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ABSTRACT

We present a constant-factor approximation algorithm for the Nash

Social Welfare (NSW) maximization problem with subadditive val-

uations accessible via demand queries. More generally, we propose

a framework for NSW optimization which assumes two subrou-

tines that (1) solve a con�guration-type LP under certain additional

conditions, and (2) round the fractional solution with respect to

utilitarian social welfare. In particular, a constant-factor approxi-

mation for submodular valuations with value queries can also be

derived from our framework.

CCS CONCEPTS

• Theory of computation→ Approximation algorithms anal-

ysis; •Mathematics of computing→Combinatorial optimiza-

tion.
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1 INTRODUCTION

We consider the problem of allocating a set I of< indivisible items

to a set A of = agents, where each agent 8 ∈ A has a valuation

function E8 : 2
I → R≥0. The Nash social welfare (NSW) problem
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is to �nd an allocation S = ((8 )8∈A that maximizes the geometric

mean of the agents’ valuations,

NSW(S) =

(∏
8∈A

E8 ((8 )

)1/|A |
.

For U ≥ 1, an U-approximate solution to the NSW problem is an

allocation S with NSW(S) ≥ OPT/U , where OPT denotes the

optimum value of the NSW-maximization problem.

Allocating resources to agents in a fair and e�cient manner is a

fundamental problem in computer science, economics, and social

choice theory, with substantial prior work [4, 8, 9, 28, 30, 31, 36].

A common measure of e�ciency is utilitarian social welfare, i.e.,

the sum of the utilities
∑
8∈A E8 ((8 ) for an allocation ((8 )8∈A . This

objective does not take fairness into account, as all items could

be allocated to one agent whose valuation function dominates the

others. In order to incorporate fairness, various notions have been

considered, ranging from envy-freeness and proportional fairness

to various modi�cations of the objective function. At the end of the

spectrum opposite to utilitarian social welfare, one can consider the

max-min objective, min8∈A E8 ((8 ), also known as the Santa Claus

problem [3]. This objective is somewhat extreme in considering

only the happiness of the least happy agent.

Nash social welfare provides a balanced tradeo� between the

requirements of fairness and e�ciency. It has been introduced

independently in several contexts: as a discrete variant of the Nash

bargaining game [24, 29]; as a notion of competitive equilibrium

with equal incomes in economics [35]; and also as a proportional

fairness notion in networking [25]. Nash social welfare has several

desirable features, for example invariance under scaling of the

valuation functions E8 by independent factors _8 , i.e., each agent can

express their preference in a “di�erent currency” without changing

the optimization problem (see [28] for additional characteristics).

1.1 Preliminaries

The di�culty of optimizing Nash social welfare depends naturally

on the class of valuation functions that we want to deal with, and

how they are accessible. Various classes of valuations have been

considered in the literature. For the sake of this paper, let us restrict

our attention to four basic classes of valuations, and three oracle

models. We always assume that a valuation function E : 2I → R

is normalized (E (∅) = 0) and monotone, i.e. E (() ≤ E () ) whenever

( ⊂ ) .

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Classes of valuation functions.

1. A valuation E : 2I → R is additive if E (() =
∑

9∈( F 9 for

nonnegative weightsF 9 .

2. A valuation E : 2I → R is submodular if E (() + E () ) ≥ E (( ∩

) ) + E (( ∪) ) ∀(,) ⊆ I.

3. A valuation E : 2I → R is fractionally subadditive, or XOS, if

E (() = max8∈I
∑

9∈( F8 9 ,F8 9 ≥ 0.

4. A valuation E : 2I → R is subadditive if E (() + E () ) ≥ E (( ∪

) ) ∀(,) ⊆ I.

We remark that these classes form a chain of inclusions: additive

valuations are submodular, submodular valuations are XOS, and

XOS valuations are subadditive.

Oracle access. Note that additive valuations can be presented

explicitly on the input. However, for more general classes of valua-

tions, we need to resort to oracle access, since presenting a valuation

explicitly would take an exponential amount of space. Three types

of oracles to access valuation functions have been commonly con-

sidered in the literature.

1. Value oracle: Given a set ( ⊆ I, return the value E (().

2. Demand oracle: Given prices (? 9 : 9 ∈ I), return a set ( maximiz-

ing E (() −
∑

9∈( ? 9 .

3. XOS oracle (for an XOS valuation E): Given a set ( , return an

additive function 0 from the XOS representation of E such that

E (() = 0(().

1.2 Prior Work

The Nash social welfare problem is NP-hard already in the case

of two agents with identical additive valuations, by a reduction

from the Subset-Sum problem. For multiple agents, it is NP-hard

to approximate within a factor better than 0.936 for additive val-

uations [19]. This evidence indicates that NSW is generally more

di�cult to approximate than utilitarian welfare (although a formal

reduction is not known).

The �rst constant-factor approximation algorithm for additive

valuations, with the factor of 1/(241/4 ) ≈ 0.346, was given by

Cole and Gkatzelis [14] using a continuous relaxation based on a

particular market equilibrium concept. Later, [13] improved the

analysis of this algorithm to achieve the factor of 1/2. Anari, Oveis

Gharan, Saberi, and Singh [1] used a convex relaxation that relies

on properties of real stable polynomials, to give an elegant analysis

of an algorithm that gives a factor of 1/4 . The current best factor is

1/41/4 − n ≃ 0.692 by Barman, Krishnamurthy, and Vaish [7]; the

algorithm uses a di�erent market equilibrium based approach. Note

that this factor is above 1 − 1/4 , hence separating the additive and

submodular settings: A better than 1 − 1/4 ≃ 0.632 for submodular

valuations is impossible due to a hardness reduction similar to

utilitarian welfare [23].

Constant-factor approximations have been extended to some

classes beyond additive functions: capped-additive [20], separable

piecewise-linear concave (SPLC) [2], and their common general-

ization, capped-SPLC [11] valuations; the approximation factor for

capped-SPLC valuations matches the 1/41/4 − Y factor for additive

valuations. All these valuations are special classes of submodular

ones. Subsequently, Li and Vondrák [27] designed an algorithm

that estimates the optimal value within a factor of
(4−1)2

43
≃ 0.147

for a broad class of submodular valuations, such as coverage and

summations of matroid rank functions, by extending the techniques

of [1] using real stable polynomials. However, this algorithm only

estimates the optimum value but does not �nd a corresponding

allocation in polynomial time.

An important conceptual advance was presented in [22], where

a relaxation combining ideas from matching theory and convex

optimization was shown to give a constant factor for the class of

“Rado valuations” (containing weighted matroid rank functions and

some related valuations). A crucial property of this approach is

that it is modular and improvements of its components ended up

leading to multiple further advances. In [26], this approach was

extended to provide a constant factor approximation algorithm

for general submodular valuations, by replacing the concave ex-

tension of a valuation with the multilinear extension. The initial

factor was rather small (1/380). Recently, a much simpler algo-

rithm combining matching and local search was presented to give

a (1/4 − n)-approximation for submodular valuations [21].

For the more general classes of XOS and subadditive valua-

tions [5, 12, 23], however, only polynomial approximation factors

were known until now, and this is the best one can hope for in the

value oracle model [5], for the same reasons that this is a barrier

for the utilitarian social welfare problem [16]. A more appropri-

ate model for these classes is the demand oracle model (which

allows constant factor approximations for utilitarian welfare [17]).

However, even in the demand oracle model, the best known ap-

proximation factors up to now have been $ (1/=) for subadditive

valuations, and$ (1/=53/54) for XOS valuations (using both demand

and XOS oracles) [6]. Constant factors for XOS valuations seemed

quite out of reach prior to this work, and obtaining any sublinear

factor for subadditive valuations was stated as an open problem in

[6].

1.3 Our Results and Techniques

Our main result is the following.

Theorem. (informal) There is an algorithm using demand queries

that provides a constant-factor approximation for Nash Social Welfare

with subadditive valuations.

As a special case, this also gives a constant-factor approximation

for XOS valuations accessible via demand queries. This completes

the picture in the sense that now we have a constant-factor ap-

proximation for Nash social welfare in the main settings where one

is known for utilitarian social welfare: for submodular valuations

with value queries, and for subadditive valuations with demand

queries. As we discuss next, our result can be viewed as a unifying

framework which explains why constant factors from the utilitar-

ian welfare setting can be transferred to the Nash social welfare

setting.

Reducing Nash welfare to relaxation and rounding for utilitarian wel-

fare. Technically, we prove a reduction theorem (Theorem 1) which

shows that to achieve a constant factor approximation for Nash

social welfare, it is su�cient to implement e�cient subroutines for
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two subproblems: (1) �nding a solution of the Con�guration LP sat-

isfying a certain additional property, and (2) rounding a fractional

solution of the Con�guration LP while losing only a constant factor

with respect to utilitarian social welfare.

The �rst subroutine can be implemented by solving the Eisenberg-

Gale relaxation (essentially a Con�guration LP with logarithms in

the objective), which can be done using demand queries. For some

subclasses of submodular valuations (more precisely, ones satis-

fying the gross substitutes property), the same can be done using

value queries. For submodular functions with value queries, the

Eisenberg-Gale program cannot be solved optimally (which was

one source of di�culties for the NSW problem with submodular

valuations). However, it turns out that a local optimum of the nat-

ural relaxation using the multilinear extension is su�cient in this

case, and can be computed (up to a small error) with value queries.

The second problem is tractable thanks to prior work on utilitar-

ian welfare maximization. The rounding of the Con�guration LP is

relatively easy for XOS valuations, but non-trivial for subadditive

valuations. Fortunately, a 1/2-approximate rounding procedure is

known due to Feige’s work on welfare maximization with subad-

ditive bidders [17], which we use here as a blackbox. Hence, we

obtain constant factors in the same settings where constant factors

are known for utilitarian welfare.

Our techniques. In order to prove the reduction theorem men-

tioned above, the basis of our approach is the matching+relaxation

paradigm which gave a constant-factor approximation for submod-

ular valuations [22, 26]. Considering that the only constant-factor

approximation for utilitarian social welfare with subadditive valua-

tions [17] is based on the "Con�guration LP", which can be solved

using demand queries, it is a natural idea to use a relaxation similar

to the Con�guration LP. A natural variant for Nash social welfare is

the Eisenberg-Gale relaxation, using the logarithm of the concave

extension of each agent’s valuation. We apply this relaxation on

top of an initial matching, as in [22].

The main obstacle with this approach is that natural rounding

procedures for the Con�guration LP do not satisfy any concentra-

tion properties. At a high level, without concentration, some agents

have higher value, but some have lower value - leading to poor

Nash social welfare even if we can maintain the expected utilitarian

social welfare. More speci�cally, the �rst challenge is that, given

a fractional solution G8,( , we would ideally like to round it to an

integral allocation by allocating set ( to agent 8 with probability G8,( .

Even though this ideal rounding preserves each agent’s expected

value, the variance can be arbitrary, depending on the fractional

solution G8,( . Our �rst technical contribution is a procedure (see

Lemma 3) for �nding a new feasible solution to the Con�guration

LP such that, for each agent, has only high value subsets in its

support (with the exception of agents who get most of their value

from a single item — this case is handled separately with the match-

ing procedure). This procedure is rather simple in hindsight. At a

high level, we can think of the fractional solution as a distribution

of allocations for each agent. We want to discard the part of the

distribution that corresponds to low value subsets; but this makes

the allocation probabilities add up to less than 1 for some agents.

We adjust the fractional solution to �x this issue, by splitting high-

value sets into subsets of equal probability, and hence generating

more probability mass while preserving the allocation probabilities

per item.

The next obstacle in rounding the Con�guration LP is “resolving

contention”: under a natural rounding procedure, we may try to

allocate the same item to multiple agents (even though in expecta-

tion it is only allocated to one agent). For XOS valuations, a simple

independent randomized contention resolution scheme guarantees

a constant-factor approximation and also enjoys good concentra-

tion. However the situation is more complicated for subadditive

valuations. The only known constant-factor approximation for utili-

tarian social welfare with subadditive valuations is a rather intricate

rounding procedure of Feige [17], which does not seem to satisfy

any useful concentration properties. In any rounded solution, there

might be agents who receive very low value, which hurts Nash

social welfare, and hence we cannot use it directly.

Our solution is an iterated rounding procedure, where in each

stage a certain fraction of agents is “satis�ed” in the sense that they

receive value comparable to their fractional value. We allocate the

respective items to them, subject to random �ltering which ensures

that enough items are still left for the remaining agents. Then we

recurse on the remaining agents and remaining items. Still, some

agents may receive a relatively small value, but we guarantee that

the fraction of agents who receive low values is proportionally small,

which means that the Nash social welfare overall is guaranteed

to be good. As an example: if $%) = (+1 · · ·+=)
1/= , it su�ces to

solve for an allocation where =
2 agents receive value at least 1

2+8 ,
=
4 agents receive value at least 1

4+8 ,
=
8 agents receive value at least

1
8+8 , and so on. Then the approximation factor in terms of Nash

Social Welfare turns out to be

(1/2)1/2 (1/4)1/4 (1/8)1/8 (1/16)1/16 · · ·

and this in�nite product converges to 1/4 (we leave this as an

exercise for the reader).

In order to guarantee the success of this rounding procedure, we

need a concentration inequality (as in previous works). Concentra-

tion properties of subadditive functions are somewhat weaker and

more di�cult to prove that for submodular or XOS functions. Here

we appeal to a powerful subadditive concentration inequality pre-

sented by Schechtman [32], which is based on the “@-point control

inequality” of Talagrand [33, 34].

We remark that the constant factors lost in various stages of our

proof are rather large and lead to a �nal approximation factor of

∼ 1/375, 000 for the Nash social welfare problem with subadditive

valuations. One may hope that as in the case of submodular valua-

tions, an initially large constant factor can be eventually improved

to a “practical one”.

Paper organization. In Section 2, we present our main technical

result, which is a reduction of Nash social welfare to a certain

relaxation solver and a rounding procedure for the Con�guration LP.

In Section 3, we show how this implies an approximation algorithm

for Nash social welfare with subadditive valuations. We defer some

more standard tools to the appendices: Solving and analyzing the

relaxation (Appendix A), the rematching lemmas (Appendix B),

and concentration of subadditive functions (Appendix C). Further

material such as an application of our framework to submodular

valuations is deferred to the full version.
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2 OPTIMIZING NSW VIA RELAXATION AND

ROUNDING FOR SOCIAL WELFARE

Here we describe our general approach which allows us to derive

algorithms for NSW optimization in several settings. At a high-

level, we reduce the NSW optimization to �nding a certain solution

for the "Con�guration LP" (for social welfare optimization), and

having a rounding procedure for the Con�guration LP, again with

respect to social welfare.

Let us de�ne the Con�guration LP:

max
∑
8∈A

∑
(⊆I

E8 (()G8,( (Con�guration LP)

∑
8∈A

∑
(⊆I:9∈(

G8,( ≤ 1 ∀9 ∈ I

∑
(⊆I

G8,( = 1 ∀8 ∈ A

G8,( ≥ 0 ∀8 ∈ A, ( ⊆ I

Equivalently, this can be written as

max
∑
8∈A

E+8 (x8 )

∑
8∈A

G8 9 ≤ 1 ∀9 ∈ I

G8 9 ≥ 0 ∀8 ∈ A, 9 ∈ I

where as before,

E+8 (x8 ) =max
∑
(⊂I

E8 (()G8,( : (Concave Extension)

∑
(⊂I:9∈(

G8,( ≤ G8 9 ∀9 ∈ I

∑
(⊂I

G8,( = 1

G8,( ≥ 0 ∀( ⊂ I

The following is our main reduction theorem, which provides an

algorithm for Nash social welfare, given two procedures that we call

the Relaxation Solver and Rounding Procedure. Note that as-

sumption on the Relaxation Solver is somewhat unusual: It is not

that (G8,( ) is an optimal or near-optimal solution of (Con�guration

LP), but a di�erent condition saying that the optimum social welfare

with valuations byF8 (() = E8 (()/+8 (where+8 =
∑
( ′ E8 ((

′)G8,( ′ ) is

upper-bounded by 2 |A|. (The social welfare of G8,( itself with valua-

tionsF8 is exactly |A|, so as a consequence (G8,( ) is 2-approximate

optimum with respect to the valuations F8 .) This condition is re-

quired primarily for the later “rematching” step (Lemma 8). For-

tunately, this condition is satis�ed by natural approaches to solve

the “Eisenberg-Gale” relaxation, which replaces the continuous

valuation extensions by their logarithms. We discuss this further in

Section 3.

Theorem 1. Suppose that for a certain class of instances of Nash

social welfare, with subadditive valuations, we have the following

procedures available, with parameters 2, 3 ≥ 1:

• Relaxation Solver: Given valuations (E8 : 8 ∈ A) on a set of

itemsI, we can �nd a feasible solution (G8,( ) of (Con�guration

LP) such that the social welfare optimum with valuations

F8 (() =
1

+8
E8 ((), +8 =

∑
(⊆I

E8 (()G8,(

is at most 2 |A|.

• Rounding Procedure: Given a feasible solution (G8,( ) of

(Con�guration LP), we can �nd an allocation ((1, . . . , (=)

where each (8 is a subset of some set ( ′8 such that G8,( ′
8
> 0 and

∑
8∈A

F8 ((8 ) =
∑
8∈A

1

+8
E8 ((8 ) ≥

1

3
|A|.

(As above, +8 =
∑
(⊆I E8 (()G8,( .)

Then there is an algorithm which provides an $ (232)-approximation

in Nash social welfare for the same class of instances, using one call

to the Relaxation Solver and a logarithmic number of calls to the

Rounding Procedure. The running time is polynomial in |A|, |I | and

the support of the fractional solution (G8,( ).

In the following, we prove this theorem by presenting an al-

gorithm with several phases. These phases are similar to recent

matching-based algorithms for Nash social welfare [21, 21, 22, 26]

with the exception of two phases which are new (phases 3,4 below).

The high-level outline is as follows.

NSW Algorithm Template.

(1) We �nd an initial matching g : A → I, maximizing∏
8∈A

E8 ({g (8)}).

LetH = g [A] denote the matching items and I′ = I \ H

the remaining items. Let also A′ = {8 ∈ A : E8 (I
′) > 0}.

(2) We apply the Relaxation Solver to obtain a fractional so-

lution (G8,( )8∈A′,(⊆I′ and values +8 =
∑
(⊆I′ E8 (()G8,( . We

can view these values as “targets” for di�erent agents to

achieve.

(3) Let a8 = max8∈I′ E8 ( 9) and A
′′
= {8 ∈ A′ : +8 ≥ 6a8 }. We

process the fractional solution (G8,( ) for 8 ∈ A
′′, removing

sets of low value and partitioning sets of high value, so that

for every set in the support of the new fractional solution

G ′
8,(

for agent 8 , we have E8 (() = Θ(+8 ).

(4) We apply the Rounding Procedure to G ′
8,(

to �nd an allo-

cation ((8 ∈ A
′′) satisfying

∑
8∈A

1

+8
E8 ((8 ) = Ω

(
1

3
|A|

)
.

Since each (8 has value at most+8 (due to our preprocessing),

it must be the case that a Θ( 1
3
)-fraction of agents receive

value at least Θ( 1
3
+8 ). We allocate a random Θ( 1

3
)-fraction

of items to thisΘ( 1
3
)-fraction of agents (each item from their

respective sets independently with probability Θ( 1
3
)); call

the resulting set )8 for agent 8 . We repeat this phase for the

remaining items and agents, until there are no agents left.

For agents 8 ∈ A \ A′′, we de�ne )8 = ∅.
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(5) We recompute the initial matching to obtain a new matching

f : A → H , which maximizes
∏

8∈A E8 ()8 + f (8)). We

allocate )8 + f (8) to agent 8 .

Now we proceed to analyze the phases of this algorithm more

rigorously.

2.1 Initial Matching

There is nothing new in this phase.We can �nd amatching g : A →

I maximizing
∏

8∈A E8 (g (8)) by solving a max-weight matching

problem with edges (8, 9) where E8 ( 9) > 0, and weights F8 9 =

log E8 ( 9).

We denote byH = g [A] the matched items, by I′ = I \ H the

remaining items, and by A′ = {8 ∈ A : E8 (I
′) > 0} the agents

who get positive value from I′.

A property we need in the following is the following.

Lemma 2. If g : A → I is a matchingmaximizing
∏

8∈A E8 (g (8))

then for any 9 ∈ I′ = I \ g [A], E8 ( 9) ≤ E8 (g (8)).

Proof. If there is 9 ∈ I′, E8 ( 9) > E8 (g (8)), then we can swap

g (8) for 9 in the matching and increase its value. □

For subadditive valuations, we also get E8 ((+ 9)−E8 (() ≤ E8 (g (8))

for any ( ⊂ I′, 9 ∈ I′ \ ( (since E8 (( + 9) ≤ E8 (() + E8 ( 9)).

2.2 Relaxation Solver

Here we assume that the Relaxation Solver is available as a black-

box. We return to its implementations in speci�c settings in Sec-

tion 3.

We apply the Relaxation Solver to the residual instance on

items I′ = I \H and agentsA′ who have nonzero value for some

items in I′. The important property of the obtained solution (G8,( )

is that after scaling the valuations as follows,

F8 (() =
1

+8
E8 ((), +8 =

∑
(⊆I′

E8 (()G8,(

the social welfare optimum forF1, . . . ,F= is at most 2 |A′ |. In other

words, for any feasible allocation () ∗1 , . . . ,)
∗
= ) of I

′, we have

∑
8∈A′

E8 ()
∗
8 )

+8
≤ 2 |A′ |.

2.3 Set Splitting

Here we describe Phase 3, preprocessing of the fractional solution.

We will work only with agents who get signi�cant value from the

fractional solution: Let a8 = max9∈I′ E8 ( 9) and

A′′ := {8 ∈ A′ : +8 ≥ 6a8 }.

We prove the following.

Lemma 3. Assume that the valuations E1, . . . , E= are subadditive.

Given a feasible solution (G8,( ) of (Con�guration LP) for an instance

with agents A′′ and items I′, where +8 =
∑
(⊆I′ E8 (()G8,( and

a8 = max9∈I′ E8 ( 9), we can �nd (in running time and a number of

value queries polynomial in the number of nonzero coe�cients G8,( )

a modi�ed solution (G ′
8,(
) such that

• For every ( such that G ′
8,(

> 0, 13+8 − a8 ≤ E8 (() ≤ +8 .

• For every 8 ∈ A′′,
∑
(⊆I G

′
8,(

= 1.

• For every 9 ∈ I′,
∑
8,(∋ 9 G

′
8,(
≤ 1.

Proof. We apply the following procedure to the fractional solu-

tion x = (G8,( ).

SetSplitting(x).

(1) Let+8 =
∑
(⊆I′ E8 (()G8,( ,a8 = max9∈I′ E8 ( 9), and F8 = {( ⊆

I′ : E8 (() ≥
1
3+8 }.

(2) Set G ′
8,(

= 0 and :8,( = 0 for ( ∉ F8 ; i.e., discard sets whose

value is too low.

(3) For every ( ∈ F8 , let :8,( = ⌊
3E8 (( )
+8
⌋. Split ( into sets

(1, · · · , (:8,( such that ∀ℓ = 1, . . . , :8,( ,

E8 ((ℓ ) ≥
1

3
+8 − a8 .

Note that this is possible since by subadditivity, the average

value of a subset in any partition of ( into :8,( subsets is at

least E8 (()/:8,( ≥
1
3+8 , and indivisibility of items can cause

the value to drop by at most a8 .

(4) For each set (ℓ produced above, remove some items if neces-

sary to ensure that its value is at most +8 . Call the resulting

set ( ′ℓ . Note that since removing an item can decrease the

value by at most a8 , we start from value ≥ 1
3+8 − a8 , and we

only remove items as long as the value is more than +8 , we

can conclude that

+8 ≥ E8 ((
′
ℓ ) ≥

1

3
+8 − a8 .

(5) Set G̃8,) =
∑
(∈F8 ,∃ℓ :(

′
ℓ
=) G8,( , and G

′
8,)

=
G̃8,)∑
( G̃8,(

.

(6) Return x′.

Let us now prove the desired properties of x′. By construction

(step 5), the solution is normalized in the sense that
∑
) G ′

8,)
= 1 for

every 8 ∈ A′′. Also, as we argued above, +8 ≥ E8 () ) ≥
1
3+8 − a8 for

every set ) participating in the support of x′. It remains to prove

that the coe�cients G ′
8,)

add up to at most 1 on each item.

Let us �rst consider G̃8,) : Since each contribution to G̃8,) for 9 ∈ )

is inherited from some coe�cient G8,( where 9 ∈ ( , each coe�cient

G8,( contributes at most once in this way, and the coe�cients G8,(
for ( ∋ 9 add up to at most 1, it is clear that

∑
8,) ∋ 9 G̃8,) ≤ 1. Finally,

G ′
8,)

is obtained by normalizing G̃8,) ; so we need to be concerned

about the summation
∑
( G̃8,( , which could be possibly less than 1.

We have:∑
(∈F8

E8 (()G8,( = +8 −
∑
(∉F8

E8 (()G8,( ≥ +8 −
1

3
+8 =

2

3
+8 .

Observe that each coe�cient G8,( for ( ∈ F8 contributes :8,( coe�-

cients of the same value to the summation
∑
( G̃8,( , and the union

of the respective sets is ( . So we have

∑
(⊆I′

G̃8,( =

∑
(∈F8

:8,(G8,( =

∑
(∈F8

⌊
3E8 (()

+8

⌋
· G8,(

≥
3

2

∑
(∈F8

E8 (()G8,(

+8
≥ 1

considering that 3E8 (()/+8 ≥ 1 for ( ∈ F8 , so the �oor opera-

tion can decrease the ratio by at most a factor of 2. Also, we have
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∑
(∈F8 E8 (()G8,( ≥

2
3+8 from above. Hence G ′

8,)
=

G̃8,)∑
( G̃8,(

≤ G̃8,)

and the coe�cients G ′
8,(

for ( ∋ 9 add up to at most 1. □

2.4 Iterated Rounding

Finally, we need to round the fractional solution (G ′
8,(
) obtained in

the previous phase. As a subroutine, we use the assumedRounding

Procedure for (additive) social welfare.

Given a fractional solution x′ = (G ′
8,(
) obtained in the previous

phase, we call the procedure NSW-ROUND(x′,A′′,I′, X) with a

parameter X =
1
73
, where 3 is a approximation factor guaranteed

by the Rounding Procedure.

Algorithm 1 Iterated Rounding

1: procedure NSW-Round(x′,A0,I0, X):

2: Let + ′8 ←
∑
(⊆I′ E8 (()G

′
8,(

3: For each item 9 ∈ I0 independently, let A 9 ← C with proba-

bility X (1 − X)C−1 for C ≥ 1

4: Let 'C ← { 9 ∈ I0 : A 9 = C} for all C ≥ 1

5: Let C ← 1

6: while AC ≠ ∅ do

7: ((8 : 8 ∈ AC ) ← RoundingProcedure(x′,AC )

8: AC+1 ← {8 ∈ AC : E8 ((8 ) < X+ ′8 }

9: For each agent 8 ∈ AC \ AC+1, allocate )8 ← (8 ∩ 'C
10: end while

11: Return ()8 : 8 ∈ A0)

12: end procedure

As we mentioned above, the intuition behind this rounding pro-

cedure is that it gives good value to a large fraction of agents, and

exponentially small values to an exponentially decaying number of

agents, so overall its Nash social welfare is good. We prove this in

a sequence of lemmas.

Lemma 4. Under our assumption on the Rounding Procedure,

and setting X =
1
73
, in each round there is at least a X-fraction of

agents (rounded up to the nearest integer) who receive value at least

X+ ′8 .

Proof. Note that + ′8 ≥
1
6+8 , since every set in the support of

G ′
8,(

has value at least 1
3+8 − a8 ≥

1
6+8 . We assume that under val-

uations F8 (() =
1
+ ′
8

E8 ((), the Rounding Procedure returns an

allocation ((8 : 8 ∈ AC ) such that
∑
8∈AC

F8 ((8 ) ≥
1
3
|AC |. Also,

the fractional solution x′ has been processed so that no set in its

support for agent 8 has value more than +8 ≤ 6+ ′8 , and the round-

ing only allocates subsets of sets in the support of x′. Hence, we

haveF8 ((8 ) =
1
+ ′
8

E8 ((8 ) ≤ 6 for every agent 8 . Consider the agents

who receive value F8 ((8 ) ≥ X ; if the number of such agents is

less than X |AC |, then the total value collected by the agents is∑
8∈AC

F8 (() < 6 ·X |AC | +X · (1−X) |AC | < 7X |AC | =
1
3
|AC |, which

is a contradiction. □

Lemma 5. If |A0 | = 0 and the agents are ordered by the round in

which they received items (and arbitrarily within each round), then

the 8-th agent receives each element of her set (8 independently with

probability at least X (1 − 8−1
0 ).

Proof. Consider the 8-th agent, and suppose that 8 ∈ AC \AC+1,

i.e. the agent gets items in round C . We claim that 0(1 − X)C−1 ≥

= − 8 + 1: In each round, we allocate items to at least a X-fraction of

agents, so the set of agents AC−1 remaining after C − 1 rounds has

size at most 0(1−X)C−1. This set must include agent 8 , otherwise she

would have been satis�ed earlier. Therefore, 0 − 8 + 1 ≤ 0(1−X)C−1.

The items allocated to agent 8 in round C are (8 ∩ 'C , where 'C
contains each element independently with probability X (1 − X)C−1.

By the argument above, X (1 − X)C−1 ≥ X · 0−8+10 . □

Lemma 6. If )8 is the set allocated to the 8-th agent in the ordering

de�ned above (and we assume w.l.o.g. that the index of this agent is

also 8), and max9∈I′ E8 ( 9) ≤ a8 then

E

[
log

+8

E8 ()8 ) + a8

]
≤ log

60

X2 (1 − 8−1
= )

.

Proof. By de�nition, the set (8 tentatively chosen for the 8-th

agent in the round where 8 ∈ AC \ AC+1 satis�es

E8 ((8 ) ≥ X+ ′8 ≥ X

(
1

3
+8 − a8

)

(see Lemma 3). By Lemma 5, the 8-th agent receives a set)8 = (8 ∩'C
which contains each element of (8 independently with probability

at least X (1 − 8−1
= ).

Consider now the expression log +8
5 ()8 )

, where 5 ()8 ) = E8 ()8 ) +a8 .

This is a random quantity due to the randomness in 'C (the set (8 is

�xed here). We use concentration of subadditive functions (Theo-

rem 20) to argue that this expression is not too large in expectation.

We have 5 ((8 ) = E8 ((8 ) + a8 ≥
1
3X+8 . By the expectation property

of subadditive functions (Lemma 16), we have

E[5 ()8 )] = E[5 ((8 ∩ 'C )] ≥ X

(
1 −

8 − 1

=

)
·
1

3
X+8 .

Let us denote the last expression `8 :=
1
3X

2 (1 − 8−1
= )+8 ≤ E[5 ()8 )].

Now, we apply the lower-tail inequality, Theorem 20, with @ = 2.

Observe that we can assume a8 <
1
20 `8 . Otherwise,

+8

a8
≤

20+8

`8
=

60

X2 (1 − 8−1
= )

and so the desired bound holds.

Let us set @ = 2 and : + 1 = ⌊
`8
10a8
⌋ ≥

`8
15a8

(considering that
`8
10a8
≥ 2) in Theorem 20. We get

Pr
[
5 ()8 ) <

`8

30

]
≤ Pr

[
5 ()8 ) ≤

E[5 ()8 )]

15
−

`8

30

]

≤ Pr

[
5 ()8 ) ≤

E[5 ()8 )]

5(@ + 1)
−
(: + 1)a8

@ + 1

]

≤

(
2

2:

)1/2
≤

2

2`8/(30a8 )
.

Our goal is to bound the expectation E[log +8
5 ()8 )
]. We distinguish

two cases: When 5 ()8 ) <
1
30 `8 , we use the bound 5 ()8 ) ≥ a8 , which

always holds. Otherwise, we use the bound 5 ()8 ) ≥
1
30 `8 . From

here,
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E

[
log

+8

5 ()8 )

]

≤ Pr
[
5 ()8 ) <

`8

30

]
· log

+8

a8
+

(
1 − Pr

[
5 ()8 ) <

`8

30

] )
· log

30+8

`8

= Pr
[
5 ()8 ) <

`8

30

]
· log

`8

30a8
+ log

30+8

`8

≤
2

2`8/(30a8 )
log

`8

30a8
+ log

30+8

`8
.

One can verify that the function 2
2G logG is upper-bounded by

log 2 for all G > 0.1 Hence,

E

[
log

+8

5 ()8 )

]
≤ log 2 + log

30+8

`8
< log

60+8

`8
= log

60

X2 (1 − 8−1
= )

.

□

Lemma 7. If )8 is the set allocated to the 8-th agent in the ordering

de�ned above (and we assume w.l.o.g. that the index of this agent is

also 8), and max9∈I′ E8 ( 9) ≤ a8 then

1

|A′′ |

∑
8∈A′′

E

[
log

+8

E8 ()8 ) + a8

]
≤ log

165

X2
.

Proof. Let us denote 0 = |A′′ |. From Lemma 6, we have

1

0

0∑
8=1

E

[
log

+8

E8 ()8 ) + a8

]
≤

1

0

0∑
8=1

log
60

X2 (1 − 8−1
= )

=

(
log

60

X2
−

1

0

0∑
8=1

log

(
1 −

8 − 1

0

))

Here, we have
∑0
8=1 log(1 −

8−1
0 ) = log

∏0
8=1

0−8+1
0 = log 0!

00 ≥ −0

by a standard estimate for the factorial. So we can conclude

1

0

0∑
8=1

E

[
log

+8

E8 ()8 ) + a8

]
≤ log

60

X2
+ 1 < log

165

X2
.

□

This concludes the analysis of the iterated rounding phase, which

allocates the set )8 to each agent 8 ∈ A′′. For agents 8 ∈ A \ A′′,

we set )8 = ∅.

2.5 Rematching and Finishing the Analysis

The last step in the algorithm is to replace the initial matching

g : A → H with a new matching f : A → H which is optimal on

top of the allocation ()8 : 8 ∈ A). To analyze this step, we need two

“rematching lemmas” from previous work [21, 21, 26], which can be

modi�ed easily to yield the following. (We provide self-contained

proofs in the appendix.)

Lemma 8 (matching extension). Let g : A → I be the match-

ing maximizing
∏

0∈A E8 (g (0)), H = g (A), and I′ = I \ H . Let

(+8 : 8 ∈ A) be values such that +8 > 0 for 8 ∈ A′, +8 = 0 for

8 ∈ A \ A′ and ∑
8∈A′

E8 ()
∗
8 )

+8
≤ 2 |A′ |

1We are using natural logarithms everywhere.

for every allocation () ∗1 , . . . ,)
∗
= ) of the items in I′. Then there is a

matching c : A → H such that∏
8∈A

(+8 + E8 (c (8)))
1/|A | ≥

1

2 + 1

∏
8∈A

(
E8 ((

∗
8 )

)1/|A |
=
$%)

2 + 1

where ((∗1 , . . . , (
∗
=) is an allocation of I optimizing Nash social wel-

fare.

Lemma 9 (rematching). Let g : A → I be the matching maxi-

mizing
∏

0∈A E8 (g (0)), H = g (A), I′ = I \ H , c : A → H an-

other arbitrary matching, and a8 = max9∈I′ E8 ( 9). Let (,8 : 8 ∈ A)

be nonnegative values. Then there is a matching d : A → H such

that∏
8∈A

(max{,8 , E8 (d (8))})
1
|A| ≥

∏
8∈A

(max{,8 , E8 (c (8)), a8 })
1
|A| .

We apply Lemma 8 with the values+8 =
∑
(⊆I′ E8 (()G8,( , where

(G8,( ) is the fractional solution returned by Relaxation Solver.

Due to our assumptions, the condition of Lemma 8 is satis�ed and

hence there is a matching c : A → H as described in Lemma 8:∏
8∈A

(+8 + E8 (c (8)})
1/|A | ≥

$%)

2 + 1
.

From Lemma 7, we can �ndwith constant probability an assignment

()8 : 8 ∈ A
′′) such that( ∏
8∈A′′

+8

E ()8 ) + a8

)1/|A′′ |
<

200

X2
< 1000032 .

(Recall that X =
1
73
, where 3 > 1 is the parameter guaranteed by

the Rounding Procedure.)

Moreover, we know that E ()8 ) ≤ +8 and +8 ≥ 6a8 , hence E ()8 ) +

a8 ≤ 2+8 for 8 ∈ A
′′. For agents in A \ A′′, we have )8 = ∅ and

+8 ≤ 6a8 . From here, we have∏
8∈A

+8 + E8 (c (8))

E ()8 ) + a8 + E8 (c (8))

≤
∏

8∈A′′

2+8 + E8 (c (8))

E ()8 ) + a8 + E8 (c (8))

∏
8∈A\A′′

6a8 + E8 (c (8))

a8 + E8 (c (8))

≤
∏

8∈A′′

2+8

E ()8 ) + a8

∏
8∈A\A′′

6 ≤ (2000032) |A | .

Finally, we use the rematching Lemma 9, with values E8 ()8 ): there

exists a matching d : A → H such that∏
8∈A

(max{E8 ()8 ), E8 (d (8))})
1
|A| ≥

∏
8∈A

(max{E8 ()8 ), E8 (c (8)), a8 })
1
|A|

≥
1

3

∏
8∈A

(+8 + a8 + E8 (c (8)))
1
|A| ≥

1

2000032

∏
8∈A

(+8 + E8 (c (8)))
1
|A|

≥
$%)

20000(2 + 1)32
.

Recall that at the end, we �nd a matching f : A → H maximizing∏
8∈A E8 ()8 + f (8)). Therefore, the NSW value of our solution is

at least as much as the one provided by the matching d , which is∏
8∈A (E8 ()8 + d (8))

1/|A | ≥
∏

8∈A (max{E8 ()8 ), E8 (d (8))})
1/|A | ≥

1
20000(2+1)32$%) . This proves Theorem 1.
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3 NASH SOCIAL WELFARE WITH

SUBADDITIVE VALUATIONS

Here we explain how to use the general framework described in

Section 2 to obtain a constant-factor approximation for subadditive

valuations, accessible by demand queries.

Theorem 10. There is a constant-factor approximation algorithm

for the Nash social welfare problem with subadditive valuations, using

polynomial running time and a polynomial number of queries to a

demand oracle for each agent’s valuation.

Aside from our general reduction and the ability to solve the

Eisenberg-Gale relaxation with demand queries, the main com-

ponent that we need here is an implementation of a Rounding

Procedure for subadditive valuations, as described in Theorem 1.

To our knowledge, there is only one such procedure known, which

is rather intricate and forms the basis of Feige’s ingenious 1/2-

approximation algorithm for maximizing social welfare with sub-

additive valuations [18]. We use it here as a black-box, which can

be described as follows.

Theorem 11. For any n > 0, there is a polynomial-time algorithm,

which given a fractional solution (G8,( ) of (Con�guration LP) for an

instance with subadditive valuations, produces a random allocation

('8 : 8 ∈ A) such that for every agent, '8 ⊆ (8 for some (8 , G8,(8 > 0,

and

E[E8 ('8 )] ≥

(
1

2
− n

)
+8 , where +8 =

∑
(⊆I

E8 (()G8,( .

For the proof, we refer the reader to Section 3.2.2 of [18], Theorem

3.9 and the summary of its proof which shows that every player

receives expected value at least ( 12 − n)+8 .

Now we are ready to prove Theorem 10.

Proof. Considering Theorem 1, we want to show how to im-

plement the Relaxation Solver and Rounding Procedure for

subadditive valuations.

The Relaxation Solver can be obtained applying standard con-

vex optimization techniques to the (Eisenberg-Gale Relaxation)

relaxation. As we discuss in more detail in Appendix A, we can

compute the values and supergradients of the objective function

using demand queries, and obtain an optimal solution satisfying

the assumption of Lemma 15 (with 58 = E+8 , U = 1), and hence

∑
8∈A

E+8 (x
∗
8 )

E+8 (x8 )
≤ 2|A|

for every feasible solution x∗. Another way to interpret this con-

dition is that for +8 = E+8 (x8 ) and modi�ed valuations de�ned as

F8 (() =
1
+8
E8 ((), there is no feasible solution x∗ achieving value∑

8∈A F+8 (x
∗
8 ) > 2|A|. In particular, the social welfare optimum

with the valuations (F8 : 8 ∈ A) is at most 2|A|. Hence, we satisfy

the Relaxation Solver assumptions with 2 = 2.

Next, we implement the Rounding Procedure: Given a frac-

tional solution (G8,( ), Theorem 11 gives a procedure which re-

turns a random allocation ('8 : 8 ∈ A) such that E[E8 ('8 )] ≥

( 12 − n)+8 = ( 12 − n)
∑
( G8,(E8 ((). This means that for the mod-

i�ed valuations, F8 (() =
1
+8
E8 ((), we have E[F8 ('8 )] ≥

1
2 − n ,

and
∑
8∈A F8 ('8 ) ≥ (

1
2 − n) |A|. Hence, we satisfy the Rounding

Procedure assumptions with 3 =
2

1−2n .

Finally, we apply Theorem 1with 2 = 2 and3 =
2

1−2n .We obtain a

constant-factor approximation algorithm for theNash social welfare

problem with subadditive valuations accessible via demand queries.

The constant factor ends up being 20000(2 + 1)32 = 375000 for

n = 0.1. □

4 CONCLUDING REMARKS

We presented a constant-factor approximation algorithm for the

Nash SocialWelfare problemwith subadditive valuations, accessible

via demand queries. The constant is rather large, as discussed above.

We remark that one can obtain a smaller constant factor for XOS

valuations but we do not discuss this here. Signi�cant new ideas

would be needed to obtain a “practical” approximation factor such

as the known (4 + n)-approximation for submodular valuations.

A major open question is the “asymmetric” Nash Social wel-

fare problem, where we aim to maximize
∏=

8=1 (E8 ((8 ))
l8 for given

weights l8 ≥ 0,
∑=
8=1 l8 = 1. This is a challenging problem even in

the case of additive valuations, where a universal constant factor is

still not known; see [10] for the latest results.

A THE EISENBERG-GALE RELAXATION

We consider the following relaxation of the Nash Social Welfare

problem similar to the relaxations in [21, 26]. We remark that the

application of (Eisenberg-Gale Relaxation) in the Nash Social Wel-

fare algorithm excludes the items allocated in the initial matching;

indeed we ignore those items for the analysis in this section.

max
∑
8∈A

log 58 (x8 ) (Eisenberg-Gale Relaxation)

∑
8∈A

G8 9 ≤ 1 ∀9 ∈ I

G8 9 ≥ 0 ∀8 ∈ A, 9 ∈ I

where 58 is a suitable relaxation of the valuation function E8 for

each 8 . In particular, we will use the concave extension, 58 = E+8 :

E+8 (x8 ) :=max
∑
(⊆I

E8 (()G8,( : (Concave Extension)

∑
(⊆I:9∈(

G8,( ≤ G8 9 ∀9 ∈ I

∑
(⊆I

G8,( = 1

G8,( ≥ 0 ∀( ⊆ I

Note that (Concave Extension) is a linear program. The dual LP to

(Concave Extension) is

E+8 (x8 ) =min@ +
∑
9∈I

? 9G8 9 : (Dual LP)

@ +
∑
9∈(

? 9 ≥ E8 (() ∀( ⊆ I

? 9 ≥ 0 ∀9 ∈ I .
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From here, we can see that E+8 (x8 ) is a minimum over a collection

of linear functions, and hence a concave function.

A.1 Solving the Eisenberg-Gale Relaxation

Here we show how to solve the (Eisenberg-Gale Relaxation) using

demand queries.

Lemma 12. Given demand oracles for E1, · · · , E= , an optimal solu-

tion x∗ for (Eisenberg-Gale Relaxation) can be found within a poly-

nomially small error in polynomial time. Moreover, the support of x∗

has size polynomial in =.

Since E+8 (x8 ) is a nonnegative concave function, log E
+
8 (x8 ) is a

concave function aswell (wherever E+8 (x8 ) > 0). If we implement the

evaluation and supergradient oracles for log E+8 (x8 ), then we can use

standard techniques (see, e.g., [15]) to maximize
∑
8∈A log E+8 (x8 )

over the convex polytope

% = {x ∈ RI×A+ : ∀9 ∈ I,
∑
8∈A

G8 9 ≤ 1}.

The function E+8 (x8 ) can be evaluated with polynomially many

demand queries; this is well-known [17] and holds because the

demand oracle happens to be the separation oracle for (Dual LP).

Hence we can also evaluate log E+8 (x8 ). We focus here on the imple-

mentation of a supergradient oracle.

A supergradient of log E+8 at a point z is any linear function !8 (y)

such that !8 (z) = log E+8 (z) and !8 (y) ≥ log E+8 (y) everywhere.

Given z, as a �rst step, we �nd a supergradient of E+8 itself: This can

be done by solving the dual LP and �nding U and (? 9 : 9 ∈ I) such

that E+8 (z) = U +
∑

9∈I ? 9I 9 = U +p ·z. Since E+8 (y) for every y is the

minimum over such linear functions, we also have E+8 (y) ≤ U +p · y

for all y. Hence U + p · y is the desired supergradient at z.

Next, we compute the gradient of log(U + p · y) w.r.t. y:

∇ log(U + p · y) =
∇(U + p · y)

U + p · y
=

p

U + p · y
.

We claim that the linear approximation of log(U + p · y) obtained

by evaluating this gradient at z,

!8 (y) = log(U + p · z) + (y − z) · ∇(log(U + p · y)) |z

= (U + p · z) + (y − z) ·
p

U + p · z

is a valid supergradient for log E+8 (y) at z. Indeed, we have

log E+8 (z) = log(U + p · z) = !8 (z),

and for all y,

log E+8 (y) ≤ log(U + p · y)

≤(U + p · z) + (y − z) · ∇(log(U + p · y)) |z = !8 (y) .

where the second inequality follows from the concavity of log(U +

p · y).

Hence, (Eisenberg-Gale Relaxation) can be solved in polynomial

time, within a polynomially small error, using standard convex

optimization techniques [15]. In particular, we can �nd a point x

such that
∑
8∈A log E+8 (x

∗
8 ) ≤

∑
8∈A log E+8 (x8 ) +n for every feasible

solution x∗.

Finally, let’s explain why the solution can be assumed to have

polynomially bounded support. Given a fractional solution G8 9
(which has obviously polynomially bounded support), for each

agent 8 , using demand queries we also obtain a solution of (Dual

LP) certifying the value of E+8 (x8 ). By complementary slackness,

there is a matching primal solution of (Eisenberg-Gale Relaxation)

which has nonzero variables corresponding to the tight constraints

in (Dual LP) that de�ne the dual solution. Since the dimension of

(Dual LP) is polynomial, the number of such tight constraints is

also polynomial. Hence we can assume that the number of nonzero

variables in (Eisenberg-Gale Relaxation) is polynomial.

A.2 Properties of the Optimal Solution

Consider now the (Eisenberg-Gale Relaxation) in a general form,

with objective functions 58 (which could be equal to E+8 or perhaps

some other extension of E8 ).

max
∑
8∈A

log 58 (x8 ) (Eisenberg-Gale Relaxation)

∑
8∈A

G8 9 ≤ 1 ∀9 ∈ I

G8 9 ≥ 0 ∀8 ∈ A, 9 ∈ I

Suppose that x is an optimal solution of this relaxation. We

will need the following property, which is also stated in [22] in

the context of general concave valuations (Lemma 4.1 in [22]).

Our proof here is much simpler. First, we consider the case of

di�erentiable concave 58 which makes the proof cleaner. (Recall

however that E+8 is not di�erentiable everywhere.)

Lemma 13. For an optimal solution x of (Eisenberg-Gale Relax-

ation) with di�erentiable nonnegative monotone concave functions 58 ,

and any other feasible solution x∗, we have

∑
8∈A

58 (x
∗
8 )

58 (x8 )
≤ |A|.

Proof. Since 58 (x) is a concave function, we have

58 (x
∗
8 ) ≤ 58 (x8 ) + (x

∗
8 − x8 ) · ∇58 (x8 ).

From here, we get

∑
8∈A

58 (x
∗
8 )

58 (x8 )
≤

∑
8∈A

58 (x8 ) + (x
∗
8 − x8 ) · ∇58 (x8 )

58 (x8 )

=|A| +
∑
8∈A

(x∗8 − x8 ) · ∇(log 58 (x8 )) ≤ |A|

using the fact that x∗ is feasible and x is an optimum for the objective

function
∑
8∈A log 58 (x8 ). □

To deal with a more general situation where 58 is not necessarily

di�erentiable, and we don’t �nd an exact optimum, we prove a

robust version of this lemma.

Lemma 14. Let 58 : [0, 1]
I → R for each 8 ∈ A be nonnegative,

monotone and concave. For n > 0, let x be an n4-approximate solu-

tion of (Eisenberg-Gale Relaxation), in the sense that for every other

feasible solution x′,∑
8∈A

log 58 (x
′) ≤

∑
8∈A

(log 58 (x) + n
4). (1)
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And suppose further that that G8 9 ≥ n for all 8, 9 , Then for every

feasible solution x∗, we have

∑
8∈A

58 (x
∗
8 )

58 (x8 )
≤ (1 + 2n) |A|.

Note that we must necessarily have n ≤ 1/|A|, because 1 ≥∑
8∈A G8 9 ≥ n |A|.

Proof. Let x satisfy the assumptions of the lemma. For any

feasible x∗ and ) ≥ 1, using the concavity of 58 , we can write

58 (x
∗
8 ) − 58 (x8 ) ≤ ) (58 (x8 +

1

)
(x∗8 − x8 )) − 58 (x8 )) .

From here,

∑
8∈A

58 (x
∗
8 ) − 58 (x8 )

58 (x8 )
≤ )

∑
8∈A

58 (x8 +
1
) (x

∗
8 − x8 )) − 58 (x8 )

58 (x8 )
.

Note that since ~8 9 ≥ n , we have x8 +
1
) (x

∗
8 − x8 ) ≤ x8 +

1
) 1 ≤

(1 + 1
)n )x8 . Also, 58 (0) ≥ 0, so by monotonicity and concavity,

58 (x8 +
1
) (x

∗
8 − x8 )) ≤ 58 ((1 +

1
)n )x8 ) ≤ (1 +

1
)n ) 58 (x8 ). Similarly,

58 (x8 +
1
) (x
∗
8 −x8 )) ≥ 58 (x8 −

1
) 1) ≥ (1− 1

)n ) 58 (x8 ). Hence the ratio

A8 =
58 (x8+

1
)
(x∗

8
−x8 ) )−58 (x8 )

58 (x8 )
is at most X =

1
)n in absolute value, and

we can use the following elementary approximation:

A8 − X
2 ≤ log(1 + A8 ) ≤ A8 .

Plugging into the inequality above, we obtain

∑
8∈A

58 (x
∗
8 ) − 58 (x8 )

58 (x8 )
≤)

∑
8∈A

A8 ≤ )
∑
8∈A

(X2 + log(1 + A8 ))

=
|A|

)n2
+)

∑
8∈A

log
58 (x8 +

1
) (x

∗
8 − x8 ))

58 (x8 )
.

Applying the assumption of the lemma to the feasible solution

x′ = x8 +
1
) (x

∗
8 − x8 ), we have

∑
8∈A log

58 (x8+
1
)
(x∗

8
−x8 ) )

58 (x8 )
≤ n4 |A|,

which gives

∑
8∈A

58 (x
∗
8 )

58 (x8 )
= |A| +

∑
8∈A

58 (x
∗
8 ) − 58 (x8 )

58 (x8 )
≤ |A| +

|A|

)n2
+)n4 |A|.

We set ) to equate the last two terms: ) = 1/n3, which gives the

statement of the lemma. □

Corollary 15. Given a value oracle and a supergradient oracle

for each 58 , for any constant U > 0, we can �nd a solution x of

(Eisenberg-Gale Relaxation) in polynomial time such that for any

feasible solution x∗,

∑
8∈A

58 (x
∗
8 )

58 (x8 )
≤ (1 + U) |A|.

Proof. For n > 0 (to be chosen at the end), we run a convex

optimization algorithm on (Eisenberg-Gale Relaxation) with the

additional constraint that G8 9 ≥ n , to obtain a solution x such that

for any feasible x′ satisfying the same constraint, we have∑
8∈A

log 58 (x8 ) ≥
∑
8∈A

log 58 (x
′) − n4=.

By Lemma 14, this solution also satis�es∑
8∈A

58 (x
′
8 )

58 (x8 )
≤ (1 + 2n)=.

Finally, note that every feasible solution x∗ of (Eisenberg-Gale

Relaxation) can be modi�ed to obtain a feasible solution x′ = (1 −

n=)x∗ + n= · 1= 1 which satis�es the constraint G ′8 9 ≥ n , and we have

58 (x
′
8 ) ≥ (1 − n=) 58 (x

∗
8 ) for every 8 ∈ A. Therefore, our solution

also satis�es ∑
8∈A

58 (x
∗
8 )

58 (x8 )
≤
(1 + 2n)=

1 − n=
.

For n =
U

2+(1+U )=
, we obtain the desired statement. □

B REMATCHING LEMMAS

Here we prove the rematching lemmas from Section 2.2. These are

essentially identical to lemmas in previous work on Nash social

welfare, only reformulated in a way convenient for our presentation.

We give self-contained proofs here for completeness.

Proof of Lemma 8. Suppose that (∗8 = �∗8 ∪)
∗
8 where �∗8 ⊆ H

and) ∗8 ⊆ I
′. We de�ne amatching c as follows: For each nonempty

�∗8 , let c (8) be the item of maximum value (as a singleton) in �∗8 .

For �∗8 = ∅, let c (8) be an arbitrary item inH not selected as c (8′)

for some other agent. (Since |H | = |A|, we can always �nd such

items.) Recall that A′ are the agents who get positive value from

I′; in particular, we can assume ) ∗8 = ∅ for 8 ∉ A′. Then we have,

using monotonicity and subadditivity∏
8∈A

E8 ((
∗
8 )

max{+8 , E8 (c (8))}
≤

∏
8∈A

E8 ()
∗
8 ) + E8 (�

∗
8 )

max{+8 , E8 (c (8))}

≤
∏
8∈A

E8 ()
∗
8 ) + |�

∗
8 |E8 (c (8)))

max{+8 , E8 (c (8))}
≤

∏
8∈A′

(
E8 ()

∗
8 )

+8
+ |�∗8 |

) ∏
8∈A\A′

|�∗8 |.

Here we use the AMGM inequality:

©­«
∏
8∈A′

(
E8 ()

∗
8 )

+8
+ |�∗8 |

) ∏
8∈A\A′

|�∗8 |
ª®¬
1/|A |

≤
1

|A|

©­
«
∑
8∈A′

(
E8 ()

∗
8 )

+8
+ |�∗8 |

)
+

∑
8∈A\A′

|�∗8 |
ª®
¬
≤ 2 + 1

where the last inequality is by assumption and the fact that∑
8∈A

|�∗8 | ≤ |H | = |A|.

□

Proof of Lemma 9. Let �̃ = {8 ∈ A : ,8 < max{E (c (8)), a8 }.

We de�ne a directed bipartite graph � between �̃ andH , with two

types of edges: �g = {(g (8), 8) : 8 ∈ �̃} and �c = {(8, c (8) : 8 ∈ �̃}.

We also de�ne:

• �a = {8 ∈ �̃ : a8 > E8 (c (8))},

• �g = �a ∪ {8 ∈ �̃ : ∃ directed path in � from 8 to �a },

• �c = �̃ \�g .

We de�ne a matching d as follows;

• For 8 ∈ �g , d (8) := g (8),

• For 8 ∈ �c , d (8) := c (8).
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• For 8 ∉ �̃, we de�ne d (8) arbitrarily, to make d a matching.

First, observe that this is indeed a matching: If it was the case

that g (8) = c (8′) = 9 for some 8 ∈ �g , 8
′ ∈ �c , then we would have

edges (8′, 9) and ( 9, 8) in the graph, and since there is a directed

path from 8 to�a (8 ∈ �g ), there would also be a directed path from

8′ to �a , contradicting the fact that 8
′ ∈ �c . Hence, d is a matching.

Next, we analyze the value guarantee for d :∏
8∈A

max{,8 , E8 (d (8))} ≥
∏

8∈A\�̃

,8

∏
8∈�̃

E8 (d (8))

=

∏
8∈A\�̃

,8

∏
8∈�g

E8 (g (8))
∏
8∈�c

E8 (c (8)) .

We claim that
∏

8∈�g
E8 (g (8)) ≥

∏
8∈�a

a8
∏

8∈�g \�a
E8 (c (8)).

Observe that the vertices of�g can be covered disjointly by directed

paths that terminate in �a (from each vertex of �g , there is such

a path and it is also unique, because the in-degrees / out-degrees

in the graph are at most 1). Let % denote the �g -vertices on some

directed path like this, and let B be its last vertex (in �a ). If it was

the case that
∏

8∈% E8 (g (8)) < aB
∏

8∈%\{B } E8 (c (8)), then we could

modify the matching g by swapping its edges on % for the c-edges

from % \ {B}, and �nally an element of value a8 for B (since this item

is outside ofH and hence available). This would increase the value

of the matching g , which was chosen to be optimal, so this cannot

happen.

It follows that
∏

8∈% E8 (g (8)) ≥ aB
∏

8∈%\{B } E8 (c (8)) for every

maximal directed path terminating in �a , and since these paths

cover �g disjointly, by combining all these inequalities we obtain∏
8∈�g

E8 (g (8)) ≥
∏
8∈�a

a8

∏
8∈�g \�a

E8 (c (8)).

Substituting this into the inequality above,∏
8∈A

max{,8 , E8 (d (8))} ≥
∏

8∈A\�̃

+8

∏
8∈�a

a8

∏
8∈�g

E8 (c (8))

=

∏
8∈A

max{,8 , a8 , E8 (c (8))}.

□

C CONCENTRATION OF SUBADDITIVE

FUNCTIONS

Let us start with a simple lower bound on the expected value of a

random set with independently sampled elements.

Lemma 16. If 5 : 2" → R+ is a monotone subadditive function

and ' is a random subset of ( where each element appears indepen-

dently with probability 1/: , : ≥ 1 integer, then

E[5 (')] ≥
1

:
5 (() .

Proof. Consider a random coloring of ( , where every element

9 ∈ ( receives independently a random color 2 ( 9) ∈ [:]. De�ning

(ℓ = { 9 ∈ ( : 2 ( 9) = ℓ}, we see that each set (ℓ has the same

distribution as the set ' in the Lemma. Therefore,

E[5 (')] = E[5 ((1)] = . . . = E[5 ((: )] = E

[
1

:

:∑
ℓ=1

5 ((ℓ )

]
≥

1

:
5 (()

by subadditivity. □

This property is similar to the properties of submodular or self-

bounding functions, which satisfy very convenient concentration

bounds (similar to additive functions). Unfortunately, the same

bounds are not true for subadditive functions; however, some con-

centration results can be recovered with a loss of certain constant

factors.

Here we state a powerful concentration result presented by

Schechtman [32], based on the “@-point control” concentration

inequality by Talagrand [33, 34]. We state it here in a simpli�ed

form suitable for our purposes.

Theorem 17. Let 5 : 2" → R+ be a monotone subadditive func-

tion, where 5 ({8}) ≤ 1 for every 8 ∈ " . Then for any real 0 > 0 and

integers :, @ ≥ 1, and a random set ' from a product distribution,

Pr[5 (') ≥ (@ + 1)0 + :] (Pr[5 (') ≤ 0])@ ≤
1

@:
.

This statement can be obtained from Corollary 12 in [32] by

extending the de�nition of 5 to Ω
∗
=

⋃
�⊂" 2� simply by saying

5� (() = 5 (() for all ( ⊆ � . Also, we identify 2� with {0, 1}� in a

natural way. Assuming 5 ({8}) ≤ 1means that 0 ≤ 5 (( +8) − 5 (() ≤

1 for any set ( , by monotonicity and subadditivity. Therefore, 5 is

1-Lipschitz with respect to the Hamming distance, as required in

[32]. The statement holds for any product distribution, i.e. a random

set ' where elements appear independently.

Note that Theorem 17 refers to tails on both sides and hence is

more convenient to use with the median of 5 than the expectation.

The next lemma shows that this is not a big issue, since the theorem

also implies that the median and expectation must be within a

constant factor.

De�nition 18. We de�ne the median of a random variable / as

any number med(/ ) =< such that

Pr[/ ≤ <] ≥ 1/2, Pr[/ ≥ <] ≥ 1/2.

For any nonnegative variable, obviously E[/ ] ≥ 1
2med(/ ). For

subadditive functions of independent random variables, we also get

a bound in the opposite direction.

Lemma 19. Let 5 : 2" → R+ be a monotone subadditive function,

where 5 ({8}) ≤ 1 for every 8 ∈ " . Then for a random set ' from a

product distribution,

E[5 (')] ≤ 5(med(5 (')) + 1).

Proof. Let 0 = med(5 (')) be the median.We apply Theorem 17

with : = @ + 1, @ ≥ 3:

Pr[5 (') ≥ (@ + 1) (0 + 1)] ≤
2@

@@+1
≤

(
2

3

)@
.

We can bound the expectation as follows:

E[5 (')] ≤ 4(0 + 1) + (0 + 1)

∞∑
@=3

Pr[5 (') > (@ + 1) (0 + 1)]

≤ 4(0 + 1) + (0 + 1)

∞∑
@=3

(
2

3

)@
< 5(0 + 1).

□
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Hence, we obtain the following as a corollary of Theorem 17 and

Lemma 19. For convenience, we also introduce a parameter a > 0

as an upper bound on singleton values.

Theorem 20. Let 5 : 2" → R+ be a monotone subadditive func-

tion, where 5 ({8}) ≤ a , a > 0, for every 8 ∈ " . Then for any integers

:, @ ≥ 1, and a random set ' where elements appear independently,

Pr

[
5 (') ≤

E[5 (')]

5(@ + 1)
−
(: + 1)a

@ + 1

]
≤

(
2

@:

)1/@
.

Proof. Assume �rst 6 is a function satisfying the assumptions

with a = 1. We use Theorem 17 with parameter 0 = (med(6) −

:)/(@+1). Note that Pr[6(') ≥ (@+1)0+:] = Pr[6(') ≥ med(6)] =

1/2. Hence, Theorem 17 gives

1

2
· (Pr[6(') ≤ 0])@ ≤

1

@:
.

From Lemma 19, we have 0 = (med(6) −:)/(@ + 1) ≥ ( 15E[6(')] −

1 − :)/(@ + 1) which implies the statement for a = 1:

Pr

[
6(') ≤

E[6(')]

5(@ + 1)
−
: + 1

@ + 1

]
≤

(
2

@:

)1/@
.

For a function 5 satisfying the assumptions for a > 0, we apply this

inequality to the function 6(') = 1
a 5 ('), to obtain the statement

of the lemma. □
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