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Abstract—This study introduces a general approach for gen-
erating fuzzy logic rules in regression tasks with complex, high-
dimensional input spaces. The method leverages the power of
encoding data into a latent space, where its uniqueness is analyzed
to determine whether it merits the distinction of becoming a
noteworthy exemplar. The efficacy of the proposed method is
showcased through its application in predicting the acceleration
of one of the links for the Unimation Puma 560 robot arm,
effectively overcoming the challenges posed by non-linearity and
noise in the dataset.

I. INTRODUCTION

Finding accurate and easily interpretable fuzzy logic rules
is a common challenge in fuzzy modeling [1]. Linguistic
fuzzy modeling prioritizes interpretability, while precise fuzzy
modeling prioritizes accuracy [2]. Despite their different ap-
proaches, both strive to minimize the size of their knowledge
base (i.e., collection of fuzzy logic rules) to achieve their
goals [3]. Various techniques have been proposed in the
literature to construct this knowledge base. In techniques such
as the Wang-Mendel (WM) Method [4] or members of the
pseudo-outer-product fuzzy neural network (POPFNN) family
[5]-[12], the construction of the knowledge base is related
to the concept of identifying exemplars to generate fuzzy
logic rules. In other words, if a data point is exceptional, it
should be linked to a rule so we can learn how to manage
such exceptional cases. These methodologies have widespread
adoption in fuzzy modeling and have shown great promise.
However, such methods do not scale well as the problem’s
dimensionality increases, often referred to as “the curse of
dimensionality”. Specifically, the data distribution becomes
more sparse as the number of dimensions grows, and nearly
every data point appears to be an exemplar in high dimensions.
This is problematic since approaches such as the WM Method
or RSPOP (a member of POPFNN) have a theoretical worst-
case scenario of generating fuzzy logic rules that grow linearly
with respect to the training data size. Such performance
guarantees are unacceptable in situations with extensive data
observations and many attributes.

This brings us to the primary motivation for our paper. Sup-
pose we could convert or encode our high-dimensional data
into a lower-dimensional format that remained representative
of the original data. In that case, we might be able to leverage

the “tried and true” techniques such as WM Method, even for
high-dimensional problems.

We present a general algorithm designed to tackle the
challenge of fuzzy modeling in high-dimensional data. First,
we train an artificial neural network called an auto-encoder
to learn an effective lower-dimensional encoding of the high-
dimensional data. Then, we pair the original high-dimensional
data with its respective lower-dimensional (latent) representa-
tion so that the pair remains and moves together through the
subsequent process. Finally, we examine the latent encoding
instead rather than consult the higher-dimensional (original)
representation to identify whether this data observation should
generate a fuzzy logic rule. Our intuition is that if a data
point stands out as exceptional in the lower-dimensional
(latent) representation, it is equally exceptional in the higher-
dimensional (original) data space. Since the latent and original
representations have been paired together, the two, in essence,
move together in lockstep through the algorithm. For this
reason, we call it “The Latent Lockstep Method”.

In this paper, we illustrate the potential of the Latent
Lockstep Method by applying it to a dataset [13] generated
by a realistic simulation for the Puma 560 Arm [14]. We
chose this benchmark for a few reasons. First, there are two
versions with a different number of input features (8 attributes
or 32 attributes), so we can see how the methods’ performance
changes as dimensionality increases. Second, the attributes
(input and output) are continuous values. Third, with more
than 8,000 data observations, this data is quite sizeable, so we
can see if the number of fuzzy logic rules identified grows
linearly concerning the training data size. Lastly, the dataset
offers two versions of noise that have tainted the input values
(moderate or high), effectively making the problem even more
challenging. We show existing methods do not scale well
as the problem difficulty increases, but our Latent Lockstep
Method remains robust and effective in our experiments.

II. METHODOLOGY
A. Fuzzy set identification

We use a single-pass efficient algorithm, CLIP [15], to
create Gaussian membership functions. It is inspired by the
process of human category learning and is more flexible than
other methods, such as Fuzzy C-Means [16], as it does not
require the number of fuzzy sets to be predefined and may



be used online or offline. At a high level, CLIP creates a
fuzzy set for the first data observation seen in the training
data that covers the entire domain. The fuzzy set is defined by
Gaussian membership functions, with parameters for the center
and width. CLIP calculates the similarity match between the
input value and existing fuzzy sets if a new data observation
is encountered. The best-matched fuzzy set is used if the
similarity exceeds a contrasting threshold. If not, a new fuzzy
set accommodates the input value. CLIP continues to refine
fuzzy sets as it processes training data.

Upon seeing the first data observation, x, in the training
data, X, where x = (z1,%2,...,2,) and n is the maximum
dimensionality of the input space, CLIP will create a fuzzy
set —that represents a concept [15] —which covers the entire
domain for some input dimension ¢ where 1 < ¢ < n (¢ will
always refer to the i*” input dimension). Since CLIP produces
fuzzy sets that are defined by Gaussian membership functions
[15], then this newly created fuzzy set has parameters ¢} = z;

and ail = <\/_ (min; —;)2 7 \/_ (max; —x;)2

, where cl1 and
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o} are the center and width of the Gaussian membership

function that describes A}, respectively (the superscript 1 is to
emphasize that it is the first fuzzy set created in 7). A newly
created membership function is centered upon the presented
value, while ®(07,0!) := i[o] + o!] defines a regulator
function and j # .

The regulator function ensures that each fuzzy set has
a suitable buffer space around its center and retains its
unique meaning. The minimum membership threshold e is
established to regulate the membership value within the do-
main [min;, max;]. The regulator function prevents malformed
membership functions, especially when the center is close to
the boundary’s edge. It helps maintain a desirable Gaussian
shape with an equal spread on both sides of the center.

If a fuzzy set already exists in ¢, but a new data observation
X has been encountered (i.e., X # x), then CLIP will calculate
a similarity match between the input value ¥; and all existing
fuzzy sets in i; this “similarity match” is yu (¢!, 0l;%;) where

A7 is the j* fuzzy set to be created in i and ¢/, o7 are its

Gaussian membership function’s properties, respectively.

The best matched fuzzy set is x = argmax; (i s (cf, O'g; Z;)
s.t. “x” references the best matched existing fuzzy set in .
If the similarity between &; and A} exceeds a contrasting
threshold k, then this fuzzy set, A, is able to represent &;
satisfactorily. Otherwise, a new fuzzy set will be created to
accommodate for ; while adjusting and refining fuzzy sets in
1. Formally, this new fuzzy set in ¢ is created by

CJi (t)+1 — fz

ol if 77 = NULL
oli®+1 _ ) R if j& = NULL (D
®(ol,of)  otherwise

where J;(¢) is the number of fuzzy sets that have been created
for ¢ thus far at time-step ¢, and
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After creating the new fuzzy set, the existing fuzzy sets in ¢
accommodate this new addition; this ensures that the fuzzy sets
within ¢ remain distinct. For computational simplicity, only the
newly created fuzzy set’s left and right neighbors (if they exist)
are adjusted/refined. This leads to three possibilities; the new
fuzzy set has:
1) no left neighbor (i.e., jiL = NULL by (4)), then the right
neighbor is fixed: o7 (¢t 4+ 1) = ¢7/:M+1 via (3)

2) no right neighbor (i.e., jﬁ»R = NULL by (5)), then the
left neighbor is fixed: o7 (t + 1) = ¢”i()+1 via (2)

3) left & right neighbors (by (4) and (5)), then both are:
oI (t4+1) = o3 (t+1) = ol O+ via (2) & (3)

The following formulas are used to determine neighboring
fuzzy sets’ eligibility for modification:

ik = NULL if ¢Ji > &; for 1 < j; < J;(t)
! argminj, .z, |¢’* — &;| otherwise
“)
r _ JNULL if ¢t < #; for 1 < j; < J;(t)
Ji argming - z, [/ — ;| otherwise.

&)
Repeat for 1 < ¢ < n using every x € X.
B. The Wang-Mendel Method

The Wang-Mendel (WM) Method is a well-established
technique for generating fuzzy logic rules and is widely used in
the field [4], [17]-[19]. It follows a five-step process designed
for supervised learning. Our task primarily focuses on the
second step, which involves converting candidate fuzzy logic
rules into their fuzzy representation. In the following, we have
adapted the WM Method to only map input data to fuzzy sets
in the input space. This is done for two reasons: (1) we use
a zero-order Takagi-Sugeno-Kang (TSK) FLC with product-
inference engine [3] and (2) we want our proposed method to
be independent of supervised learning; specifically, we want to
propose a fuzzy logic rule generation method that is capable
of other tasks such as fuzzy reinforcement learning [20].

Given a set of training data, X, where x € X and x =
(x1,2a,...,%,), the method transforms each x into its fuzzy
representation through a Cartesian product of fuzzy sets, where
each fuzzy set corresponds to a particular input dimension. To
determine which fuzzy sets are in this Cartesian product, for
1 <7 < n of x, we select the fuzzy set that x; attains the
highest degree of membership to:

* = argmaxAg(xi) for1 <j<J; (6)

where J; represents the number of fuzzy sets within the ith
dimension. Unlike before, J; is now a constant value as CLIP
has been completed and is no longer a function of time ¢.



A fuzzy logic rule links a combination of fuzzy sets to a
specific decision. However, for the sake of versatility, we will
use the scalar O as the decision, as this can be learned through
back-propagation and gradient descent algorithms. Thus, given
a candidate x, we generate a fuzzy logic rule in the form:

Ruley, : (AT, A5, ..., A7) —0 7

where « satisfies (6) for 1 < i < n and Rule;, means the k'"
fuzzy logic rule (k > 1); rules with identical antecedents are
eliminated to prevent redundancy in the knowledge base.

C. Encoding data to a latent space

Our Latent Lockstep Method for fuzzy logic rule generation
utilizes an artificial neural network architecture known as an
auto-encoder [21]. Unlike traditional neural networks that map
input data to a set of labels as their predicted values, an auto-
encoder encodes the input data and then decodes it to retrieve
the original values. This method comprises two distinct parts:
the encoder and the decoder. The encoder aims to learn a com-
pact and effective representation of the input data, often in a
lower or higher dimensional space. The decoder “unpacks” the
encoded data, reversing the encoding process. This approach
is akin to encryption, where the encoded representation of the
input data is deciphered to retrieve the original information.

The intuition behind our approach is driven by the belief
that the latent space, or the compressed data representations,
is vital to accurately identifying the true exemplars. If a data
point shines in the lower dimensional representation, it is a
genuine standout and should be turned into a fuzzy logic
rule. As outlined in the pseudo-code, the method is versatile,
straightforward, and a natural evolution of the WM Method
(referred to as “WM?” in Algorithm 1). This seemingly small
change leads to a substantial decrease in fuzzy rules, making
the results more interpretable and easily comprehended.

This paper implemented the Latent Lockstep Method’s
encoder and decoder as artificial feed-forward neural networks
with hyperbolic activation functions. In theory, any universal
function approximator could be applied here. The encoder has
two sequential hidden layers: the first has a (default) size equal
to half of the input space’s dimensionality, and the second
has a size equal to the specified latent space dimensionality
(a hyper-parameter in our method). Between these layers,
hyperbolic activation is applied to the linear mappings to
introduce non-linearity. The decoder has a similar architecture
but in reverse ordering. Again, any neural architecture may be
used so long as adequate performance is achieved in encoding
and decoding; this architecture is simply a suggestion.

III. EXPERIMENTS & RESULTS

We demonstrate the Latent Lockstep Method’s performance
compared to the WM Method [17] and Wang-Mendel with
Evolving Clusters (WM-EC) Method [22] across select high-
dimensional datasets with continuous input and output space.
We evaluate its effectiveness (MSE), interpretability (fuzzy
logic rule count), and robustness (MSE and fuzzy logic rule
count fluctuations).

Algorithm 1 The Latent Lockstep Method
Input: input training data, X
Output: fuzzy logic rules
rules < )
latent rules < 0
encoder, decoder « train(X)
Xencodea ¢ encoder(X)

Aencoded — CLIP(Xencoded)
Adecoded <~ CLIP(X)
for each Xencoded € Xencoded do
new latent rule ¢ WM (XencodedsAencoded)
if new latent rule ¢ latent rules then
add new latent rule to latent rules
rule < WM(X, Agecoded)
add rule to rules

A. The Unimation Puma 560 Robot Arm

The Puma 560 Arm is an 8-Link All-Revolute Robot Arm,
and the datasets [13] were collected by a realistic simulation
of the forward dynamics using the Matlab Robotics Toolbox
(Release 3) [14]. The task is to predict the distance of the
end-effector from a target. The input variables include joints’
positions and angles, links’ lengths, etc. There are 8 versions of
the data available with varying difficulties, such as the number
of inputs, the non-linearity of the data, and the amount of noise
(sampled uniformly) that has corrupted the input values. For
more details regarding the datasets, please refer to the paper
published by its author, as it is well-described [13].

Within each experiment scenario, the dataset was split
according to a 60/20/20 ratio such that 60% of the data
(4,888 data observations) was used for training, 20% (1,638
data observations) was for validation, and 20% (1,639 data
observations) of the data was reserved for testing.

1) 8 continuous inputs & moderate noise: We begin with a
version of this dataset available on OpenML called kinSnm; it
has nine continuous features: 8 are the inputs (same types
as mentioned previously), and 1 is the target. The dataset
is described as highly non-linear and containing moderate
noise. Although this data is not necessarily high-dimensional,
this benchmark aims to show that the WM Method fails to
overcome problems with only eight dimensions.

The experiment settings are as follows: the parameters for
CLIP are ¢ = 0.2 and « = 0.7; the learning rate is n = 3e —3,
the batch size is 128, and training occurs for 20 epochs.
The WM Method has no parameters specific to it. The WM-
EC Method has a distance threshold, and its search space
was restricted to [0.5,1.0] for this experiment. The Latent
Lockstep Method uses a hyper-parameter that controls the
dimensionality of the latent space. Here, we allowed it to
range from 1 to 4. We used a model-based approach called
Tree Parzen Estimator [23] implemented by a Python library
called Optuna. This Bayesian optimization technique uses
sophisticated heuristics to continue the hyper-parameter search



TABLE I
FOR THE LATENT LOCKSTEP METHOD, FUZZY LOGIC RULES AND THEIR
VALIDATION LOSS ARE SHOWN AS MEAN AND STANDARD DEVIATION (IN
PARENTHESES) FOR EACH ATTEMPTED LATENT SPACE DIMENSIONALITY.

Dimensionality [ Rules Count [ Validation Loss
1 (14 trials) 3.5 (0.5) 0.071 (0.006)
2 (13 trials) 11.46 (2.499) 0.063 (0.011)
3 (10 trials) 39.2 (5.724) 0.059 (0.012)
4 (13 trials) 106.15 (14.733) | 0.062 (0.010)

in areas that achieve the best results. We ran 50 trials for each
method to see how the algorithms performed.

As anticipated, the WM Method was inadequate in gener-
ating a reasonable number of fuzzy logic rules for the dataset.
It consistently identified an excessive 3,036 fuzzy logic rules,
greatly exceeding our computational abilities to calculate the
FLC outputs. As a result, we are unable to report the losses
here. The fact that the WM Method identified so many fuzzy
logic rules represents a significant failure in achieving our
primary objective of generating a minimal number of rules.
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Fig. 1. The Latent Lockstep Method: (left) training loss; (right) validation

loss. The x-axis is the batches.
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Fig. 2. Using the Latent Lockstep Method on 8 continuous input data, each
trial is represented by a marker to display the relationship between the number
of fuzzy logic rules and the FLC’s final validation loss (lower is better).

Fig. 1 shows FLC’s training and validation loss for each
Latent Lockstep Method trial. Fig. 2 displays the possible
fuzzy logic rules, ranging from 3 to 133, and validation loss,
ranging from 0.042 to 0.073. Table I breaks down trials to
observe how the latent space’s dimensionality affects rule
count and validation loss. The best model’s test loss is 0.042.

Fig. 3 displays FLC’s training and validation loss for each
WM-EC Method trial. As shown in Fig. 4, possible fuzzy logic

Fig. 3. The WM-EC Method: (left) training loss; (right) validation loss. The
z-axis is the batches.
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Fig. 4. Plotting each trial as a marker, the WM-EC Method was used on 8
continuous input data to show the relationship between the number of fuzzy
logic rules and the FLC’s final validation loss (lower is better).

rules range from 33 to 643, with validation loss ranging from
0.039 to 0.073. Table II breaks down the trial runs to examine
how latent space dimensionality affects fuzzy logic rules and
validation loss. The best model (concerning rule count and
validation loss) has a test loss of 0.046.

The WM Method was ineffective in generating a reasonable
number of fuzzy logic rules in the 8-dimensional example.
The Latent Lockstep Method (across all 50 trials) generates an
average of 39.4 (std. dev. = 42.27) rules, whereas the WM-EC
Method (across all 50 trials) generates an average of 185.66
(std. dev. = 171.2) rules. According to an independent samples
t-test, this difference is statistically significant with ¢(49) =
5.806 and a p-value < 0.0005.

2) 32 continuous inputs & high noise: The WM Method
is unsuitable for high-dimensional problems, as was quickly
witnessed in the previous experiment. However, the WM-EC
Method was at least competitive with the proposed Latent

TABLE 11
FOR THE WM-EC METHOD, FUZZY LOGIC RULES AND THEIR
VALIDATION LOSS ARE SHOWN AS MEAN AND STANDARD DEVIATION (IN
PARENTHESES) FOR EACH VALUE BIN OF THE DISTANCE THRESHOLD.
Rules Count

Distance Threshold | | Validation Loss

0.5,0.6] (9 trials) 516 (71.068) 0.054 (0.009)
0.6,0.7] (9 trials) | 233.33 (42.599) | 0.060 (0.009)
0.7,0.8] (10 trials) 123.7 (21.895) 0.060 (0.010)
0.8,0.9] (14 trials) 70.07 (9.384) 0.058 (0.011)
[0.9,1.0] (8 trials) 40.13 (4.910) 0.055 (0.011)




Lockstep Method. We will now demonstrate how this apparent
equivalence may be misleading by increasing the input dimen-
sionality to 32 and increasing the amount of noise within those
inputs to demonstrate that not even the WM-EC Method is
robust to scaling the input dimensionality.

The experiment settings are the same as before, where the
parameters for CLIP are ¢ = 0.2 and x = 0.7, the learning
rate is 7 = 3e — 3, the batch size is 128, and training occurs
for 20 epochs. Also, instead of allowing the dimensionality
of the latent space to fluctuate (in the case of the Latent
Lockstep Method) or the distance threshold to change (in the
case of the WM-EC Method), we selected the best hyper-
parameters for those based upon the eight continuous inputs
and moderate noise in an attempt to see how robust or how
sensitive the methods are to a change in input dimensionality
or noise frequency. So, the dimensionality of the latent space
was determined to be 2, and the distance threshold was 1.0.

Despite the WM-EC Method’s strong performance in the
previous scenario, it failed to generalize to the increase in
dimensionality and noise. It consistently identified 4,888 fuzzy
logic rules, which exceeded our computational abilities to
calculate the FLC outputs. Still, during a single run that was
able to finish, the measured loss was acceptable at 0.0008,
but this is effectively a k-nearest neighbors model as it has
“lazily memorized” the training data (there were 4,915 data
observations) and their associated outputs.
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Fig. 5. The Latent Lockstep Method: (left) training loss; (right) validation
loss. The x-axis is the batches.
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Fig. 6. Plotting each trial as a marker, the Latent Lockstep Method was used
on 32 continuous input data to show the relationship between the number of
fuzzy logic rules and the FLC’s final validation loss (lower is better).

Fig. 5 displays FLC’s training and validation loss for each
Latent Lockstep Method trial. Fig. 6 shows that the method

can use 9 to 16 fuzzy logic rules, achieving a validation loss
of approximately 0.039 to 0.073, with an average of 12 rules
(std. dev. = 2.27). The best trial used only nine rules, with a
validation loss of 0.039 and a test loss of 0.044.

IV. RELATED WORK

In the early 1990s, research on self-organizing FLCs and
fuzzy modeling led to several breakthroughs. One notable
advancement was Lin and Lee’s connectionist representation
of an FLC, which allowed for automatic design through a com-
bination of unsupervised and supervised learning, similar to an
artificial neural network [24]-[26]. Kohenen’s feature-maps
algorithm identified fuzzy sets and considered all possible
fuzzy logic rules. Although, this approach does not scale well
with increasing input dimensionality. These difficulties led to
the study of FLC’s equivalence with artificial neural networks
[27]; such methods were successfully used in Iris classification
[27], LED display recognition [28], and intelligent tutoring
systems [29]. Still, their rules are conditioned upon neu-
ron activations. A sub-category of neuro-fuzzy networks, the
POPFNN family [5]-[12] improved upon previous methods.
POPFNN-TVR [5] used a single pass to identify fuzzy logic
rules with POP learning. However, its knowledge base could
still snowball. To address this issue, LazyPOP [6] debuted
to reduce knowledge base growth but required user-defined
thresholds. Subsequently, POPFNN-CRI [8] was introduced,
eliminating the need for supervised learning but is frequently
employed for further refinement.

To provide a rough comparison, the performance of
POPFNN-CRI was evaluated on the Iris dataset. It required
42 fuzzy logic rules to solve the 4-input dimension problem
with 150 data observations [8]. Later, SANFIS was developed
and solved the Iris dataset with just 3 fuzzy logic rules [30].
The algorithm was also applied to the Nakanishi datasets
[31], which consist of data describing a non-linear system
(4 attributes; 50 data observations), the human operation of
a chemical plant (5 features; 70 data observations), and the
daily price of a stock in the stock market (10 attributes, 100
data observations). The POPFNN-CRI algorithm identified
192, 1,920, and 3,000,000 fuzzy logic rules for the above
datasets [9]. To improve this, RSPOP-CRI was proposed [9],
identifying only 22, 24, and 50 fuzzy logic rules, respectively.
After attribute and rule reduction, RSPOP-CRI settled upon
17, 14, and 29 rules [9]. The rule identification of RSPOP-
CRI is superior to LazyPOP since it has linear fuzzy logic rule
growth concerning the training data. Some of the latest and
most cutting-edge research still relies on the RSPOP approach,
such as ieRSPOP [11], ARPOP [10], and PIE-RSPOP [12].

Recent literature has explored the use of auto-encoders
in fuzzy rule reduction, but the resulting fuzzy logic rules’
premises are no longer conditioned upon the original features;
instead, they are built directly from the latent representations,
which hampers interpretability concerning semantic meaning
[32]. In our Latent Lockstep Method, we propose using the
latent representation fo identify exemplary data points rather
than convert the data to a lower-dimensional representation



to address the “rule explosion” problem. For example, a
proposed Deep Learning Based Fuzzy Classifier leveraged
a [-Variational Autoencoder for high-dimensional data [33];
still, the disentangled latent space representation learned is
then used as the semantics for the fuzzy logic rules, and the
interpretability of the rule base was constrained to analyzing
latent traversals and latent dimensions’ heat maps. Similarly,
fuzzy auto-encoders have constructed hierarchical FLCs layer-
by-layer [34], but we are interested in “flat” FLCs in this work.

Genetic fuzzy systems for fuzzy linguistic modeling have
also explored high-dimensional regression problems. For ex-
ample, embedded genetic database learning (involved vari-
ables, linguistic terms, etc.) using multi-objective evolutionary
algorithms may produce a set of fuzzy logic rules with reduced
model complexity. Such algorithms include, for example,
METSK-HD® [35], FSMOGFS® + TUN® [36], MOFFS [37],
FMIFS [38], [39], MOFSE [40], and MOKBL+MOMs [37],
which have been evaluated on the Unimation Puma 560 robot
arm task as well, resulting in an average number of fuzzy
rules ranging from 13.8 [37] to 87.5 [35]. Rule identification
with the Latent Lockstep Method may appear approximately
comparable to these existing works, but the advantage is its
implementation simplicity and computational time. Algorithms
like MOKBL+MOMs require complex, multi-step procedures
to identify and prune fuzzy logic rules with appropriate
fitness function definitions. These techniques generate and
evaluate several candidate FLCs, whereas the Latent Lockstep
Method generates only a single FLC. As a result, executing
MOKBL+MOMs may take upwards of two hours on average
for a single run [37], compared to the Latent Lockstep Method,
which only takes a few minutes to train the auto-encoder.
Lastly, the Latent Lockstep Method’s minimal assumptions
regarding fuzzy set definition or objective (e.g., regression,
classification) permit it additional flexibility and adaptability
to various settings, such as fuzzy reinforcement learning [20],
where actions’ Q-values may not be known in advance. Future
work could explore incorporating auto-encoders into the rule
identification process of genetic fuzzy systems to improve
performance, and computational time, or leverage the mech-
anisms introduced in these works to eliminate unnecessary
antecedents in the fuzzy logic rules’ premises.

V. LIMITATIONS

Validation and comparison to existing methods are con-
strained by two limitations: (1) the design, as well as analysis
of this algorithm, is late-breaking, and (2) to the best of our
knowledge, most existing works in fuzzy logic rule generation
often claim to work in high dimensions but are only bench-
marked on space with a dimensionality of 10 or less [9], [41]-
[43]. We go beyond these dimensions here, so most existing
methods cannot serve as a baseline as their use is computation-
ally intractable or prohibitive concerning computational time.
In future research, comparing the Latent Lockstep Method to
evolutionary or genetic algorithm approaches would be valu-
able. Although the latter often requires a predefined number of
rules in the generation population, the Latent Lockstep Method

automatically determines the necessary number for fuzzy logic
control.

Despite using a PyTorch-based neuro-fuzzy network, loss
plots could not be generated for FLCs with more than 3k
rules. Training such models wasn’t computationally feasible.
However, the algorithms’ main goal is to produce minimal
fuzzy rules and then evaluate their performance. FLCs with
large knowledge bases fail this first and essential criterion.

VI. DISCUSSION AND BROADER IMPACT

This paper introduces the Latent Lockstep Method, a stable
algorithm with tremendous potential for generating fuzzy logic
rules in high-dimensional spaces as it aims to reduce the
required number of rules. It is task-indifferent and could be
used for classification or fuzzy reinforcement learning [20]
since it only relies upon the input data for rule generation.

The Latent Lockstep Method offers an additional advantage
over ad hoc design methods like the WM-EC Method. It
enables the evaluation of the effectiveness of identified fuzzy
logic rules in advance. In contrast, the WM-EC Method
requires a distance threshold to be specified, leading to uncer-
tainty about the aggregation level’s aggressiveness in the initial
FLC design. The Latent Lockstep Method offers a degree of
certainty by demonstrating its ability to decode the input data
from its latent representation.

Lastly, the Latent Lockstep Method offers a new perspective
on fuzzy logic rule generation by shifting the focus onto a
lower dimensional encoding that may have theoretical impli-
cations regarding the growth of the FLC knowledge bases. For
example, FLCs constructed by WM Method have a worst-
case scenario of generating a knowledge base that grows
linearly concerning the unique training data [4]. In the worst
case, the Latent Lockstep Method grows linearly with unique
encoded training data. Suppose the unique encoded training
data is smaller than the unique training data. In that case, our
method will produce FLCs with smaller knowledge bases than
most existing works [4]-[12]. This offers new opportunities to
investigate the connection between fuzzy logic rule generation
and auto-encoders in fuzzy modeling research.

While there may still be room for improvement, particularly
in reducing the generated rules’ width (i.e., the number of
antecedents/premises) and making them more human-readable,
the Latent Lockstep Method represents a significant step
forward in fuzzy linguistic modeling. Future work may explore
its integration with Rough Set Theory, which has been shown
to reduce the size of FLC knowledge bases [9]-[12].
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