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Abstract. Humans adopt various problem-solving strategies depend-
ing on their mastery level, problem type, and complexity. Many of
these problem-solving strategies have been integrated within intelligent
problem-solvers to solve structured and complex problems efficiently.
One such strategy is the means-ends analysis which involves comparing
the goal and the givens of a problem and iteratively setting up subgoal(s)
at each step until the subgoal(s) are straightforward to derive from the
givens. However, little is known about the impact of explicitly teaching
novices such a strategy for structured problem-solving with tutors. In
this study, we teach novices a subgoal-directed problem-solving strategy
inspired by means-ends analysis using a problem-based training inter-
vention within an intelligent logic-proof tutor. As we analyzed students’
performance and problem-solving approaches after training, we observed
that the students who learned the strategy used it more when solving
new problems, constructed optimal logic proofs, and outperformed those
who did not learn the strategy.

Keywords: Means-ends Analysis · Subgoal · Problem Solving ·
Intelligent Tutor

1 Introduction

The existing literature frequently mentions three problem-solving strategies in
the domain of structured problem-solving: 1) Forward strategy - starts from the
givens of a problem and moves towards the goal by applying valid rules and
actions in the problem domain [1], 2) Backward strategy - starts from the goal
and at each step, the goal is refined to a new goal (also referred to as subgoal)
until the givens are reached [1], and 3) Means-ends analysis [12] - carries out
problem solving as a search for subgoals at each step to recursively reduce the
distance between the goal and givens until the subgoal can be directly derived
from the givens [2]. By definition, backward strategy and means-ends analysis
involve subgoaling, where subgoaling can be referred to as refining the given goal
to a new goal (or subgoal) to reduce the distance between the givens and the
goal [8,11,19].
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Researchers have often stated means-ends analysis to be closely aligned with
the natural human strategy for complex problem-solving where they work for-
wards while keeping backward subgoals (identified by comparing the goal and
the givens) in mind [12,16]. The comparison carried out between the goal and
givens reduces the search space of possible next steps and the type of com-
parison usually depends on the nature of the problem. Also, the comparison is
set out to select the best action or subgoal to optimally reduce the distance
between the goal and the givens [6,16]. This general problem-solving strategy
rarely leads to dead-ends when there is a specific goal [16]. Thus, researchers
have integrated Means-ends analysis in automated problem-solvers for efficient
problem-solving (for example, in General Problem Solver [12]). Prior research
suggests that although novices try to adopt means-ends analysis more due to
their low prior knowledge (to reduce search space of possible next steps) [17],
experts might be more able to use this strategy than novices [14]. However,
methods to train and motivate novices to learn/use this strategy or the impact
of learning this strategy on their problem-solving skills have been rarely explored.

Thus, in this study, we integrated problems that enforce the use of a mixed
problem-solving strategy (MS) inspired by means-ends analysis within the train-
ing session of an intelligent logic-proof tutor. In the MS problems, the first few
steps must be subgoaling steps carried out using the backward strategy (BS).
After the subgoaling steps, the subgoals may be achieved using forward strat-
egy (FS). To analyze the impact of learning MS, we implemented two training
conditions within the tutor: 1) Control: this group was not taught MS, and 2)
Treatment: this group was taught MS using examples and practice problems. We
evaluated the impact of the mixed strategy training on the basis of the following
research questions:

RQ1 (Students’ Experience): How difficult is the mixed strategy training
for students when integrated with an intelligent tutor? [Note: This question is
important since novices often use intelligent tutors in the absence of human
tutors. Thus, the difficulty level of a training intervention in a tutor should not
be too high so that students can persist and learn successfully].
RQ2 (Impact on Performance): How does learning mixed strategy impact
students’ performance in new problems?
RQ3 (Impact on Problem-solving approach and skills): How does learn-
ing mixed strategy impact students’ problem-solving and subgoaling approach
and skills?

2 Related Work

The means-ends analysis (MEA) was first introduced by Newell and Simon [12]
in an AI problem solver called General Problem Solver (GPS). They empha-
sized that MEA is actually a simulation of natural human thought processes.
MEA involves calculating the distance between the goal and givens of a prob-
lem at each step using a function or method appropriate for the problem type.
Then, the best action that will generate a subgoal to optimally reduce the goal-
givens distance is executed. Since the 50s, this method has been used in AI
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problem solvers for efficient problem-solving. For example, GPS (general prob-
lem solver) [12], Prodigy (math problem solver) [20], Multilevel Flow Modeling
or MFM (industrial process planner) [9] etc.

Although being a very well-known efficient problem-solving strategy, little
research is found on the impact of explicitly MEA learning on students’ problem-
solving skills. In a recent study, Permatasari and Jauhariyah [13] found that
incorporating MEA in problem-solving-based physics learning improved stu-
dents’ learning. Researchers have also recently found this strategy to be effective
in improving students’ critical thinking skills (skills to analyze and execute deci-
sions) for mathematical [4,7,18] and geometrical [21] problem-solving. However,
these results need to be further verified in other domains. Specifically, the inte-
gration of problems or processes to have students learn such strategy needs to
be explored within problem-based intelligent tutors.

3 Method

3.1 Deep Thought (DT), the Intelligent Logic Tutor

We conducted this study using Deep Thought or DT, an intelligent logic tutor,
that teaches students logic-proof construction [10]. Generally, each problem
within DT is either a worked example (WE) of logic-proof construction con-
structed by the tutor or a problem-solving (PS) problem needed to be solved by
the students. In each problem, the given premises and goal conclusion are shown
as visual nodes Fig. 1a. Valid logic rules from a given rule palette need to be
iteratively applied on the nodes to generate new propositions or nodes to com-
plete the proof. DT is organized into one pretest level (level 1), 5 training levels
(levels 2–6), and one posttest level (level 7). In the pretest level, students are
first shown two sample logic-proof problems (1.1–1.2) to acquaint them with the
different features of DT. Then, they solve two pretest problems (1.3–1.4). After
the pretest, students go through 5 training levels each containing 4 logic-proof
problems (x.1–x.4). In the first three problems in each training level (x.1–x.3),
the tutor offers on-demand step-level hints if the problem is of type PS. The
last problem in each training level (x.4) is a PS that students need to solve
independently without any tutor support. These are called training-level tests.
After training, students enter a posttest level containing 6 posttest problems
(7.1–7.6). Each student receives a score for each of the pretest, training-level
test, and posttest problems. The score is a function of problem-solving time,
step count (count of derived nodes), and logic-rule application accuracy and is
scaled between 0 and 100. Solutions constructed in less time with fewer steps
and fewer incorrect rule applications get higher scores.

3.2 Experiment Design

Problem Types: To facilitate our study, we used 4 types of logic-proof prob-
lems implemented within training levels of DT. The problem types are:
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1. Problem Solving (PS): These are the default logic-proof construction problems
in DT where students need to construct proofs themselves using forward/FW
(derivations that move from the given premises towards the goal Fig. 1a), back-
ward/BW (derivations that move from the goal towards given premises Fig. 1b),
or both strategies without the tutor requiring them to use a specific strategy.
2. Worked Examples(WE): These are default worked examples available in DT
where the tutor demonstrates logic-proof construction using only forward (FW)
derivations.
3. Mixed-strategy Problem Solving(MPS): MPSs require the student to construct
logic proofs using mixed strategy. Most DT problems require 5–10 steps to solve.
If the subgoals derived in the first 2–3 BW steps are correct, the rest of the proof
becomes straightforward. Thus, in MPS, students must derive the first three
steps backward Fig. 1b and during this time, forward derivations are disabled.
Then, they can use the forward strategy if they like Fig. 1c. The purpose of
having the students start with backward steps is to explicitly motivate and
involve them in subgoaling as in means-ends analysis.
4. Mixed-strategy Worked Examples(MWE): These are worked examples showing
the mixed problem-solving strategy. The tutor carries out the first 2–3 steps
backward refining the goal into subgoals which are followed by forward steps to
derive the subgoal(s).

PS and MPS are visually depicted in Fig. 1. The interface for WE and MWE
is the same as PS/MPS. The only difference is that WEs and MWEs are con-
structed by the tutor step by step as the students click on a ‘Next Step’ button.

Fig. 1. PS (a) and MPS (b and c) Interface in DT.

Training Conditions: Using the 4 types of problems, we implemented two
training conditions as described below:

1. Control(C): Students assigned to this condition received only PS and WE.
2. Treatment(T): Students assigned to this condition received MWE and MPS
in addition to PS and WE.
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The problem organization within the two training conditions is shown in
Fig. 2. Notice that the treatment group students receive MWEs in each training
level (up to level 5) to remind them of the mixed problem-solving strategy [blue
squares in Fig. 2]. However, they receive MPSs only in the first half of the training
[green squares in Fig. 2]. This was done to ensure that the students were given
an opportunity to explore the strategy independently in the second half of the
training. In a prior study [15], such organization of training treatment was found
to be effective in having students learn a strictly BW strategy. Also, note that
our problem organization ensures that students from both training conditions
get an equal amount of examples (WE/MWE) and practice (PS/MPS) during
training.

Fig. 2. Problem Organization in the DT Training Levels for the 2 Training groups.
(Color figure online)

Data Collection: We deployed DT with the two training conditions in an
undergraduate logic course offered at a public research university in the USA.
The students taking the course were required to submit a DT assignment that
involved completing all levels of DT to receive full credit. Each student after
completing the pretest was automatically assigned to one of the training condi-
tions. Our assignment algorithm ensures equal distribution of students between
the conditions. It also ensures that the pretest scores of the training conditions
come from a similar distribution. At the end of the experiment, 50 students in the
C group and 45 students in the T group completed the tutor. We collected stu-
dents’ pretest, training-level test, and posttest scores. Additionally, we collected
the time-series log data from DT that detail each step (derivation/deletion of
nodes, direction, and time of derivation) of students while they construct proofs
within DT. We used this data to carry out statistical and graph-mining-based
proof-construction approach analysis to answer our research questions.

4 RQ1 (Students’ Experience): Difficulties Across MPS
and PS Problems

To understand students’ experience with mixed strategy learning training, we
compared the difficulty level of training MPS problems against training PS prob-
lems in terms of the time students took (i.e. the problem-solving time) to solve
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each type of problem. The reason for considering PS as a baseline is that PSs are
simple proof-construction problems where students are not restricted to using a
specific strategy unlike in MPSs. In a prior study [15], we observed that being
restrictive about using a strategy could lead to significant difficulties for stu-
dents. However, in MPS, the strict restriction is applied for only the first 3 steps
where students must carry out subgoaling using BW steps which should limit
the difficulties associated with MPS. Also, note that we did not consider MWEs
and WEs in this analysis, since those are solved by the tutor.

To compare the difficulty level of MPS and PS, we carried out a mixed-effect
regression analysis with problem-type (all MPS against all PS problem-solving
instances) as fixed-effect, problem ID as random-effect (to eliminate the impact
of differences in problems), and problem-solving time as the dependent variable.
The analysis gave a p-value of < 0.001 [n(PS) = 410, n(MPS) = 135, problem-
solving time(PS) = 14.4 (7.4) min, problem-solving time(MPS) = 18.0 (20.4)
min]. The p-value indicates a significant difference in the difficulty levels of MPS
and PS problems where MPS seemed to be more difficult in terms of problem-
solving time. However, further investigation showed that this difference was
introduced by only 25% (above 75th percentile) MPS problem-solving instances
(n = 34, mean problem-solving time for these instances = 41.8 min). The rest of
the 75% (up to 75th percentile) MPS instances (n = 101, mean problem-solving
time for these instances = 10.0 min) had no significant differences from PS prob-
lems in terms of problem-solving time as per a Mann-Whitney U test. Recall that
during training, the T group students solved three training MPS problems. As
we further analyzed each of these problems separately, we observed that 95%
of the 34 MPS instances with significantly higher problem-solving time than
PS occurred in the first MPS problem that the students received in training
level 2. Problem-solving time for the MPS problems in training levels 3 and 4
did not have any significant differences from the problem-solving time of the PS
instances. Additionally, we identified three training problems for which we found
both PS (n = 67) and MPS (n = 71) problem-solving instances in the collected
data. However, interestingly, MPS instances had marginally lower step counts
than the PS instances according to Mann-Whitney U test [Step Count(PS, MPS)
= 10.1, 8.9, p = 0.08] which indicated adopting mixed-strategy possibly led stu-
dents to more efficient proof construction.

Overall, our analysis results indicate that in most cases MPS problems are
as easy as PS problems. However, students might require more time to solve the
first MPS they receive during training, possibly to figure out how to address the
strict requirement of using the mixed strategy. However, solving a problem using
mixed strategy may help students to solve logic-proof construction problems with
higher efficiency.

5 RQ2: Students’ Performance After Training

To understand the impact of learning mixed problem-solving strategy on stu-
dents’ performance, we compared students’ test scores across the control (C) and
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treatment (T) groups. We performed two mixed-effect regression analyses: one
for the training-level test (4th problem in each training level: 2.4–6.4) and one
for the posttest (problems in level 7: 7.1–7.6) problems to understand improve-
ment over the period of training and after training respectively. Note that these
problems are solved by students without any tutor help and thus, are good
candidates for performance analysis. In both of the analyses, we incorporated
training conditions (control (C)/treatment (T)) as the fixed effect, problem IDs
as the random effect (to exclude the impact of differences in the problems), and
problem scores as the dependent variable. The analysis for the training-level
test problems did not show any significant differences across the two training
groups: n(50,45), mean(std)[C, T] = 65.11(24.08), 65.14(23.36), p = 0.99. How-
ever, the analysis for the posttest problems showed that overall the treatment
group significantly outperformed the control group: n(50, 45), mean(std) [C, T]
= 70.42(22.88), 74.10(21.51), p = 0.04 [p < 0.05 indicates significant difference].
As we analyzed students’ scores for each of the problems separately using Mann-
Whitney U tests, we observed for most of the problems T group students had
higher scores than the C group. This trend can be visualized in Fig. 3a, where
the curve for the T group (solid orange line) mostly lies above the curve for the
C group (dashed blue line) starting from problem 5.4. The p-values in the figure
show the problems with significantly higher averages for the T group. Also, note
that we did not find any problem where the T group received significantly lower
scores than the C group.

To further investigate the reason for the difference in problem scores across
the training groups, we analyzed their step counts, problem-solving time, and
logic rule application accuracy in the training-level test and posttest problems.
We did not find any significant differences in the rule application accuracies
and problem-solving time (Fig. 3c) across the training groups. However, in a
mixed-effect regression analysis similar to the one for problem scores, we found
significant differences in step counts across C and T [Step Count (C, T) = 13.4,
10.1, p = 0.031]. Also, the T groups had lower step counts than the C group in
most of the problems [notice the orange curve for the T group in Fig. 3b starting
from problem 5.4].

Overall, the results indicate that learning mixed problem-solving strategy
helped students to construct logic-proofs with fewer steps which led to higher
scores. In RQ3, we analyzed students’ proof construction approach to identify
how learning mixed strategy helped to achieve this efficiency.

6 RQ3: Proof-Construction and Subgoaling
Approach/Skills After Training

To investigate students’ proof-construction and subgoaling approach and skills
across the training conditions, we modeled students’ proof-construction attempts
using approach maps [3] for each of the training-level test and posttest problems
that they solved independently without the tutor requiring them to use a specific
strategy. Approach maps are high-level graphical representations of students’
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Fig. 3. Problem Score, Step Count, and Problem-solving Time across the Control (C)
and Treatment (T) groups over the period of pretest, training, and posttest [p-values
< 0.05 (obtained from Mann-Whitney U tests) indicates a significant difference].

proof construction attempts for a given problem that show the propositions they
commonly derived during proof construction [Fig. 4]. To generate the approach
map for a problem, students’ state transitions during the construction of a proof
for that problem are presented using a graph called an interaction network. Here,
a state contains all nodes or propositions (lexicographically ordered) present on
DT interface at a moment during proof construction. Students move from state
to state during proof construction by deriving/deleting nodes, i.e. via steps. The
Girvan-Newman clustering algorithm [5] is applied on this interaction network
to identify clusters of closely connected states. Later, from those clusters, we
extracted effective propositions that contributed to students’ final solutions. As
shown in Fig. 4, finally, approach maps become a graph where the start state
(containing only given premises) is connected to the goal via clusters of effective
propositions. Each path from start to goal via the clusters is a student approach
(A1, A2, etc.). The propositions written in purple were derived using BW deriva-
tion (i.e. subgoaling) by students who adopted mixed strategy. Note that for
simplicity, we do not detail all effective or unnecessary propositions1 derived by
all students in the approach maps. We only show the commonly derived effective
nodes that are sufficient to describe differences in student approaches. However,
we recorded counts of all effective/unnecessary propositions derived by each stu-
dent since both increase step counts. In the next sections, we explain differences
in student approaches across the training conditions using approach maps and
statistically analyze proof derivation efficiency (using Mann-Whitney U tests).
Lower time, fewer unnecessary, and effective propositions indicate higher effi-
ciency. Note that this method to analyze student approaches can be adopted
for structured problems from any domain where states and transitions during
problem solving can be defined definitely. Effective or unnecessary steps can be
identified using the differences between the final problem state and earlier states.

6.1 Student Approaches in Training-Level Test Problems

In the training-level test problems (2.4–6.4), up to 49% of the T group students
used mixed strategy, whereas this percentage for C group students is only 24%.

1 Propositions derived by the students but were not part of their final solutions.
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Fig. 4. Approach Maps for Training-level Test Problems a) 3.4, b) 5.4, and c) Posttest
Problem 7.5.

The student counts adopting mixed strategy for each of the problems are shown
in Fig. 5a. We also observed that, in these problems, T group showed sporadic
signs of improved skills (marginally shorter solutions/fewer unnecessary propo-
sitions). For example, in problem 2.4, the proof length was marginally lower
for the T group than the C group [mean(std) = C: 5.8(5.5), T:4.5(5.4), test
statistic = U(50, 45) = 1213.0, p-value = 0.09]. In problem 3.4, T group stu-
dents had significantly fewer unnecessary propositions in their solution attempt
than C students [C: 7.3(10.2), T:5.2(4.7), U(50, 45) = 1398.5, 0.003]. Addition-
ally, T students who adopted mixed strategy or TMS (n(TMS) = 17 in 3.4) had
significantly shorter solutions than those of C and marginally shorter solutions
than those of T students who did not adopt the strategy [C = 8.1(2.0), TFS

2 =
7.2(3.4), TMS = 5.3(2.8), UTMS<C(50, 17) = 534.0, 0.01; UTMS<TFS

(28, 17) =
281.5, 0.08]. The approach map for problem 3.4 is shown in Fig. 4a. As shown in
the figure, A3 is the shortest solution for this problem. 13 out of 17 of the TMS

students derived optimal subgoal ¬J ∨ I using BW derivation which led them to
the shortest solution A3. We observed a similar pattern in problem 4.4 as well.
From these statistics, we concluded that by the first three training levels, not
all T group students achieved an equal level of mastery in using mixed strategy.
However, those who were able to learn and adopt the strategy (i.e. the TMS

students) constructed proofs more efficiently.
In problem 5.4, only 4.4% of T group students adopted mixed strategy. How-

ever, overall T group students had significantly smaller solution length than C
group students [C: 8.02(1.18), T:7.0(2.3), U(49,45) = 1224.5, 0.007]. The app-
roach map for 5.4 is shown in Fig. 4b. As shown in the figure, A1 and A2 are the
optimal solutions for this problem where ¬(K ∧L) is a subgoal. Although only 2
students from the T group explicitly used mixed strategy and derived ¬(K ∧L)
as a subgoal using BW derivation at the beginning of their proof construction
attempt, almost all T students were observed to follow one of the 2 optimal
approaches (A1/A2). On the other hand, 15 C group students adopted a length-
ier approach, A3, while solving this problem. Moreover, C-group students derived

2 Treatment group students who only used forward strategy.
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significantly more unnecessary propositions [C: 4.1(2.2), T:2.7(1.3), U(49,45) =
1126.5, 0.01]. In problem 6.4, overall, T-group students showed a similar effi-
ciency by identifying subgoals that led to shorter proofs. These results indicate
that by the time the students finished the training levels (i.e. level 6), T students
were more skilled in proof construction and identifying better subgoals that will
lead to shorter proofs. However, we did not observe all T students explicitly
use the mixed strategy. Possibly, the T group students identified subgoals using
mixed strategy but carried out the steps in forward direction in the tutor (i.e.
BW strategy in mind for implicit subgoaling, which was not reflected by their
derivations in the tutor).

Fig. 5. Students across the control (C) and Treatment (T) groups Adopting Mixed
Strategy in a) training level posttest problems, and b) posttest problems.

6.2 Student Approaches in Posttest Problems

In the first 4 posttest problems (7.1–7.4), we observed only a few students from
the T and C groups demonstrated the adoption of mixed strategy. However,
in problems 7.5–7.6, more students explicitly adopted the mixed strategy (17–
33% T students and 8–12% C students). Note that the posttest problems are
organized in increasing order of difficulty and Fig. 5b indicates that more stu-
dents adopted subgoaling-based mixed strategy explicitly in the last two, harder
problems.

Problem 7.1 is a trivial problem with a 3-step shortest solution and we did
not find much difference for this problem across the training groups. However, T
students constructed significantly shorter proofs for problems 7.2–7.5 [For 7.2,
C:3.9(1.6), T:3.3(1.3), U(50, 45) = 1315.5, 0.04. For 7.3, C: 8.0(1.4), T:7.4(1.1),
U(50,45) = 1183.5, 0.03. For 7.4, C: 8.7(2.0), T:7.5(1.9), U(50, 45) = 1415.0,
0.001. For 7.5, C: 6.4(2.7), T:5.6(2.6), U(50,45) = 1355.5, 0.04]. As a sample, we
showed the approach map of Problem 7.5 in Fig. 4c. For this problem, the opti-
mal solution is A1 as shown in the figure. T students who used mixed strategy
derived Q ∨ R and S ∨ T as the first set of subgoals (resulted from their first
BW derivation). They derived (Q ∨ R) ⇒ (S ∨ T ) as the next subgoal. These
subgoaling steps led them to optimal solution A1. The T students who did not
demonstrate explicit subgoaling also constructed the same proof using only FW
derivations. However, above 50% C group students constructed a longer proof
(approach A3 in Fig. 4c). Additionally, in problem 7.6, the T group derived signif-
icantly fewer unnecessary propositions than the C group [C: 8.6(5.9), T:5.9(3.7),
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U(50,45) = 1167.5, 0.005]. The results from our approach map analysis showed
that the T-group students who learned mixed strategy with MWE+MPS during
training achieved higher efficiency in proof construction and subgoaling. They
possibly learned to compare the goal and givens effectively to derive better sub-
goals leading to shorter proofs, and fewer unnecessary propositions. However,
note that our statistical tests did not detect a similar efficiency in the few C stu-
dents who demonstrated mixed strategy but were not trained beforehand unlike
T students.

7 Discussion

Overall, the results of our study showed that learning the mixed strategy with
MWE+MPS during training posed a similar level of difficulty in most cases as
learning only the forward strategy. Additionally, learning and using this strategy
to construct proofs via subgoaling could be beneficial for students to help improve
their proof-construction efficiency (i.e. shorter proofs with subgoaling). However,
our observations indicate that explicit adoption of mixed strategy can depend on
the complexity of the problem or the mastery level of students in using mixed
strategy. Some T-group students were observed to explicitly use the strategy
in the first few training-level tests (2.4–3.4) and showed improved performance
early. On the contrary, some of the students did not use mixed strategy explicitly
at all, or only in harder problems, but demonstrated improved performance over
time (possibly by using an implicit subgoaling strategy).

8 Conclusion and Future Work

The contributions of this paper are 1) an efficient training strategy for mixed
strategy learning within an intelligent tutor using problems that involves sub-
goaling first and then deriving the subgoal as in means-ends analysis [this train-
ing strategy can be adopted within any tutor containing structured problems
with specific goals that can be refined into subgoals using actions from a finite
set], and 2) an evaluation of the impact of learning this subgoal-directed strategy
that showed that it helped to improve students’ subgoaling and proof construc-
tion skills. Students who learned the strategy achieved higher scores by deriving
better subgoals and constructing shorter proofs. This efficiency can be compared
to what automated problem-solvers achieve by exploiting means-ends analysis
to reduce the search space of possible next steps and select the most efficient
one. One limitation of this study is that we observed many treatment group stu-
dents (trained with MWE+MPS) demonstrated improved performance without
explicitly using the strategy which we identified as potential cases of implicit use.
Thus, in future studies, students learning the mixed strategy should be inter-
viewed to confirm how they used mixed strategy to identify better subgoals and
construct better proofs.
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