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Abstract

Event cameras capture the world at high time resolution and
with minimal bandwidth requirements. However, event streams,
which only encode changes in brightness, do not contain suffi-
cient scene information to support a wide variety of downstream
tasks. In this work, we design generalized event cameras that
inherently preserve scene intensity in a bandwidth-efficient man-
ner. We generalize event cameras in terms of when an event is
generated and what information is transmitted. To implement
our designs, we turn to single-photon sensors that provide digi-
tal access to individual photon detections, this modality gives
us the flexibility to realize a rich space of generalized event
cameras. Our single-photon event cameras are capable of high-
speed, high-fidelity imaging at low readout rates. Consequently,
these event cameras can support plug-and-play downstream
inference, without capturing new event datasets or designing
specialized event-vision models. As a practical implication, our
designs, which involve lightweight and near-sensor-compatible
computations, provide a way to use single-photon sensors with-
out exorbitant bandwidth costs.

1. Introduction

Event cameras [6, 36, 46] sense the world at high speeds, pro-
viding visual information with minimal bandwidth and power.
They achieve this by transmitting only changes in scene bright-
ness, when significant “events” occur. However, there is a cost.
Raw event data, a sparse stream of binary values, does not
hold sufficient information to be used directly with mainstream
vision algorithms. Therefore, while event cameras have been
successful at certain tasks (e.g., object tracking [ 15, 35], obstacle
avoidance [7, 20, 51], and high-speed odometry [12, 21, 70]),
they are not widely deployed as general-purpose vision sen-
sors, and often need to be supplemented with conventional
cameras [14, 15, 21]. These limitations are holding back this
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otherwise powerful technology.

Is it possible to realize the promise of event cameras, i.e.,
high temporal resolution at low bandwidth, while preserving
rich scene intensity information? To realize these seemingly con-
flicting goals, we propose a novel family of generalized event
cameras. We conceptualize a space of event cameras along
two key axes (Fig. 1 (fop)): (a) “when to transmit information,”
formalized as a change detection procedure A; and (b) “what
information to transmit,” characterized by an integrator . that
encodes incident flux. Existing event cameras represent one
operating point in this (X, A) space. Our key observation is that
by exploring this space and considering new (3, A) combina-
tions, we can design event cameras that preserve scene intensity.
We propose more general integrators, e.g., that represent flux
according to motion levels, that span spatial patches, or that
employ temporal coding (Fig. 1 (middle)). We also introduce ro-
bust change detectors that better distinguish motion from noise,
by considering increased spatiotemporal contexts and modeling
noise in the sensor measurements.

Despite their conceptual appeal, physically implementing
generalized event cameras is a challenge. This is because the reg-
uisite computations must be performed at the sensor to achieve
the desired bandwidth reductions. For example, existing event
cameras perform simple integration and thresholding operations
via analog in-pixel circuitry. However, more general (2, A)
combinations are not always amenable to analog implementa-
tions; even feasible designs might require years of hardware
iteration and production scaling. To build physical realizations
of generalized event cameras, we leverage an emerging sen-
sor technology: single-photon avalanche diodes (SPADs) that
provide digital access to photon detections at extremely high
frame rates (~100 kHz). This allows us to compose arbitrary
software-level signal transformations, such as those required by
generalized event cameras. Further, we are not locked to a partic-
ular event camera design and can realize multiple configurations
with the same sensor.
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Figure 1. Generalized event cameras. (fop) Event cameras generate outputs in response to abrupt changes in scene intensity. We describe this as
a combination of a low-pass integrator and a threshold-based change detector. (middle) We generalize the space of event cameras by designing
integrators that capture rich intensity information, and more reliable change detectors that utilize larger spatiotemporal contexts and noise-aware
thresholding (Secs. 4.1 to 4.3). Unlike existing events, our generalized event streams inherently preserve scene intensity, e.g., this ping-pong
ball slingshotted against a brick wall backdrop. (bottom) Generalized event cameras enable high-fidelity bandwidth-efficient imaging: providing
3025 FPS reconstructions with a readout equivalent to a 30 FPS camera. Consequently, generalized events facilitate plug-and-play inference on a
multitude of tasks in challenging scenarios (insets depict the extent of motion over 30 ms).

Implications: extreme, bandwidth-efficient vision. Gener-
alized event cameras support high-speed, high-quality image
reconstruction, but at low bandwidths quintessential of current
event cameras. For example, Fig. 1 (middle, bottom) shows
reconstructions at 3025 FPS that have an effective readout of a
30 FPS frame-based camera. Further, our methods have strong
low-light performance due to the SPAD’s single-photon sensi-
tivity. As we show in Fig. 1 (bottom), preserving scene intensity
facilitates plug-and-play inference in challenging scenarios, with
state-of-the-art vision algorithms. Critically, this does not re-
quire retraining vision models or curating dedicated datasets,
which is a significant challenge for unconventional imagers.
This plug-and-play capability is vital to realizing universal event
vision that retains the benefits of current event cameras.

Scope. We consider full-stack event perception: we conceptu-
alize a novel space of event cameras, provide relevant single-
photon algorithms, analyze their imaging capabilities and rate-
distortion trade-offs, and show on-chip feasibility. We demon-
strate imaging capabilities in Secs. 5.1 and 5.2 using the SwissS-

PAD?2 array [64], and show viable implementations of our al-
gorithms for UltraPhase [4], a recent single-photon compute
platform. All of these are critical to unlocking the promise of
event cameras. However, our objective is not to develop an
integrated system that incorporates all these components; this
paper merely takes the first steps toward that goal.

2. Related Work

Event camera designs. Perhaps most widespread is the DVS
event camera [36], where each pixel generates an event in re-
sponse to measured changes in (log) intensity. The DAVIS event
camera [6, 9] couples DVS pixels with conventional CMOS pix-
els, providing access to image frames. However, the frames
lack the dynamic range of DVS events. A recent design, Celex-
V [23], provides log-intensity frames using an external trigger.
ATIS [46], a less prevalent design, features asynchronous inten-
sity events, but its sophisticated circuitry reduces pixel fill factor.
The above designs are based on analog processing; we instead
design event cameras on digital photon detections.



Intensity imaging with event cameras. Several approaches
have been explored to obtain images from events, including
Poisson solvers [5], manifold regularization [41], assuming
knowledge of camera motion [13, 31] or optical flow [69], and
learning-based methods [45, 48, 53, 60, 71]. However, because
events often lack sufficient scene information, they are often
supplemented by conventional frames [10, 43, 52, 55], either
from sensors such as DAVIS or using a multi-camera setup.
Fusing events and frames presents challenges due to poten-
tial spatiotemporal misalignment and discrepancies in imaging
modalities. Even when these challenges are overcome, we show
that fusion methods produce lower fidelity than our proposed
generalized event cameras.

Passive single-photon imaging. In the past few years, SPADs
have found compelling passive imaging applications; this in-
cludes high-dynamic range imaging [26, 27, 37, 42], motion
deblurring [28, 33, 34, 38, 39], high-speed tracking [17], and ul-
tra wide-band videography [67]. A particularly relevant method
is proposed by Seets et al. [54], which uses flux changepoint
estimation to perform burst photography on single-photon se-
quences. This approach uses flux changepoints to estimate
motion, then integrates along spatiotemporal motion trajecto-
ries to circumvent the noise-blur tradeoff. This spatiotemporal
integration allows for high-quality reconstructions under chal-
lenging lighting and motion conditions. In contrast, our paper
emphasizes changepoint estimation as a means to compress
single-photon data. Further, since we aim to run our proposed
techniques near sensor, where there are limited memory and
compute capabilities, we focus on online changepoint estimation
that processes photon detections in a single pass.

The fine granularity of passive single-photon acquisition
makes it possible to emulate a diverse set of imaging modali-
ties [62], including event cameras, via post-capture processing.
In this work, we go beyond emulating existing event cameras
and design alternate event cameras that preserve high-fidelity
intensity information.

3. What is an Event Camera?

The defining characteristic of event cameras is that they transmit
information selectively, in response to changes in scene content.
This selectivity allows event cameras to encode scene informa-
tion at high time resolutions required to capture scene dynamics,
without proportionately high bandwidth. This is in contrast to
frame-based cameras, where readout occurs at fixed intervals.

We characterize event cameras in terms of two axes: what the
camera transmits and when it transmits. As a concrete example,
consider existing event cameras. They trigger events (“when to
transmit”) based on a fixed threshold:

|D(x,t) — Pres(x)| > 7, (D

where ®(x, 1) is a flux estimate' at pixel x and time ¢, and 7 is

!Event cameras such as the DVS [9] measure a temporally low-pass filtered
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Figure 2. Altering ‘“what to transmit.” (a) We sum the events gen-
erated by a jack-in-the-box toy as it springs up. This sum gives a
lossy encoding of brightness changes in dynamic regions. (b) Trans-
mitting levels instead of changes helps recover details in static regions.
(c) Adaptive exposures, which accumulate flux between consecutive
events, provide substantial noise reduction.

the threshold. ®¢(x) is a previously-recorded reference, set to
®(x,t) whenever an event is triggered. Each event consists of a
packet

(x,t,sign(P(x,t) — Prer(x))) )
that encodes the polarity of the change (‘“what to transmit”).

Event polarities, although adequate for some applications,
do not retain sufficient information to support a general set
of computer vision tasks. A stream of event polarities is an
extremely lossy representation. Notably, it only defines scene
intensity up to an initial unknown reference value, and it does
not encode any information in regions not producing events, i.e.,
regions with little or no motion.

Our key observation is that existing event cameras represent
just one operating point in a broader space of generalized event
cameras, which is defined by two axes: “what to transmit” and
“when to transmit.” By considering alternate points in this space,
we can design event cameras that preserve high-fidelity scene
intensity. This enables plug-and-play inference with a host of
algorithms developed by the mainstream vision community.

We begin with a conceptual exploration of this generalized
space, before describing its physical implementation.

Generalizing “what to transmit.” As a first step, we can
modify the event camera such that it transmits n-bit values
instead of one-bit change polarities. When an event is triggered,
we send the current value of ®(x, t); if a pixel triggers no events,
we transmit ® during the final readout. As we show in Fig. 2 (b),
this simple change allows us to recover scene intensity, even in
static regions. It is important to note that, while the transmitted
quantity differs from conventional events, we retain the defining
feature of an event camera: selective transmission based on
scene dynamics (where we transmit according to Eq. (1)). Thus,
the readout remains decoupled from the time resolution.

If ®(x,t) were a perfect estimate of scene intensity, then the
changes thus far would suffice. However, ® is fundamentally
noisy: to capture high-speed changes, & must encompass a
shorter duration, which leads to higher noise. This is a manifes-
tation of the classical noise-blur tradeoff.

To address this problem, we introduce the abstraction of an
integrator (or X), that defines how we accumulate incident flux
and, in turn, what we transmit. Ideally, we want the integrator to

estimate of log-flux; we absorb this into ®(x, t) for brevity.



Event camera ‘ Integrator (3) Change detector (A) ‘ Event packets ~ Min. latency  Intensity info.? Low-light perf.
Existing (DVS [36]) logarithmic comparator binary 1076 to 10755 X poor
Sec. 4.1 adaptive exposure  Bayesian change detector [2] scalar 1075 v good
Sec. 4.2 adaptive exposure  variance-aware differences patches 10™4s v good
Sec. 4.3 coded exposure  Binomial confidence interval vector 1073 v good

Table 1. Summary of generalized event cameras. Our designs integrate photon detections () and detect scene-content changes (A) in distinct
ways. We compare our designs to existing DVS event cameras based on their event streams, latencies, and intensity-preserving nature. While
providing a direct power comparison to DVS is difficult, we compare the power characteristics among our designs in Sec. 5.4.

adapt to scene dynamics, i.e., accumulate over longer durations
when there is less motion, and vice versa. We observe that event
generation, which is based on scene dynamics, can be used to
formulate an adaptive integrator. Specifically, we propose an
integrator Y., that computes the cuamulative flux since the last
event: .
Yeumi (%, 1) = / b (x, s)ds, 3
To
where Tj is the time of the last event. When an event is triggered
at time 7}, we communicate the value’ of Xy (%, 71 ), which
we interpret as the intensity throughout [Tp, 74 ]. This approach
yields a piece-wise constant time series, with segments delimited
by events. We note that a similar idea, of virtual exposures
beginning and ending with change points, was also explored in
Seets et al. [54] as part of a motion-adaptive deblurring pipeline.
Adaptive exposures significantly reduce noise while preserving
dynamic scene content, as we show in Fig. 2 (c).

Generalizing ‘““when to transmit.” The success of the adap-
tive integrator crucially depends on the reliability of events; for
example, triggering false events in static regions causes unnec-
essary noise. We refer to the event-generation procedure as the
change detector, denoted by A. Current event cameras detect
changes by applying a fixed threshold to measured intensity
differences (Eq. (1)). This method has two key limitations: it
only considers the value of ® at pixel location x and time ¢ and
is not attuned to the stochasticity in .

We design more robust change detectors that (1) leverage
enhanced spatiotemporal contexts, and (2) incorporate noise
awareness, either explicitly by tuning thresholds, or implicitly
by modulating the detector’s behavior. Specifically, we improve
reliability by using temporal forecasters (Sec. 4.1), by leverag-
ing correlated changes in patches (Sec. 4.2), or by exploiting
integrator statistics (Sec. 4.3).

Realizing generalized event cameras. The critical detail re-
maining is how we implement our proposed designs in prac-
tice. We need direct access to flux estimates at a high time
resolution. Conventional high-speed cameras can provide such
access, however, they incur substantial per-frame read noise
(~20—40e™ [25]) that grows with frame rate [8].

We turn to an emerging class of single-photon sensors, single-
photon avalanche diodes (SPADs [50]), that has witnessed dra-

2We can either transmit values of ey or differences (changes) to Seumi;
we treat this as an implementation detail here.

matic improvements in device practicality and key sensor charac-
teristics (e.g., array sizes and fill factors) in recent years [40, 64].
SPADs can operate at extremely high speeds (~100 kHz) with-
out incurring per-frame read noise. Each ®(x, t) measured by a
SPAD is limited only by the fundamental stochasticity of pho-
ton arrivals (shot noise). This allows SPADs to provide high
timing resolution without a substantial noise penalty. In the next
section, we describe the image formation model of SPADs and
provide single-photon implementations of our designs.

4. Single-Photon Generalized Event Cameras

A SPAD array can operate as a high-speed photon detector,
producing binary frames as output. Each binary value indi-
cates whether at least one photon was detected during an expo-
sure. The SPAD output response, ®(x, ¢), can be modeled as a
Bernoulli random variable, with

P(®(x,t)=1)=1—¢ N0, )

where N (x, t) is the average number of photo-electrons during
an exposure, including any spurious detections. The inherently
digital SPAD response allows us to compute software-level
transformations on the signal ®(x, ¢), including operations that
may be challenging to realize via analog processing. These
transformations can be readily reconfigured, which permits a
spectrum of event camera designs, not just one particular choice.
However, there is one consideration: our designs should be
lightweight and computable on chip. As we show in Sec. 5.4,
this is vital to implementing generalized event cameras without
the practical costs associated with reading off raw SPAD outputs.

We now describe a set of SPAD-based event cameras (sum-
marized in Tab. 1), beginning with the adaptive exposure method
from the previous section.

Adaptive-exposure event camera. We obtain a SPAD imple-
mentation of the adaptive exposure described in Eq. (3) by
replacing the integral with a sum over photons:

t

Sam(X,1) = Y O(x,5). (5)

s=Ty

To generate events, we can use a threshold-based change detec-
tor (Eq. (1)). Differences between individual binary values are
not sufficiently informative; therefore, we apply Eq. (1) to an
exponential moving average (EMA) computed on . We call
this an “adaptive-EMA” event camera.
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integrator captures the rotational dynamics.
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4.1. Bayesian Change Detector

A fixed-threshold change detector such as Eq. (1) does not
account for the SPAD’s image formation model; it uses the
same threshold irrespective of the underlying variance in photon
detections. As aresult, such a detector may fail to detect changes
in low-contrast regions without producing a large number of
false-positive detections (see Fig. 3 (left)).

In this section, we consider a Bayesian change detector,
BOCPD [1], that is tailored to the Bernoulli statistics of photon
detections. BOCPD uses a series of forecasters to estimate
the likelihood of an abrupt change. At each time step, a new
forecaster 1 is initialized as a recurrence of previous forecasters,
and existing forecasters are updated:

t—1
= (1-7) leys, Vs < Ylsvs Vs <t, (6)
s=1

where v € [0, 1] is the sensitivity of the change detector, with
larger ~y resulting in more frequent detections. [, is the predictive
likelihood of each forecaster, which we compute by tracking
two values per forecaster, s and S35, that correspond to the
parameters of a Beta prior. For a new forecaster, these values
are initialized to 1 each, reflecting a uniform prior. Existing
(as, Bs), Vs < t, are updated as

Bs < Ps +1—B(x,1). @)

I, is given by a, /(cr, + ) if @(x, £) = 1, and /(s + )
otherwise. An event is triggered if the highest-value forecaster
does not correspond to 7, the timestamp of the last event;
mathematically, if argmax, v; # T.

as  as + P(x,1),

To make BOCPD viable in memory-constrained scenarios,
we apply extreme pruning by retaining only the three highest-
value forecasters [66]. We also incorporate restarts, deleting
previous forecasters when a change is detected [2].

Compared to an EMA-based change detector, the Bayesian
approach more reliably triggers events in response to scene
changes while better filtering out stochastic variations caused
by photon noise—which we show in Fig. 3.

4.2. Spatiotemporal Chunk Events

Sec. 4.1 leverages an expanded temporal context for change
detection; however, it treats each pixel independently and does
not exploit spatial information. In this section, we devise an
event camera with enhanced spatial context that operates on
small patches, e.g., of 4 x 4 pixels. It is difficult to derive
efficient Bayesian change detectors for multivariate time series;
thus, we adopt a model-free approach that does not explicitly
parameterize the patch distribution. To afford computational
breathing room for more expensive patch-wise operations, we
employ temporal chunking. That is, we average ®(x, t) over a
small number of binary frames (e.g., 32 binary frames) instead of
operating on individual binary frames; generally, this averaging
does not induce perceptible blur.

Let vector ® ¢k (y, t) represent the chunk-wise average of
photon detections at patch location y. Let vector Xpacn(y, t)
be an integrator representing the cumulative mean since the
last event, but excluding ®P¢punk. We want to estimate whether
D chunk belongs to the same distribution as Xpacn. We do so with
a lightweight approach, that computes the distance between
D cpunk and Xpqch in the linear feature space of matrix P. As we
show in Fig. 4, linear features allow us to capture spatial struc-
ture within a patch. Geometrically, P induces a hyperellipsoidal
decision boundary, in contrast to the spherical boundary of the
L2 norm.

This method generates an event whenever

P (ehunk (¥, ) — Spaen (v, )2 > T, ®)

where 7 is the threshold. When there is no event, we extend
the cumulative mean to include the current chunk. Before com-
puting linear features, we normalize ®cpyni and Xpac, element-
wise according to the estimated variance in P cpunk — Zpatch; We
annotate the normalized versions with a tilde. We estimate the
variance based on the fact that, in a static patch, the elements of
D hunk and X, are independent binomial random variables.
We train the matrix P on simulated SPAD data, generated
from interpolated high-speed video. We apply backpropagation
through time to minimize the MSE error of the transmitted
patch values. To address the non-differentiability arising from
the threshold, we employ surrogate gradients. Please see the
supplementary material for complete details of this method.

4.3. Coded-Exposure Events

In this section, we design a generalized event camera by apply-
ing change detection to coded exposures [22, 47, 49], which
capture temporal variations by multiplexing photon detections
over an integration window. This is interesting in two aspects.
First, we are designing event streams based on an modality not
typically associated with event cameras. Second, we show that
high-speed information can be obtained even when the change
detector operates at a coarser time granularity. Coded-exposure
events provide somewhat lower fidelity than our designs in
Secs. 4.1 and 4.2, but are more compute- and power-efficient,
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Figure 4. Spatiotemporal chunk events. We evaluate the difference
between the current chunk and a stored reference in a learned linear-
feature space. Unlike the L2 norm, which is permutation-invariant, the
feature-space norm is sensitive to spatial structure. Randomly shuffling
the pixel values reduces the transform-domain norm (the shuffled patch
has a more “noise-like” structure).

owing to less frequent execution of the change detector.

At each pixel, we multiplex a temporal chunk of 7,4 (~256—
512) binary values with a set of J (~2-6) codes C7 (x,t) V1 <
7 < J, producing J coded exposures

t
Saeat) = > B(x,5)CI(x, 5). 9)

s=t—Ttode

The codes CV are chosen to be random, mutually orthogonal
binary masks, each containing T4, /max(2, J) ones [62].

We exploit the statistics of coded exposures to derive a
change detector. Observe that in static regions, X7 ., (x,?)
are independent and identically distributed (iid) binomial ran-
dom variables. Thus, we can expect them to lie within a bino-
mial confidence interval of one another. If not, we assume the
pixel is dynamic and generate an event. We trigger an event if
¥ sea & conf(n, p) for any j. Here, “conf” refers to a binomial
confidence interval (e.g., Wilson’s score), n = Tioqe/J draws,
and p =) P(x,5)/Teode is the empirical success probability.

If a pixel is static, we store the sum of the J coded exposures,
which is a long exposure, denoted by Xjone. If the pixel remains
static across more than one temporal chunk, we extend Yo t0
include the entire duration. Whereas, if the pixel is dynamic,
we transmit {37 ..}, as well as any previous static intensity
encoded in Xj. Downstream, we can apply coded-exposure
restoration techniques [56, 65, 68] to recover intensity frames
from the coded measurements.

5. Experimental Results

We demonstrate the capabilities of generalized event cameras
using a SwissSPAD2 array [64] with resolution 512 x 256,
which we use to capture one-bit frames at 96.8 kHz. We show
the feasibility of our designs on UltraPhase [4], a recent single-
photon computational platform (Sec. 5.4).

Refinement model. For each of our event cameras, we train
a refinement model that mitigates artifacts arising from the
asynchronous nature of events. This model takes a periodic
frame-based sampling of integrator values and outputs a video
reconstruction. The sampling rate is configurable; in practice,
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Figure 5. High-speed videography of a stress ball hurled at a coffee
mug. (fop row) This indoor scene is challenging for existing imaging
systems, including: high-speed cameras (SNR-related artifacts), event
cameras (poor restoration quality), and even hybrid event + frame
techniques (reconstruction artifacts). (bottom rows) In contrast, our gen-
eralized event cameras capture the stress ball’s extensive deformations
with high fidelity and an efficient readout.

we set it ~16—-64 x lower than the SPAD rate. We use a densely-
connected residual architecture [65], trained on data generated
by simulating photon detections on temporally interpolated [24]
high-speed videos from the X VFI dataset [58]. See the supple-
ment for training details.

5.1. Extreme Bandwidth-Efficient Videography

High-speed videography. In Fig. 5, we capture the dynamics of
a deformable ball (a “stress ball”’) using a SPAD, a high-speed
camera (Photron Infinicam) operated at 500 FPS, and a commer-
cial event camera (Prophesee EVK4). The high-speed camera
suffers from low SNR due to read noise, which manifests as
prominent artifacts after on-camera compression. Meanwhile,
conventional events captured by Prophesee, when processed by
“intensity-from-events” methods such as E2VID+ [59] fail to
recover intensities reliably, especially in static regions. We also
evaluate EDI [44], a hybrid event-frame method. We consider
an idealized variant that operates on SPAD events (obtained
via EMA thresholding), which gives perfect event-frame align-
ment and a precisely known event-generation model. We refine
the outputs of EDI using the same model as for our methods.
We refer to this idealized, refined version of EDI as “EDI++.”
While EDI++ recovers more detail than other baselines, there
are considerable artifacts in its outputs.

Our method achieves high-quality reconstructions at
3025 FPS (96800/32) that faithfully capture non-rigid defor-
mations, with only 431 bits per second per pixel (bps/pixel)
readout, which is a 227x compression (96800/431) of the raw
SPAD capture. Viewed differently, for a 1 MPixel array, we
would obtain a bitrate of 431 Mbps, implying that we can read
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off these 3025 FPS reconstructions over USB 2.0 (which sup-
ports transfer speeds of up to 480 Mbps).

Event imaging in low light. Fig. 6 compares the low-light per-
formance of frame-based, event-based, and a generalized event
camera on an urban night-time scene at 7 lux (lux measured
at the sensor). For frame-based cameras, a short exposure that
preserves motion may be too noisy, while a long exposure can
be severely blurred. The Prophesee’s performance deteriorates
in low light, resulting in blurred temporal gradients. EDI++,
benefiting from the idealized SPAD-based implementation, can
image this scene, but finer details like the motorcyclist are lost.
Our generalized event cameras, on the other hand, provide
reconstructions with minimal noise, blur, or artifacts—while
retaining the bandwidth efficiency of event-based systems. The
compression here is 307x with respect to raw SPAD outputs.

5.2. Plug-and-Play Inference

Generalized event cameras preserve scene intensity, which en-
ables plug-and-play event-based vision. We consider a tennis
sequence (of 8196 binary frames) containing a range of ob-
ject speeds. We evaluate a range of tasks: pose estimation
(HRNet [61]), corner detection [18], optical flow (RAFT [63]),

e - racket >99%
N
-

ball >99%

person 97%

DETR detection

SAM segmentation 15100 bps/pixel

Figure 7. Plug-and-play inference on a tennis scene. (fop left) Conventional events encode temporal-gradient polarities; this lossy representation
limits performance on downstream tasks. (bottom left) Generalized events encode rich scene-intensity information, with a readout comparable
existing event cameras. They facilitate high-quality plug-and-play inference, without requiring dedicated algorithms. (right) Generalized event
cameras give image quality comparable to burst photography techniques that have a much higher readout rate.

object detection (DETR [11]), and segmentation (SAM [32]).
We compare against event-based methods applied to Prophesee
events; we use Arc* [3] for corner detection and E-RAFT [16]
for optical flow. For the remaining tasks, which do not have
equivalent event methods, we run HRNet, DETR, and SAM on
E2VID+ reconstructions.

As Fig. 7 (top left) shows, traditional events are bandwidth ef-
ficient (331 bps/pixel), but do not provide sufficient information
for successful inference. Generalized events (bottom left) have a
modestly higher readout (520 bps/pixel), but support accurate
inference without requiring dedicated algorithms. To provide
context for these rates, we compare them against frame-based
methods (right). A long exposure (120 bps/pixel) blurs out the
racket. Burst methods [19] recover a sharp image from a stack
of short exposures, but with a large readout of 15100 bps/pixel.

5.3. Rate-Distortion Analysis

Each method in Sec. 4 features a sensitivity parameter that con-
trols the sensor readout rate (event rate), which in turn influences
image quality. In this subsection, we evaluate the impact of read-
out on image quality (PSNR) by performing a rate-distortion
analysis. For ground truth, we use a set of YouTube-sourced
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Figure 8. Rate-distortion evaluation. Our techniques feature a tunable
parameter that controls the output event rate. Generalized events offer
a 4-8 dB improvement in PSNR over EDI++ (at the same readout),
and can compress raw photon data by 80x.

high-speed videos captured by a Phantom Flex4k at 1000 FPS;
see the supplement for thumbnails and links. We upsample
these videos to the SPAD’s frame rate and then simulate 4096
binary frames using the image formation model described in
Eq. (4). When computing readout for our methods, we assume
that events encode 10-bit values and account for the header bits
of each event packet.

As baselines, we consider EDI++, a long exposure, com-
pressive sensing with 8-bucket masks, and burst denoising [19]
using 32 short exposures. As Fig. 8 shows, generalized event
cameras provide a pronounced 4-8 dB PSNR improvement over
baseline methods. Further, our methods can compress the raw
SPAD response by around 80x before a noticeable drop-off in
PSNR is observed.

Among our methods, the spatiotemporal chunk approach of
Sec. 4.2 gives the best PSNR, followed by the Bayesian method
(Sec. 4.1) and coded-exposure events (Sec. 4.3). That said, all
methods are fairly similar in terms of rate-distortion (e.g., all
three give comparable results for the scenes in Secs. 5.1 and 5.2).
The methods are better distinguished by their practical charac-
teristics. The Bayesian method gives single-photon temporal
resolution; however, as we show in Sec. 5.4, it is the most ex-
pensive to compute on-chip. The chunk-based method occupies
a middle ground in terms of latency and cost. Coded-exposure
events have the highest latency—events are generated only every
~256-512 binary frames—but the lowest on-chip cost. This
provides an end user the flexibility to choose from the space of
generalized event cameras based on the latency requirements
and the compute constraints of the target application.

5.4. On-Chip Feasibility and Validation

A critical limitation of single-photon sensors is the exorbitant
bandwidth and power costs involved in reading off raw photon
detections. However, the lightweight nature of our event camera
designs allows us to sidestep this limitation by performing com-
putations on-chip. We demonstrate that our methods are feasible
on UltraPhase [4], a SPAD compute platform. UltraPhase con-
sists of 36 compute cores, each of which is associated with
4x4 pixels.

We implement our methods for UltraPhase using custom
assembly code. Some methods require minor modifications
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Figure 9. On-chip compatibility. We validate the feasibility of our
approach on UltraPhase [4], a computational SPAD imager. Compared
to reading out raw photon data, all of our approaches give marked
reductions in both bandwidth (left) and power (right).
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Figure 10. Limitations and failure modes. (left) Our reconstructions
(yellow inset) on dynamic scenes with rigid objects can be inferior
to burst photography (green inset). (center) Modulated light sources,
such as this phone screen, can trigger a deluge of events (change points
shown in the inset). (right) Rapid camera motion can result in an event
rate divergent from scene dynamics.

due to instruction-set limitations; see the supplement for details.
We process 2500 SPAD frames from the tennis sequence used
in Sec. 5.2, cropped to the UltraPhase array size of 12 x 24
pixels. We determine the number of cycles required to execute
the assembly code and estimate the chip’s power consumption
and readout bandwidth.

All our proposed methods run comfortably within the chip’s
compute budget of 4202 cycles per binary frame and its memory
limit of 4 Kibit per core. As seen in Fig. 9, compared to raw
photon-detection readout, our techniques reduce both bandwidth
and power costs by over two orders of magnitude. The coded-
exposure method is particularly efficient; on most binary frames,
it only requires multiplying a binary code with incident photon
detections. Our proof-of-concept evaluation may pave the way
for future near-sensor implementations of generalized event
cameras, which with advances in chip-to-chip communication,
could involve a dedicated “photon processing unit”, similar to a
camera image signal processor (ISP).

6. Limitations and Discussion

Generalized events push the frontiers of event-based imaging;
however, some scenarios lead to sub-optimal performance. As
seen in Fig. 10 (left), if the scene dynamics is entirely comprised
of rigid motion, burst photography [38] gives better image qual-
ity, albeit with much higher readout. (middle) Similar to current
event cameras, modulated light sources trigger unwanted events
that reduce bandwidth savings. However, it may be possible to
ignore some of these events, perhaps by modeling the lighting
variations [57].

Ego-motion events. Camera motion can trigger events in static



regions, although our methods still yield substantial compression
(130 over SPAD outputs, Fig. 10 right). We analyze the impact
of ego-motion on bandwidth savings further in the supplement.
However, single-photon cameras can emulate sensor motion by
integrating flux along alternate spatiotemporal trajectories [62].
We can imagine a generalized event camera that is “ego-motion
compensated,” by computing events along a suitable trajectory.

Photon-stream compression. SPADs generate a torrent of
data—e.g., 12.5 GBps for a MPixel array at 100 kHz—that
can easily overwhelm data interfaces. Generalized event cam-
eras reduce readout by around two orders of magnitude, by
decoupling readout from the SPAD’s frame rate and instead bas-
ing it on scene dynamics. This could pave the way for practical,
high-resolution single-photon sensors.
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