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Figure 1. We demonstrate that measurements from spatially distributed low-cost single-photon proximity sensors (left) can be used to
reconstruct 3D shape of real world objects (right). Our method combines a differentiable image formation model and neural rendering
to recover 3D geometry based on measurements (transient histograms) from sensors with known poses. This is done by minimizing the
difference between the observed and rendered sensor measurements. For clarity, a subset of sensor poses and measurements are shown.

Abstract

We present a method for reconstructing 3D shape of
arbitrary Lambertian objects based on measurements by
miniature, energy-efficient, low-cost single-photon cam-
eras. These cameras, operating as time resolved image
sensors, illuminate the scene with a very fast pulse of dif-
fuse light and record the shape of that pulse as it returns
back from the scene at a high temporal resolution. We pro-
pose to model this image formation process, account for its
non-idealities, and adapt neural rendering to reconstruct
3D geometry from a set of spatially distributed sensors with
known poses. We show that our approach can successfully
recover complex 3D shapes from simulated data. We fur-
ther demonstrate 3D object reconstruction from real-world
captures, utilizing measurements from a commodity prox-
imity sensor. Our work draws a connection between image-
based modeling and active range scanning, and offers a
step towards 3D vision with single-photon cameras. Our
project webpage is at https://cpsiff.github.io/
towards_3d_vision/.

1. Introduction

Reconstructing 3D shape of real objects remains a central
problem in vision, solutions to which have evolved into
two parallel branches. Image-based modeling [45] lever-
ages a plethora of visual cues from multiple photographs

(e.g., stereo, motion, shading), leading to problems includ-
ing multi-view stereo [42], photometric stereo [1] and the
more recent neural radiance fields (NeRF) [33]. Conversely,
active range scanning [22] combines an active light source
with an imaging sensor, giving rise to imaging techniques
such as structured light [13], and time-of-flight [16]. Con-
ventional wisdom suggests that range scanning yields more
precise 3D geometry than image-based modeling at the cost
of using specialized, expensive hardware.

An emerging approach for range scanning is direct time-
of-flight imaging with active single-photon cameras, a form
of time-resolved image sensor. This approach couples
a pico-to-nanosecond detector with a fast coherent light
source, illuminates the scene with a very short pulse of light,
and measures the intensity of the light over time as it reflects
back from the scene. The resulting incident wavefront is
recorded and quantized, forming a transient histogram. A
special case of this approach is single-photon LiDAR, in
which the light source (laser) is highly focused, the detec-
tor finds the peak in the histogram, and the sensor reports a
single distance value per detector pixel. When using a dif-
fuse light source, these time-resolved sensors capture visual
information beyond the distance measurements extracted in
LiDAR. Transient histograms in this case record distribu-
tions of times-of-flight, encoding the product of scene ge-
ometry and reflectance over each imaged scene patch [23].

The entirety of information in the transient histogram has
been previously utilized in applications such as fluorescence
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lifetime imaging [26] and non-line-of-sight imaging [48].
Recently, time-resolved measurements from such sensors
have been explored for line-of-sight 3D reconstruction and
novel view synthesis [30]. Unfortunately, these systems,
due to their prototype-like nature, exist in a bulky benchtop
form factor, require significant power, and are costly (over
$10,000 USD). They are thus not suited for many appli-
cations including autonomous drones, wearable computing,
and augmented reality, in which low-cost, energy efficient,
miniature sensors are required.

Low-cost single-photon cameras have recently become
available in the form of active single photon avalanche
diodes (SPADs). They include one or more SPADs paired
with an eye-safe diffuse light source (e.g., an infrared VC-
SEL laser), are very small (<20 mm3), inexpensive (<$5
USD), and power efficient (<10 milliwatts per measure-
ment) [2, 32]. These are sold as proximity sensors and some
can be configured to report transient histograms. Com-
pared to laboratory-grade systems, however, they lack pre-
cise optics, calibration, and timing characteristics and have
an order of magnitude lower spatial and temporal resolu-
tion. Still, these sensors have proven successful for material
classification [4], human pose recognition [41], and simple
shape recovery (i.e., a planar surface) [23, 43].

In this work, we address the problem of reconstruct-
ing 3D shape of arbitrary Lambertian objects from a set
of spatially distributed low-cost single-photon cameras with
known poses. We present an approach that combines a neu-
ral signed distance field surface representation, a differen-
tiable transient formation model for practical active single-
photon cameras, and an optimization scheme following the
analysis-by-synthesis pipeline. Fig. 1 illustrates our sen-
sor, imaging setting, and approach. We show that our ap-
proach can successfully recover complex 3D shapes from
simulated data. We further demonstrate 3D object recon-
struction from real-world captures, utilizing measurements
from a low-cost, off-the-shelf proximity sensor.

Our approach draws a connection between image-based
modeling and active range scanning while avoiding some
of their pitfalls. By using an active light source and SPADs,
our approach illuminates and images an object from mul-
tiple angles, resembling the imaging setup of multiview
photometric stereo. Our model also echoes the design of
NeRF. The key difference is that our model considers an
input of low spatial resolution (i.e., hundreds of pixels per
scene), and leverages rich temporal information encoded in
the transient histograms. Unlike image-based modeling, our
approach can operate under low light conditions, and recon-
struct objects without texture. Unlike most range scanning
methods, our approach performs favorably in the presence
of strong ambient flux and is robust to mildly specular sur-
faces (see top of the spray bottle in Fig. 1).

Practical Applications. Our approach presents a compact,

energy-efficient, and low-cost solution for 3D sensing when
relative sensor poses are known. We envision applying our
method to settings where relative sensor poses are fixed, and
3D geometry can be estimated on a per-frame basis by com-
bining measurements from a distributed set of sensors. This
includes applications like wearable hand tracking [10, 20],
and collision avoidance and mapping for drones, mobile
robots, and robot manipulators. This work provides a first
step towards enabling such applications.

Scope and limitation. Similarly to other methods for active
range scanning, the proposed method fails on highly specu-
lar objects and requires hundreds of views to reconstruct a
complex 3D shape. Our imaging system is tailored for low-
cost sensors with limited range (4-6 meters) and temporal
resolution (over 100 picoseconds), and thus it is unproven
at imaging larger space or finer details. While methods exist
for fast NeRF [35], our approach is not optimized for speed
and takes a few hours to reconstruct a single object. Instead,
we focus on demonstrating the feasibility of reconstructing
real-world 3D objects using commodity sensors.

2. Related Work

Time-resolved imaging. Time-resolved sensors have long
been used in applications such as non-line-of-sight (NLOS)
imaging [11, 50], where a scene is recovered from around
the corner, fluorescence lifetime imaging [27], a mi-
croscopy technique for characterizing a biological sample,
and to measure distance using direct time-of-flight [15, 17].
Recent techniques [30] used high-end time-resolved sensors
to directly recover scene geometry. However, these methods
rely on hardware prototypes which are often prohibitively
expensive and not accessible to consumers. For example,
Transient NeRF [30] performs view synthesis and 3D re-
construction using a lab prototype with no ambient light and
2-5 views of 512×512 transient histograms, each with 1500
bins. In contrast, in this work, we use commodity hardware
with ambient light and 128-240 total transients, each com-
prised of 128 bins.

3D Imaging with low-cost SPADs. With cheap time-
resolved proximity sensors becoming commonplace, recent
works have investigated their use for 3D reconstruction.
Callenberg et al. [6] demonstrate that, with some addi-
tional hardware, high-resolution depth imaging from a sin-
gle viewpoint is possible. A low-cost SPAD has been used
to augment an RGB SLAM system [51]. Other works uti-
lize supervised machine learning to recover geometric in-
formation from single low-cost SPAD measurements, such
as 3D human pose [41] or high-resolution depth images
[23, 53]. Jungerman et al. [23] use differentiable rendering
to recover two degrees of freedom of a planar surface from
a single low-cost SPAD transient histogram. Sifferman et
al. [43] extend this method to fully recover a planar surface



using a low-cost SPAD with multiple detector pixels.
Neural implicit representations. Neural representations,
as popularized by NeRF [33], enable novel view synthe-
sis and 3D reconstruction by representing the scene as a
neural network. While the original NeRF representation
encoded view-dependent volumetric effects, alternative en-
codings have been proposed to better model geometry and
reconstruct surfaces. NeuS [49] represents the scene as
a level set, allowing for better modeling of surfaces at
the expense of not being able to represent volumetric ef-
fects. Many works extend these ideas to work with dif-
ferent sensing modalities and external supervision, such
as depth queues from structure-from-motion [9], RGB im-
ages plus continuous-wave time-of-flight sensors [56], only
depth information [29, 37], or more recently using only
transients [30, 60]. In this work, we perform 3D recon-
struction using only transient histograms as captured using
commodity hardware by adapting the implicit surface rep-
resentation introduced by NeuS to render transients.
Multiview photometric stereo. Our approach illuminates
and images an object from multiple views in order to recon-
struct its 3D shape, having conceptual similarity to image-
based modeling methods. This concept has previously been
explored as multiview photometric stereo (MVPS) [7, 18]:
reconstructing 3D geometry given distributed views of the
scene and various lighting conditions. More recent ap-
proaches resort to deep learning models [55] and consider
NeRF-based representations [24, 52].

3. 3D Vision with Single-Photon Cameras
We propose to reconstruct 3D scene geometry using a
sparse set of measurements from low-cost time-resolved
SPAD sensors. Our approach assumes a distributed set
of N SPAD sensors with known pose, each comprising a
single-pixel detector co-located with a diffuse laser. The
time of flight, t, of returning photons, received over the
detector FoV 1 is recorded and binned into transient his-
tograms [23, 43], {hj}Nj=1: time-resolved measurements
that encode rich information about the scene geometry and
reflectance. Our goal is to recover scene geometry from
these measurements.
Traditional depth ranging. Our setup differs from the
conventional use of SPADs for depth ranging [15, 17, 30],
which assumes a collimated laser and focused detector.
There, the depths of individual scene points can be indepen-
dently estimated from separate transients, and a dense scan
of thousands of scene points is needed to obtain full scene
geometry. These systems require high-quality beam lasers
and detectors with high temporal resolution. In contrast,
our imaging configuration is indicative of the real-world use

1We assume that the illumination and detector FoV coincide and refer
to both as the sensor FoV in the rest of the paper.

cases of low-cost SPAD sensors with diffuse lasers, wide
FoVs, and low-resolution detectors. In our case, the tran-
sient encodes rich information beyond its peak location.
Low-cost SPAD sensing. Our setup extends recent sys-
tems [23, 43] built around low-cost SPAD sensors for 3D
sensing in two ways. First, our system consists of multi-
ple posed sensors as opposed to a single sensor. Second,
it is capable of capturing and reconstructing complex, non-
parametric scenes as opposed to the parametric geometry of
a single plane. With these upgrades, our system is reminis-
cent of multi-view stereo and NeRF-like systems for con-
ventional RGB cameras, and is a substantial step towards
practical 3D vision using commodity proximity sensors.

3.1. Transient Formation Model

We model the transient formation process in two steps. We
first derive the transient waveform of a scene by modeling
the interaction of light with scene geometry. The next step
uses this waveform as the input to a sensor model that ac-
counts for non-linearities that occur when capturing tran-
sient histograms with real hardware.
Transient waveform. As in [23, 43], we ignore high-order
light paths and only model direct reflection from the object
surface. The transient waveform τs(t) of a sensor s located
at the origin can be written in path integral form [47] as

τs(t) =

∫
S
ρ(x)

G(x,ω)

∥x∥4
δ

(
∥x∥2 −

ct

2

)
dA(x),

G(x,ω) = fr(x,nx,ω)V (x)⟨ω,nx⟩2,
(1)

where dA(x) is an infinitesimal area around point x on the
object surface S , ρ is the albedo, δ is the Dirac delta func-
tion, c the speed of light, and ω is a ray direction from x to
s. Time-independent effects such as V , the visibility func-
tion governed by scene geometry and sensor FoV, fr the
bidirectional reflectance distribution function (BRDF), and
foreshortening effects where nx is the surface normal at x,
are modeled as G(x,ω).
Sensor model. The sensor model accounts for laser and de-
tector characteristics when converting a transient waveform
into a transient histogram [19]. Our sensor model consid-
ers the laser pulse, laser power, detector quantum efficiency,
ambient photon flux, internal detector noise, pile-up effect,
and time jitter. In practice, the laser pulse is not a perfect
impulse and, despite bandpass filters, the measured tran-
sient also captures some constant ambient light. To model
this, we convolve τ(t) 2 with the laser’s impulse response
g(t), scaled by ϕscale which absorbs laser power and quan-
tum efficiency of the detector, and then offset its intensity by
ϕbkgd which encapsulates ambient photon flux and internal
detector noise:

τ̃(t) = ϕscale(τ ∗ g)(t) + ϕbkgd. (2)
2We drop the subscript s hereafter for clarity.
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Figure 2. Method Overview: The scene is modeled as a neural implicit surface in the form of an SDF. To render a transient, we approximate
Eq. 8 by sampling rays within each pixel’s FoV, and subsequently points on those rays. This idealized transient waveform is then convolved
with the sensor’s laser impulse response to model the transient histogram formation. Finally, we optimize the scene representation by
minimizing a loss between the rendered transients and the observations.

τ̃(t) is subsequently discretized into a histogram of Poisson
rates r = [r1, ..., rB ] with B bins. The probability qi of at
least one photon falling inside the ith bin is given by [8]

qi = 1− exp(−ri). (3)

In practice, SPADs aggregate photon counts over C laser
cycles, with only the first incident photon being detected in
each cycle. This results in pile-up, a nonlinear distortion of
transients, leaving photons arriving at a later timestamp less
likely to be detected [39]. Specifically, the probability pi of
detecting a photon in the ith bin in a cycle is given by [39]

pi = qiΠ
i−1
k=1(1− qk). (4)

The photon counts [h1, ..., hB ] in a transient histogram h̃
follow a multinomial distribution:

[h1, ..., hB+1] ∼ Multinomial(C, (p1, ..., pB+1)), (5)

where pB+1 = 1 −
∑B

i=1 pi, and hB+1 counts the number
of cycles without detected photons. h̃ is subsequently con-
volved with a discretized time jitter kernel s to account for
the temporal uncertainty of photon detection events, yield-
ing the final histogram h measured by a SPAD detector:

h[b] = Σkh[k]s[b− k]. (6)

We now present a reconstruction algorithm based on the
analysis-by-synthesis principle to recover scene geometry
from the transients. The input to this system is a distributed
set of posed transients {hj}Nj=1 captured of the scene.

3.2. Neural Scene Reconstruction from SPADs

The reconstruction problem that we attempt to solve is ex-
tremely challenging. Unlike in conventional depth ranging
where the depth of a scene point can be directly determined
from the histogram via peak finding, a transient from our
system represents the superposition of light reflected from
numerous scene points, as illuminated by a diffuse laser,
and is further contaminated by non-idealities of the detector
(e.g., pile-up). The direct inversion of the signal is thus a

highly ill-posed problem. Further, we cannot adapt meth-
ods from the NLOS imaging literature [28, 38, 50] as they
only support dense 2D scans, whereas our system uses a
distributed, sparse and unstructured set of measurements.

To overcome these challenges, we resort to an analysis-
by-synthesis approach based on differentiable rendering.
Our approach allows flexible positioning of sensors and ac-
curate modeling of histogram formation, thereby enabling
high-quality reconstruction of scene geometry. We now de-
scribe our reconstruction algorithm in detail.
Neural scene representation. Following NeuS [49], we
represent the scene geometry as a signed distance function
(SDF), parameterized as a multi-layer perceptron (MLP)
fθ : R3 → R. fθ maps the position-encoded (PE) xyz-
coordinates of a point x to its signed distance d:

d = fθ(PE(x)). (7)

Compared to [23, 43], this neural SDF allows our method to
represent scene geometry beyond simple parametric shapes
as the level set S = {x ∈ R3|fθ(x) = 0}.
Transient volume rendering. The key idea behind our
analysis-by-synthesis approach is to render fθ into tran-
sients and compare them with those captured by our system.
To adapt Equation 1 for the rendering of fθ, we first rewrite
it in angular integral form as

τ(t) =

∫
Ω

ρ

π

V (x)⟨−ω,nx⟩
∥x∥2

δ

(
∥x∥2 −

ct

2

)
dω, (8)

where ω are ray directions in the sensor FoV Ω, and x the
point where ω intersects with the object surface S (∞ if no
intersection). For simplicity, we assume a learned spatially
uniform albedo ρ and Lambertian BRDF fr = 1/π 3.

Inspired by NeRF [33] and NeuS [49], we approximate
Equation 8 via volume rendering to resolve surface disconti-
nuities, enabling the optimization of θ via gradient descent:

τ̂(t) =

∫
Ω

ρ

π

T 2(t)σ(p(ω, t))⟨−ω,np⟩
∥p(ω, t)∥2

dω. (9)

3This assumption may be relaxed to allow more expressive BRDF mod-
els such as the Phong reflection model [5].



Here, p(ω, t) = ct/2ω are points along ω, the volume den-
sity σ is a function of fθ as in NeuS [49], and the transmit-
tance T is given by

T (t) = exp

(
−
∫ t

0

σ(p(u))du

)
. (10)

In practice, we discretize τ̂(t) over the transient bin in-
tervals {[ti, ti+1)}Bi=1 and work with the histogram τ̂ =
[τ̂1, ...τ̂B ], where

τ̂i =

∫
Ω

ρ

π

∫ ti+1

ti

T 2(t)σ(p(ω, t))⟨−ω,np⟩
∥p(ω, t)∥2

dt dω. (11)

We estimate the intractable Equation 11 via Monte Carlo
sampling of ω and subsequently of p(ω, t).

Bilevel importance sampling. Similar to [33, 49], the sam-
pling of p(ω, t) is weighted by a probability density func-
tion (PDF) over the equally sized bin intervals. This PDF is
proportional to the per-bin weights wi given by

wi = exp
(
−Σi−1

j=1σj∆
)
(1− exp (−σi∆)), (12)

where σi is evaluated at the mid-point of the ith bin, and ∆
is the bin size in distance.

We extend this idea to the importance sampling of ω.
Specifically, the sampling PDF over a uniform partitioning
of FoV Ω is proportional to the cumulative weights w(k)

over rays ω(k) drawn from each partition k:

w(k) = ΣB
i=1w

(k)
i . (13)

Intuitively, this allows us to point more rays at high-density
regions occupied by the object surface.

Differentiable sensor modeling. Modeling sensor behav-
ior is particularly important for our analysis-by-synthesis
approach. This is because the synthesis targets τ are not
determined by the scene geometry alone but reflect the com-
plex interplay of geometry with sensor non-idealities in-
cluding pulse shape, pile-up and time jitter. To this end,
we cascade τ̂ to a differentiable sensor model Γ to simulate
the transformation applied by the sensor to raw waveforms.

Specifically, Γ closely follows the sensor model in Sec-
tion 3.1; Equations 2-4 are differentiable and applied se-
quentially on τ̂ , yielding per-bin photon detection probabil-
ities p̂ = [p̂1, ..., p̂B ]. Instead of sampling photon counts
using Equation 5, we directly convolve p̂ with the jitter ker-
nel as in Equation 6. This allows us to sidestep the non-
differentiable sampling step while producing an unbiased
estimate of the transient ĥ = Γ(τ̂ ) for loss evaluation.

Loss functions. The optimization of θ is driven by three
loss terms: a histogram reconstruction loss Lhist that mini-
mizes the L1 distance between ĥ and h, an Eikonal loss [14]

LEikonal that regularizes the SDF, and a total variation reg-
ularizer [34] LTV that penalizes floaters in empty space.
The combined loss function L is thus given by

L = Lhist + λEikonalLEikonal + λTV LTV , (14)

where λEikonal and λTV are the respective loss weights.

Comparison to NLOS-NeuS [12]. NLOS-NeuS is a con-
current work for scene reconstruction using SPAD sensors.
Despite similarities in the imaging model and reconstruc-
tion algorithm, the two works differ substantially in ap-
plication (direct line-of-sight vs. non-line-of-sight), laser
characteristics (eye-safe diffuse laser vs. high-energy beam
laser), sensor quality and cost (commodity, low-cost vs.
laboratory-grade, high-cost), transient modeling (with vs.
without sensor non-idealities) and scan pattern (distributed
and sparse vs. dense and structured 2D grid). We believe
the two works complement each other and together unveil
an exciting avenue toward single-photon 3D vision systems.

4. Experiments

We demonstrate the effectiveness of our method for 3D ge-
ometric reconstruction of various objects in simulation, and
in the real world with a low-cost SPAD. We provide quali-
tative and quantitative results for both settings. See the sup-
plement for implementation details (e.g. learning rates).

Baselines. We compare our method to two baselines: re-
projection [15, 17] and space carving [25, 46].

Reprojection, also known as back-projection, recon-
structs a scene as a point cloud and is the de facto standard
for depth ranging. We compare to two forms of reprojec-
tion. The peak method finds the distance d corresponding
to the histogram bin with the highest intensity. For a sen-
sor at position s with an outwards pointing optical axis u, a
point is placed in the scene at position s+du. The threshold
method works in the same way but finds d by locating the
lowest-index bin with intensity above a threshold tp. If no
bin passes the threshold, no point is projected. We do not
apply surface reconstruction to the generated point clouds,
as it is often unreliable for poorly imaged scenes. See the
supplement for further discussion.

Space carving reconstructs a scene as a voxel grid. Like
thresholded reprojection, it finds the distance d correspond-
ing to the lowest-index bin with intensity above a threshold
ts. All voxels in the sensor’s FoV and nearer than d are
marked empty, along with voxels outside the FoV. Voxels
in the FoV and further than d are marked as occupied. The
carved scene is the union of the occupied set for all sensors.

To ensure strong baselines for real-world experiments,
we perform a brute-force search over tp and ts and choose
values that minimize Chamfer distance over the entire real-
world dataset. Space carving voxel size was set to 1.0cm.



Chamfer Distance (mm) ↓
Method Armadillo Bear Bunny Digit Einstein Skull Soap Sphere

Reprojection (Peak) 54.29 40.36 34.95 55.85 43.25 48.90 51.71 51.07
Reprojection (Threshold) 65.43 60.72 54.05 60.64 61.31 65.14 68.74 63.16
Space Carving 34.78 24.53 22.29 45.44 26.60 25.49 21.44 25.47
Ours 3.93 5.95 3.84 3.27 3.51 3.22 3.23 3.77

Table 1. Quantitative results on simulated data. Our method more accurately recovers 3D shapes than baselines across 8 objects.
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Figure 3. Qualitative results on simulated data. Our method reconstructs dense and detailed 3D shapes. Space carving provides only
hulls of a target shape, and is prone to carving away extra space when thin structures are present. Reprojection yields sparse points.

Evaluation protocol. Following NeuS [49], we evaluate
all methods using Chamfer distance. We report standard
(two-way) Chamfer on simulated data. For real-world cap-
tures, we report Chamfer in both directions to evaluate the
quality of reconstruction. Prior to Chamfer calculation, we
convert ground-truth meshes and reconstructions from our
method to point clouds by drawing 5 million points uni-
formly at random on the mesh surface. For space carving,
occupied voxels are converted to points if they touch unoc-
cupied space, excluding the edge of the grid.

4.1. Simulated Experiments

Experiment setup. We simulate transients for eight scenes
of varying complexity using the image formation model in
Section 3.1. The objects are centered on the ground plane
(z = 0) with the largest dimension ≈ 0.3m. Sensors with
a conical FoV are uniformly distributed on a hemisphere at
the origin with a radius of 0.5m, and are all pointed at the
origin. In our simulation, N = 256, B = 256, ∆ = 5mm,
FoV = 30◦, ϕscale = 1, ϕbkgd = 0.001, C = 5000
and ρ = 0.8. The laser pulse, g, has a full-width-at-half-
maximum (FWHM) of 50ps, and s is a tabulated PDF ob-
tained from experiments [19]. The sensor parameters are
deliberately chosen to reflect the characteristics of low-cost

sensors. See the supplement for a sensitivity study on how
these parameters affect the quality of reconstruction.

Results. Table 1 summarizes the quantitative results of all
methods. Our method achieves an average Chamfer dis-
tance of < 5mm, an order of magnitude lower than all base-
lines. A key reason is that the baselines only use depth in-
formation from a single histogram bin, whereas our method
makes effective use of the entire waveform, which contains
rich geometry cues about a large scene patch.

We provide visualizations of our results in Figure 3. Our
method recovers global scene structure as well as local ge-
ometry details. In contrast, reprojection yields sparse point
clouds without sufficient coverage of the scene. While
space carving produces dense reconstructions, the occu-
pancy grid only represents an envelope of the scene, leaving
it difficult to recognize the precise shape of an object.

4.2. Hardware Prototype

We use the SPAD-based AMS TMF8820 proximity sen-
sor [2], which retails for $10 USD. We connect the sensor to
a microcontroller via I2C and use the AMS-provided driver
to extract transient histograms.

The sensor contains a total of 216 SPADs, which are
pooled onboard the sensor into 3 × 3 zones, each of which



Chamfer Distance (mm) ↓ Rec → GT / GT → Rec
Method Big Box∗ Block∗ Pyramid∗ Toy Container† Cereal Box†

Reprojection (Peak) 77.4 24.9/52.5 51.8 12.8/39.0 94.7 17.5/77.1 71.0 24.9/46.0 49.3 17.3/31.9
Reprojection (Threshold) 67.5 14.8/52.7 52.3 8.5/43.8 75.4 5.9/69.5 52.4 8.9/43.5 51.6 19.2/32.4
Space Carving 67.9 35.1/32.8 69.2 33.4/35.8 80.1 39.5/40.6 98.9 52.8/46.0 44.1 24.4/19.6
Ours 12.5 6.1/ 6.4 9.8 5.6/ 4.2 18.4 9.0/ 9.3 11.5 5.8/ 5.6 16.3 8.3/ 8.0

Table 2. Quantitative results on real-world captures. Our method more accurately reconstructs real-world objects with homogeneous
(*) and rich (†) texture. Reprojection yields sparse and unevenly distributed points, harming one-way Chamfer from GT to reconstruction.

Microcontroller

TMF8820
Sensor

3D Printed
Mount Target Object

Robot Arm

Figure 4. To capture real-world data from a wide set of viewpoints,
we mount the TMF8820 proximity sensor to a robot arm. Forward
kinematics of the robot are used to gather sensor pose.

images a different FoV. The sensor captures one transient
histogram for each zone. We pool histograms from all
zones, which is equivalent to capturing one wide-FoV his-
togram per-measurement as SPADs do not suffer from read-
out noise [54]. In doing so, we avoid inter-histogram inter-
ference previously observed by [43] and avoid the need to
model individual fields-of-view of the sensor, which we em-
pirically observed to have soft and poorly specified bound-
aries. We slightly modify our method to accommodate the
AMS TMF8820 sensor used in real-world experiments.

Laser Impulse. The laser impulse response of the
TMF8820 is not Gaussian and varies slightly between mea-
surements. Fortunately, the sensor captures the shape of
its laser impulse for each measurement in a “reference
histogram”. We record this histogram for each measure-
ment and incorporate it into our forward model by cross-
correlating the idealized scene response with this recorded
reference histogram. We observe that the bin size ∆r of
the reference histogram is smaller than the bin size ∆ of
the transient histograms captured by the sensor. To account
for this, we scale the reference histogram in the temporal
dimension by a factor ∆r/∆ before cross-correlation. Fur-
ther, we find that it is necessary to temporally shift the refer-
ence histogram by a fixed amount ϕdelay before correlation.

To calibrate the parameters ∆, ∆r, and ϕdelay , we per-
form the one-off intrinsic calibration procedure separately
introduced by [43]. The TMF8820 sensor is pointed at a
planar surface from a range of known distances and angles-
of-incidence. A differentiable render-and-compare method
is used to optimize for the unknown sensor intrinsic param-
eters given known planar geometry.

Pile-up Correction. While our forward model assumes that
the target transients exhibit nonlinear distortion due to pile-
up, the TMF8820 sensor performs pile-up correction on-
sensor, and it cannot be disabled. To accommodate this,
we incorporate the differentiable Coates’ correction [8] as a
final step in the forward model.

Other Sensors. Our design can be easily applied to any
SPAD with a co-located diffuse illumination source, includ-
ing other low-cost sensors [31], high-end setups [23, 36],
and things in between. The only modification necessary is
the calibration of sensor intrinsics (e.g., using [43]).

4.3. Real-world Experiments

Experiment Setup. We capture a real-world tabletop
dataset of eight objects4 of varying geometry and texture.
To capture many posed views of the target object, we attach
the sensor to a Universal Robots UR5 robot arm. We pro-
gram the arm to automatically move to a set of poses and
record sensor measurements at each pose. To obtain sensor
poses, we use the forward kinematics of the robot, which
are accurate to ±0.5mm [40]. Each object is captured from
between 128 and 240 viewpoints. Five of the objects are
simple geometric primitives, for which we manually gener-
ate ground-truth meshes based on the dimensions of the tar-
get object and measurements of its position from the robot’s
forward kinematics. Meshes are trimmed to an axis-aligned
bounding box 16cm larger than the target object in each di-
mension before the Chamfer distance calculation.

Results. As seen in Table 2, our method outperforms all
baselines by a wide margin as measured by two-way Cham-
fer distance. While reprojection is at times competitive in
one-way distance from reconstruction to ground truth, it
performs poorly in the opposite direction due to the sparse
and unevenly distributed point cloud generated, as visual-
ized in Figure 5. While space carving outperforms repro-
jection on simulated data under a highly structured sensor
pose distribution (i.e. all sensors are facing the center of the
object), it yields poor results on real-world scenes, in which
we vary sensor orientation by ±10◦ to emulate real-world
capture conditions and increase coverage. By contrast, our
method benefits from the more varied sensor poses as is
shown in Figure 6.

4See supplement for full results over the entire dataset.
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Figure 7. Because our reconstruction method assumes a Lamber-
tian surface, it fails to reconstruct highly specular scenes, such as
a glossy white bust (left) or mirror-finish kettle (right).

Further, our method is surprisingly robust to violation of
assumptions made about surface reflectance; it successfully
reconstructs non-Lambertian objects with rich texture de-
spite assuming Lambertian BRDF with a spatially uniform
albedo. These include both simple shapes (Toy Container in
Figure 5 and Cereal Box) and challenging objects with com-
plex geometry (Spray Bottle in Figure 5). We hypothesize

that the overlapping FoVs of distributed sensors help con-
strain the optimization of our model and encourage a plau-
sible reconstruction that best explains all transients. Our
strong results on simulated and real-world data validate our
modeling approach and demonstrate a single-photon 3D vi-
sion system for real-world scene reconstruction.

5. Discussion and Future Work
Despite assuming spatial uniform reflectance and albedo,
our method is robust to rich textures (Fig. 5) and compares
favorably to baseline methods for reconstructing challeng-
ing scenes with high specularities (Fig. 7). Future work will
investigate recovering spatially varying reflectance or incre-
mental learning of geometry as new measurements become
available [37, 44], enabling applications like real-time map-
ping and SLAM. Our method may be particularly relevant
in applications such as robotics and wearable computing,
where the small size, low power requirements, and robust
hardware of proximity sensors are very valuable.
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Towards 3D Vision with Low-Cost Single-Photon Cameras

Supplementary Material

In this supplement, we describe (1) The implementation
details of our reconstruction pipeline (Section A); (2) a sen-
sitivity analysis to understand the robustness of our method
w.r.t. imaging parameters (Section B); (3) A discussion of
the difficulty of point cloud surface reconstruction (Sec-
tion C); (4) additional qualitative results on simulated data
and real world captures (Section D); and (5) further discus-
sion of our work (Section E). We also include three short
videos, which provide animated 360◦ views of qualitative
reconstruction results. The videos can also be viewed on
the project web page: https://cpsiff.github.io/
towards_3d_vision/.

For sections, figures and equations, we use numbers
(e.g., Sec. 1) to refer to the main paper and capital letters
(e.g., Sec. A) to refer to this supplement.

A. Implementation Details
For both simulated and real world experiments, we use an
8-layer MLP with 256 hidden units as our SDF, fθ, and ini-
tialize it as a sphere, centered at the origin with radius 0.3m,
using geometric initialization [57]. For each transient, we
sample 256 rays ω over Ω and sample 256 points per ray.
We set λEikonal to 0.1 across all experiments and set λTV

to 0 and 0.01 respectively for the simulated and real-world
experiments. We train fθ for 300K steps using Adam [62]
with a mini-batch size 2, a learning rate 0.0005, and cosine
decay. The learned SDFs are converted to meshes using
Marching Cubes [63].

B. Sensitivity Analysis
We perform extensive experiments to understand the robust-
ness of our method in comparison to baselines under vary-
ing sensor parameters in simulation. All experiments are
based on the Bunny scene and the parameters are varied
one at a time while other parameters remain fixed at the
base condition (as described in Section 4 of the main pa-
per). To ensure strong baselines for every sensor configura-
tion, we calibrate the thresholds tp and ts for the projection
(threshold) and space carving baselines respectively per re-
construction. We perform a brute force search over possi-
ble thresholds and report the best Chamfer achieved. As
this amounts to calibrating on the test set, the numbers re-
ported represent the best possible performance of the base-
line methods on the given data. The results of this sensitiv-
ity analysis are presented in Figure A. In what follows we
discuss some of the main findings.

Sensor Placement. We study two key parameters that con-
trol sensor placement: the number of views and the mini-

mum elevation angle at which the sensors are placed. Our
method consistently outperforms all baselines in Chamfer
distance by an order of magnitude across a broad range of
parameter choices. In particular, our method readily sup-
ports as few as 128 views above a considerably large ele-
vation angle of 30◦ without harming reconstruction quality.
This robust gain in performance confirms that our method
takes advantage of broad-band signal in transients not ex-
ploited by the baseline methods.

Temporal Resolution. Our system takes advantage of the
temporal information in transient histograms, and therefore
benefits when that information is present at a high resolu-
tion. Because of this, our method outperforms baselines by
a very wide margin at a small bin size, but the margin van-
ishes as bins become wider than 2cm (equivalently 66ps),
because decomposing the temporal signal becomes imprac-
tical beyond this limit. Fortunately, today’s commodity
SPADs operate at a smaller bin size (∼ 40ps). Baseline
methods show no performance gain at small bin sizes, as
they do not take advantage of the temporal resolution.

Angular Resolution. Our system resolves spatial reso-
lution from wide-FoV sensors by taking advantage of the
time dimension. In this regime, the optimal sensor field-
of-view size is not obvious: a smaller FoV means more
highly constrained geometry, as each histogram images a
smaller region, but too small of a field-of-view means a
lack of coverage and under-constrained geometry. We find
that an angular resolution in the 30◦ to 60◦ range is op-
timal for reconstructing 3D geometry with our method on
the bunny scene. Reprojection based methods benefit more
from a smaller field-of-view, while space carving performs
best with a wider field-of-view so that space is sufficiently
carved away. In every case, our method outperforms base-
lines by a wide margin.

Signal-to-noise ratio (SNR). We consider three parameters
that jointly impact SNR: illumination power, ambient flux,
and number of illumination cycles. Our method again out-
performs all baselines by a significant margin across all test
conditions. Notably, the baselines fail or perform consider-
ably worse under high ambient flux, as signal photons are
blocked by background photons due to pile-up. By contrast,
our method is robust against a broad range of ambient flux
levels, as we model the effects of ambient flux directly.

C. Point Cloud Surface Reconstruction
We do not apply surface reconstruction to the point clouds
computed by reprojection because off-the-shelf reconstruc-

https://cpsiff.github.io/towards_3d_vision/
https://cpsiff.github.io/towards_3d_vision/
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Figure A. Sensitivity analysis of our method compared to baselines across a range of imaging parameters. In almost every case,
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Figure B. Off-the-shelf algorithms for surface reconstruction
(Poisson Surface Reconstruction [61] and The Ball-Pivoting Al-
gorithm [58]) do not perform well on point clouds generated by
reprojection.

tion techniques do not perform reliably on the generated
point clouds, as shown in Figure B. Additionally, calculat-
ing Chamfer distance to the computed point cloud ensures
that we are capturing the efficacy of reprojection rather than
a given surface reconstruction method. We include one-way
reconstruction to ground truth Chamfer distance in Table 2
to provide a metric which does not penalize the sparsity of
point clouds produced by reprojection.

D. Additional Qualitative Results
More reconstruction results. We present additional qual-
itative results on simulated data (Figure D) and real-world
captures (Figure C). These results were omitted from the
main paper due to lack of space.

Surface normal visualization. Moving beyond the 3D
shapes, we further examine the surface normal of our re-
constructed 3D objects. The surface normal of a point x on
the reconstructed mesh is estimated as

ñx =
∇x(fθ(PE(x)))

∥∇x(fθ(PE(x)))∥
, (A)

where fθ is the learned SDF and PE denotes the positional
encoding function. The error ex w.r.t. the ground-truth nor-
mal nx is given by

ex = |⟨nx, ñx⟩|. (B)

Surface normal results. We provide visualizations of sur-
face normals for simulated data in Figure E. Our method
can successfully recover smoothly varying normals. Error
typically occurs at edges and depth discontinuities with fast-
changing normals. We hypothesize that sensors with higher
temporal and spatial resolution are needed for more accu-
rate surface normal reconstruction.

E. Further Discussion

Beyond Lambertian objects. Our method assumes a spa-
tially uniform Lambertian BRDF, but in practice can effec-
tively reconstruct objects with spatially varying albedo and
slightly glossy appearance (e.g. the spray bottle). In theory,
our method can easily be adapted to incorporate a paramet-
ric lighting model. Recovery of the parameters of such a
model are likely possible because, by sharing information
among many observations, the BRDF is effectively sampled
at many incident and exitant angles. An intriguing direction
for future work is investigating which BRDF parameteri-
zations can be recovered with our imaging setup, and the
effect of the reflectance model on reconstruction quality.
We suspect that a non-parametric NeRF-like BRDF would
not be suitable as it does not sufficiently constrain the op-
timization. A parametric lighting model, e.g. Phong [59]
or Oren-Nayar [66] may appropriately constrain the opti-



mization while allowing the model to learn a more accurate
scene representation.

Runtime efficiency. Our method takes on the order of hours
to reconstruct a scene, making it unsuitable for real-time
applications in its current state. Future work should in-
vestigate ways to speed up forward rendering and model
training. Improved importance sampling would likely yield
modest improvements in convergence time. Another op-
tion is to render only summary statistics of the histogram
(e.g. mean, peak locations or widths) rather than the entire
histogram, which would likely be faster to render at the ex-
pense of yielding a lower-quality reconstruction.

Sensor pose. In this work, we used an industrial robot
arm to gather posed sensor measurements. We chose this
modality as it is guaranteed to provide highly accurate sen-
sor poses, and allows control over precise sensor place-
ment. For applications like wearable computing and dis-
tributed sensing for robotics, camera poses might be pre-
calibrated and remain fixed relative to each other during op-
eration. Alternatively, the low-cost single-photon camera
could be combined with a sensor-based localization system
(e.g., an IMU based [68] or a camera based [65] system) to
recover camera pose, a setup which is standard in related
works [64, 67]. Such a capture setup would allow capture
of more organic and large scale scenes, which more closely
mimic the potential use cases of the sensor (e.g. on mobile
robots and drones).

Comparison to other 3D imaging modalities. Our work
provides a low-cost 3D imaging system using single-photon
cameras. We provide detailed comparisons between our
method and baseline methods, but do not compare our re-
constructions to those gathered from other 3D modalities,
such as continuous wave time-of-flight [56] or LiDAR [60].
Future work should provide a comparison to these other
modalities to provide insights into the niche (in terms of
accuracy, size, power, etc.) filled by each.

Comparison to a NeRF with a miniature RGB cam-
era. Using multiple calibrated RGB cameras, NeRF-like
approaches can leverage photometric cues (e.g. correspon-
dence and shading) to recover 3D shapes from a distributed
set of cameras. Conceptually, NeRF-like approaches fall
short under non-ideal lighting (e.g. low-light) or insuffi-
cient correspondence (e.g. textureless objects), while our
method with active lighting and depth remains effective.
With sufficient light and distinct texture patterns, NeRF-like
approaches on RGB images will yield a higher quality re-
construction than our method, due to significantly increased
data rates. Without compression, a VGA-resolution image
with 8-bit color channels contains 7Mbits of information,
while an image (i.e., transient histogram) from our sensor
contains 3Kbits of information. With 2400× the informa-
tion per-view, it is not surprising that NeRF with RGB cam-

eras could outperform our method given the same number
of input views. Practically, existing low-cost RGB cam-
eras are larger and less power efficient than the SPAD sen-
sors that we utilize. While miniature RGB cameras do exist
(e.g., those used for endoscopy), they are >20× the cost of
a SPAD.

Commodity sensors. One challenge for future work is a
lack of hardware support for measurement and use of tran-
sient histograms. Very few low-cost sensors allow access to
transient histograms, and those that do often perform pre-
processing that is proprietary or undocumented. Addition-
ally, most sensors are equipped with very low-bandwidth
I2C interfaces, limiting their effective FPS. We hope that
manufacturers will see value in users having access to tran-
sient histogram data and support the use of this data with
documentation, low-level access, and high-bandwidth inter-
faces in the future.

Ethical concerns. Our work presents a new method for
imaging 3D objects with low-cost single-photon cameras.
We do not anticipate major ethical concerns.
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Figure C. Additional qualitative results on real-world captures. Our method achieves the highest reconstruction quality. Poses in
column two are subsampled by a factor of two for clarity.
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Figure D. Additional qualitative results on simulated data. Our method achieves the highest reconstruction quality. Space carving
captures an envelope of the shape, and may carve away occupied areas in concave shapes (e.g. Armadillo). Reprojection gives a sparse
reconstruction of convex shapes, (e.g. skull, soap, sphere), the scale of which may be distorted due to biases introduced by the wide field-
of-view of the sensor.
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Figure E. Visualizations of surface normals for simulated data. Our method correctly estimates surface normals in flat regions. Error
mainly occurs at edges and depth discontinuities. We hypothesize that sensors with higher temporal and spatial resolution are needed to
detect rapid changes in surface normals.
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