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Abstract—Deep Reinforcement Learning (Deep RL) has revo-
lutionized the field of Intelligent Tutoring Systems by providing
effective pedagogical policies. However, the ‘“black box” nature
of Deep RL models makes it challenging to understand these
policies. This study tackles this challenge by applying fuzzy
logic to distill knowledge from Deep RL-induced policies into
interpretable IF-THEN Fuzzy Logic Controller (FLC) rules.
Our experiments show that these FLC policies significantly
outperform expert policy and student decisions, demonstrating
the effectiveness of our approach. We propose a Temporal
Granule Pattern (TGP) mining algorithm to increase the FLC
rules’ interpretability further. This work highlights the potential
of fuzzy logic and TGP analysis to enhance understanding of
Deep RL-induced pedagogical policies.

I. INTRODUCTION

Intelligent Tutoring Systems (ITSs) are e-learning systems
that leverage artificial intelligence and cognitive theory to en-
hance students’ learning experience by providing personalized
guidance through problem-solving and offering adaptive hints
and feedback. ITSs are a sequential decision process where
pedagogical strategies or policies determine the following sys-
tem action. Although giving students the power to make their
own decisions can lead to increased motivation, engagement,
and persistence [1]-[5], not all students have the necessary
meta-cognitive skills for effective decision-making [6]-[11].
Therefore, most ITSs are tutor-driven and rely on hand-coded
pedagogical rules from domain experts, but the efficacy of
these predefined strategies is often uncertain [12].

Recently, Deep Reinforcement Learning (Deep RL) has
proven to be highly effective in inducing pedagogical policies
from student-system interaction data [13], [14]. Although
traditional cause-and-effect approaches provide clear insights,
Deep RL is occasionally criticized for its “black box™ nature,
which makes it challenging to comprehend the derived policies
[15], [16]. To address this limitation, knowledge distillation is
used to learn a simpler model from a more complex one [17].

We propose knowledge distillation of a Deep RL policy into
a Fuzzy Logic Controller (FLC). By representing the policy
as a collection of IF-THEN rules, each with a clear linguistic
meaning, we aim to achieve the same function approximation
power as a neural network while also maintaining interpretabil-
ity [18]. FLCs are a proven technology that can solve a
wide range of complex tasks, from surgical planning [19]
to controlling chaotic systems [20]. For example, FLCs have

controlled unmanned aerial vehicles, where the agent’s rules
were intuitive and easily understandable by humans [21]. By
using FLCs for knowledge distillation, we can not only distill
complex policies into simpler, more interpretable forms but
also retain their effectiveness in solving real-world problems.

We aim to overcome the FLCs’ challenges when applied
to complex tasks, such as the need for domain experts for
initial design and the curse of dimensionality [22]. We leverage
an innovative approach called the All-Permutations Fuzzy
Rule Base (APFRB) [23] to directly extract fuzzy logic rules
from the pedagogical policies induced by a Deep Q-Network
(DQN), a classic Deep RL model successfully applied to
complex tasks in robotics [24], video game playing [25], and
pedagogical policy induction [10]. Here, we focus on the
pedagogical decisions related to presenting the next problem
as a Worked Example (WE), a Problem Solving (PS), or a
Faded Worked Example (FWE) in an ITS. WE show a detailed
example of how the tutor solves a problem, PS requires
students to solve the same problem independently, and FWE
allows students and the tutor to co-construct the solution.

To evaluate the effectiveness of the FLC-derived rules, we
compare their performance with policies designed by domain
experts (Expert) and policies allowing students to make their
own decisions (StuChoice). Our results show that the FLC
approach significantly outperforms both Expert and StuChoice
policies, demonstrating the effectiveness of our approach in
personalizing the learning experience for students.

We sought to gain further insights into the FLC-derived
rules by proposing Temporal Granule Pattern (TGP) mining.
Given that humans tend to think in approximate fuzzy logic
[19] and f-granulation can aid our understanding of human
thinking [26], we developed a TGP algorithm that combines
fuzzy temporal association rule mining with f-granulation
theory. The extracted temporal granule patterns shed light on
the pedagogical behaviors exhibited by the FLC-derived rules,
Expert rules, and StuChoice. Our results showed that the three
conditions displayed distinct temporal granule patterns, and
students who learned more from our tutor showed different
ways than those who learned less. Our TGP algorithm provides
a valuable tool for understanding the pedagogical strategies
used in ITSs and could be applied to other domains. To our
knowledge, this is the first attempt to identify meaningful
temporal patterns in FLCs using f-granulation.



II. BACKGROUND & RELATED WORK
A. Fuzzy Logic

Historically, FLCs were manually crafted by human experts,
but can now be automatically derived [22], [23], [27]-[29].
Deriving FLCs is typically problem-dependent [27], or greatly
hindered by the curse of dimensionality [22], [30]. The dif-
ficulty in designing FLCs (e.g., multivariable systems), has
led to the study of their equivalence with Artificial Neural
Network (ANN) [31], [32]. Specifically, APFRB directly trans-
lates an ANN to a FLC —bypassing the above challenges
[23]. For example, APFRB has shown great success in Iris
classification [23] and LED display recognition [33]. Closely
related to this work, Gevaert et al. applied FLC to DQN-
induced polices [34]: using the 4-feature state Cart Pole task,
a DQN policy was induced online —while interacting with
the environment; once the DQN was trained, a FLC was also
induced online by using the DQN’s knowledge [34]. However,
many real-world tasks, such as e-learning and healthcare, are
offline learning in that both our DQN and APFRB are induced
and evaluated using limited pre-collected data. Building accu-
rate simulations or simulated students is especially challenging
as human learning and disease progression are complex, poorly
understood processes. In our case, it remains unclear whether
APFRB can extract effective fuzzy logic rules from DQN-
induced policies with high-dimensional state representations
in an offline learning manner.

While prior work has focused heavily on deriving effective
fuzzy logic rules, it has largely neglected to examine how
to interpret these rules despite the claim that humans think
with fuzzy logic and f-granulation plays an important role in
understanding human thinking [19], [26]. A method combining
fuzzy temporal association rule mining with f-granulation has
been proposed before [35]. However, their approach has limita-
tions when analyzing dynamic and adaptive fuzzy rule bases
since it relies on a fuzzy information granule (FIG) called
Linear Gaussian FIG, which has a core that depends on time
but cannot handle items’ lifespans. In contrast, TGP Mining
is designed to analyze temporal granule patterns of fuzzy
rule bases that change over time while remaining intuitive
and computationally affordable. Prior work on applying fuzzy
logic to ITSs relied upon expert-designed FLCs and mainly
involved student modeling [36]—[39].

B. Applying Reinforcement Learning to ITSs

ITSs rely on student-agent interactions that can be modeled
as sequential decision-making problems under uncertainty.
These problems can be tackled using Reinforcement Learning
(RL), a learning paradigm aiming to maximize long-term
rewards without knowing the “correct” decisions at each
immediate time step [40]. Recent research has explored the
application of RL and Deep RL to develop effective peda-
gogical policies for ITSs [14], [41], [42]. For instance, Wang
et al. employed various Deep RL techniques to develop ped-
agogical policies that enhance students’ normalized learning
gain in an educational game [42]. Similarly, Sanz Ausin et

al. utilized offline Deep RL to design pedagogical policies
that boosted student learning, which was more effective than
expert-designed baseline policies [43]. However, to our knowl-
edge, no prior work has attempted to interpret the pedagogical
policies induced by Deep RL.

C. Student Making Pedagogical Decisions

While students can benefit from making their own deci-
sions during learning [1], [8]-[10], [14], [44], they are not
always effective at making pedagogical decisions. Studies have
shown that students with low prior knowledge exhibit more
ineffective help-seeking behaviors than those with high prior
knowledge [45]. They often do not use hints effectively as they
wait too long before asking for hints [6]. In addition, even
college students often make poor problem selections [46]. In
contrast, our results show that the FLC significantly outper-
forms StuChoice. By applying TGP mining, we gain a deeper
understanding of students’ rules when making pedagogical
decisions.

III. METHODOLOGIES

We will first review f-granulation and Cartesian granules.
Then, we will describe our FLC rule induction procedure
which consisted of three stages: 1) applying Deep RL by
using a Deep Q-Network [47] to induce the original effective
pedagogical policy; 2) transforming the Deep Q-Network into
a shallow neural network with one layer using Knowledge
Distillation [17], and 3) using the APFRB algorithm to derive
FLC rules. Finally, we will describe the TGP algorithm.

A. F-Granulation & Cartesian Granules

Granulation means breaking down a whole into its parts,
leading to granules [26]. Zadeh’s example of the human head
illustrates granulation, where the nose, cheeks, and eyes are
the granules. Information granulation applies this concept to
information using crisp set theory, but imprecise boundaries
between granules limit this approach. Zadeh proposed an
extension called the theory of fuzzy information granulation
(f-granulation) [26], which outlines a general framework that
can accommodate these imprecise boundaries.

Within f-granulation, Cartesian granules can be generalized
to incorporate a variety of constraints contingent on equality,
probability, fuzzy graphs, etc. In this work, they are based
only on possibilistic constraints (i.e., fuzzy sets). A Cartesian
granule, denoted as G , has a core. The core of G is all elements
that definitively belong to G. Upon receiving a new input,
x € R™, we calculate the distance between x and the Gs
core by its membership function, G/(x). Thus, G(x) describes
the visitation of G.

B. Reinforcement Learning with Deep Q-Network

In the conventional RL, an agent interacts with an envi-
ronment £ over a series of decision-making steps, which can
be framed as a Markov Decision Process. The set notation §
and A denote the state and action space of a Markov decision
process, respectively. At each timestep ¢, the agent observes



& in-state s;; it chooses an action a; from a discrete set
of possible actions; and £ provides a scalar reward 7; and
evolves into next state s;yi. Future rewards are discounted
by a factor v € (0,1], and the return at time-step ¢ is
defined as R, = Zgzt At ~try, where T is the last time-
step in the episode. The agent’s goal is to maximize the
expected discounted sum of future rewards, also known as
the return, which is equivalent to finding the optimal action-
value function Q* (s, a) for all states. Formally, Q* (s, a) is the
highest possible expected return starting from state s, taking
action a, and following the optimal policy 7* after that. It can
be calculated as Q*(s,a) = max, E[Ri|sy = s,ar = a, 7]
and Q* (s, a) must follow the Bellman Equation. For any state-
action pair, the optimal action-value function must follow the
Bellman optimality equation in that:

Q*(&a):?"—‘r’ynza/xQ*(s/,a/) (1)

Here 7 is the expected immediate reward for taking action a at
state s, «y is the discount factor, and Q*(s’,a’) is the optimal
action-value function for taking action o’ at the subsequent
state 8" when following policy 7* thereafter. Deep Q-Network
(DON) [47] is fundamentally a version of Q-learning that uses
a deep neural network to approximate the true Q-values. The
DQN calculates the current state and action @Q(s,a) and the
Q-value for the next state and action Q(s’,a’). The weights of
the deep neural network are denoted by 6 and Eq. 2 shows its
corresponding Bellman Equation. It is trained through gradient
descent to minimize the squared difference.

Qo(s,0) = E [r+ymaxQe(s',a’)] @)

s'~E
C. Knowledge Distillation of a Deep Q-Network

Let Qg : 8 x A — R represent a Deep Q-Network that has
been trained offline using the Deep Q-Learning algorithm with
experience replay, where 6 are the parameters. The greedy
policy can then be expressed as mg(s) = argmax, Qg(s,a)
for some s € § and a € A. The original Deep Q-Network
(DQN) is not well-suited for use with All-Permutations Fuzzy
Rule Base (APFRB) due to several reasons. Firstly, the trans-
formation via APFRB does not scale effectively with artificial
neural networks that have multiple hidden layers, as this
can impact the interpretability of the resulting fuzzy logic
rules. Secondly, the activation functions used in DQN, ReLU
for the hidden neurons and linear for the output neurons,
are not compatible with APFRB which requires the use of
only hyperbolic tangent (fanh) activation function. Finally,
the transformation through APFRB results in an exponential
growth of the knowledge base, with the number of fuzzy logic
rules produced guaranteed to be 2™ where m is the number
of neurons A.3, making it intractable.

To meet the prerequisites of APFRB, we convert the Deep
Q-Network to a shallower artificial neural network through
knowledge distillation. Specifically, we used a single-layer ar-
tificial neural network with n inputs s;, ¢ = 1,...,n, a hidden
layer of m neurons with activation function h : R — R, and

m
a single output unit. The output is then f = chh(a:j +b;)
j=1

n
where x; = Zwﬂsz with 1 < j < m. The weight, wj;, is
i=1
between the ‘" input node and the the ;" hidden neuron.
Furthermore, b; is the bias for the jth hidden neuron and ¢;
is the weight between the j** neuron and the output node. By

offline knowledge distillation, let f ~ 7g.!

D. All-Permutations Fuzzy Rule Base

F-granulation underlies fuzzy logic control [26], where a
Cartesian granule G determines a FLC’s rule activation by
measuring the truth of its antecedents. Rules with partially true
antecedents are still applied. A FLC maps Gs to actions, and a
G is also the IF-part of a fuzzy logic rule. Definition 1 outlines
the conditions for a FLC to be an APFRB, which leverages
the m hidden units of an artificial neural network as input
x. G is the set of all possible és, which APFRB discovers
automatically due to condition A.3. APFRB produces fuzzy
logic rules conditioned on the presence or absence of each z;
under condition A.2. Here is a sample fuzzy logic rule for

m = 6 that has been extracted for our FLC’s pedagogical
policy:
IF (21 is absent) A\ (xo is absent) A\ (x3 is present) 3)

A (x4 is absent) N\ (x5 is absent) N\ (xg is present)
THEN Give A Faded Worked Example (FWE)

where the entire IF-part is a Cartesian granule and the THEN-
part is the recommended consequent for that Cartesian granule;
as the IF-part becomes more true (i.e., approaches 1), or
the greater the input “visits” the Cartesian granule (i.e., the
input gets closer to the core), then the more the FLC will
“vote” to recommend an FWE (by fuzzy inference). Upon
receiving input x at any given time-step, the FLC consults
these mappings and produces action by measuring x’s distance
to each G. This calculation is a fuzzy set where G(x) =
{(G, Gx)|Ge G} Given a trained feed-forward artificial
neural network with the tanh as its activation function (end of
Section III-C), we derive a FLC using Definition 1 [23].
Definition 1: A fuzzy rule base with input x € R™ and
output f is called an APFRB if the following conditions hold:

A.1 Every input variable x; is characterized by two linguistic
terms: term’ and term’ . The linguistic terms p’ (x;)
and ui(xj) satisfy the following constraint: there exists
a b; € R such that

wh(25) = il ()
1y (25) + pl(25)

A.2 The form of every rule is

= tanh(z; +b;), Vz; e R (4)

IF zq is termi AN
THEN f = ¢, £cy... £ ¢y

. m
ANZpy is termy

(&)

IReplication of mg with f was ~ 86.7%.



where c; € R. The signs in the THEN-part (consequents)
are determined in the following manner: if the term
characterizing x; in the IF-part (antecedents) is termi,
then in the consequents, c; appears with a plus sign;
otherwise, c; appears with a minus sign.
A.3 Contains exactly 2™ rules spanning, in their IF-part, all
the possible assignment combinations of x1, ..., Z.,.
Upon doing so, the FLC that has been extracted is equivalent
to the artificial neural network that produced it.

E. Temporal Granule Pattern Mining

We propose a method for identifying the most critical or
important fuzzy logic rules, called TGP mining. To obtain a
TGP candidate, we restrict the fuzzy set G only to include
G's where G(x) > e, with € in the range (0,1]. This is based
on the e-completeness property [48], which requires a FLC
to have at least one fuzzy set with membership degree at
least e for every possible input. By varying the value of e,
we can control the amount of information captured in the
TGP candidate, with smaller values giving more detail but
being more computationally expensive. On the other hand, e
values closer to 1 are more myopic, and TGP mining will only
produce patterns that occur extremely close to the cores of the
Gs. 2 We also aim to identify cases where the FLC is uncertain
about the appropriate action and how often this occurs.

Since our approach is general, we are able to apply this
TGP mining on student-tutor interactions that were assigned
to the StuChoice or Expert conditions. This is because Gs are
merely an alternative form of a space-partitioning technique
(see Figure 1). Thus, we can examine the StuChoice and
Expert students’ interactions with the ITS, and how those
interactions differ from those assigned to the FLC.
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Fig. 1. x interacts with G through Cartesian granules, where membership of
x to each granule is calculated to determine its proximity to “fuzzy regions”.
G(x) represents the strength of z’s visit to every region.
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More formally, the process of obtaining the TGP candidate,
GZE(X), is well-grounded in fuzzy set theory and can be
expressed precisely. First, the a-cut operator from fuzzy set
theory is applied to obtain a non-fuzzy set, “G(x), in order
to reduce the Cartesian granules in the transaction. However,
QG(X), does not describe how strongly Cartesian granules
were visited (i.e., é‘(x) where G € G). To remedy this, the

2Qur experiments found that ¢ = 0.1 provided a good balance between
information and computational efficiency.

level set of G(x), A(G(x)), is consulted for the distinct o
values and «-cuts but is further constrained as

AG(x))se = {G(x) | G(x) > ¢ for GeGAxeR™}.

(6)
Finally, we obtain the TGP candidate, G>.(x), by modifying
the Third Decomposition Theorem of a fuzzy set [49] so

Cr)= |J oG @
aEA(G(X))>e

where |J is fuzzy union, and the special fuzzy set, ,G(x), is
oG(x) = a “G(x). (8)

A special fuzzy set assigns a degree of membership of « to
each element. The resulting set of G (x) forms our temporal
quantitative transaction database [50], which includes transac-
tions involving items with both quantity and time components.
These items correspond to Cartesian granules, or fuzzy regions
in space, where the quantity component represents the degree
of visitation and the time component corresponds to the
moment that degree of visitation was recorded (e.g., first
pedagogical decision, second decision, etc.). However, not
all possible temporal quantitative items are included in the
database if specific granules are never visited.

To mine TGPs, we need an algorithm that handles temporal
quantitative transactions with elements in the form of (¢, v),
where £ is an item and v is a positive real number representing
its quantity, along with a time-step t. We chose FTARM [50]
for its ability to handle such data, but it requires fuzzy sets
to describe item quantities. We used CLIP [28] to define
Gaussian fuzzy sets for G visitations and assigned linguistic
terms to these sets. FTARM generates candidate rules for
TGPs similarly to the Apriori algorithm. The resulting meta-
knowledge from applying FTARM to TGPs describes when
and how G's were significantly visited for each condition. Fig.
2 shows the linguistic terms we assigned to the fuzzy sets.
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Fig. 2. The linguistic terms used to interpret @ visitation.

IV. DQN-INDUCED PoLICY & KNOWLEDGE
DISTILLATION

Our DQN-policy induction was conducted offline using pre-
collected training data containing 1,307 students’ interaction
logs over seven semesters of classroom studies (2016 Fall
to 2020 Spring). During these studies, all students used the
same tutor, followed the same general procedure, studied the



same training materials, and worked through the same training
problems. The training corpus provides the state represen-
tation, action, and reward information for policy induction.
State: We extracted 142 features that might impact student
learning from the student-system interaction logs; these state
features can be categorized into the following five groups:
Autonomy: the amount of work done by the student; Temporal
Situation: the time-related information about the work pro-
cess; Problem-Solving: information about the current problem-
solving context; Performance: information about the student’s
performance during problem-solving; Student Behaviors: the
statistical measurement of student’s behavior. Actions: are the
pedagogical actions, WE/PS/FWE described above. Reward:
There’s no immediate reward during tutoring, and the delayed
reward is the students’ Normalized Learning Gain (NLG),
which measures their learning gain irrespective of their in-
coming competence. NLG is defined as %, where
1 is the max score for both pre- and post-test. Knowledge
Distillation [17] was then leveraged to convert the complex
DQN-induced policy into a much smaller one-layer neural
network with m hidden units. We explored the effectiveness of
our one-layer neural network approximating the performance
of the original DQN by varying m from 2 to 10 and chose
the best performance when m = 6. Thus, we have six hidden
variables x = {x1, %2, ..., Zg }, and their biases are passed into
the APFRB to induce 25 fuzzy logic rules due to condition
A.3; 51 FLC rules remained after sensitivity analysis [23].

V. EXPERIMENTAL SETUP

Participants: In the spring of 2021, a Computer Science

class at North Carolina State University participated in our
study. IRB is obtained from the institution. The use/test of
the ITS is overseen by a departmental committee, ensuring it
does not risk the academic performance and privacy of the
participants. The study was designed to be completed within
one week, and students were told they would be graded based
on effort rather than learning performance. A total of 196
students were randomly assigned to one of three conditions:
FLC (N = 58), StuChoice (N = 59), and Expert (N = 79).
The difference in size between the conditions was due to
additional students being assigned to the Expert condition as a
baseline for monitoring population shifts between semesters.
Of the 196 students, 178 completed the study, but 8 students
were excluded from subsequent statistical analysis because
they achieved perfect scores on the pretest. The final sample
sizes were FLC (N = 50), StuChoice (N = 54), and
Expert (N = 66). A Chi-square test found no significant
difference in completion rates between the three conditions:
x2(2) = 1.7444, p = 0.418.
Our ITS Tutor is a web-based system teaching 10 probability
principles (e.g., the Addition Theorem and Bayes’ Theorem),
with a dialogue window for student messages and input.
Definitions of variables and equations are displayed on the left,
and the ITS provides adaptive instructions, immediate feed-
back, and on-demand hints. Pedagogical decisions determine
whether the next problem is a PS, WE, or FWE.

The experiment procedure:

1) Textbook: Students study probability principles.

2) Pretest: Prior knowledge is evaluated with an exam
consisting of 14 single- and multiple-principle problems.

3) ITS training: Students receive automated tutor assistance
on 12 assigned problems (same order for each student).

4) Posttest: Students are evaluated using a 20-problem test,
14 of which are isomorphic to the pretest, and 6 are non-
isomorphic multiple-principle problems.?

Tests were double-blind graded by 2 experts and normalized.

VI. EMPIRICAL RESULTS

The pretest scores did not significantly differ between the
three conditions (F'(2,167) = 0.247, p = 0.781), indicating
a balanced level of incoming competence. Additionally, the
hours spent training on the ITS did not significantly differ
among the three conditions as determined by a one-way Welch
ANOVA (Welch'sF(2,106.525) = 0.479, p = 0.621).
Learning by ITS Training: We evaluated the effectiveness
of our ITS by comparing the pretest and isomorphic posttest
scores for each condition using a repeated one-way ANOVA.
FLC and Expert had significant learning, with F(1,49) =
33.074, p < 0.0005, partial n*> = 0.403 and F'(1,65) = 8.156,
p = 0.006, partial n> = 0.111, respectively, but StuChoice did
not show significant learning: F(1,53) = 0.079, p = 0.780,
partial 72 = 0.001. This motivated us to apply TGP mining
to compare their learning process.

Posttest & NLG: Results showed a significant difference in
posttest scores among the three conditions, even after control-
ling for pretest scores using ANCOVA (F'(2,166) = 13.056,
p < 0.0005, partial > = 0.136). Pairwise comparisons with
Bonferroni adjustment revealed that the FLC outperformed
both the Expert (p = 0.021) and StuChoice (p < 0.0005).
For NLG, an ANOVA with Tukey-Kramer posthoc test found a
statistically significant difference in NLG among the three con-
ditions (F(2,167) = 4.567, p = 0.012, partial n?> = 0.052).
Post hoc multiple comparisons show the FLC performed the
best, followed by the Expert (no significant difference from
FLC; p = 0.178) and StuChoice (p = 0.008). These findings
suggest that the FLC is more effective in improving post-test
scores and NLG compared to the other policies.

Visual Investigation: Fig. 3 displays a t-SNE visualization of
the original feature space and Cartesian granules at the event
level, with different colors representing the three conditions.
We focus on the learning processes of two students, a high
learner (blue, NLG = 0.58) and a low learner (red, NLG =
—0.12). While their learning progression appears similar in the
original space, their temporal progression differs significantly
in the Cartesian granules representation, as expected.

Specifically, Fig. 3 (Cartesian Granules) shows that the two
students start in the same region but quickly diverge, which
may explain why one is a high learner, and the other is a low
learner. In addition, some conditions visit certain Gs more
than others. For example, the FLC students visit G more

3The posttest is designed to be significantly harder than the pretest.



TABLE I
NLG > MEDIAN
TGP (IF-THEN) | When | Con. | Sup.
FLC (N = 31)
Gsis A— Ggis A | >7steps | 0.67 [ 048
Expert (N = 40)
Guais L — Grois A [ >2steps | 077 [ 0.24
StuChoice (N = 14)
Giois N — Gagis A [ >2steps | 0.71 [ 0.30
TABLE 1II
N LG < MEDIAN
TGP (IF-THEN) | When | Con. | Sup.
FLC (N = 19)
GrisA—GsisL | >Tsteps | 092 [ 034

Expert (N = 26)
Grais L — Giois A | >5steps | 0.61 [ 0.20
StuChoice (N = 40)
Grois E — Gagis A | >2steps | 0.60 [ 021

frequently and strongly than their peers. Given the FLC’s
superior performance, this suggests that adequate visitation of
Gs may be a sign of a positive learning experience, which is
later confirmed by the TGP results in Table I.
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Fig. 3. Visualization of student-tutor interaction using t-SNE. The blue line
is a student with NLG = 0.58, while the red line is the student with
NLG = —0.12. Interactions are color-coded: FLC (purple), Expert (green),
and StuChoice (orange). The end of each trajectory is marked with an “X”.

TGP Results: Using TGP mining, we analyzed various tem-
poral granule patterns in different conditions and for students

with distinct NLGs. This analysis is significant as both the
DQN and the induced fuzzy logic rules aim to enhance NLGs.
To differentiate students with varying NLGs, we split them into
High- and Low-NLG groups based on a medium split. Tables
I and II display examples of TGPs discovered by FTARM for
the three high-NLG groups versus those with lower NLGs that
exhibit high support and confidence. Each table contains the
IF-THEN patterns (TGPs), their timing (indicated as “When”),
corresponding fuzzy temporal confidence (labeled as “Con.”),
and fuzzy temporal support (abbreviated as “Sup.”). Note we
only present unique patterns for High- and Low-NLG groups.

For the two FLC groups, Table I presents the results of the
TGP mining for High-NLG students (N = 31), which shows
that adequate visitation of G5 leads to the adequate visitation
of Gg at time-step 7 or later. This pattern is indicative of a
positive learning experience, as the adequate visitation of G
is associated with improved learning outcomes. In contrast, the
Low-NLG FLC group (N = 19) showed a different pattern,
with the adequate visitation of G+ leading to the light visitation
of G5 at time-step 7 or later.

For the two Expert groups, both High-NLG (N = 40)
and Low-NLG (N = 26) groups exhibited the same IF-THEN
clause but differed in the timing of the pattern. The High-
NLG group showed the pattern at time-step 2 or later, while
the Low-NLG group showed it at time-step 5 or later.

For the two StuChoice groups, both High-NLG (N = 14)
and Low-NLG (N = 40) groups had TGPs that involved Gm
and Glog with the same timing of ¢ being time-step 2 or later.
The difference was in the level of visitation of CllO, with
High-NLG students showing notable (V) visitation and Low-
NLG students showing extreme (FE) visitation. The results
of the TGP mining suggest that notable visitation of Gio
is associated with improved learning outcomes for StuChoice
students. These findings are summarized in Tables I and II.

VII. DISCUSSION, FUTURE WORK, AND LIMITATIONS

Using fuzzy logic theory, we successfully distilled knowl-
edge from Deep RL-induced pedagogical policies in ITSs,
demonstrating the superiority of the FLC policy over the expert
policy and students’ decisions. Our TGP mining algorithm
provided interpretable insights into the FLC rules, showcasing
the potential of fuzzy logic and TGP analysis in enhancing
the understanding of Deep RL-induced pedagogical policies.
Future work can expand the experiment to more ITSs, explore
other types of Deep RL-induced policies using fuzzy logic and
TGP analysis, and investigate other interpretability techniques
in combination with our approach for greater transparency.
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