other types of network members

substantially increased. The growth of active network members has been relatively constant,

with an average of about 19 new members joining the First2 Network each year. Each year,
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Figure 8.1: Network by Category.

new members were added while older members left or disengaged. Once a person was an

active part of the network and a number was assigned to them, they kept this number even if

they became inactive and were not part of the node count in subsequent years. From 2019 to

2021 the number of non-student active network members changed negligibly. However, many

non-student network members were joining or leaving the network, leading to an equilibrium

of active non-student members.

Figure 8.2 shows the First2 Network colored by members’ self-reported role. The

position of each node in Figure 8.2 (and in all future network graphs) is related to the

strength of connection to other nodes in the network. The Fruchterman-Reingold force-

directed layout algorithm [154] is utilized to place nodes closer together that have higher edge

weights. Survey respondents are prompted by the question “Which of the following roles most

accurately describes your role in the network?” They were provided with many options for

their potential role, but for visualization purposes, the options in the survey were combined

to the four roles displayed in Figure 8.2. Network members sometimes reported different
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roles from year to year, depending on which role most accurately described them that year.

For example, for the first three years, node 26 was part of the “Government/Industry contact

role” because they worked for a state research organization, but by 2021 they identified as a

Faculty Member/Lecturer/Teacher, and by 2022 they were put in the other category because

they reported that they were now an administrator.

Figure 8.2: Network by role, sized by strength.

In Figure 8.2 nodes are sized proportional to network members’ strength of connections,

but the scaling factor is small to show the change in the network relative to the most

prominent figures. These graphs make it clear that although students make up the dominant

growth in the network in terms of new members, the large-scale structure of the network

is dominated by non-student members. These networks also show some of the structural
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changes that occur when very connected network members leave the network. The loss of

members like 27 and 82 could, to some extent, help account for the decreasing network

metrics in 2022.

Table 8.2: Yearly change in strength and betweenness of top actors in the network.

ID
2018 2019 2020

S SR B BR S SR B BR S SR B BR
8 53.0 1 0.261 1 56.5 1 0.302 1 58.0 1 0.046 18
27 17.5 11 0.075 11 46.0 2 0.177 4 54.5 2 0.156 6
26 26.5 5 0.006 20 31.0 8 0.027 23 52.0 3 0.019 30
23 36.0 3 0.103 9 45.0 4 0.123 8 42.0 5 0.047 16
82 NA NA NA NA NA NA NA NA 38.0 6 0.028 25
ID 2021 2022

S SR B BR S SR B BR
8 65.5 2 0.050 14 53.0 1 0.17 4
27 76.0 1 0.428 1 NA NA NA NA
26 55.0 3 0.019 30 30.0 4 0.208 2
23 45.5 4 0.000 60 36.0 2 0.042 14
82 40.0 6 0.001 57 NA NA NA NA

Table 8.2 illustrates the impact on network structure that members 27 and 82 had

relative to other top network members. S stands for strength, SR for strength rank, B for

betweenness, and BR for betweenness rank. Strength rank and betweenness rank represent

the rank of an individual for a given centrality metric for a given year. For example, SR

of 1 means that the individual had the highest strength for the entire year; BR of 5 means

that individual had the fifth highest betweenness value for that year. The other top network

members, 8, 26, and 23 were chosen by their strength rank; from 2018-2022 they consistently

had some of the highest ranks, usually top 5. Top network members were chosen by SR and

not BR because the top members by betweenness had more year-to-year variance. Table

8.2 makes clear that individuals who control the most unique information flow between

connected groups (high BR) are often not the same individuals who simply have the most
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connections (SR). Cells in Table 8.2 are labeled NA when a network member was not in the

First2 Network that year, either because they had not joined yet, or because they left the

network entirely.

Figure 8.3: Network by role, sized by betweenness.

Figure 8.3 is colored the same as Figure 8.2, but it is sized by betweenness to show net-

work members that are pivotal in retaining the structure of the network. Losing a network

member with high betweenness is likely to split the network into smaller components, taking

much of the possible information transfer with them. This graph clearly shows that the net-

work is held together by members with various roles. Figure 8.2 emphasizes the dominance

of faculty members in terms of the total number of connections in the network. Figure 8.3

shows that students, government/industry contacts, and other members (i.e., administrators
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and non-profit employees) keep the network together as generally as a single component

rather than separate, internally well-connected components. First2 Network members with

high betweenness act as major information distributors within the network. For example,

students like 61 in 2019, 99 in 2021, and 146 in 2022 are connected to many other stu-

dents who are not connected to anyone else, so they seem to distribute information to these

otherwise unconnected students.

Figure 8.4 displays the coverage index, the portion of overlap in specific First2 Network

members between each year. The color scale and circle completeness both represent the same

metric; a full circle represents complete overlap, while an empty space represents no overlap.

The circles above the diagonal represent the overlap in network members divided by the

later year, Equation 8.1, while circles below the diagonal represent the overlap in network

members divided by the earlier year, Equation 8.2. A network growing in members will

necessarily have more complete circles in the lower diagonal than in the upper diagonal. For

example, CI2018 is the overlap in members between 2018 and 2019 divided by the number of

members in 2018. This comparison is shown in the second row, first column in Figure 8.4.

In a growing network then, this will be a more complete circle than CI2019, the overlap in

members between 2018 and 2019 divided by members in 2019, which is found in the cell in

the first row, second column in Figure 8.4.

Figure 8.4 quantifies the rate of individuals joining or leaving the network. The compo-

sition of the network changes by approximately 30-50% every year. Over 50% of individuals

from each previous year remain in the network. Over time this flow of network members

leads to the network changing drastically, with only about 35% of the individuals that were

in the network in 2018 remaining in the network in 2022 (this is represented by the bottom
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Figure 8.4: For years i and j with i < j, the plot above the diagonal represents CIi = N(Xi ∩Xj)/N(Xj)
and the plot below the diagonal CIj = N(Xi ∩Xj)/N(Xi) where X is the set of actors and the function N()
computes the size of the set.

left-most circle). The change in network members is directly proportional to the change in

network connections; when network members leave, their connections are taken with them.

Table 8.1 shows that the giant component size of the network was identical to the total

network size until 2020. In 2020 and 2021 the network split into four components. In 2020

all three of the new components were of size two, while in 2021 one component was size four,

one was size three, and one was size two. In 2022 many isolated sub-groups split off from
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the main network, resulting in 11 components, all of which, outside of the giant component,

were of size two. The number of components and the size of the giant component relative

to the number of nodes in the network give some indication of the possibility of information

flow in a network. Individuals who are part of the isolated components are less likely to be

a part of, or even know about, many of the First2 Network’s activities and events.

2019

2020

2021

2022

2018

Figure 8.5: Communities identified in each year’s giant component.

The giant component and the communities resulting from the application of the fast-
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greedy community detection algorithm are shown in Figure 8.5. Nodes are colored by com-

munity membership and a shaded region is included over each community. Nodes are roughly

sized by strength, with a minimum size threshold to make node color visible. Shaded regions

overlap because of the force-directed graph node placement algorithm, but community mem-

bership does not actually overlap. Edges between communities are colored red and edges

within communities are colored black. The CDA was applied only to the giant component

because the maximum size of any other component in any year was four, so each compo-

nent was its own community, and the community detection provided no new information for

these smaller components. Communities that resulted from the application of the CDA to

the networks were analyzed for institutional homogeneity. This gives a broad picture of the

network, indicating which years had greater levels of inter-institutional collaboration and

which years had collaborations forming within individual institutions. Cross-institutional

collaboration should be indicative of information transfer between different programs and

collaboration within a single institution could be indicative of institutions attempting to

implement strategies and programs developed by the First2 Network.

In 2018, out of the six communities identified, the four smallest were almost entirely

institutionally homogeneous, while the two largest communities had very little overlap in in-

stitutional membership. Out of the six communities in 2019, the smallest two communities

were mostly composed of members from one or two institutions, while the other four commu-

nities were much more heterogeneous than 2018. In 2020, except for the largest community,

the others were institutionally homogeneous. In 2021 the largest community, shaded red and

colored orange, actually included members mostly from one institution, but was less central

in the network than other smaller communities that were much more institutionally diverse.
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In 2022, all eight of the communities, except for the largest and most central one, were each

composed of members from single institutions. In the years 2018, 2020, and 2022, the CDA

identified groups of individuals from the same institution that were more connected to each

other than to other institutions. In 2019 and 2021, the grouping structures identified by

CDA seemed to be much less dependent on the community member’s institution, indicating

a higher level of cross-institutional collaboration, and information transfer, during those two

years.

Figure 8.6: Graph of student to student connections.

Figure 8.6 shows connections between student members in the First2 Network from
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2018 to 2022. Students who were only connected to non-student members are included as

isolated nodes. Node size is proportional to the student’s strength in Figure 8.2 to show

which students were more connected to other students and which were more connected to

non-student network members. For example, node 3 in 2018 is larger than the nodes in 2018

that actually have connections because node 3 is connected to more non-student members

than the other students in 2018. Early in the project, student connections relied heavily on

connections to faculty members. In 2020 and beyond, students seemed to form larger intra-

institutional groups. The large drop in connectivity evident in the total network in 2022 is

less evident here. It seems that student connections in 2022 either decreased or increased by

institution, with the light blue and burgundy institutions having smaller student subgroups,

and the red institution having larger student subgroups. On average there is still a decrease

in average student connectivity, which can be seen in the number of tiny, isolated nodes in

2022 compared to 2021. These individuals are connected only to faculty members.

8.4.2 Faculty Collaboration and Productivity

Maximal clique analysis was applied as another way to examine the structure of the

network to quantify the number of closely-knit collaboration groups. These close-knit groups

consisted mainly of faculty members and, in the early years, were developing around the

working group structures that had been set up by the Network. Table 8.3 grew in number

and average size from 2018 through 2021, showing that more people were working closely in

larger groups. It should be noted that the number of cliques can be larger than the number

of nodes because they represent different combinations of connected nodes. The difference

between this and the community analysis is that in clique analysis strictly includes fully
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connected groups, where every member in the group has an edge between them, whereas

communities are loosely connected by a closer proximity each other than those outside the

group.

Table 8.3: Clique Structure. The yearly clique structure for cliques of size 3 or greater are included.

Clique Size 2018 2019 2020 2021 2022
3 195 242 269 403 99
4 152 215 243 383 24
5 162 111 140 241 2
6 10 29 46 92 0
7 0 3 7 20 0
8 0 0 0 2 0

Mean 3.73 3.89 3.98 4.08 3.22

In 2018, the largest size cliques were of 10 cliques of size six. Each of these largest

cliques were composed of individuals from different organizations, with either six, five, or

three different organizations represented. In 2019, the largest cliques were 3 cliques of size

seven and 29 cliques of size six. These cliques were made up of First2 Network members

from seven different organizations. In 2020, the number of cliques of size six and seven

increased to 46 and 7 respectively. These cliques contained First2 Network members from

seven organizations. These cliques were mostly made up of faculty from different colleges

and universities but also contained staff of research organizations or state education organi-

zations. The pandemic years did not have much effect on the growth of the cliques, since

most groups met on an online platform already because they were from all over the state.

In 2021, there were 92 size six cliques, 20 size seven cliques, and 2 size eight cliques. The

largest cliques in 2021 were again made up of five and six organizations. In 2022, the Net-

work structure changed, and the number and size of cliques dropped off dramatically. The

largest were 2 size five cliques. These two cliques were composed of only project leadership
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and not composed of faculty at different institutions. The size five cliques went from 241 in

2021 to 2 in 2022.

An alternate measure of the connectivity of the First2 Network was developed by

examining the network of academic publications, see Figure 8.7. This graph represents 25

publications and 44 authors, with 30 faculty and graduate students from the First2 Network

and the other 14 faculty and graduate students from outside the network. There are 148

edges, indicating a minimum of 148 instances of publication-based collaboration. In the

figure, the First2 Network members are colored in blue, while non-network members are in

red. The nodes represent people, and the connections represent whether they are coauthors

on a paper. The thickness of the edges corresponds to the number of co-authorships shared

between a pair of nodes. The size of each node corresponds to the number of publications

of each individual.

Figure 8.7: Network of publications.
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The publication network naturally divides itself into several distinct clusters. The

clusters are also connected to other clusters, showing that some members work with different

groups. There is one isolated node, indicating a sole author publication. The non-members

were typically graduate students who were working in a group with a faculty member who was

part of the First2 Network. These members also show that there exist individuals outside

of the network that are influencing the network. Non-network members participating in

publications using data from the network or from students who participate in the network are

influencing the structure of the main network by influencing network leaders’ policy decisions

with their data analysis. It is clear that some of the members of the First2 Network (22, 43,

118) are very productive (have many publications) and that they are working with others in

the network to coauthor papers. The numbers on these nodes correspond to the numbers in

the overall network graph, so when looking at the nodes in the publication network we can

see that node 8 and node 26 also appear in Table 8.2, indicating that they were both also

prominent members of the main network.

Precisely quantifying the edge overlap between the publication network and the main

set of networks is difficult because the main network breaks down connections by year while

the publication network includes papers published any year during the network’s existence.

However, any edge that exists in the publication network between two network members also

exists at some point in time in the main network because publishing is a type of collaboration.

Figure 8.7 is not included to show unique connections between faculty members not captured

through the main network, it is included to reveal the structure of a single type of connection

within the network. Publications represent particularly active network members who are

collaborating through the peer-reviewed publication process rather than through informal
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networking or formal committees within the First2 Network.

For the individuals with the highest degree in the network of publications, we looked

at their strength and betweenness scores in the First2 Network in 2022. For the top ten

individuals in the network of publications, seven were members of the First2 Network in

2022. The others had either left the First2 Network by 2022, did not take the survey, or

were not named. The average strength for this group was 25 and the average betweenness

score for this group was 582. This was much higher than the overall average in 2022, which

was a strength of 7 and an average betweenness of 186. This shows that these individuals in

the network of publications are highly connected and influential in the main Network.

8.5 Discussion

This section will answer the two main questions posed in the introduction.

Research Question 1 – How is the overall structure of the network changing? The

overall structure of the First2 Network changed from year to year but had stable growth

with more people joining than leaving each year. The number of connections and the av-

erage strength grew each year from 2018 to 2021; overall, network members were gaining

connections and/or strength of connections. There was a reduction of both the number of

edges and strength in 2022, which could be a result of changing the structure of the working

groups. The giant component grew every year, which implies that network members were not

isolated in small groups but were more centralized. This could be due to the First2 Network

holding bi-annual conferences for all members and monthly meetings for leadership.

In 2022, the last year of a five-year grant, the leadership of the First2 Network started
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focusing on the sustainability of changes at each organization. They discontinued most

working groups and changed the focus and funding to institutional teams at each college

and university. They also had leadership teams established around different areas such as

sustainability and improvement science to support institutional team research efforts. Until

2022, collaboration was growing among network members and between network organiza-

tions, but due to some conscious policy changes, the inter-institutional working groups were

replaced by institutional teams and thus the collaboration between institutions was reduced

in 2022. The First2 Network made a conscious decision to change the way groups worked to-

gether in 2022. They moved away from working groups around project goals, where working

group chairs were receiving funding, to working groups within institutions, where institutions

were getting funding, and the groups focused on sustaining the work at their institution be-

yond the initial funding of the grant. These decisions had an impact on the structure of the

network. These changes strongly affected the community structure, the number and sizes of

the cliques, and the overall density of the network.

The First2 Network composition was dominated by student growth from 2018 until

2021. In 2022, network growth was dominated by non-student members; student numbers

remained relatively constant. In the first few years of the network, student connections were

primarily to faculty members. However, since 2020, robust groups of student clusters formed,

largely within individual institutions, mainly due to practices that the network put in place

including student campus clubs and student leadership groups. The drop off in network size

and connectivity in 2022 did not impact student clustering as much, likely because these

connections were made within individual institutions.

Although students played a major role in increasing the number of yearly First2 Net-
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work members, non-student members were consistently the most connected and influential

members of the network. Information flow in the network was not necessarily dominated by

the most connected members, but by a mix of well-connected members and members who

acted as bridges between well connected groups in the network. Students, faculty members,

government/industry contacts, and other roles like administrators or K-12 educators were

all found as important bridges connecting less connected groups in the network. Regardless,

when particularly connected members left the network, their absence was clearly represented

in the network structure. The loss of a few very connected members from 2021 to 2022 likely

had at least some effect on the decrease of network statistics in 2022.

One interesting aspect of network change that is not obvious from the structure alone

is that network members join and leave each year. The total composition of the network

changes by about 30-50% each year. By 2022, only 35% of First2 Network members remained

that started in the network in 2018, but the total number of First2 Network members in-

creased every year. This highlights the flexibility of many of the interactions and character-

istic roles that First2 Network members take; collaboration still increased even when many

First2 Network members were replaced each year.

Research Question 2 – How are collaborative groups forming? The communities re-

sulting from the application of the community detection algorithm revealed some interesting

features in the First2 Network. In general, the largest, most connected communities included

the most connected individuals in the network and included a diverse number of First2 Net-

work members with many different roles and from many different institutions. The smaller

communities were less centrally connected to the network and were most frequently com-

posed of First2 Network members from one or two institutions. The CDA identified a natural
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grouping structure in 2018, 2020, and 2022, where, more often than not, individuals in the

same community were from the same institution, whereas in 2019 and 2021 that grouping

structure appears much less frequently. Grouping by institution is reasonable in 2018 because

the network was so new that most individuals that worked together already knew each other

from their own institutions. The less central, more institutional grouping structure of 2020

could be seen as an effect of COVID, where there was some sense of necessity in institutional

grouping to deal with the pandemic. In 2022 this grouping structure could be attributed

to the development of institutional teams, which encouraged working within the institution

to implement some of the strategies and programs developed by the First2 Network in the

previous four years.

From the clique analysis perspective, from 2018 through 2021, there were working

groups formed around the goals of the project including faculty/student engagement, indus-

try connections, student readiness for college, and summer immersive research experiences to

come up with ideas to make improvements in education in the state and in different colleges

and universities. During these years, the First2 Network stressed working groups around the

core goals of the network which were encouraged to develop best practices to share across

organizations. From 2018 to 2021, the largest groups were composed of inter-organizational

groups. However, in 2022, most of the fully connected groups were smaller and everyone

in the group was from the same organization, reflecting the intentional change in working

group structure made by the project leaders.
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8.6 Conclusion

In this study, data were collected from 249 individuals over a five-year period mea-

suring the network connections forming within the First2 Network project to promote the

retention of West Virginia STEM majors. Social network analysis demonstrated that the

structure of the network changed in time. The growth of the network in its first four years

was relatively consistent; connections increased in number and strength, fully-connected

groups increased in number and size, and key leaders appeared over the years to disseminate

information and collaborate with many others. In the fifth year of the project, leaders began

to transition the project to sustainability within state academic organizations rather than

disseminating information across the network as in the first four years. The structure of the

network reflected these changes with the number of edges, density, average strength, average

betweenness, and number and size of cliques all decreasing. The number of components also

increased, indicating a greater level of fracturing from the giant component of the network.

During the first four years, the project focused efforts on Networked Improvement Com-

munities to implement, study, and revise replicable best practices for programs relevant to

the First2 Network. Investing time and effort into these groups formed valuable social rela-

tionships that enhanced many of the desired outcomes of the project, particularly statewide

connections between university faculty, students, and industry members. The First2 Net-

work provided online working groups to foster collaboration anywhere in the state, as well

as in-person conferences and leadership meetings to disseminate internal research about suc-

cessful avenues for increasing student STEM retention. These meetings and groups led to a

network of publications, increasing faculty productivity and collaboration with individuals
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outside of the network as well.

The First2 Network provided multiple ways for students to be involved and to take

leadership positions. From the beginning, student were encouraged to voice their opinions as

equal network participants. This led to robust clusters of student to student connections in

the network, with student leaders standing out as central network members that connected

many otherwise unconnected students to the core of the network.
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Chapter 9

Comparing introductory undergraduate physics

learning and behavior before and after the COVID-19

pandemic∗

∗This chapter presents the work published in Physical Review Physics Education Research [178]. This
work was constructed with collaborative efforts from Amanda Nemeth and John Stewart. This work was
supported in part by the National Science Foundation under Grants No. ECR-1561517, No. HRD1834569,
and No. DUE-1833694 and by a grant from the Howard Hughes Medical Institute. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.
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9.1 Introduction

Many studies have explored the effects of the COVID-19 pandemic and the rapid

transition to virtual modes of education on student attitudes and learning during this period

of online instruction [179–181]. Now that most universities in the United States (US) have

returned to in-person classes, the effects of this period of disruption on the return to in-

person classes can be measured. This study explores differences in student behavior and

achievement between the last two fully face-to-face semesters of a university physics class

prior to the pandemic and the first two fully face-to-face semesters after the pandemic.

A recent study at a highly selective West Coast university in the US found that there

was no evidence for a reduction in high-school physics learning after the pandemic using a

physics diagnostic exam administered in the Fall 2019 and Fall 2021 semesters [182]. This

institution is situated in a state with one of the highest per capita incomes in the US

and with a high rate of residents with a bachelors degrees. The current study examines a

broader collection of student achievement and behavior measures at an institution admitting

students with lower levels of high school achievement than the West Coast university. This

institution accepts 90% of its applicants. The institution is the flag-ship state university in

a small eastern state with a state population with per capita income and rate of bachelors

attainment among the lowest in the US. As such, it can provide context of the effect of the

pandemic on the education of students coming from less resourced school systems.
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9.2 Methods

9.2.1 Sample

Data were collected from the introductory calculus-based electricity and magnetism

course at a large eastern US land-grant university with a total undergraduate enrollment

in Fall 2021 of 19,600 students [129]. The demographics of the undergraduate population

were 81% White, 4% Black or African American, 4% Hispanic or Latino, 3% non-resident

alien, 6% two or more races, with other groups 2% or less. Student ACT scores ranged from

21 to 27 for the 25th to the 75th percentile. Pell grants are given to lower socioeconomic

status students (SES) and are often used to measure the percentage of low SES students at a

university: 23% of the undergraduate population was Pell eligible. The Fall 2021 enrollment

was smaller than that of Fall 2019 when the university enrolled 21,000 students. The overall

demographics of the Fall 2019 undergraduate population were 80% White, 4% Black or

African American, 4% Hispanic/Latino, 5% non-resident alien, 4% two or more races, with

other groups 2% or less.

The course studied enrolled primarily scientists and engineers. The course was taught

in multiple lecture sections which were overseen by the same lead instructor for the entire

period studied. This instructor had been managing the course for many years and oversaw

general course content, homework assignments, tests, and the management of the laboratory

segment of the class. The class had been offered in the same format for many years before the

pandemic and returned to this format after the pandemic. Alternate modes of instruction

were provided during the pandemic; these semesters are not considered in this study. As

such the course represents an excellent laboratory to study changes before and after the
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pandemic. This study focuses on the introductory electricity and magnetism course because

the introductory mechanics course retained some pandemic course policy changes preventing

comparison.

The class was presented with three 50-minute lecture sessions along with one 170-

minute laboratory session per week. Each lecture session enrolled over 100 students. Both

the lecture and laboratory utilized multiple active learning strategies. The lectures imple-

mented Peer Instruction using clickers [10], while the labs featured a mixture of conceptual

whiteboard questions, hands on inquiry activities, group problems, and traditional experi-

ments. Two homework sets were collected each week; these were collected at the beginning

of lecture and were turned in on paper. The first homework collected on Monday of each

week, called the “short homework” in this study, consisted of ten multiple-choice questions.

The second homework collected on Wednesday each week, called the “long homework” in

this study, consisted of five multiple-choice questions and four open-response questions. Four

tests and a final exam were given over the course of the semester. Conceptual learning was

monitored by applying the Conceptual Survey of Electricity and Magnetism (CSEM) [13]

as a pretest and post-test. The class was primarily taken by sophomores, who would have

spent much of their freshman year in college and the last part of their senior year in high

school receiving virtual instruction.

The total enrollment for the four semesters was N = 1033 (Spring 2019 N = 217,

Fall 2019 N = 327, Fall 2021 N = 327, Spring 2022 N = 162). Assignment scores and

lecture attendance were accessed from the course learning management system; students

who withdraw from the class are automatically removed for course records. As such, the

analysis, except the DFW percentage, includes only students who completed the class for a
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grade.

9.2.2 Mann-Whitney U test

Often in PER studies, t-tests are used to compare means; however, the t-test assumes

the sample is normally distributed. Many of the quantities examined in this work (homework

scores, lecture attendance rates, etc.) have distributions which are substantially non-normal.

As such, this work applies the non-parametric Mann-Whitney U test. The test calculates

U which is related to the sum of the ranks for one of the groups. An effect size, r, can be

calculated from U ; Cohen’s criteria for r are that 0.10 is a small effect, 0.30 a medium effect,

and 0.50 a large effect [183, 29].

The Mann-Whitney U test, sometimes referred to as the Wilcoxon rank-sum test,

is a rank-sum test used to determine whether the total ranks of two independent groups

significantly differ. This is achieved by combining the two groups and rank ordering the

scores in numerical order. If the two groups are randomly distributed in rank, then the two

samples do not differ statistically. The U test statistic is calculated using Equation 9.1.

Ui = n1n2 +
ni(ni + 1)

2
−
∑

Ri (9.1)

where for each group (i = 1 or 2), Ui is the test statistic, ni is the sample size, and
∑

Ri is

the sum of ranks. The smaller value of Ui is reported as the test statistic [184, 183]. If both

sample sizes n1 and n2 are small enough, significance is evaluated using the table provided

by Milton [185] showing the critical values for the Mann-Whitney Two-Sample statistic. If

n1 or n2 exceed these values, as they do in the present study, a large sample approximation
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may be computed to obtain an effect size. The effect size for U is r [186] which can be

calculated using Equation 9.2.

r =
|z|√
n

(9.2)

where z is the z-score of group i and n = n1+n2 [183, 186]. To obtain the z-score, one must

first find the mean

µU =
n1n2

2
(9.3)

and the standard deviation

σU =

√
n1n2(n1 + n2 + 1)

12
(9.4)

The z-score used in the effect size calculation is found as follows:

z =
Ui − µU

σU

(9.5)

where Ui is the reported test statistic, µU is the mean, and σU is the standard deviation

calculated in Equations 9.3 and 9.4 [184, 183].

9.2.3 Two proportions z-test

Some quantities examined were semester-level frequencies such as the DFW percentage

(percentage of students of earning a grade of D or F or withdrawing from the class); these were

compared using the two proportions z-test. The two proportions z-test, which is equivalent

to a chi-squared test for the equality of two proportions, is a test for checking if the difference

between two proportions is statistically significant.

In order to apply a significance test to a binary distribution without a standard de-
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viation (such as DFW rates), another difference in means method must be used. The two

proportions z-test, which is equivalent to a chi-squared test for the equality of two propor-

tions, is a test for checking if the difference between two proportions is statistically significant.

Equation 9.6 shows the two proportions z-test (labeled as χ2 to differentiate it from Equation

9.5),

χ2 =
P1 − P2√

P (1−P )
N1

+ P (1−P )
N2

(9.6)

where P1 is the proportion of “successes” for group 1, N1 is the sample size of group 1, and

P is the pooled proportion, defined in Equation 9.7.

P =
P1 + P2

N1 +N2

(9.7)

The corresponding effect size used with this significance test is Cohen’s h, which can be

calculated as follows using Equation 9.8 [29].

h = 2| arcsin
√

P1 − arcsin
√
P2| (9.8)

where P1 and P2 are the same proportions described in Equation 9.6. Cohen’s h measures

the distance between two proportions and has effect size criteria: 0.2 corresponds to a small

effect, 0.5 to a medium effect, and 0.8 to a large effect.

9.2.4 Holm–Bonferroni correction

This work applies many statistical tests and is, therefore, susceptible to the inflation

of Type I error. The Holm–Bonferroni correction for the significance level is applied [187].
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This method orders the p-values from smallest to largest, then progressively adjusts the

significance level. If there are m statistical tests, the significance threshold, α, is adjusted to

α/m for the smallest p value, α/(m − 1) for the second smallest, etc. The null hypothesis

is rejected for all p greater than the first p which fails the test. This method provides the

same Type I error correction as the Bonferroni correction with less risk of Type II error.

9.3 Results

Assignment scores and submission rates were compared between the last two completed

semesters preceding the COVID-19 pandemic shutdowns (Spring and Fall 2019) and the

first two semesters after in-person courses were resumed (Fall 2021 and Spring 2022). The

assignment submission rate is the percentage of the assignments submitted for grading. The

assignment percentage score is the average score on the assignment (zero if not submitted).

The two fall semesters were compared against each other pre- and post-pandemic; as were

the two spring semesters. The class studied has historically observed a substantial difference

in student performance between the spring and fall semesters which is likely the result of

differences in the high school preparation of the students in these semesters. For the class

studied, students in the fall semester are “on-sequence” pursuing the plan of study suggested

by the university’s 4-year degree plans; these students were ready to enroll in Calculus 1 their

first semester in college; largely students in the spring semester were not.

A summary of general descriptive statistics is shown in Table 9.1. The results are

reported by semester with Fall 2019 abbreviated F19. Most quantities in Table 9.1 did not

significantly change between pre- and post-pandemic semesters after applying the Holm-
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Variable Semester N M ± SD U p z r

Test Average

F19 307 76.1± 14
49217 0.188 1.32 0.05

F21 302 74.2± 15
S19 206 71.6± 16

15472 0.645 0.46 0.02
S22 146 70.3± 18
F19 298 3.89± 0.45

33781 0.000 -4.94 0.20
High-school F21 296 4.07± 0.39
GPA S19 198 3.76± 0.46

10008 0.000 -3.99 0.22
S22 136 3.96± 0.43

Lecture F19 307 82.6± 23
42690 0.082 -1.74 0.07

Attendance F21 302 86.0± 21
Percentage S19 206 84.5± 25

17736 0.003 2.97 0.16
S22 146 78.0± 27

ACT/SAT F19 285 84.9± 15
45610 0.046 2.00 0.08

Mathematics F21 292 85.2± 11
Percentile S19 183 79.9± 17

11486 0.855 0.18 0.01
Score S22 124 79.0± 18
Short F19 307 67.6± 24

42458 0.072 -1.80 0.07
Homework F21 302 71.3± 22
Percentage S19 206 67.7± 25

15165 0.893 0.14 0.01
Score S22 146 68.1± 25
Long F19 307 62.4± 23

38187 0.000 -3.76 0.15
Homework F21 302 68.8± 22
Percentage S19 206 60.0± 25

13610 0.129 -1.52 0.08
Score S22 146 63.5± 25
Short F19 307 83.8± 23

41773 0.025 -2.25 0.09
Homework F21 302 86.6± 22
Submission S19 206 84.0± 24

16376 0.132 1.51 0.08
Percentage S22 146 80.6± 27
Long F19 307 82.7± 23

41611 0.020 -2.33 0.09
Homework F21 302 87.0± 22
Submission S19 206 83.9± 25

16409 0.117 1.57 0.08
Percentage S22 146 79.8± 28
CSEM F19 298 27.7± 10

49027 0.002 3.08 0.13
Pretest F21 287 25.7± 11
Percentage S19 192 27.0± 12

13548 0.483 0.70 0.04
S22 135 26.0± 11

CSEM F19 247 59.4± 17
32266 0.042 2.04 0.09

Post-test F21 236 56.4± 17
Percentage S19 184 59.2± 18

11708 0.016 2.40 0.14
S22 109 54.0± 18

Table 9.1: Mean ± standard deviation by semester. Pairs of fall and spring semesters are compared with
a Mann-Whitney U test, the U statistic; its p value, z-score, and effect size r are also reported. Bolded
p-values are significant at the p < 0.05 level after a Holm–Bonferroni correction is applied. The p value
reported is the uncorrected value.
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Bonferroni correction. The significant p-values are reported without correction in the table

and bolded if they meets the adjusted significance threshold. For both semesters, high-school

GPA (HSGPA) was significantly higher, a small effect, in post-pandemic semesters. This

may have been a result of the changes imposed on high school instruction and grading by

the pandemic. While lecture attendance in the fall semesters did not change through the

pandemic, lecture attendance in the post-pandemic spring semesters was significantly lower,

also a small effect. Although HSGPA increased after the pandemic, CSEM pretest scores

significantly decreased in the fall semesters. This effect is functionally negligible, representing

less than one additional pretest question answered correctly before the pandemic.

Variable Semester N M% χ2 p h
ACT/SAT F19 274 97.5

0.48 0.490 0.08
Reporting F21 291 98.6
Percentage S19 178 97.3

3.90 0.048 0.25
S22 121 91.7
F19 47 14.4

0.42 0.516 0.06
DFW F21 54 16.5
Percentage S19 42 19.4

0.49 0.485 0.09
S22 37 22.8

Table 9.2: Difference in means between course-level variables where M% is the percentage of students
reporting ACT/SAT scores or the percentage of DFW students, p is the p-value comparing semesters, and
h is the effect size of the difference.

Table 9.2 shows the DFW rates - the percentage of students who received a D in the

class, an F in the class, or withdrew from the class - and ACT/SAT score reporting rates

for the class. Only domestic students are included in the ACT/SAT results. International

students are less likely to submit ACT/SAT scores than US students. International atten-

dance dropped in this class from 10.4% in Fall 2019 to 3.3% in Fall 2021. Neither the DFW

rate (all students) nor the ACT/SAT reporting rate (domestic students) were significantly

different pre- and post-pandemic.
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Figure 9.1: The average submission rates for the long homework. The rate is the percentage of the homework
assignments submitted for grading.
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Figure 9.2: The average submission rates for the short homework. The submission rate is the percentage of
the assignments submitted for grading.

To understand how student behavior changed over the course of a semester, this study

looked at the submission rates of homework divided by the four in-semester examinations.

The long homework submission rates are shown in Figure 9.1; the short homework rates are

shown in Figure 9.2. All homework assignments which were due during the part of the course

covered by each examination were included in the average for the test. For both types of

homework, the rate at which students submitted homework assignments was higher in the

post-pandemic Fall 2021 semester for every test, while for both types of homework that

rate was lower in the post-pandemic Spring 2022 semester for all tests. These differences

were, however, small; none of the differences were statistically significant after applying the

Holm-Bonferroni correction.
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Figure 9.3: Average lecture attendance rates plotted against the order in which the lecture was given. The
rate is the percentage of students attending each lecture section.

This study also examined the evolution of lecture attendance over the semester (Figure

9.3). In these plots, lecture number represents the order of the lecture in the semester and

is therefore a rough measure of time. For the fall semesters, students attended lecture at a

higher rate in Fall 2021 early in the semester, but the rates equalized late in the semester. For

the spring semesters, students attended lecture at a lower rate in Spring 2022 throughout the

semester and the difference in rates became larger later in the semester. In both cases, the

rate of lecture attendance decreased at a larger rate in the post-pandemic semesters (simple

linear regression slopes predicting submission rate with lecture number as an independent

variable: Fall 2019: -0.013, Fall 2021: -0.016; Spring 2019: -0.009, Spring 2022: -0.013).

These differences caused the attendance rates for the fall semesters to converge at the end

of the semester while the attendance rates for the spring semesters diverged.

9.4 Discussion and Conclusion

The course studied is typically taken by sophomores; most students enrolled in the

course are “on-sequence” if they enroll in the course in their fall sophomore semester.

Those students likely had a pandemic-interrupted high school experience in their final senior
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semester. They would have taken their ACT or SAT tests prior to the pandemic. High school

physics is often taken in the senior year; as such, the transition to online instruction may

have affected their high school physics class; this would explain differences in CSEM pretest

scores. Most students in the class would have taken both Calculus 1 and the introductory

mechanics physics class as fully online classes.

In general, few significant differences were measured between pre- and post-pandemic

behavior and academic achievement; all significant differences were small effects. This sug-

gests the results of Burkholder and Wieman [182] showing student physics preparation at a

highly selective US institution were unchanged through the pandemic extend to students at

less selective institutions and are fairly general across achievement on physics assignments

and rates of turning in assignments and attending classes.

The few significant differences measured were consistent with the qualitative impression

of course personnel, but smaller than they expected. Fall 2021 marked the first semester

back to primarily in-person instruction, the course personnel reported that students were

generally enthusiastic to return to in-person instruction. This enthusiasm might also explain

the statistically significant increase found in long homework scores in Fall 2021. The initial

higher lecture attendance in the fall semester post-pandemic decreased over the course of

the semester until the fall lecture attendance became equal pre- and post-pandemic. This is

consistent with an initial enthusiasm for a return to face-to-face instruction which declined

over the semester. Course personnel also felt that student engagement was lower and declined

over the semester in the Spring 2022, particularly after spring break. This is also supported

by the growing gap between attendance rates for spring semesters pre- and post-pandemic.

Course personnel were expecting larger differences from this study, possibly because they
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were anticipating a substantial effect of the pandemic student performance and behavior.

The actual differences observed were quite small.
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Chapter 10

Conclusions and Future Work
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Module Analysis

Student misconceptions in introductory physics have long been an important research

area for physics education. This research applied modified module analysis to thousands of

student responses to the CSEM, the FCI, and the BEMA to identify both frequently and

consistently applied incorrect answering patterns.

The CSEM was constructed to assess students’ conceptual understanding of electric-

ity and magnetism. Chapter 4 used module analysis to identify communities of correlated

responses to individual items within the CSEM. The resulting network revealed multiple

communities formed of responses where the response to later items would be correct if the

response to an earlier item was correct. This suggests that the scoring rubric to the CSEM

should be modified to include relations between responses. A modified scoring rubric was

proposed, but changed overall CSEM post-test averages little. Most communities of com-

pletely incorrect responses and mixed correct and incorrect responses consisted of items with

the same subtopic, either electrostatics, electric potential, or magnetostatics. Some of com-

munities connected items in multiple subtopics including misconceptions about mechanics

and a failure to differentiate the electric and the magnetic field.

The FCI was constructed under the misconception framework with the goal of mea-

suring students’ conceptual understanding of Newtonian mechanics. Chapter 5 compared

the structure of consistently applied student misconceptions to responses to the FCI across

five institutions with student populations with differing levels of high school preparation

using MMA-P. The networks identified had substantial similarity for four largest samples

in both communities formed of correct responses and of communities associated with mis-
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conceptions. The largest force determines motion, Newton’s 3rd law, and motion implies

active forces misconceptions were the most common misconceptions identified across all five

institutions.

The BEMA was also constructed to assess students’ conceptual understanding of elec-

tricity and magnetism. Chapter 6 used module analysis to identify communities of correlated

responses to individual items within the BEMA and to compare this structure with that iden-

tified in the CSEM. The most commonly selected and consistently applied mistakes involved

electric potential difference and the relation of electric potential difference to electric field.

The BEMA and CSEM share three items with identical stems but different response

choices. Communities were identified in both instruments which involved response choices

not available in the other instrument. In the BEMA, a community where the student reported

the average force on the two charges was identified; it was impossible for students on the

CSEM to select this response. Likewise, the CSEM did not include all responses related to

consistent reasoning about the distance dependence of the force, while the BEMA did. The

CSEM did include an “other” response to catch these forms of incorrect reasoning. Both

instruments revealed unique aspects of student thinking because they allowed for different

student responses. The results of both the CSEM and the BEMA module analysis suggest

the existence of a rich collection of incorrect reasoning about electricity and magnetism which

are consistently applied by students after instruction in introductory physics that may not

be fully captured by either instrument.

A substantial number of the identified communities throughout these studies consisted

of blocked items providing continued support that the practice of blocking items can pro-

duce correlations that are not related to physical reasoning. The consistent identification
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of blocking as generating psychometric problems for the primary conceptual instruments

used in PER, along with the limited coverage of the material covered by these instruments,

suggest the need for a new generation of conceptual inventories. Module analysis can be an

important part of the validation process for these new instruments adding to more traditional

psychometric analysis techniques.

The large number of students still applying misconceptions or consistent mistakes post-

instruction supports a continued need to transition to research-based instructional methods

and to continuously improve and target those methods towards the mistakes identified as

most frequently and consistently applied.

West Virginia STEM Education Network

Social network analysis was used to study the growth and development of the First2

STEM education network from 2018 to 2022. The growth of the network over its first

four years was relatively consistent; connections increased in number and strength, fully-

connected groups increased in number and size, and key leaders appeared over the years to

disseminate information and collaborate with many others. In the fifth year of the project,

leaders began to transition the project to sustainability within state academic organizations

rather than disseminating information across the network like the first four years. The

structure of the network reflected these changes with the number of edges, density, average

strength, average betweenness, and number and size of cliques all decreasing.

The network also provided multiple ways for students to be involved and to take lead-

ership positions. From the beginning, student were encouraged to voice their opinions as

equal network participants. This led to robust clusters of student to student connections in
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the network, with student leaders standing out as central network members that connected

many otherwise unconnected students to the core of the network.

Student Learning and Behavior Before and After the COVID-19 Pandemic

Performance metrics, attendance rates, homework submission rates, and DFW rates

were examined for students in an introductory calculus-based electromagnetism course both

before and after the transition to virtual learning caused by the COVID-19 pandemic. This

study was motivated by a recent study at a highly selective university that found that there

was no evidence for a reduction in high-school physics learning after the pandemic using a

physics diagnostic exam administered in the Fall 2019 and Fall 2021 semesters. Chapter 9

examined a broader collection of student achievement and behavior measures at an institution

admitting students with lower levels of high school achievement. The institution is the flag-

ship state university in a small eastern state with a state population with per capita income

and rate of bachelors attainment among the lowest in the US. As such, it provided context

of the effect of the pandemic on the education of students coming from less resourced school

systems.

In general, few significant differences were measured between pre- and post-pandemic

behavior and academic achievement; all significant differences were small effects. This sug-

gests that the study that demonstrated that student physics preparation at a highly selective

US institution were unchanged through the pandemic extends to students at less selective

institutions and are fairly general across achievement on physics assignments and rates of

turning in assignments and attending classes.
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Future Works

This work has identified and categorized some of the most consistently and frequently

applied misconceptions post-instruction in introductory calculus-based mechanics and elec-

tromagnetism in the U.S. However, much more work is needed to properly address these

misconceptions in the classroom and to understand the breadth of misconceptions not cap-

tured by the instruments studied in this document. Future projects and ongoing research

related to the work outlined in this thesis are provided below:

• Develop a new generation of mechanics conceptual instruments that have a repro-

ducible factor structure, have items that are well functioning in Classical Test Theory,

do not use item chaining or blocking, have items that pass a quantitative fairness

test for groups of students underrepresented in physics classes, and have community

structures which are theoretically supportable and which allow for the calculation of

misconception scores for the misconceptions most commonly applied in the topic cov-

ered.

• Develop a new generation of electromagnetic conceptual instruments which feature

both subscales with broad general coverage of the major subtopics of electromagnetism,

but also subscales that capture common mistakes or allow measurement of finer details

of conceptual knowledge.

• Develop a taxonomy of electromagnetic misconceptions identified post-instruction.

• Explore the difference between MMA applied to Likert scale surveys and network

analysis for Likert-style surveys (NALS). Dalka et al. [188] introduced NALS in order
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to analyze connections between items in Likert-style surveys. NALS uses the same

sparsification process as MAMCR, but constructs edges with a metric related to the

correlation used in MMA.

• Explore the context dependence of misconceptions identified in this manuscript. Mis-

conceptions that are more or less likely to be applied in certain physical contexts may

allow targeted interventions that make use of this context dependence.
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and D. Pritchard. Examining the relation of correct knowledge and misconceptions
using the nominal response model. Phys. Rev. Phys. Educ. Res., 17(1):010122, 2021.

[131] M. Dickison, M. Magnani, and L. Rossi. Multilayer Social Networks. Cambridge
University Press, New York, NY, 2016.
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