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ABSTRACT: The longwall mining method is designed to optimize coal extraction through controlled roof caving, which inevitably
induces seismicity. This research employs a distributed acoustic sensing (DAS) system incorporating a fire-safe fiber-optic cable
strategically installed underground within an operational longwall coal mine. Despite lower sensitivity than traditional seismometers,
DAS sensing technology benefits from dense sensor spacing and close proximity to the active face, where many microseismic events
occur. To automatically detect seismic events within the voluminous DAS data records, we employ convolutional autoencoder deep
learning models that can be used for anomaly (potential seismic event) detection in power spectral density (PSD) images of DAS
recordings. The kernel density estimation (KDE) technique is used to calculate the probability density function (PDF) for the density
scores of the latent space (representation of compressed data). We then use this calculated parameter as a threshold to distinguish
between the PSD associated with background noise and with potential seismic events. The DAS monitoring system in conjunction
with the developed deep learning model could enhance longwall coal mining safety and efficiency by offering valuable data from its
densely deployed multichannel sensors near mining operations.

decades, coal bursts have killed hundreds of miners
1. INTRODUCTION (Zhang et al., 2017).
Longwall mining is an efficient underground mining
method for extracting a variety of stratified resources
including coal, potash, and soda ash and represents a
considerable advancement over conventional methods
(Peng, 2019). A modern longwall primarily consists of
hydraulic shields that support the roof and floor, a cutting
device (e.g., a shearer or plow) that travels along the face
extracting slices of coal, and an armored conveyor belt,
which transports the resource to a larger mine haulage
system. Normally longwall mining is safe and efficient,
but a variety of ground control-related hazards are
possible, especially in deep mines. One of the most
significant of these hazards is a class of dynamic failures
associated with induced seismicity and damage to mine
workings, generally referred to as coal bursts or mine
bumps. Much like tectonic earthquakes, mining-induced
seismicity is difficult to predict and can have devastating
consequences. For example, over the past several

The mechanisms and severity of coal bursts and mine
bumps can vary widely, including localized failures
occurring in the coal or near-seam strata, failure of
competent strata in the overburden, and catastrophic chain
failure of pillars, which can span large areas (Mark,
2016). Although significant advancements have been
made in the past 100 years of research, many aspects of
coal bursts remain “enigmatic” (Mark, 2018). There are a
variety of options for managing coal bursts risk (Wei et
al., 2018), but selecting and applying appropriate
measures for dealing with coal bursts depends on an
adequate understanding of the source, geology, and
geomechanics associated with the bursts. For this, a
variety of information sources are useful, including
seismic monitoring. Apart from helping to address coal
bursts, seismic monitoring can be useful for a variety of
other safety applications in underground coal mining.



For underground coal mines, seismic monitoring is
conducted using surface or in-mine sensors. Surface
networks are usually less expensive and easier to maintain
and install, but in-mine networks provide higher quality
data in terms of event detection and location accuracy,
especially event depth constraints (Swanson et al., 2016).
In addition to much greater costs, regulations designed to
help avoid fires and explosions in coal mines restrict the
use and placement of electronics, including many seismic
sensors and most digitizers.

Deploying seismic sensors underground enables the
characterization of wvarious noises and also allows
detection of smaller events since the sensors are closer to
where these events occur (i.e., where the signal is
strongest). One example of noise characterization is the
characterization of machinery noise which is important
for both operational efficiency and worker safety (Peng et
al., 2020). Machinery noise cannot only be a significant
occupational hazard but also a critical indicator of
equipment condition and operational anomalies. Accurate
noise characterization helps identify impending
machinery failures, enabling preventative maintenance
and a reduction in downtime. Furthermore, it is crucial to
differentiate between mechanical noise and seismic
events to get a proper understanding of the rockmass
response to mining.

One promising technology to improve in-mine seismic
monitoring of underground coal mines is distributed
acoustic sensing (DAS) (Ankamah et al., 2023; Chambers
& Shragge, 2023; Wang et al., 2018; Zhang et al., 2017).
A DAS system is composed of an interrogator unit with
optical and electronic components plugged into a fiber-
optic cable. The interrogator probes the cable with light to
measure a vibration time series at each position along the
cable. Unlike most traditional seismic systems, MSHA-
approved optical fibers pose no risk of causing a fire and
so can be placed anywhere in coal mines. Another
challenge encountered by underground networks of
traditional seismic sensors or nodes is the need to
maintain precise time synchronization underground, but
the channels (i.e. sensing locations) along a DAS fiber are
all automatically synchronized throughout data
collection. As mining progresses, old cables can be cut
and new cables surrounding the current region of interest
can be connected to the system, which can measure tens
of kilometers of fiber.

The spatially and temporally dense DAS data enables the
detection of subtle seismic events that might otherwise go
unnoticed with conventional monitoring systems. This
enhanced  detection capability is  particularly
advantageous in the context of underground coal mines,
where early identification of minor seismic activities can
be useful for delineating weak zones and identifying
progressive failures quickly. DAS cables installed in
boreholes have been previously tested for detecting

microseismicity (Luo & Duan, 2021), as well as deployed
on a longwall for monitoring face bursts (Chambers &
Shragge, 2023). This study differs by focusing on
deploying fiber throughout the more easily accessible
entries of the mine, which could yield a more cost-
effective strategy that is less intrusive to operations.

One conventional approach to seismic event detection
involves using the short-term average/long-term average
(STA/LTA) technique, which calculates the ratio of
energy in a signal’s short and preceding longer time
windows (Trnkoczy, 2012). However, this method often
leads to false or missed seismic event identification due
to its dependency on background noise levels. Hence,
there has been growing interest in using deep learning
techniques for seismic event detection, which have
proven effective even for small-magnitude events (Huang
et al., 2018; Shaheen et al., 2021; Zhu & Beroza, 2019).
The two primary methods used for implementing deep
learning in this context are supervised (Birnie &
Hansteen, 2022; Mahmoudian et al.,, 2023) and
unsupervised learning (Zipfel et al., 2023). In supervised
learning, data are labeled as either seismic event or
background noise (Mousavi et al., 2019), whereas in
unsupervised learning, such labels are not required for
training (Seo et al., 2024). Each of these approaches has
its advantages, but supervised approaches require
numerous labeled seismic events, which can be difficult
to acquire. Despite the potential of unsupervised learning,
there are limited examples of its application in
distinguishing seismic events. Leveraging artificial
intelligence to improve seismic event detection, this study
employs an unsupervised approach to train a deep
learning model for identifying seismic activities over
continuous DAS recordings.

Anomaly detection is one of the leading applications of
unsupervised learning that can be used for seismic event
detection (Seo et al., 2024). Autoencoders are a type of
convolutional neural network that is often used for
unsupervised learning and are particularly useful for
anomaly detection (Jiang et al., 2022; Mirzaee et al.,
2023; Mousavi et al., 2019; Seydoux, L. et al., 2020;
Shomal Zadeh et al., 2024). They can also be beneficial
for studies involving seismic event clustering and seismic
hazard assessment of triggered events (Nam & Wang,
2019; Seydoux, L. et al., 2020; Yaghmaei-Sabegh et al.,
2022). Autoencoders aim to identify statistical outliers
and are useful in seismic analysis as data containing
seismic events are much less frequent than data
containing only background noise. Unsupervised
learning-based autoencoder methods leverage this fact to
train deep neural network models, often leading to
superior performance compared to traditional methods in
event detection. In this study, we aimed to develop a
seismic event detection system that uses DAS
multichannel measurements and improves existing



seismic catalogs generated from surface seismic data.
DAS can easily generate terabytes of data per day, and
therefore, the use of an automated tool for anomaly (i.e.,
seismic event) detection is necessary. Hence, this research
provides an unsupervised deep learning model that helps
with the detection of seismic events on multichannel DAS
recordings. After verifying the trained deep learning
model on a sample of event-free background noise and
achieving a satisfactory performance using seismic events
from the surface seismometer network, we ran the model
on DAS recordings to find seismic events that were not
previously recorded. This anomaly-detection algorithm
for seismic event detection could function as a warning
system, potentially enhancing safety in coal mines by
providing advanced notices of seismic activity.

2. FIELD STUDY DESIGN AND DAS DATA
ACQUISITION

To determine if DAS could be a practical tool to improve
event detection in underground coal mines, we carried out
a study in a longwall mine in Virginia, USA, which has a
history of seismicity concerns (Van Dyke et al., 2023).
Based on our experience in a small pilot test around one
pillar, we decided to focus on surrounding the active panel
with fiber optic cables. The optical interrogator unit was
stored in a building on the surface with power and climate
control adjacent to an elevator and ventilation shaft. The
interrogator unit was connected to a fiber optic patch
panel, which led to a fiber cable in a borehole that
descended into the mine. At the bottom of the shaft, a new
fiber was spliced to a cable deployed in the mains leading
to the active panel (~1490 meters of fiber from the shaft).
From the mains on the west side of the panel, the fiber
was spliced to another cable that extended ~1790 meters
along the headgate (Figure 1). That headgate fiber was
spliced to another fiber in the same cable at the east end
of the segment to double the density, and then that fiber’s
west end was connected near the mains to another fiber
that extended to the east along the tailgate ~1580 meters.
Unfortunately, the splice to the tailgate did not receive
enough backscattered light, either due to a splice stored
with too tight a bend in its protective case, or simply too
poor quality of a splice. Alternatively, the signal in the
tailgate was reduced too much by traveling through
multiple splices. Therefore, only the mains and headgate
(forward and reverse) sections of the fiber were used for
data processing, as shown using a blue line in Figure 1.

The fiber in the headgate and tailgate was installed in
entries that were least likely to collapse early, and which
had less machinery activity to reduce the likelihood of
fiber breaks. In the headgate and tailgate, the majority of
fiber was pushed against the rib (wall) and covered with
mud or rock dust (non-combustible dust that mines apply
to suppress potential explosions) where possible to

increase the coupling to the ground. In the mains, most
fiber was strung up on hooks along with other cables, and
along the entry to the headgate and tailgate it was
connected to rib and roof bolts using zip ties. The cable
was not coupled well to the rock in these regions because
mine traffic would likely break cable on the floor. The
data were acquired for 46 days from May 11 — June 27,
2022, during which time the orange region in Figure 1 was
mined. The data were acquired at a channel spacing of 5.7
meters (i.e., distance between new measurements), a
gauge length of 11.4 meters (i.e., distance over which
average strain rate is measured), and a sampling rate of
2000 Hz, resulting in 33 T.B. of data.

Figure 2a illustrates the full fiber route (i.e., main,
headgate, and tailgate) and a couple of the seismic events
detected by both surface seismometers (noted as yellow
triangles in Figure 1) and DAS cable. The DAS recording
of the 1.2 magnitude event shown in Figure 2a is
presented in Figure 2b. Clear P- and S-wave arrivals
appear in the headgate forward and reverse DAS
channels.

Fiber route Surface seismometers Seismic events

Mined panel

1km

Fig. 1: A plan view of the mine showing the locations of seismic
events (red dots) detected by the surface network and mined
panel (orange rectangle) during the experiment, surface seismic
stations (yellow triangles), and DAS fiber in headgate (blue
line)
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Fig. 2: DAS array channel locations with three seismic events
(a) and the 1.2 magnitude event’s P- and S-wave arrivals
detected by DAS (b)

3. METHODOLOGY AND DAS
ANALYSIS WORKFLOW

3.1. Multichannel Spectral Analysis

DATA



The DAS technique enables us to record seismicity with
a dense channel spacing, yielding higher resolution
measurements compared to traditional seismic arrays.
Although the signal-to-noise ratio of DAS measurements
is lower than traditional seismometers, the spatially dense
sampling and  continuous  recording  enables
characterization of various machinery noises and
detection of subtle seismic events that might otherwise go
unnoticed with conventional seismic monitoring systems.
We use spectral methods to detect and classify both
machinery noise and seismicity, which offer significant
advantages over the time-domain alternative for several
reasons. Primarily, the spectral approach allows for
improved identification and analysis of different
frequency components which often shed light on the
nature of the sources. The frequency content of seismic
signals can help differentiate between various types of
seismic events, such as those caused by natural tectonic
processes versus those induced by machinery or human
activities. Furthermore, spectral analysis enhances the
detection of low-amplitude signals that may be obscured
by noise in the time domain, potentially improving the
sensitivity and reliability of seismic monitoring systems.
This capability is particularly beneficial in environments
such as coal mines where the background noise level is
high.

To monitor seismic activities using spectral analysis, we
apply the Fast Fourier Transform to each trace recorded
by a DAS channel, but a selection of a time window
length to compute the power spectral density (PSD) is
crucial. A long time window may not clearly represent the
seismic event, especially for small-magnitude events far
from the cable. On the other hand, if a time window is too
short, the low-frequency content of the event signal may
not be captured. A time window that includes the P- and
S-wave arrivals, but not much more, is ideal. Figure 3
demonstrates the capability of spectral analysis in
identifying a seismic event that was not previously
detected by the surface network. Figure 3a shows the
seismic event recorded by DAS in the time domain along
with the PSD results in the frequency domain over
different time windows in Figure 3b-d.
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Fig. 3: A detected seismic event's P-wave arrival using DAS (a)
and its power spectrum density (PSD) plots across 275 channels
during (b) 250, (¢) 50, and (d) 0.5 seconds. Each title in b-d
indicates the start and end time of the window that captures this
event.

3.2.  Autoencoder Deep Learning Model

An autoencoder is designed to compress (encode) the
input data into a lower-dimensional representation (latent
space) and then reconstruct (decode) the compressed data
back to its original form using only the reduced
representation. In the context of anomaly detection in
images, such as those of Figure 3b-d, the autoencoder is
trained exclusively on data representing the "normal",
anomaly-free state of the data. During this training phase,
we train the autoencoder to capture the essential
characteristics of the normal images in the compressed
representation. When the trained autoencoder is exposed
to new images, it attempts to reconstruct them based on
the model weights that best fit the training data. Images
similar to the training data are reconstructed with
relatively minor errors. Anomalous images, which
contain patterns or features, such as seismic events that
are not present in the training data, result in significantly
higher reconstruction errors. By quantifying this error,
anomalies can be detected.

Quantifying reconstruction error solely with simple
metrics like root mean squared error often works well;
however, it does come with certain limitations. One
primary challenge is the autoencoder's potential to over-
generalize from the training data, which can lead to lower-
than-expected reconstruction errors for anomalous
images. An alternative approach is to use kernel density
estimation (KDE) as a non-parametric estimator to model
the probability density function (PDF) of the encoded
latent space, which we refer to as a density score (Chen,
2000; Chen, 2017). A density score, attributed to a
specific point within the data space, is the PDF at that
point. This quantification can serve as a direct measure of
the local density or crowding of the data space in the
vicinity of the point in question. Elevated density scores
are indicative of the point's location within a region
characterized by a significant concentration of data
points, denoting a high probability density region. In
contrast, reduced density scores signal the point's
placement in a region of a sparse data point distribution,
suggesting its association with low probability density or
outlier regions. Such a distinction offers a granular
perspective on the spatial distribution of data points,
enabling the identification of anomalies based on
deviations from established density norms within the
multidimensional data space.

Figure 4 presents a schematic illustration of the
autoencoder model. The autoencoder comprises an input
layer designed to accommodate batches of 64 images of
size 512x512 pixels. The encoder segment of the model



consists of a series of convolutional layers with 64, 32,
and 16 filters, respectively, to progressively reduce the
spatial dimensions while retaining essential information
about the original images. These layers utilize the ReLU
activation function for non-linearity (Agarap, 2018) and
are arranged to ensure minimal information loss up to the
bottleneck layer, which serves as the latent space
representation of the input data. The decoder mirrors this
with upsampling and convolutional layers, culminating in
an output that is a reconstructed version of the input. An
Adam optimizer and mean squared error loss were used
during training to ensure the model emphasizes the
precision of reconstruction discrepancy for anomaly
identification.
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Fig. 4: Schematic representation of the autoencoder model,
highlighting its multilayer architecture that consists of fully
connected layers.

To train the unsupervised deep learning model, we
randomly selected 1000 two-second time windows of the
multichannel DAS recordings which do not contain any
events according to the surface seismic catalog. Then, we
plotted their normalized PSD in RGB format and visually
excluded any spectrum plot with anomaly. Finally, we
trained the model on 960 spectrum plots of background
DAS noise (normal data), using 768 (80%) for training
and 192 (20%) for testing, over 250 training cycles
(epochs). Figure 5 shows the deep learning model
performance on training and testing datasets based on the
loss value, calculated as the mean squared error of the
difference between the predicted output and the actual
output across both training and testing datasets. As the
epochs progress, the convergence of loss values suggests
that the model is effectively capturing the underlying
patterns within the training data.
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Fig. 5: Training and validation loss over 250 epochs. The
training and validation loss strictly decreasing suggests
convergence without overfitting.

After analyzing records with known seismic events and
noting that the duration of all seismic events is between
0.5 and 1 second, we selected two-second time windows
(chunks) with a one-second overlap between chunks. The
overlap ensures every event is fully captured by at least
one window. We implemented the proposed workflow on
26 hours of continuous DAS recording, generating
2,140,710 two-second chunks with 1 second of overlap
and calculating their PSD plots. Subsequently, we
employed the trained autoencoder on the PSD plots to
detect seismic events.

4. RESULTS AND DISCUSSION

4.1. Noise Characterization and Analysis

Noise characterization of mining operations offers the
potential for insights into equipment conditions and
operations monitoring. Figure 6 showcases the PSD of
different noises averaged across a group of 10 adjacent
DAS channels. Figure 6a highlights a discernible daily
variation in operational noise levels, with a pronounced
increase during day shifts—a time of heightened
activity—compared to the quieter night shifts. Figure 6b
reveals distinct on-and-off noise patterns associated with
machinery over a 9-hour timeframe. The longwall shearer
is a probable noise source based on the power distribution
of the channels near the longwall. The noise is broadband
and the oscillation at the high frequency is apparent.
Monitoring this noise could inform predictive equipment
maintenance, potentially reducing downtime and
resulting in cost savings on equipment maintenance.
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Fig. 6: PSD of DAS recording showing mine’s working shifts
daily pattern (a) and machinery on-off pattern 245 m from the
active face (b).

4.2.  Enhanced Event Detection

We employed the trained autoencoder on the training
dataset containing PSD images that only include
background noise and on the PSD images from known
seismic events. This approach enabled us to analyze the
distribution of the KDE for the latent space’s density
score. A higher density score indicates a higher likelihood
that the PSD data corresponds to the normal dataset,
facilitating the detection of seismic activity. This
unsupervised strategy, augmented with the incorporation
of some labeled anomalous data, enhances the model's
reliability, particularly in reducing false detections.

During the autoencoder model's development, a
parametric study revealed the significant influence of
input image size on the model's performance. The size
parameter mandates resizing all input images to square
dimensions defined by this parameter before either
training or processing. This uniformity in image size is a
restriction of the model's architecture. The selected image
size directly affects the model’s computational demands,
its precision in capturing details, and its overall efficacy
in differentiating between normal and anomalous seismic
activities based on visual data. Although enlarging the
size parameter enhances the model’s anomaly detection
capabilities, it substantially escalates computation time
and memory usage. Figure 7 illustrates the density score
for both normal (PSD data containing background noise)
and anomalous (PSD data containing seismic events)
datasets across varying image input sizes. The
histograms, based on different size parameters, represent
the distribution of the density scores for anomalous PSD
data (left Y-axis). In contrast, the lines indicate the mean
density score of the normal PSDs. The results highlight
that increasing the size spreads out the density scores for
PSDs with anomalies and also amplifies the disparity
between the density scores for anomalous and normal
PSD data. This amplification boosts the model's
discriminative capability. For a size parameter of 512, the
density score for the normal PSD is shown as a solid line
at ~45,000, which contrasts distinctly with the distribution
and histogram for the anomalous PSD data. Therefore, a
size parameter of 512 was selected for the autoencoder
model. Leveraging the outcomes from this primarily
unsupervised approach, we set the 95th percentile of the

anomalous PSDs’ density scores at ~16,000 as the
threshold for event detection. Thus, any PSD data with a
density score below this threshold is classified as an
anomaly, indicating a seismic event. However, although
adopting the 95th percentile rather than the maximum
density score from known events may overlook a couple
of very weak events with high density scores (around
40,000 and potentially events that are far from the DAS
cable), it effectively reduces false positives. This
methodology may ensure that the model is appropriately
calibrated to avoid excessive sensitivity to minor
anomalies in the PSD data, such as those caused by nearby
vehicles.

Figure 8 illustrates the application of the developed
autoencoder model for the detection and labeling of
seismic events. In this figure, two PSD images are fed into
the model as inputs: one representing background noise
(Figure 8a) and the other depicting a seismic event (Figure
8b). The model processes these inputs to generate outputs
that are reconstructions of their encoded latent space
representations. The noise image produced a density score
of 45,246, which is not anomalous. The reconstructed
image of the noise image is a faithful but smoothed
reproduction of the actual image. In contrast, the seismic
event is identified as anomalous based on its density score
of —12,373. The reconstructed image of the seismic event
exhibits noticeable discrepancies from the original PSD
image, as highlighted by the ovals in Figure 8b.
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Fig. 7: Histogram of density score for normal (containing only
background noise) and anomalous (containing a seismic event)
data based on different input image sizes along with the mean
density score of the normal PSDs.
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Fig. 8: Comparison of a background noise (a) and a seismic
event (b) using the developed autoencoder deep learning
method (X-axis: Sensors [275 channels (headgate forward) =
1570 m]; Y-axis: Frequency [0-1000 Hz. (Gradually increasing
from top to bottom)]; Color: PSD amplitude in RGB)

We ran the developed model on 15.6 T.B. of DAS data
collected over 26 days, utilizing 275 channels (spanning
1570 meters) of the headgate forward cable for the
purpose of event detection. After processing all the two-
second PSD images with a one-second overlap, the model
identified 56,558 anomalies as potential seismic events,
compared to the sparse surface network’s seismic catalog
of 528 events during the same period. Note that the
surface array covers a much larger area than the DAS
array, but is located farther from the active longwall face,
complicating the comparison. We reviewed time series
and PSD plots of 500 instances randomly selected from
data labeled as background noise and 500 selected from
data labeled as anomalies, comparing them with seismic
events recorded by the surface seismic network. 496 of
the 500 (99.2%) visually inspected data detected as
background noise did not include seismic events. The
remaining 4 instances exhibited very weak anomalies;
however, none constituted a seismic event, resulting in
zero false negatives. Of the data labeled as anomalies, at
least 85 of the 500 (17.0%) are potentially seismic events.
None of the 85 events existed in the surface network
catalog. The absence of the surface network catalog
events in the reviewed time series and PSDs is attributed
to the mere small random sampling of anomalous data,
500 out of 56,558 (0.9%). These newly detected events
are likely of small magnitude and close to the DAS cable.
The relatively low prediction accuracy is due to the high
threshold for the density score that led to many false
positives (i.e., 83.0%). Based on analyzing known seismic

events detected by both the surface seismic network and
DAS, we have observed that for events occurring
relatively far from the cable, especially those of smaller
magnitude, the anomalies are not clearly apparent in the
DAS data. Therefore, by lowering the threshold of the
density score, we can more effectively detect apparent
anomalies, potentially those of higher magnitude or
occurring closer to the fiber. However, this approach
introduces a trade-off in that while we can achieve a more
robust outcome for seismic event detection, we may
overlook labeling other weak potential seismic activities.
For future studies, a more robust outcome may be
achieved by employing additional metrics, such as the
reconstruction root mean squared error, alongside the
density score to detect seismic events more effectively.

Results show that the model successfully identified new
seismic events that are likely small but close to the DAS
cable and had not been previously recorded by the surface
seismic network. This showcases the enhanced sensitivity
and effectiveness provided by DAS technology deployed
underground in detecting seismic events that are
otherwise elusive to traditional surface monitoring
systems. The integration of underground DAS and surface
seismometers represents a useful advance in applied
seismology, suggesting the potential for improved
predictive models and safety measures in mines with
seismic events.

5. CONCLUSIONS

This research provides an unsupervised deep learning
model that helps with the detection of anomalies on
multichannel DAS recordings. 56,558 potential seismic
events were detected during 26 days of coal mining,
compared to the surface network’s seismic catalog of 528
events, showing an increase of more than 100 times.
Analyzing time series and PSD plots of 1,000 instances
against seismic events recorded by the surface network
indicates a 99.2% accuracy in identifying non-seismic
background noise, thanks to model training on such data.
Additionally, preliminary analysis suggests that at least
17.0% of the detected anomalies could be seismic events,
none of which were detected by the surface network. The
modest success in detecting seismic events stems from a
high density score threshold, which although limits
effective seismic event detection, ensures detection of
distant or low-magnitude events. A further statistical
study is needed for selecting a more effective threshold.
The developed anomaly detection algorithm for seismic
event identification could serve as a warning system,
potentially enhancing safety in coal mines by offering
advanced notice of seismic activities. Furthermore, this
algorithm could reduce data storage requirements by a
factor of 50 by recording data when the algorithm detects
an anomaly, thereby facilitating a mine's ability to
manage voluminous DAS data more effectively.
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