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ABSTRACT

We present a constant-factor approximation algorithm for the Nash
Social Welfare (NSW) maximization problem with subadditive val-
uations accessible via demand queries. More generally, we propose
a framework for NSW optimization which assumes two subrou-
tines that (1) solve a configuration-type LP under certain additional
conditions, and (2) round the fractional solution with respect to
utilitarian social welfare. In particular, a constant-factor approxi-
mation for submodular valuations with value queries can also be
derived from our framework.

CCS CONCEPTS

« Theory of computation — Approximation algorithms anal-
ysis; « Mathematics of computing — Combinatorial optimiza-
tion.

KEYWORDS

Nash Social Welfare, Approximation Algorithms, Combinatorial
Optimization

ACM Reference Format:

Shahar Dobzinski, Wenzheng Li, Aviad Rubinstein, and Jan Vondrak. 2024.
A Constant-Factor Approximation for Nash Social Welfare with Subadditive
Valuations. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing (STOC 24), June 24-28, 2024, Vancouver, BC, Canada. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3618260.3649740

1 INTRODUCTION

We consider the problem of allocating a set 7 of m indivisible items
to a set A of n agents, where each agent i € A has a valuation
function v; : 27 — R>0. The Nash social welfare (NSW) problem
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is to find an allocation S = (S;);c # that maximizes the geometric
mean of the agents’ valuations,

1/14A]

NSW(S) = (]_[ oi(s,-)) .
ieA

For a > 1, an a-approximate solution to the NSW problem is an

allocation S with NSW(S) > OPT/a, where OPT denotes the

optimum value of the NSW-maximization problem.

Allocating resources to agents in a fair and efficient manner is a
fundamental problem in computer science, economics, and social
choice theory, with substantial prior work [4, 8, 9, 28, 30, 31, 36].
A common measure of efficiency is utilitarian social welfare, i.e.,
the sum of the utilities }};c # v;(S;) for an allocation (S;);e #. This
objective does not take fairness into account, as all items could
be allocated to one agent whose valuation function dominates the
others. In order to incorporate fairness, various notions have been
considered, ranging from envy-freeness and proportional fairness
to various modifications of the objective function. At the end of the
spectrum opposite to utilitarian social welfare, one can consider the
max-min objective, min;¢ # v;(S;), also known as the Santa Claus
problem [3]. This objective is somewhat extreme in considering
only the happiness of the least happy agent.

Nash social welfare provides a balanced tradeoff between the
requirements of fairness and efficiency. It has been introduced
independently in several contexts: as a discrete variant of the Nash
bargaining game [24, 29]; as a notion of competitive equilibrium
with equal incomes in economics [35]; and also as a proportional
fairness notion in networking [25]. Nash social welfare has several
desirable features, for example invariance under scaling of the
valuation functions v; by independent factors A;, i.e., each agent can
express their preference in a “different currency” without changing
the optimization problem (see [28] for additional characteristics).

1.1 Preliminaries

The difficulty of optimizing Nash social welfare depends naturally
on the class of valuation functions that we want to deal with, and
how they are accessible. Various classes of valuations have been
considered in the literature. For the sake of this paper, let us restrict
our attention to four basic classes of valuations, and three oracle
models. We always assume that a valuation function o : 2/ —» R
is normalized (v(0) = 0) and monotone, i.e. v(S) < v(T) whenever
ScT.
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Classes of valuation functions.
1. A valuation v : 27 — R is additive if 0(S) = Y jes wj for
nonnegative weights w;.
2. A valuation v : 27 — R is submodular if v(S) + v(T) = v(SN
T)+o(SUT) VS, TCI.
3. A valuation o : 27 — R is fractionally subadditive, or XOS, if
0(S) = max;e 7 X jes Wij, Wij = 0.
4. A valuation v : 2Z — R is subadditive if v(S) + o(T) > v(S U
T) VS,TcCI.

We remark that these classes form a chain of inclusions: additive
valuations are submodular, submodular valuations are XOS, and
XOS valuations are subadditive.

Oracle access. Note that additive valuations can be presented
explicitly on the input. However, for more general classes of valua-
tions, we need to resort to oracle access, since presenting a valuation
explicitly would take an exponential amount of space. Three types
of oracles to access valuation functions have been commonly con-
sidered in the literature.

1. Value oracle: Given a set S C I, return the value v(S).

2. Demand oracle: Given prices (p; : j € 1), return a set S maximiz-
ing 0(S) = Xjes by

3. XOS oracle (for an XOS valuation v): Given a set S, return an
additive function a from the XOS representation of v such that

0(S) = a(S).

1.2 Prior Work

The Nash social welfare problem is NP-hard already in the case
of two agents with identical additive valuations, by a reduction
from the Subset-Sum problem. For multiple agents, it is NP-hard
to approximate within a factor better than 0.936 for additive val-
uations [19]. This evidence indicates that NSW is generally more
difficult to approximate than utilitarian welfare (although a formal
reduction is not known).

The first constant-factor approximation algorithm for additive
valuations, with the factor of 1/ (261/ ¢) ~ 0.346, was given by
Cole and Gkatzelis [14] using a continuous relaxation based on a
particular market equilibrium concept. Later, [13] improved the
analysis of this algorithm to achieve the factor of 1/2. Anari, Oveis
Gharan, Saberi, and Singh [1] used a convex relaxation that relies
on properties of real stable polynomials, to give an elegant analysis
of an algorithm that gives a factor of 1/e. The current best factor is
1/ el/e — e ~0.692 by Barman, Krishnamurthy, and Vaish [7]; the
algorithm uses a different market equilibrium based approach. Note
that this factor is above 1 — 1/e, hence separating the additive and
submodular settings: A better than 1 — 1/e =~ 0.632 for submodular
valuations is impossible due to a hardness reduction similar to
utilitarian welfare [23].

Constant-factor approximations have been extended to some
classes beyond additive functions: capped-additive [20], separable
piecewise-linear concave (SPLC) [2], and their common general-
ization, capped-SPLC [11] valuations; the approximation factor for

/e _ ¢ factor for additive

capped-SPLC valuations matches the 1/e
valuations. All these valuations are special classes of submodular

ones. Subsequently, Li and Vondrak [27] designed an algorithm
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_ 12
that estimates the optimal value within a factor of (6831) ~0.147

for a broad class of submodular valuations, such as coverage and
summations of matroid rank functions, by extending the techniques
of [1] using real stable polynomials. However, this algorithm only
estimates the optimum value but does not find a corresponding
allocation in polynomial time.

An important conceptual advance was presented in [22], where
a relaxation combining ideas from matching theory and convex
optimization was shown to give a constant factor for the class of
“Rado valuations” (containing weighted matroid rank functions and
some related valuations). A crucial property of this approach is
that it is modular and improvements of its components ended up
leading to multiple further advances. In [26], this approach was
extended to provide a constant factor approximation algorithm
for general submodular valuations, by replacing the concave ex-
tension of a valuation with the multilinear extension. The initial
factor was rather small (1/380). Recently, a much simpler algo-
rithm combining matching and local search was presented to give
a (1/4 — e)-approximation for submodular valuations [21].

For the more general classes of XOS and subadditive valua-
tions [5, 12, 23], however, only polynomial approximation factors
were known until now, and this is the best one can hope for in the
value oracle model [5], for the same reasons that this is a barrier
for the utilitarian social welfare problem [16]. A more appropri-
ate model for these classes is the demand oracle model (which
allows constant factor approximations for utilitarian welfare [17]).
However, even in the demand oracle model, the best known ap-
proximation factors up to now have been O(1/n) for subadditive
valuations, and O(1/n%/54) for XOS valuations (using both demand
and XOS oracles) [6]. Constant factors for XOS valuations seemed
quite out of reach prior to this work, and obtaining any sublinear
factor for subadditive valuations was stated as an open problem in

[6].

1.3 Our Results and Techniques

Our main result is the following.

Theorem. (informal) There is an algorithm using demand queries
that provides a constant-factor approximation for Nash Social Welfare
with subadditive valuations.

As a special case, this also gives a constant-factor approximation
for XOS valuations accessible via demand queries. This completes
the picture in the sense that now we have a constant-factor ap-
proximation for Nash social welfare in the main settings where one
is known for utilitarian social welfare: for submodular valuations
with value queries, and for subadditive valuations with demand
queries. As we discuss next, our result can be viewed as a unifying
framework which explains why constant factors from the utilitar-
ian welfare setting can be transferred to the Nash social welfare
setting.

Reducing Nash welfare to relaxation and rounding for utilitarian wel-
fare. Technically, we prove a reduction theorem (Theorem 1) which
shows that to achieve a constant factor approximation for Nash
social welfare, it is sufficient to implement efficient subroutines for
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two subproblems: (1) finding a solution of the Configuration LP sat-
isfying a certain additional property, and (2) rounding a fractional
solution of the Configuration LP while losing only a constant factor
with respect to utilitarian social welfare.

The first subroutine can be implemented by solving the Eisenberg-
Gale relaxation (essentially a Configuration LP with logarithms in
the objective), which can be done using demand queries. For some
subclasses of submodular valuations (more precisely, ones satis-
fying the gross substitutes property), the same can be done using
value queries. For submodular functions with value queries, the
Eisenberg-Gale program cannot be solved optimally (which was
one source of difficulties for the NSW problem with submodular
valuations). However, it turns out that a local optimum of the nat-
ural relaxation using the multilinear extension is sufficient in this
case, and can be computed (up to a small error) with value queries.

The second problem is tractable thanks to prior work on utilitar-
ian welfare maximization. The rounding of the Configuration LP is
relatively easy for XOS valuations, but non-trivial for subadditive
valuations. Fortunately, a 1/2-approximate rounding procedure is
known due to Feige’s work on welfare maximization with subad-
ditive bidders [17], which we use here as a blackbox. Hence, we
obtain constant factors in the same settings where constant factors
are known for utilitarian welfare.

Our techniques. In order to prove the reduction theorem men-
tioned above, the basis of our approach is the matching+relaxation
paradigm which gave a constant-factor approximation for submod-
ular valuations [22, 26]. Considering that the only constant-factor
approximation for utilitarian social welfare with subadditive valua-
tions [17] is based on the "Configuration LP", which can be solved
using demand queries, it is a natural idea to use a relaxation similar
to the Configuration LP. A natural variant for Nash social welfare is
the Eisenberg-Gale relaxation, using the logarithm of the concave
extension of each agent’s valuation. We apply this relaxation on
top of an initial matching, as in [22].

The main obstacle with this approach is that natural rounding
procedures for the Configuration LP do not satisfy any concentra-
tion properties. At a high level, without concentration, some agents
have higher value, but some have lower value - leading to poor
Nash social welfare even if we can maintain the expected utilitarian
social welfare. More specifically, the first challenge is that, given
a fractional solution x; 5, we would ideally like to round it to an
integral allocation by allocating set S to agent i with probability x; 5.
Even though this ideal rounding preserves each agent’s expected
value, the variance can be arbitrary, depending on the fractional
solution x; g. Our first technical contribution is a procedure (see
Lemma 3) for finding a new feasible solution to the Configuration
LP such that, for each agent, has only high value subsets in its
support (with the exception of agents who get most of their value
from a single item — this case is handled separately with the match-
ing procedure). This procedure is rather simple in hindsight. At a
high level, we can think of the fractional solution as a distribution
of allocations for each agent. We want to discard the part of the
distribution that corresponds to low value subsets; but this makes
the allocation probabilities add up to less than 1 for some agents.
We adjust the fractional solution to fix this issue, by splitting high-
value sets into subsets of equal probability, and hence generating
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more probability mass while preserving the allocation probabilities
per item.

The next obstacle in rounding the Configuration LP is “resolving
contention”: under a natural rounding procedure, we may try to
allocate the same item to multiple agents (even though in expecta-
tion it is only allocated to one agent). For XOS valuations, a simple
independent randomized contention resolution scheme guarantees
a constant-factor approximation and also enjoys good concentra-
tion. However the situation is more complicated for subadditive
valuations. The only known constant-factor approximation for utili-
tarian social welfare with subadditive valuations is a rather intricate
rounding procedure of Feige [17], which does not seem to satisfy
any useful concentration properties. In any rounded solution, there
might be agents who receive very low value, which hurts Nash
social welfare, and hence we cannot use it directly.

Our solution is an iterated rounding procedure, where in each
stage a certain fraction of agents is “satisfied” in the sense that they
receive value comparable to their fractional value. We allocate the
respective items to them, subject to random filtering which ensures
that enough items are still left for the remaining agents. Then we
recurse on the remaining agents and remaining items. Still, some
agents may receive a relatively small value, but we guarantee that
the fraction of agents who receive low values is proportionally small,
which means that the Nash social welfare overall is guaranteed
to be good. As an example: if OPT = (V; - -- V)7 it suffices to
solve for an allocation where % agents receive value at least %Vi,
% agents receive value at least ;11%, £ agents receive value at least
%Vi, and so on. Then the approximation factor in terms of Nash
Social Welfare turns out to be

/22 (/9 (1/8) P (1/10)/1 -

and this infinite product converges to 1/4 (we leave this as an
exercise for the reader).

In order to guarantee the success of this rounding procedure, we
need a concentration inequality (as in previous works). Concentra-
tion properties of subadditive functions are somewhat weaker and
more difficult to prove that for submodular or XOS functions. Here
we appeal to a powerful subadditive concentration inequality pre-
sented by Schechtman [32], which is based on the “g-point control
inequality” of Talagrand [33, 34].

We remark that the constant factors lost in various stages of our
proof are rather large and lead to a final approximation factor of
~ 1/375, 000 for the Nash social welfare problem with subadditive
valuations. One may hope that as in the case of submodular valua-
tions, an initially large constant factor can be eventually improved
to a “practical one”.

Paper organization. In Section 2, we present our main technical
result, which is a reduction of Nash social welfare to a certain
relaxation solver and a rounding procedure for the Configuration LP.
In Section 3, we show how this implies an approximation algorithm
for Nash social welfare with subadditive valuations. We defer some
more standard tools to the appendices: Solving and analyzing the
relaxation (Appendix A), the rematching lemmas (Appendix B),
and concentration of subadditive functions (Appendix C). Further
material such as an application of our framework to submodular
valuations is deferred to the full version.
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2 OPTIMIZING NSW VIA RELAXATION AND
ROUNDING FOR SOCIAL WELFARE

Here we describe our general approach which allows us to derive
algorithms for NSW optimization in several settings. At a high-
level, we reduce the NSW optimization to finding a certain solution
for the "Configuration LP" (for social welfare optimization), and
having a rounding procedure for the Configuration LP, again with
respect to social welfare.

Let us define the Configuration LP:

max Z Z 0i(S)xis (Configuration LP)
i€eASCT
Z xis <1 Vierl
i€EASCT:jeS
> xis=1 Vie A
Scr1
Xi5 >0 VieASCT
Equivalently, this can be written as
max Z v?’(xi)
ieA
Z xij <1 Vjel
ieA
Xij =0 VieA,jel

where as before,

of (x;) =max Z 0i(S)x;s :

(Concave Extension)

Scr
Z Xis < Xij Vjel
ScI:jeS
2, s =1
Scrl
Xis = 0 vScrl

The following is our main reduction theorem, which provides an
algorithm for Nash social welfare, given two procedures that we call
the Relaxation Solver and Rounding Procedure. Note that as-
sumption on the Relaxation Solver is somewhat unusual: It is not
that (x; 5) is an optimal or near-optimal solution of (Configuration
LP), but a different condition saying that the optimum social welfare
with valuations by w; (S) = v;(S)/V; (where V; = Y.¢/ 0;(S")x;5) is
upper-bounded by c|A|. (The social welfare of x; g itself with valua-
tions w; is exactly |A|, so as a consequence (x; s) is c-approximate
optimum with respect to the valuations w;.) This condition is re-
quired primarily for the later “rematching” step (Lemma 8). For-
tunately, this condition is satisfied by natural approaches to solve
the “Eisenberg-Gale” relaxation, which replaces the continuous
valuation extensions by their logarithms. We discuss this further in
Section 3.

THEOREM 1. Suppose that for a certain class of instances of Nash
social welfare, with subadditive valuations, we have the following
procedures available, with parameters c,d > 1:
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o Relaxation Solver: Given valuations (v; : i € A) on a set of
items I, we can find a feasible solution (x; s) of (Configuration
LP) such that the social welfare optimum with valuations

Z vi(S)xis

ScT

1
wi(S) = vvi(s), Vi
1

is at most c|A|.

¢ Rounding Procedure: Given a feasible solution (x;s) of
(Configuration LP), we can find an allocation (Si,...,Sp)
where each S; is a subset of some set S} such thatxi,sg > 0 and

> wils) = . s = 1l

ieA ieA !
(As above, V; = Y 5c 7 0i(S)x;s.)

Then there is an algorithm which provides an O(cd?)-approximation
in Nash social welfare for the same class of instances, using one call
to the Relaxation Solver and a logarithmic number of calls to the
Rounding Procedure. The running time is polynomial in | A|, |I'| and
the support of the fractional solution (x; g).

In the following, we prove this theorem by presenting an al-
gorithm with several phases. These phases are similar to recent
matching-based algorithms for Nash social welfare [21, 21, 22, 26]
with the exception of two phases which are new (phases 3,4 below).
The high-level outline is as follows.

NSW Algorithm Template.

(1) We find an initial matching 7 : A — 7, maximizing

[]eittzom.

ieA
Let H = r[A] denote the matching items and 7’ = 7 \ ‘H
the remaining items. Let also A’ = {i € A : v;(I") > 0}.

(2) We apply the Relaxation Solver to obtain a fractional so-
lution (x;5)ic a7, sc 77 and values V; = Y.gc 17 v;(S)x; 5. We
can view these values as “targets” for different agents to
achieve.

(3) Let v; = max;c 7/ 0i(j) and A” ={i € A’ : V; > 6v;}. We
process the fractional solution (x; ) for i € A/, removing
sets of low value and partitioning sets of high value, so that
for every set in the support of the new fractional solution
xlf,s for agent i, we have v;(S) = O(V;).

(4) We apply the Rounding Procedure to xlf’ ¢ to find an allo-

1)

Since each S; has value at most V; (due to our preprocessing),
it must be the case that a @(é)—fraction of agents receive

cation (S; € A"’) satisfying

> uils) =0

ieA 't

value at least @(éVi). We allocate a random ©( é)-fraction
of items to this ©( %)—fraction of agents (each item from their
respective sets independently with probability ©( 5)); call
the resulting set T; for agent i. We repeat this phase for the
remaining items and agents, until there are no agents left.
For agents i € A\ A", we define T; = 0.
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(5) We recompute the initial matching to obtain a new matching
o : A — H, which maximizes [];c 4 0;(T; + o(i)). We
allocate T; + o(i) to agent i.
Now we proceed to analyze the phases of this algorithm more
rigorously.

2.1 Initial Matching

There is nothing new in this phase. We can find a matching 7 : A —
7 maximizing [];c # vi(7(i)) by solving a max-weight matching
problem with edges (i, j) where v;(j) > 0, and weights w;; =
log i (j).

We denote by H = t[A] the matched items, by 7/ = I \ ‘H the
remaining items, and by A’ = {i € A : v;(I’) > 0} the agents
who get positive value from 7.

A property we need in the following is the following.

LEMMA 2. IfT : A — I isa matching maximizing [;c 7 vi(7(i))
then forany j € I’ = I \ t[A], v;(j) < vi(z(i)).

Proor. If there is j € 17, v;(j) > v;(z(i)), then we can swap
7(i) for j in the matching and increase its value. ]

For subadditive valuations, we also get 0; (S+j)—v;(S) < v;(z(i))
forany S c 7’,j € I’ \ S (since v; (S + j) < v;(S) +v; (j)).

2.2 Relaxation Solver

Here we assume that the Relaxation Solver is available as a black-
box. We return to its implementations in specific settings in Sec-
tion 3.

We apply the Relaxation Solver to the residual instance on
items 7’ = I \ ‘H and agents A’ who have nonzero value for some
items in 7. The important property of the obtained solution (x;s)
is that after scaling the valuations as follows,

Z 0i(S)xis

ScI1’

1
wi(S) = EU,‘(S), Vi
1

the social welfare optimum for wy, . .., wy, is at most ¢|A’|. In other
words, for any feasible allocation (T, ..., T;) of I/, we have

0; (T
Z % < c|A'|.

iceA !

2.3 Set Splitting

Here we describe Phase 3, preprocessing of the fractional solution.
We will work only with agents who get significant value from the
fractional solution: Let v; = max ¢ 7/ 0i(j) and

A ={ie A" :V; > 6v;}.
We prove the following.

LEMMA 3. Assume that the valuations vy, . . ., v, are subadditive.
Given a feasible solution (x; s) of (Configuration LP) for an instance
with agents A’ and items I', where V; = Y.gc 1/ vi(S)xis and
Vi = maxje 77 0i(j), we can find (in running time and a number of
value queries polynomial in the number of nonzero coefficients x; g)
a modified solution (xlf’S) such that

e For every S such thatxlfs >0, %Vi —v; <0;i(S) < V.
e Foreveryie A", Yscrxio=1
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e Foreveryjel’,¥;ssjx g <1

Proor. We apply the following procedure to the fractional solu-
tion x = (x;5).

SetSplitting(x).

(1) LetVi = Xsc 1 vi(S)xis, vi

I’ 0i(S) > $Vi}

(2) Set xlfs =0and k;s = 0for S ¢ 7; i.e, discard sets whose
value is too low.
For every S € 7, let k;s5 = I_%iTmJ. Split S into sets

i

NEEE ’Skis such that V¢ = 1,...,ki,5,

max e 7 0;(j), and F; = {S €

©)

1
0;(Sp) > §Vi - Vi

Note that this is possible since by subadditivity, the average
value of a subset in any partition of S into k; g subsets is at
least v;(S) /kis > %V,-, and indivisibility of items can cause
the value to drop by at most v;.

For each set Sy produced above, remove some items if neces-
sary to ensure that its value is at most V;. Call the resulting
set S;. Note that since removing an item can decrease the
value by at most v;, we start from value > %Vi — vj, and we
only remove items as long as the value is more than V;, we
can conclude that

1
Vi > v,—(Sé) > §Vl - V.
~ 52‘
(5) Set Xi1 = Xse; 3e.5,=T Xi,s» and x| . = Zle?Ti,s‘
(6) Return x’.

Let us now prove the desired properties of x’. By construction
(step 5), the solution is normalized in the sense that Y1 x;’T =1 for
every i € A”. Also, as we argued above, V; > v;(T) > %Vi — v; for
every set T participating in the support of x’. It remains to prove
that the coefficients xlf,T add up to at most 1 on each item.

Let us first consider x; 7: Since each contribution to x; 7 for j € T
is inherited from some coefficient x; g where j € S, each coeflicient
x5 contributes at most once in this way, and the coefficients x; s
for S > jadd up to at most 1, it is clear that 3; 75 ; X;7 < 1. Finally,
xlf’T is obtained by normalizing X; r; so we need to be concerned
about the summation } s x; 5, which could be possibly less than 1.

We have:

1
Z 0;i(S)xis = Vi - Z 0i(S)xi5 = Vi - §Vi

SeF; SeFi

2
3
Observe that each coefficient x; g for S € #; contributes k; g coeffi-

cients of the same value to the summation s x; 5, and the union
of the respective sets is S. So we have

) 30i(S5)
E Xis = E kisxis = E — | - x
i,S i,SXi,S \‘ Vi i,S
Scr1’ SeF; SeF;
> E z : Ut( )xl,S >1
2 Vi
SeF;

considering that 3v;(S)/V; > 1 for S € ¥, so the floor opera-

tion can decrease the ratio by at most a factor of 2. Also, we have
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>

i(S)x; 2y, rooo K
2ser; vi(S)xis 5Vi from above. Hence XiT T Yi%ie

and the coefficients x; ¢ for S > j add up to at most 1.

< XT
O

2.4 Iterated Rounding

Finally, we need to round the fractional solution (x;’ S) obtained in
the previous phase. As a subroutine, we use the assumed Rounding
Procedure for (additive) social welfare.

Given a fractional solution x’ = (xlf’ 5) obtained in the previous
phase, we call the procedure NSW-ROUND(x’, A", I, §) with a
parameter § = 7ld where d is a approximation factor guaranteed
by the Rounding Procedure.

Algorithm 1 Iterated Rounding

1: procedure NSW-Rounp(x’, Ay, Ly, §):

2 Let V] — Yscr vi(S)x] g

3 For each item j € 1y independently, let r; < t with proba-
bility §(1 - 8)*~1 fort > 1

4 LetRy «— {jedy:rj=t}forallt > 1

5 Lett « 1

6: while A # 0 do

7: (S; : i € A;) <« RoundingProcedure(x’, A;)

8 App1 — {l e A : Ul‘(Sj) < 5Vz/}

9 For each agent i € A; \ A4, allocate T; «— S; N Ry
10: end while

11: Return (T; : i € Ay)
12: end procedure

As we mentioned above, the intuition behind this rounding pro-
cedure is that it gives good value to a large fraction of agents, and
exponentially small values to an exponentially decaying number of
agents, so overall its Nash social welfare is good. We prove this in
a sequence of lemmas.

LEMMA 4. Under our assumption on the Rounding Procedure,
and setting § = %, in each round there is at least a d-fraction of
agents (rounded up to the nearest integer) who receive value at least
v,

1

ProoF. Note that V/ > %Vi, since every set in the support of
xlf S has value at least %Vi -V > %Vi. We assume that under val-

uations w;(S) = %Z)i(S), the Rounding Procedure returns an

allocation (S; : i € Ay) such that 3;c 7, wi(Si) 2 $|«7(t|- Also,
the fractional solution x” has been processed so that no set in its
support for agent i has value more than V; < 6V/, and the round-
ing only allocates subsets of sets in the support of x". Hence, we
have w;(S;) = %vi(si) < 6 for every agent i. Consider the agents
who receive value w;i(S;) = 6; if the number of such agents is
less than 6|A;|, then the total value collected by the agents is
Siea, wi(S) < 6-8|A|+68-(1-8)|A| < 78| A;| = §|A;|, which

is a contradiction. O

LEMMA 5. If|Ap| = a and the agents are ordered by the round in
which they received items (and arbitrarily within each round), then
the i-th agent receives each element of her set S; independently with
probability at least §(1 — %).
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Proor. Consider the i-th agent, and suppose that i € A; \ Ars1,
i.e. the agent gets items in round t. We claim that a(1 — §)*~! >
n — i+ 1: In each round, we allocate items to at least a -fraction of
agents, so the set of agents A;_1 remaining after t — 1 rounds has
size at most a(1—38)? =1, This set must include agent i, otherwise she
would have been satisfied earlier. Therefore, a—i+1 < a(1—38)"~L.

The items allocated to agent i in round ¢ are S; N Ry, where R;
contains each element independently with probability §(1 — §)*~1.
By the argument above, §(1 — 8)*~1 > § - “_Ti“. O

LEmMA 6. IfT; is the set allocated to the i-th agent in the ordering
defined above (and we assume w.Lo.g. that the index of this agent is
also i), and max e 1+ vi(j) < vi then

<] 60
slog—m"5"——.
RS

E [log ———
[ & 0T +vi

Proor. By definition, the set S; tentatively chosen for the i-th
agent in the round where i € A; \ A1 satisfies

1
0;(S;) = 5Vi’ >0 (§Vl — Vi)

(see Lemma 3). By Lemma 5, the i-th agent receives a set T; = S; N R;
which contains each element of S; independently with probability
at least 6(1 — %)

Consider now the expression log J% where f(T;) = v; (T;) +v;.
This is a random quantity due to the randomness in R; (the set S; is
fixed here). We use concentration of subadditive functions (Theo-
rem 20) to argue that this expression is not too large in expectation.
We have f(S;) = v;(Si) +vi > %6Vi. By the expectation property
of subadditive functions (Lemma 16), we have

i-1\ 1
BLF(ID] =L 001 28 (1- 2 v
Let us denote the last expression p; = %52(1 - %)Vl < E[f(T;)].

Now, we apply the lower-tail inequality, Theorem 20, with g = 2.

Observe that we can assume v; < 2—10 ;. Otherwise,

Vi

Vi_

20V 60
pio 82(1- =Ly
and so the desired bound holds.
Letussetq =2and k+1 = L%’VIJ > % (considering that
% > 2) in Theorem 20. We get

Hi E[f(T)] i
Pr [f(Ti) < 30] <Pr|f(T) < —
E[f(T)] (k+Dv;
<Pr|f(T) < SarD) il

<

i 1/2 . 2
2k = oui/(30%)

Our goal is to bound the expectation E[log ]%] We distinguish
two cases: When f(T;) < 3—10/1,-, we use the bound f(T;) > v;, which

always holds. Otherwise, we use the bound f(T;) > 31—0 ;. From
here,
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2o 7175
<P F() < '1ogVK§ +(1-pe]rm < £) .10g%’i
= e (1) < £] tog 5+ 1og
< mlog%l +log%:/'

One can verify that the function 2% log x is upper-bounded by
log 2 for all x > 0.! Hence,

[ 60V; 60
log

30V; i
SIO 2+log— <log— =log ———.
& & & géz(l——’;l)

]

f(Tz)

LEmMA 7. IfT; is the set allocated to the i-th agent in the ordering
defined above (and we assume w.Lo.g. that the index of this agent is
also i), and max j¢ 7+ v;(j) < v; then

1

[ Vi
T 0i(T;) +vi

<log —-.
PRrOOF. Let us denote a = |A”’|. From Lemma 6, we have

1y Vi 1< 60
- E |l . - I _—
aZ‘ [Ogvi(Ti)“'Vi - a; Ogaz(l_%)

5 23l

Here, we have ¢ log(1 - %) =log [1L, =log aa—i >-a
by a standard estimate for the factorial. So we can conclude

1 a
2 E [l"g o

i=1

a—i+l
a

< log 80 +1<log 165
< 52 52
]

This concludes the analysis of the iterated rounding phase, which
allocates the set T; to each agent i € A’ For agents i € A\ A",
we set T; = 0.

2.5 Rematching and Finishing the Analysis

The last step in the algorithm is to replace the initial matching
7: A — H with a new matching o : A — H which is optimal on
top of the allocation (T; : i € A). To analyze this step, we need two
“rematching lemmas” from previous work [21, 21, 26], which can be
modified easily to yield the following. (We provide self-contained
proofs in the appendix.)

LEMMA 8 (MATCHING EXTENSION). Let 7 : A — I be the match-
ing maximizing [14e 7 vi(7(a)), H = t(A), and I’ = I \ ‘H. Let
(Vi + i € A) be values such that V; > 0 fori € A’,V; = 0 for

i€ A\ A and
Z Uz(T)
Vi

i€ A L

< A

1We are using natural logarithms everywhere.
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for every allocation (T}, ..., T;;) of the items in I’. Then there is a
matching m : A — H such that

1 . OPT
[Ts+ w2 — [T (ei(sp) M7 = =
; 1 c+1
ieA i€eA

where (S3,...,Sy,) is an allocation of I optimizing Nash social wel-

fare.

LEMMA 9 (REMATCHING). Let7: A — I be the matching maxi-
mizing [1ae qvi(r(a)), H =t(A), I' =T\ H, 7 : A —> H an-
other arbitrary matching, and v; = max e 1+ vi (j). Let (W; : i € A)
be nonnegative values. Then there is a matching p : A — H such
that

[T (maxtWs. i (o)) P 2 ] (max{ W, o3 (0)), vi}) P

ieA ieA

We apply Lemma 8 with the values V; = X gc 7 0;(S)x; s, where
(xi,5) is the fractional solution returned by Relaxation Solver.
Due to our assumptions, the condition of Lemma 8 is satisfied and
hence there is a matching 7 : A — H as described in Lemma 8:

[ [i+oi(ripn/M 1 =

ieq c+1

From Lemma 7, we can find with constant probability an assignment
(T; : i € A”) such that
1/]A”]
< —- < 10000d*.
52

reqr 0T +vi

(Recall that § = %, where d > 1 is the parameter guaranteed by
the Rounding Procedure.)

Moreover, we know that 0(T;) < V; and V; > 6v;, hence v(T;) +
vi < 2V fori € A”. For agents in A \ A", we have T; = 0 and
V; < 6v;. From here, we have

Vi +0;(7(i))
r[ﬂ o(Ty) + vi + i (7 (i)
6v; +0;(n(i))
vi +0; (7 (i)

< rl 2V +0; (7 (i)

o(Ti) +vi +0i(x(i))

ieA” i€ A\A"

1—[ 6 < (2000042) 71,
i€ A\A"

2V

reqr 0T +vi

Finally, we use the rematching Lemma 9, with values v;(T;): there

exists a matching p : A — H such that

[T (maxtor (7). 01 (D) P 2 [ | (mascfos(Ti), o3 (i), vih) P71

ieA ieA

> = [+ vkt P >

i€eA

1
20000 d?

S OPT

= 20000(c +1)d?’

]_[ (Vi + 0 (i) 1

Recall that at the end, we find a matching o : A — H maximizing
[Tic.q vi(T; + o(i)). Therefore, the NSW value of our solution is
at least as much as the one provided by the matching p, which is
i (0i(T + p() I > Tie s (macfoi (1), i (p() DI =

WOPT. This proves Theorem 1.
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3 NASH SOCIAL WELFARE WITH
SUBADDITIVE VALUATIONS

Here we explain how to use the general framework described in
Section 2 to obtain a constant-factor approximation for subadditive
valuations, accessible by demand queries.

THEOREM 10. There is a constant-factor approximation algorithm
for the Nash social welfare problem with subadditive valuations, using
polynomial running time and a polynomial number of queries to a
demand oracle for each agent’s valuation.

Aside from our general reduction and the ability to solve the
Eisenberg-Gale relaxation with demand queries, the main com-
ponent that we need here is an implementation of a Rounding
Procedure for subadditive valuations, as described in Theorem 1.
To our knowledge, there is only one such procedure known, which
is rather intricate and forms the basis of Feige’s ingenious 1/2-
approximation algorithm for maximizing social welfare with sub-
additive valuations [18]. We use it here as a black-box, which can
be described as follows.

THEOREM 11. Foranye > 0, there is a polynomial-time algorithm,
which given a fractional solution (x; s) of (Configuration LP) for an
instance with subadditive valuations, produces a random allocation
(R; : i € A) such that for every agent, R; C S; for some Sj, x; 5, > 0,

and
Z 0;(S)x; 5.

ScT1

Eloi(Rp)] = (% —e) Vi, where Vi

For the proof, we refer the reader to Section 3.2.2 of [18], Theorem
3.9 and the summary of its proof which shows that every player
receives expected value at least (% —-e)V;.

Now we are ready to prove Theorem 10.

Proor. Considering Theorem 1, we want to show how to im-
plement the Relaxation Solver and Rounding Procedure for
subadditive valuations.

The Relaxation Solver can be obtained applying standard con-
vex optimization techniques to the (Eisenberg-Gale Relaxation)
relaxation. As we discuss in more detail in Appendix A, we can
compute the values and supergradients of the objective function
using demand queries, and obtain an optimal solution satisfying
the assumption of Lemma 15 (with f; = vlfr, a = 1), and hence

Z of (x})

+(x;
iea Vi (xi)

< 2|A|

for every feasible solution x*. Another way to interpret this con-
dition is that for V; = o} (x;) and modified valuations defined as
wi(S) = Vliz)i(S), there is no feasible solution x* achieving value
DieA w;r (x}) > 2|AJ. In particular, the social welfare optimum
with the valuations (w; : i € A) is at most 2|A|. Hence, we satisfy
the Relaxation Solver assumptions with ¢ = 2.

Next, we implement the Rounding Procedure: Given a frac-
tional solution (x;s), Theorem 11 gives a procedure which re-
turns a random allocation (R; : i € A) such that E[v;(R;)] >

% -e)V; = % — €) X5 xisv;(S). This means that for the mod-
ified valuations, w;(S) = Viivi(S), we have E[w;(R;)] > % — €,
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and Y};e 4 wi(Ri) > (% — €)|A|. Hence, we satisfy the Rounding
=

Finally, we apply Theorem 1 withc¢ = 2andd = ﬁ . We obtain a
constant-factor approximation algorithm for the Nash social welfare
problem with subadditive valuations accessible via demand queries.
The constant factor ends up being 20000(c + 1)d? = 375000 for
€=0.1. m]

Procedure assumptions with d =

4 CONCLUDING REMARKS

We presented a constant-factor approximation algorithm for the
Nash Social Welfare problem with subadditive valuations, accessible
via demand queries. The constant is rather large, as discussed above.
We remark that one can obtain a smaller constant factor for XOS
valuations but we do not discuss this here. Significant new ideas
would be needed to obtain a “practical” approximation factor such
as the known (4 + €)-approximation for submodular valuations.

A major open question is the “asymmetric” Nash Social wel-
fare problem, where we aim to maximize [}, (0;(5;))* for given
weights w; > 0, X1, w; = 1. This is a challenging problem even in
the case of additive valuations, where a universal constant factor is
still not known; see [10] for the latest results.

A THE EISENBERG-GALE RELAXATION

We consider the following relaxation of the Nash Social Welfare
problem similar to the relaxations in [21, 26]. We remark that the
application of (Eisenberg-Gale Relaxation) in the Nash Social Wel-
fare algorithm excludes the items allocated in the initial matching;
indeed we ignore those items for the analysis in this section.

max Z log fi(xi)

(Eisenberg-Gale Relaxation)

ieA
injﬁl Vjel
i€eA
Xij 20 VieA,jel

where f; is a suitable relaxation of the valuation function v; for
each i. In particular, we will use the concave extension, f; = U?’:

v;r(x,-) :=max Z 0;(S)xis :

(Concave Extension)

Scr
Z Xis < Xij Vjiel
ScT:jes
2, s =1
Scr1
Xis >0 vSc I

Note that (Concave Extension) is a linear program. The dual LP to
(Concave Extension) is

v (i) =ming + Z pjxij (Dual LP)
jerl
q+ ij 2 9;(S)
jes
pj=0

vScr

Vjel.
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From here, we can see that v;r(xi) is a minimum over a collection
of linear functions, and hence a concave function.

A.1 Solving the Eisenberg-Gale Relaxation

Here we show how to solve the (Eisenberg-Gale Relaxation) using
demand queries.

LEmMMA 12. Given demand oracles forvy, - - - ,vp, an optimal solu-
tion x* for (Eisenberg-Gale Relaxation) can be found within a poly-
nomially small error in polynomial time. Moreover, the support of x*
has size polynomial in n.

Since vlfr (x;) is a nonnegative concave function, log vlfr (xj)isa
concave function as well (wherever v?’ (xi) > 0).If we implement the
evaluation and supergradient oracles for log v;“ (%), then we can use
standard techniques (see, e.g., [15]) to maximize }};c # log v;r (%5)
over the convex polytope

P={X€R£x‘7{ :Vjel, inj <1}
ieA

The function o} (x;) can be evaluated with polynomially many
demand queries; this is well-known [17] and holds because the
demand oracle happens to be the separation oracle for (Dual LP).
Hence we can also evaluate log v?’(xi). We focus here on the imple-
mentation of a supergradient oracle.

A supergradient of log o} at a point z is any linear function L;(y)
such that L;(z) = logo}(z) and Li(y) = logof(y) everywhere.
Given z, as a first step, we find a supergradient of v} itself: This can
be done by solving the dual LP and finding  and (p; : j € I') such
that v} (z) = a+ X jer pjzj = a+p-z Since v} (y) for every y is the
minimum over such linear functions, we also have v} (y) < a+p-y
for all y. Hence a + p - y is the desired supergradient at z.

Next, we compute the gradient of log(a + p - y) w.rt. y:

V(e+p-y) _ P

a+p-y a+p-y
We claim that the linear approximation of log(a + p - y) obtained
by evaluating this gradient at z,

Li(y) =

=(a+p-2)+(y—-12z) -

Vieg(a+p-y) =

log(a+p-2)+(y—2) - V(log(a+p-y))l

a+p-z
is a valid supergradient for log v} (y) at z. Indeed, we have

logv] (z) =log(a +p - z) = Li(2),

and for all y,
log vy (y) < log(a+p-y)
<(a+p-2)+(y-2) - V(og(a+p-y)lz = Li(y).

where the second inequality follows from the concavity of log(a +
Py

Hence, (Eisenberg-Gale Relaxation) can be solved in polynomial
time, within a polynomially small error, using standard convex
optimization techniques [15]. In particular, we can find a point x
such that ;¢ 5 log o] (x7) < ¥je 5 logof (x;) +e for every feasible
solution x*.

Finally, let’s explain why the solution can be assumed to have
polynomially bounded support. Given a fractional solution x;j
(which has obviously polynomially bounded support), for each
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agent i, using demand queries we also obtain a solution of (Dual
LP) certifying the value of v} (x;). By complementary slackness,
there is a matching primal solution of (Eisenberg-Gale Relaxation)
which has nonzero variables corresponding to the tight constraints
in (Dual LP) that define the dual solution. Since the dimension of
(Dual LP) is polynomial, the number of such tight constraints is
also polynomial. Hence we can assume that the number of nonzero
variables in (Eisenberg-Gale Relaxation) is polynomial.

A.2 Properties of the Optimal Solution

Consider now the (Eisenberg-Gale Relaxation) in a general form,
with objective functions f; (which could be equal to v} or perhaps
some other extension of v;).

Z log fi(x;) (Eisenberg-Gale Relaxation)
ieA

Z xij <1 Vjiel

i€eA

Xij 20 VieA,jel

Suppose that x is an optimal solution of this relaxation. We
will need the following property, which is also stated in [22] in
the context of general concave valuations (Lemma 4.1 in [22]).
Our proof here is much simpler. First, we consider the case of
differentiable concave f; which makes the proof cleaner. (Recall
however that v} is not differentiable everywhere.)

LEMMA 13. For an optimal solution x of (Eisenberg-Gale Relax-
ation) with differentiable nonnegative monotone concave functions f;,
and any other feasible solution x*, we have

2.7

iceA

ProoF. Since f;(x) is a concave function, we have
filx;) < fi(xi) + (x; —xi) - Vfi(xi).

From here, we get

£ix) fix) + (5 =x0) - Vfi(xi)
Zﬂ fitxi) —;ﬂ fix)
=IA+ > () = x) - V(log fi(xi)) < |A|

ieA
using the fact that x* is feasible and x is an optimum for the objective
function ;¢ # log fi(xi). O

To deal with a more general situation where f; is not necessarily
differentiable, and we don’t find an exact optimum, we prove a
robust version of this lemma.
LemMa 14. Let f; : [0,1] — R for each i € A be nonnegative,
monotone and concave. For € > 0, let x be an e*-approximate solu-
tion of (Eisenberg-Gale Relaxation), in the sense that for every other
feasible solution x’,

D logfix) < ' (log fi(x) +€*)

i€eA i€eA

1)
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>

And suppose further that that x;;
feasible solution x*, we have

Z fl(xf) <
i€eA

€ for all i, j, Then for every

ok (1+2¢)|A.

Note that we must necessarily have ¢ < 1/|A|, because 1 >

2ieA Xij 2 elA|.

PRrROOF. Let x satisfy the assumptions of the lemma. For any
feasible x* and T > 1, using the concavity of f;, we can write

FiO) = i) < TGk + 2.0 = x0)) = fix0).
From here,

$ A i)

filxi + (% = 1) = fi(xi)
i€eA ﬁ(xi) '

fi(xi)

T,

i€eA

Note that since y;; > €, we have x; + %(x:‘ -xj) < x; + %1 <
1+ %e)xi' Also, f;(0) > 0, so by monotonicity and concavity,

filxi + %(x:‘ -x;)) < fi((1+ %)xi) <(1+ %)ﬁ(xl) Similarly,

filxi+ 7 (xF =xi)) > fi(xi— +1) > (1- £2) fi(x;). Hence the ratio
o fiGxit & (x5 —x:)) = f (xi)
P fi(xi)

we can use the following elementary approximation:

is at most § = % in absolute value, and

ri — 8% <log(1+r;) <ry.
Plugging into the inequality above, we obtain

D filxi) = filx) T Y r<T Y (8 +log(1+r)

i€eA fi(Xi) ieA i€eA
1 *
i(Xi+ 5 (X7 —x;
ZE'FTZIOgﬁ(l T(z i)
Te? 4 fixi)

Applying the assumption of the lemma to the feasible solution

(Xt & (X=X
P s

x =x;+ %(x;‘ —Xx;), we have ) ;c 4 log
which gives

fi(x})
Z
ieA

fixi)
We set T to equate the last two terms: T = 1/€3, which gives the
statement of the lemma. ]

fi(x}) = fi(xi)
fikxi)

< |A|+ Al +Te Al
Te?

=|5‘l|+z

ieA

CoOROLLARY 15. Given a value oracle and a supergradient oracle
for each f;, for any constant a > 0, we can find a solution x of
(Eisenberg-Gale Relaxation) in polynomial time such that for any

feasible solution x*,
i€eA

Proor. For € > 0 (to be chosen at the end), we run a convex
optimization algorithm on (Eisenberg-Gale Relaxation) with the
additional constraint that x;; > €, to obtain a solution x such that
for any feasible x’ satisfying the same constraint, we have

D logfitxi) 2 ) log fitx) —€'n.

i€eA i€eA

fi(x}) B
fikxi) ~

1+ o)Al
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By Lemma 14, this solution also satisfies

’
> filx)) < (1+26)n.
iceA fi(xi)
Finally, note that every feasible solution x* of (Eisenberg-Gale
Relaxation) can be modified to obtain a feasible solution x” = (1 —
en)x* +en - %1 which satisfies the constraint xlf g > ¢, and we have

fi(x}) = (1 - en)fi(x]) for every i € A. Therefore, our solution
fix) < (1+2¢)n

also satisfies
S i) 1-en

, we obtain the desired statement.

— a
Fore = 2+(1+a)n

B REMATCHING LEMMAS

Here we prove the rematching lemmas from Section 2.2. These are
essentially identical to lemmas in previous work on Nash social
welfare, only reformulated in a way convenient for our presentation.
We give self-contained proofs here for completeness.

PROOF OF LEMMA 8. Suppose that S} = H U T," where H; € H
and T* C I”’. We define a matching 7 as follows: For each nonempty
H;, let 7(i) be the item of maximum value (as a singleton) in H;".
For H} = 0, let 7(i) be an arbitrary item in #{ not selected as 7 (i")
for some other agent. (Since |H| = |A|, we can always find such
items.) Recall that A’ are the agents who get positive value from
I”; in particular, we can assume T =0fori¢ A’. Then we have,
using monotonicity and subadditivity

1—[ 0;(S7) - 1—[ 0i(T}") +v; (H])

L max (Vo)) = L1 max(Viu )

vi(T7) + [H; |vi (x(0))) w(T)
<[] e e UL [ ( L +|H,.|) [T
ieA Lot ieA L i€ A\A’
Here we use the AMGM inequality:
(%) /1A
v (T;
[] (55 m) [T
ieA’ g ie A\A’
1 () ]
Sﬁ Z( v +|Hi|+_Z |H[|<c+1
ie A’ i€ A\A’

where the last inequality is by assumption and the fact that

DIHf < [H] = |Al.
iceA
m]

PROOF OF LEMMA 9. Let A = {i € A : W; < max{o(x(i)),vi}.
We define a directed bipartite graph B between A and H, with two
types of edges: E; = {(t(i),i) : i € A} and E; = {(i, (i) : i € A}.
We also define:

e Ay, ={icA:v;>uvi(x(i))}

e Ar=A,U {i € A : 3 directed path in B from i to A},
e A=A\ AL
We define a matching p as follows;
e Forie Ar, p(i) == 7(i),
o Forie Ay, p(i) := n(i).
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e Fori ¢ A, we define p(i) arbitrarily, to make p a matching.
First, observe that this is indeed a matching: If it was the case
that 7(i) = w(i’) = j for some i € A;,i’ € A, then we would have
edges (i’, j) and (j,i) in the graph, and since there is a directed
path from i to A, (i € A7), there would also be a directed path from
i’ to Ay, contradicting the fact that i’ € A,. Hence, p is a matching.
Next, we analyze the value guarantee for p:

[ [maxtwieito@ny = [T wi[ Jorto(i)

ieA i€ A\A  icA
=[] wi []eiz@) [ ] vitrtin.
icA\A  i€Ar i€A,

We claim that [];ca, 0i(7(i)) = [lica, Vi [lica,\a, vi(7x(i)).
Observe that the vertices of A; can be covered disjointly by directed
paths that terminate in A, (from each vertex of A, there is such
a path and it is also unique, because the in-degrees / out-degrees
in the graph are at most 1). Let P denote the A -vertices on some
directed path like this, and let s be its last vertex (in A,). If it was
the case that [];ep 0i(7(i)) < vs [Tiep\(s) vi((i)), then we could
modify the matching 7 by swapping its edges on P for the 7-edges
from P\ {s}, and finally an element of value v; for s (since this item
is outside of H and hence available). This would increase the value
of the matching 7, which was chosen to be optimal, so this cannot
happen.

It follows that [];ep vi(7(i)) > vs [1iep\(s) vi(7(i)) for every
maximal directed path terminating in A,, and since these paths
cover A disjointly, by combining all these inequalities we obtain

[Tecin = []w [] witxtip.
i€cA; i€A, i€A\A,
Substituting this into the inequality above,

[ [maxtWioitpny = [T vi [ v [] otz

icA ieA\A €A, i€A;
= n max{W;, vi,vi(7(i))}.
ieA

C CONCENTRATION OF SUBADDITIVE
FUNCTIONS

Let us start with a simple lower bound on the expected value of a
random set with independently sampled elements.

Lemma 16. If f : 2M — R, is a monotone subadditive function
and R is a random subset of S where each element appears indepen-
dently with probability 1/k, k > 1 integer, then

BIfR] 2 2/(6).

Proor. Consider a random coloring of S, where every element
J € S receives independently a random color ¢(j) € [k]. Defining
Se = {j € S : c(j) = t}, we see that each set S; has the same
distribution as the set R in the Lemma. Therefore,

E[f(R)] =E[f(S1)] = ... =B[f(S)] =B

LS s )] S0
15 sl s 2
k[=l k

by subadditivity. O
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This property is similar to the properties of submodular or self-
bounding functions, which satisfy very convenient concentration
bounds (similar to additive functions). Unfortunately, the same
bounds are not true for subadditive functions; however, some con-
centration results can be recovered with a loss of certain constant
factors.

Here we state a powerful concentration result presented by
Schechtman [32], based on the “g-point control” concentration
inequality by Talagrand [33, 34]. We state it here in a simplified
form suitable for our purposes.

TuroreM 17. Let f : 2M — Ry be a monotone subadditive func-
tion, where f({i}) < 1 for every i € M. Then for any real a > 0 and
integers k,q > 1, and a random set R from a product distribution,

Pr[f(R) > (q+ Da+K] (PrLf(R) < a])? < —.
q

This statement can be obtained from Corollary 12 in [32] by
extending the definition of f to Q* = Jjcp 2! simply by saying
f1(S) = £(S) for all S C I. Also, we identify 2! with {0,1}! in a
natural way. Assuming f({i}) < 1 meansthat0 < f(S+i)—f(S) <
1 for any set S, by monotonicity and subadditivity. Therefore, f is
1-Lipschitz with respect to the Hamming distance, as required in
[32]. The statement holds for any product distribution, i.e. a random
set R where elements appear independently.

Note that Theorem 17 refers to tails on both sides and hence is
more convenient to use with the median of f than the expectation.
The next lemma shows that this is not a big issue, since the theorem
also implies that the median and expectation must be within a
constant factor.

Definition 18. We define the median of a random variable Z as
any number med(Z) = m such that

Pr[Z <m]>1/2, Pr[Z>m]>1/2.

For any nonnegative variable, obviously E[Z] > med(Z). For

subadditive functions of independent random variables, we also get
a bound in the opposite direction.

LemMa 19. Let f : 2M — Ry be a monotone subadditive function,
where f({i}) < 1 for every i € M. Then for a random set R from a
product distribution,

E[f(R)] < 5(med(f(R)) +1).

ProoFr. Let a = med(f(R)) be the median. We apply Theorem 17

withk=g+1,9 > 3:
24 2\?
<l=] .
qq+1 — 13

We can bound the expectation as follows:

Pr[f(R) = (g+1)(a+1)] <

E[f(R)] <4(a+1)+ (a+1)ZPr[f(R) > (g+1)(a+1)]

q=3

< 4(a+l)+(a+l)z (g)q <5(a+1).
q=3
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Hence, we obtain the following as a corollary of Theorem 17 and
Lemma 19. For convenience, we also introduce a parameter v > 0
as an upper bound on singleton values.

THEOREM 20. Let f : 2M — R, be a monotone subadditive func-
tion, where f({i}) < v,v > 0, for every i € M. Then for any integers
k,q > 1, and a random set R where elements appear independently,

EIfR)] _ (k+nv| _(2)\4
5(q+1) q+1 - (q_k) ’

Proor. Assume first g is a function satisfying the assumptions
with v = 1. We use Theorem 17 with parameter a = (med(g) —
k)/(g+1).Note thatPr[g(R) > (g+1)a+k] = Pr[g(R) > med(g)] =
1/2. Hence, Theorem 17 gives

> (Pelg(R) < a))?

Pr|f(R) <

1

-
From Lemma 19, we have a = (med(g) —k)/(q+1) > (%E[g(R)] -
1 —k)/(q + 1) which implies the statement for v = 1:

ElgR)] _k+1] _(2\"
5(g+1) g+1]7 \gk '
For a function f satisfying the assumptions for v > 0, we apply this

inequality to the function g(R) = % f(R), to obtain the statement
of the lemma. ]

<

Pr|g(R) <
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