
1. INTRODUCTION 
Longwall mining is an efficient underground mining 
method for extracting a variety of stratified resources 
including coal, potash, and soda ash and represents a 
considerable advancement over conventional methods 
(Peng, 2019). A modern longwall primarily consists of 
hydraulic shields that support the roof and floor, a cutting 
device (e.g., a shearer or plow) that travels along the face 
extracting slices of coal, and an armored conveyor belt, 
which transports the resource to a larger mine haulage 
system. Normally longwall mining is safe and efficient, 
but a variety of ground control-related hazards are 
possible, especially in deep mines. One of the most 
significant of these hazards is a class of dynamic failures 
associated with induced seismicity and damage to mine 
workings, generally referred to as coal bursts or mine 
bumps. Much like tectonic earthquakes, mining-induced 
seismicity is difficult to predict and can have devastating 
consequences. For example, over the past several 

decades, coal bursts have killed hundreds of miners 
(Zhang et al., 2017).  

The mechanisms and severity of coal bursts and mine 
bumps can vary widely, including localized failures 
occurring in the coal or near-seam strata, failure of 
competent strata in the overburden, and catastrophic chain 
failure of pillars, which can span large areas (Mark, 
2016). Although significant advancements have been 
made in the past 100 years of research, many aspects of 
coal bursts remain “enigmatic” (Mark, 2018). There are a 
variety of options for managing coal bursts risk (Wei et 
al., 2018), but selecting and applying appropriate 
measures for dealing with coal bursts depends on an 
adequate understanding of the source, geology, and 
geomechanics associated with the bursts. For this, a 
variety of information sources are useful, including 
seismic monitoring. Apart from helping to address coal 
bursts, seismic monitoring can be useful for a variety of 
other safety applications in underground coal mining. 
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ABSTRACT: The longwall mining method is designed to optimize coal extraction through controlled roof caving, which inevitably 
induces seismicity. This research employs a distributed acoustic sensing (DAS) system incorporating a fire-safe fiber-optic cable 
strategically installed underground within an operational longwall coal mine. Despite lower sensitivity than traditional seismometers, 
DAS sensing technology benefits from dense sensor spacing and close proximity to the active face, where many microseismic events 
occur. To automatically detect seismic events within the voluminous DAS data records, we employ convolutional autoencoder deep 
learning models that can be used for anomaly (potential seismic event) detection in power spectral density (PSD) images of DAS 
recordings. The kernel density estimation (KDE) technique is used to calculate the probability density function (PDF) for the density 
scores of the latent space (representation of compressed data). We then use this calculated parameter as a threshold to distinguish 
between the PSD associated with background noise and with potential seismic events. The DAS monitoring system in conjunction 
with the developed deep learning model could enhance longwall coal mining safety and efficiency by offering valuable data from its 
densely deployed multichannel sensors near mining operations. 
 
 
 

 

 



For underground coal mines, seismic monitoring is 
conducted using surface or in-mine sensors. Surface 
networks are usually less expensive and easier to maintain 
and install, but in-mine networks provide higher quality 
data in terms of event detection and location accuracy, 
especially event depth constraints (Swanson et al., 2016). 
In addition to much greater costs, regulations designed to 
help avoid fires and explosions in coal mines restrict the 
use and placement of electronics, including many seismic 
sensors and most digitizers.  

Deploying seismic sensors underground enables the 
characterization of various noises and also allows 
detection of smaller events since the sensors are closer to 
where these events occur (i.e., where the signal is 
strongest).   One example of noise characterization is the 
characterization of machinery noise which is important 
for both operational efficiency and worker safety (Peng et 
al., 2020). Machinery noise cannot only be a significant 
occupational hazard but also a critical indicator of 
equipment condition and operational anomalies. Accurate 
noise characterization helps identify impending 
machinery failures, enabling preventative maintenance 
and a reduction in downtime. Furthermore, it is crucial to 
differentiate between mechanical noise and seismic 
events to get a proper understanding of the rockmass 
response to mining.  

One promising technology to improve in-mine seismic 
monitoring of underground coal mines is distributed 
acoustic sensing (DAS) (Ankamah et al., 2023; Chambers 
& Shragge, 2023; Wang et al., 2018; Zhang et al., 2017). 
A DAS system is composed of an interrogator unit with 
optical and electronic components plugged into a fiber-
optic cable. The interrogator probes the cable with light to 
measure a vibration time series at each position along the 
cable. Unlike most traditional seismic systems, MSHA-
approved optical fibers pose no risk of causing a fire and 
so can be placed anywhere in coal mines.  Another 
challenge encountered by underground networks of 
traditional seismic sensors or nodes is the need to 
maintain precise time synchronization underground, but 
the channels (i.e. sensing locations) along a DAS fiber are 
all automatically synchronized throughout data 
collection. As mining progresses, old cables can be cut 
and new cables surrounding the current region of interest 
can be connected to the system, which can measure tens 
of kilometers of fiber. 

The spatially and temporally dense DAS data enables the 
detection of subtle seismic events that might otherwise go 
unnoticed with conventional monitoring systems. This 
enhanced detection capability is particularly 
advantageous in the context of underground coal mines, 
where early identification of minor seismic activities can 
be useful for delineating weak zones and identifying 
progressive failures quickly. DAS cables installed in 
boreholes have been previously tested for detecting 

microseismicity (Luo & Duan, 2021), as well as deployed 
on a longwall for monitoring face bursts (Chambers & 
Shragge, 2023). This study differs by focusing on 
deploying fiber throughout the more easily accessible 
entries of the mine, which could yield a more cost-
effective strategy that is less intrusive to operations.   

One conventional approach to seismic event detection 
involves using the short-term average/long-term average 
(STA/LTA) technique, which calculates the ratio of 
energy in a signal’s short and preceding longer time 
windows (Trnkoczy, 2012). However, this method often 
leads to false or missed seismic event identification due 
to its dependency on background noise levels. Hence, 
there has been growing interest in using deep learning 
techniques for seismic event detection, which have 
proven effective even for small-magnitude events (Huang 
et al., 2018; Shaheen et al., 2021; Zhu & Beroza, 2019). 
The two primary methods used for implementing deep 
learning in this context are supervised (Birnie & 
Hansteen, 2022; Mahmoudian et al., 2023) and 
unsupervised learning (Zipfel et al., 2023). In supervised 
learning, data are labeled as either seismic event or 
background noise (Mousavi et al., 2019), whereas in 
unsupervised learning, such labels are not required for 
training (Seo et al., 2024). Each of these approaches has 
its advantages, but supervised approaches require 
numerous labeled seismic events, which can be difficult 
to acquire.  Despite the potential of unsupervised learning, 
there are limited examples of its application in 
distinguishing seismic events. Leveraging artificial 
intelligence to improve seismic event detection, this study 
employs an unsupervised approach to train a deep 
learning model for identifying seismic activities over 
continuous DAS recordings. 

Anomaly detection is one of the leading applications of 
unsupervised learning that can be used for seismic event 
detection (Seo et al., 2024). Autoencoders are a type of 
convolutional neural network that is often used for 
unsupervised learning and are particularly useful for 
anomaly detection (Jiang et al., 2022; Mirzaee et al., 
2023; Mousavi et al., 2019; Seydoux, L. et al., 2020; 
Shomal Zadeh et al., 2024). They can also be beneficial 
for studies involving seismic event clustering and seismic 
hazard assessment of triggered events (Nam & Wang, 
2019;  Seydoux, L. et al., 2020; Yaghmaei-Sabegh et al., 
2022). Autoencoders aim to identify statistical outliers 
and are useful in seismic analysis as data containing 
seismic events are much less frequent than data 
containing only background noise. Unsupervised 
learning-based autoencoder methods leverage this fact to 
train deep neural network models, often leading to 
superior performance compared to traditional methods in 
event detection. In this study, we aimed to develop a 
seismic event detection system that uses DAS 
multichannel measurements and improves existing 



seismic catalogs generated from surface seismic data.  
DAS can easily generate terabytes of data per day, and 
therefore, the use of an automated tool for anomaly (i.e., 
seismic event) detection is necessary. Hence, this research 
provides an unsupervised deep learning model that helps 
with the detection of seismic events on multichannel DAS 
recordings. After verifying the trained deep learning 
model on a sample of event-free background noise and 
achieving a satisfactory performance using seismic events 
from the surface seismometer network, we ran the model 
on DAS recordings to find seismic events that were not 
previously recorded. This anomaly-detection algorithm 
for seismic event detection could function as a warning 
system, potentially enhancing safety in coal mines by 
providing advanced notices of seismic activity. 

2. FIELD STUDY DESIGN AND DAS DATA 
ACQUISITION  
To determine if DAS could be a practical tool to improve 
event detection in underground coal mines, we carried out 
a study in a longwall mine in Virginia, USA, which has a 
history of seismicity concerns (Van Dyke et al., 2023). 
Based on our experience in a small pilot test around one 
pillar, we decided to focus on surrounding the active panel 
with fiber optic cables. The optical interrogator unit was 
stored in a building on the surface with power and climate 
control adjacent to an elevator and ventilation shaft. The 
interrogator unit was connected to a fiber optic patch 
panel, which led to a fiber cable in a borehole that 
descended into the mine. At the bottom of the shaft, a new 
fiber was spliced to a cable deployed in the mains leading 
to the active panel (~1490 meters of fiber from the shaft). 
From the mains on the west side of the panel, the fiber 
was spliced to another cable that extended ~1790 meters 
along the headgate (Figure 1). That headgate fiber was 
spliced to another fiber in the same cable at the east end 
of the segment to double the density, and then that fiber’s 
west end was connected near the mains to another fiber 
that extended to the east along the tailgate ~1580 meters. 
Unfortunately, the splice to the tailgate did not receive 
enough backscattered light, either due to a splice stored 
with too tight a bend in its protective case, or simply too 
poor quality of a splice. Alternatively, the signal in the 
tailgate was reduced too much by traveling through 
multiple splices. Therefore, only the mains and headgate 
(forward and reverse) sections of the fiber were used for 
data processing, as shown using a blue line in Figure 1. 

The fiber in the headgate and tailgate was installed in 
entries that were least likely to collapse early, and which 
had less machinery activity to reduce the likelihood of 
fiber breaks. In the headgate and tailgate, the majority of 
fiber was pushed against the rib (wall) and covered with 
mud or rock dust (non-combustible dust that mines apply 
to suppress potential explosions) where possible to 

increase the coupling to the ground. In the mains, most 
fiber was strung up on hooks along with other cables, and 
along the entry to the headgate and tailgate it was 
connected to rib and roof bolts using zip ties. The cable 
was not coupled well to the rock in these regions because 
mine traffic would likely break cable on the floor. The 
data were acquired for 46 days from May 11 – June 27, 
2022, during which time the orange region in Figure 1 was 
mined. The data were acquired at a channel spacing of 5.7 
meters (i.e., distance between new measurements), a 
gauge length of 11.4 meters (i.e., distance over which 
average strain rate is measured), and a sampling rate of 
2000 Hz, resulting in 33 T.B. of data. 

Figure 2a illustrates the full fiber route (i.e., main, 
headgate, and tailgate) and a couple of the seismic events 
detected by both surface seismometers (noted as yellow 
triangles in Figure 1) and DAS cable. The DAS recording 
of the 1.2 magnitude event shown in Figure 2a is 
presented in Figure 2b. Clear P- and S-wave arrivals 
appear in the headgate forward and reverse DAS 
channels. 

 
Fig. 1: A plan view of the mine showing the locations of seismic 
events (red dots) detected by the surface network and mined 
panel (orange rectangle) during the experiment, surface seismic 
stations (yellow triangles), and DAS fiber in headgate (blue 
line) 

 
 Fig. 2: DAS array channel locations with three seismic events 
(a) and the 1.2 magnitude event’s P- and S-wave arrivals 
detected by DAS (b)   

3. METHODOLOGY AND DAS DATA 
ANALYSIS WORKFLOW 
3.1. Multichannel Spectral Analysis 



The DAS technique enables us to record seismicity with 
a dense channel spacing, yielding higher resolution 
measurements compared to traditional seismic arrays. 
Although the signal-to-noise ratio of DAS measurements 
is lower than traditional seismometers, the spatially dense 
sampling and continuous recording enables 
characterization of various machinery noises and 
detection of subtle seismic events that might otherwise go 
unnoticed with conventional seismic monitoring systems.   
We use spectral methods to detect and classify both 
machinery noise and seismicity, which offer significant 
advantages over the time-domain alternative for several 
reasons. Primarily, the spectral approach allows for 
improved identification and analysis of different 
frequency components which often shed light on the 
nature of the sources.  The frequency content of seismic 
signals can help differentiate between various types of 
seismic events, such as those caused by natural tectonic 
processes versus those induced by machinery or human 
activities. Furthermore, spectral analysis enhances the 
detection of low-amplitude signals that may be obscured 
by noise in the time domain, potentially improving the 
sensitivity and reliability of seismic monitoring systems. 
This capability is particularly beneficial in environments 
such as coal mines where the background noise level is 
high. 

To monitor seismic activities using spectral analysis, we 
apply the Fast Fourier Transform to each trace recorded 
by a DAS channel, but a selection of a time window 
length to compute the power spectral density (PSD) is 
crucial. A long time window may not clearly represent the 
seismic event, especially for small-magnitude events far 
from the cable. On the other hand, if a time window is too 
short, the low-frequency content of the event signal may 
not be captured. A time window that includes the P- and 
S-wave arrivals, but not much more, is ideal. Figure 3 
demonstrates the capability of spectral analysis in 
identifying a seismic event that was not previously 
detected by the surface network. Figure 3a shows the 
seismic event recorded by DAS in the time domain along 
with the PSD results in the frequency domain over 
different time windows in Figure 3b-d.  

 

Fig. 3: A detected seismic event's P-wave arrival using DAS (a) 
and its power spectrum density (PSD) plots across 275 channels 
during (b) 250, (c) 50, and (d) 0.5 seconds. Each title in b-d 
indicates the start and end time of the window that captures this 
event. 

3.2. Autoencoder Deep Learning Model 
An autoencoder is designed to compress (encode) the 
input data into a lower-dimensional representation (latent 
space) and then reconstruct (decode) the compressed data 
back to its original form using only the reduced 
representation. In the context of anomaly detection in 
images, such as those of Figure 3b-d, the autoencoder is 
trained exclusively on data representing the "normal", 
anomaly-free state of the data. During this training phase, 
we train the autoencoder to capture the essential 
characteristics of the normal images in the compressed 
representation. When the trained autoencoder is exposed 
to new images, it attempts to reconstruct them based on 
the model weights that best fit the training data. Images 
similar to the training data are reconstructed with 
relatively minor errors. Anomalous images, which 
contain patterns or features, such as seismic events that 
are not present in the training data, result in significantly 
higher reconstruction errors. By quantifying this error, 
anomalies can be detected.  

Quantifying reconstruction error solely with simple 
metrics like root mean squared error often works well; 
however, it does come with certain limitations. One 
primary challenge is the autoencoder's potential to over-
generalize from the training data, which can lead to lower-
than-expected reconstruction errors for anomalous 
images. An alternative approach is to use kernel density 
estimation (KDE) as a non-parametric estimator to model 
the probability density function (PDF) of the encoded 
latent space, which we refer to as a density score (Chen, 
2000; Chen, 2017). A density score, attributed to a 
specific point within the data space, is the PDF at that 
point. This quantification can serve as a direct measure of 
the local density or crowding of the data space in the 
vicinity of the point in question. Elevated density scores 
are indicative of the point's location within a region 
characterized by a significant concentration of data 
points, denoting a high probability density region. In 
contrast, reduced density scores signal the point's 
placement in a region of a sparse data point distribution, 
suggesting its association with low probability density or 
outlier regions. Such a distinction offers a granular 
perspective on the spatial distribution of data points, 
enabling the identification of anomalies based on 
deviations from established density norms within the 
multidimensional data space. 

Figure 4 presents a schematic illustration of the 
autoencoder model. The autoencoder comprises an input 
layer designed to accommodate batches of 64 images of 
size 512x512 pixels. The encoder segment of the model 



consists of a series of convolutional layers with 64, 32, 
and 16 filters, respectively, to progressively reduce the 
spatial dimensions while retaining essential information 
about the original images. These layers utilize the ReLU 
activation function for non-linearity (Agarap, 2018)  and 
are arranged to ensure minimal information loss up to the 
bottleneck layer, which serves as the latent space 
representation of the input data. The decoder mirrors this 
with upsampling and convolutional layers, culminating in 
an output that is a reconstructed version of the input. An 
Adam optimizer and mean squared error loss were used 
during training to ensure the model emphasizes the 
precision of reconstruction discrepancy for anomaly 
identification. 

 
Fig. 4: Schematic representation of the autoencoder model, 
highlighting its multilayer architecture that consists of fully 
connected layers. 

To train the unsupervised deep learning model, we 
randomly selected 1000 two-second time windows of the 
multichannel DAS recordings which do not contain any 
events according to the surface seismic catalog. Then, we 
plotted their normalized PSD in RGB format and visually 
excluded any spectrum plot with anomaly. Finally, we 
trained the model on 960 spectrum plots of background 
DAS noise (normal data), using 768 (80%) for training 
and 192 (20%) for testing, over 250 training cycles 
(epochs). Figure 5 shows the deep learning model 
performance on training and testing datasets based on the 
loss value, calculated as the mean squared error of the 
difference between the predicted output and the actual 
output across both training and testing datasets. As the 
epochs progress, the convergence of loss values suggests 
that the model is effectively capturing the underlying 
patterns within the training data. 

 
Fig. 5: Training and validation loss over 250 epochs. The 
training and validation loss strictly decreasing suggests 
convergence without overfitting. 

After analyzing records with known seismic events and 
noting that the duration of all seismic events is between 
0.5 and 1 second, we selected two-second time windows 
(chunks) with a one-second overlap between chunks. The 
overlap ensures every event is fully captured by at least 
one window. We implemented the proposed workflow on 
26 hours of continuous DAS recording, generating 
2,140,710 two-second chunks with 1 second of overlap 
and calculating their PSD plots. Subsequently, we 
employed the trained autoencoder on the PSD plots to 
detect seismic events. 

4. RESULTS AND DISCUSSION 
4.1. Noise Characterization and Analysis 
Noise characterization of mining operations offers the 
potential for insights into equipment conditions and 
operations monitoring. Figure 6 showcases the PSD of 
different noises averaged across a group of 10 adjacent 
DAS channels. Figure 6a highlights a discernible daily 
variation in operational noise levels, with a pronounced 
increase during day shifts—a time of heightened 
activity—compared to the quieter night shifts. Figure 6b 
reveals distinct on-and-off noise patterns associated with 
machinery over a 9-hour timeframe. The longwall shearer 
is a probable noise source based on the power distribution 
of the channels near the longwall. The noise is broadband 
and the oscillation at the high frequency is apparent. 
Monitoring this noise could inform predictive equipment 
maintenance, potentially reducing downtime and 
resulting in cost savings on equipment maintenance.     



 
Fig. 6: PSD of DAS recording showing mine’s working shifts 
daily pattern (a) and machinery on-off pattern 245 m from the 
active face (b). 

4.2. Enhanced Event Detection 
We employed the trained autoencoder on the training 
dataset containing PSD images that only include 
background noise and on the PSD images from known 
seismic events.  This approach enabled us to analyze the 
distribution of the KDE for the latent space’s density 
score. A higher density score indicates a higher likelihood 
that the PSD data corresponds to the normal dataset, 
facilitating the detection of seismic activity. This 
unsupervised strategy, augmented with the incorporation 
of some labeled anomalous data, enhances the model's 
reliability, particularly in reducing false detections. 

During the autoencoder model's development, a 
parametric study revealed the significant influence of 
input image size on the model's performance. The size 
parameter mandates resizing all input images to square 
dimensions defined by this parameter before either 
training or processing. This uniformity in image size is a 
restriction of the model's architecture. The selected image 
size directly affects the model’s computational demands, 
its precision in capturing details, and its overall efficacy 
in differentiating between normal and anomalous seismic 
activities based on visual data. Although enlarging the 
size parameter enhances the model’s anomaly detection 
capabilities, it substantially escalates computation time 
and memory usage. Figure 7 illustrates the density score 
for both normal (PSD data containing background noise) 
and anomalous (PSD data containing seismic events) 
datasets across varying image input sizes. The 
histograms, based on different size parameters, represent 
the distribution of the density scores for anomalous PSD 
data (left Y-axis). In contrast, the lines indicate the mean 
density score of the normal PSDs. The results highlight 
that increasing the size spreads out the density scores for 
PSDs with anomalies and also amplifies the disparity 
between the density scores for anomalous and normal 
PSD data. This amplification boosts the model's 
discriminative capability. For a size parameter of 512, the 
density score for the normal PSD is shown as a solid line 
at ~45,000, which contrasts distinctly with the distribution 
and histogram for the anomalous PSD data. Therefore, a 
size parameter of 512 was selected for the autoencoder 
model. Leveraging the outcomes from this primarily 
unsupervised approach, we set the 95th percentile of the 

anomalous PSDs’ density scores at ~16,000 as the 
threshold for event detection. Thus, any PSD data with a 
density score below this threshold is classified as an 
anomaly, indicating a seismic event. However, although 
adopting the 95th percentile rather than the maximum 
density score from known events may overlook a couple 
of very weak events with high density scores (around 
40,000 and potentially events that are far from the DAS 
cable), it effectively reduces false positives. This 
methodology may ensure that the model is appropriately 
calibrated to avoid excessive sensitivity to minor 
anomalies in the PSD data, such as those caused by nearby 
vehicles.  

Figure 8 illustrates the application of the developed 
autoencoder model for the detection and labeling of 
seismic events. In this figure, two PSD images are fed into 
the model as inputs: one representing background noise 
(Figure 8a) and the other depicting a seismic event (Figure 
8b). The model processes these inputs to generate outputs 
that are reconstructions of their encoded latent space 
representations. The noise image produced a density score 
of 45,246, which is not anomalous. The reconstructed 
image of the noise image is a faithful but smoothed 
reproduction of the actual image. In contrast, the seismic 
event is identified as anomalous based on its density score 
of –12,373. The reconstructed image of the seismic event 
exhibits noticeable discrepancies from the original PSD 
image, as highlighted by the ovals in Figure 8b.  

 
Fig. 7: Histogram of density score for normal (containing only 
background noise) and anomalous (containing a seismic event) 
data based on different input image sizes along with the mean 
density score of the normal PSDs. 



 
Fig. 8: Comparison of a background noise (a) and a seismic 
event (b) using the developed autoencoder deep learning 
method (X-axis: Sensors [275 channels (headgate forward) = 
1570 m]; Y-axis: Frequency [0-1000 Hz. (Gradually increasing 
from top to bottom)]; Color: PSD amplitude in RGB) 

We ran the developed model on 15.6 T.B. of DAS data 
collected over 26 days, utilizing 275 channels (spanning 
1570 meters) of the headgate forward cable for the 
purpose of event detection. After processing all the two-
second PSD images with a one-second overlap, the model 
identified 56,558 anomalies as potential seismic events, 
compared to the sparse surface network’s seismic catalog 
of 528 events during the same period. Note that the 
surface array covers a much larger area than the DAS 
array, but is located farther from the active longwall face, 
complicating the comparison. We reviewed time series 
and PSD plots of 500 instances randomly selected from 
data labeled as background noise and 500 selected from 
data labeled as anomalies, comparing them with seismic 
events recorded by the surface seismic network. 496 of 
the 500 (99.2%) visually inspected data detected as 
background noise did not include seismic events. The 
remaining 4 instances exhibited very weak anomalies; 
however, none constituted a seismic event, resulting in 
zero false negatives. Of the data labeled as anomalies, at 
least 85 of the 500 (17.0%) are potentially seismic events. 
None of the 85 events existed in the surface network 
catalog. The absence of the surface network catalog 
events in the reviewed time series and PSDs is attributed 
to the mere small random sampling of anomalous data, 
500 out of 56,558 (0.9%). These newly detected events 
are likely of small magnitude and close to the DAS cable. 
The relatively low prediction accuracy is due to the high 
threshold for the density score that led to many false 
positives (i.e., 83.0%). Based on analyzing known seismic 

events detected by both the surface seismic network and 
DAS, we have observed that for events occurring 
relatively far from the cable, especially those of smaller 
magnitude, the anomalies are not clearly apparent in the 
DAS data. Therefore, by lowering the threshold of the 
density score, we can more effectively detect apparent 
anomalies, potentially those of higher magnitude or 
occurring closer to the fiber. However, this approach 
introduces a trade-off in that while we can achieve a more 
robust outcome for seismic event detection, we may 
overlook labeling other weak potential seismic activities. 
For future studies, a more robust outcome may be 
achieved by employing additional metrics, such as the 
reconstruction root mean squared error, alongside the 
density score to detect seismic events more effectively.  

Results show that the model successfully identified new 
seismic events that are likely small but close to the DAS 
cable and had not been previously recorded by the surface 
seismic network. This showcases the enhanced sensitivity 
and effectiveness provided by DAS technology deployed 
underground in detecting seismic events that are 
otherwise elusive to traditional surface monitoring 
systems. The integration of underground DAS and surface 
seismometers represents a useful advance in applied 
seismology, suggesting the potential for improved 
predictive models and safety measures in mines with 
seismic events. 

5. CONCLUSIONS  
This research provides an unsupervised deep learning 
model that helps with the detection of anomalies on 
multichannel DAS recordings. 56,558 potential seismic 
events were detected during 26 days of coal mining, 
compared to the surface network’s seismic catalog of 528 
events, showing an increase of more than 100 times. 
Analyzing time series and PSD plots of 1,000 instances 
against seismic events recorded by the surface network 
indicates a 99.2% accuracy in identifying non-seismic 
background noise, thanks to model training on such data. 
Additionally, preliminary analysis suggests that at least 
17.0% of the detected anomalies could be seismic events, 
none of which were detected by the surface network. The 
modest success in detecting seismic events stems from a 
high density score threshold, which although limits 
effective seismic event detection, ensures detection of 
distant or low-magnitude events. A further statistical 
study is needed for selecting a more effective threshold. 
The developed anomaly detection algorithm for seismic 
event identification could serve as a warning system, 
potentially enhancing safety in coal mines by offering 
advanced notice of seismic activities. Furthermore, this 
algorithm could reduce data storage requirements by a 
factor of 50 by recording data when the algorithm detects 
an anomaly, thereby facilitating a mine's ability to 
manage voluminous DAS data more effectively. 
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position of the National Institute for Occupational Safety 
and Health, Centers for Disease Control and Prevention. 
Mention of any company or product does not constitute 
endorsement by NIOSH, CDC. 
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