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Abstract— Carbon-aware spatial computing (CASC) is focused
on reducing the carbon footprint of spatial computing itself and
leveraging spatial computing techniques to minimize carbon
emissions in other domains. The significance of CASC lies
in its potential to mitigate anthropogenic climate change by
offering numerous societal applications, such as carbon-aware
supply chain development and carbon-aware site selection. CASC
is challenging because of the spatiotemporal variability and
the high dimensionality of carbon emissions data, involving
spatial coordinates and timestamps. Related work, known as
carbon-aware computing, mostly focuses on job scheduling of
cloud computing, and there is a lack of surveys and review
papers detailing the potential of CASC on variant domains
and applications. In this paper, we provide the vision of CASC
by proposing a taxonomy of sub-domains within CASC and
introducing ideas beyond job scheduling, such as carbon-smart
site selection. We also briefly review the literature in selected
sub-domains and highlight research challenges and opportunities.
Given the societal importance of the topic, we encourage the
scientific community to use this brief survey to expand the field
of study into other related sub-domains and advance CASC
more broadly.

Index Terms— Carbon-aware, spatial computing, workload
shifting, carbon complexity, climate risk

I. INTRODUCTION

Carbon-aware spatial computing (CASC) has two primary
objectives. First, CASC aims to reduce the carbon footprint
associated with spatial computing itself. This involves im-
plementing innovative strategies that optimize the allocation
of computing resources, such as job scheduling with the
aim of consuming clean energy for computation. Second,
it offers the potential to minimize carbon emissions and
promote sustainability in diverse sectors by leveraging spatial
computing techniques. For example, site selection through
spatial computing can reduce emissions for many vertical
markets ranging from food (e.g., local produce sourcing) and
supply chains (e.g., co-locating manufacturing with major
consumption sites) to energy, transportation, data centers, and
more.

CASC is important because it offers many untapped
opportunities to help achieve the all-important goal of
achieving net-zero carbon emissions, a global effort to reduce
greenhouse gas (GHG) emissions to zero by 2050 set by the
Paris Agreement [1]. Specifically, carbon emissions from the
transportation and electric power industries have emerged as
the major contributors to climate change with annual CO,
emissions reaching 28% and 25% of overall GHG emissions
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Fig. 1. US data center demand forecast till 2030 [3].

in the U.S., respectively [2]. On the other hand, the demand for
computational capabilities also projects multi-fold growth (see
Figure[I). All these domains can benefit from the advancement
of CASC.

The challenges around CASC arise from the spatiotemporal
nature of carbon emission data. For example, emissions related
to computation largely depend on the carbon intensity of
producing the energy that the computing operation consumes,
which consequently depends on the energy mix of the local
power grid. Therefore, the carbon intensity not only varies
temporally in a given region but also spatially across different
regions, as shown by Figures [3|and [ In addition, the carbon
emission data usually have high dimensionality due to the
inclusion of spatial coordinates and timestamps.

Despite the promise of CASC, current work on carbon-
aware computing mostly focuses only on job scheduling of
data centers, and there is a notable lack of surveys and review
papers detailing CASC. To address these limitations, this
paper makes the following contributions. First, we introduce
the domain of CASC and present a hierarchical taxonomy of
research areas as a navigational guide (Section[[I). Second, we
review the research and open problems in four sub-domains
where optimized spatiotemporal techniques could be applied
(Sections [[I-B.3] [[I-B.1] [IT-B.2} and [II-B.4). As a prerequisite,
we discuss how the carbon footprint of computation is
calculated and the particular importance that carbon intensity
plays in the calculation (Section [[I-A). While our review
is necessarily brief, we believe it offers a comprehensive
overview of major research opportunities in the domain. This
is a vision paper, so the following works are out of scope:
specific methodologies, experiments, results, etc.

II. CARBON-AWARE SPATIAL COMPUTING

To help conceptualize the research opportunities in CASC,
we present a hierarchical taxonomy (Figure [2) with three
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Fig. 2. Taxonomy of carbon-aware computing methods and key areas for open problems (blue).

main branches: carbon footprint estimation, job scheduling
and resource management, and infrastructure management.

A. Calculating Carbon Footprint

An essential prerequisite of CASC is quantifying carbon
footprint. Quantifying the carbon footprint in the domain
applications of CASC (e.g., supply chains, energy grids, etc.)
can be multi-faceted due to diverse emission sources (e.g.,
tailpipe emissions, grid-side emissions, etc.). This section
focuses on an example of quantifying the carbon footprint of
one domain: computing operations.

The carbon footprint of computing operations depends
on the total energy expended during the operation, the
associated carbon emissions from energy generation (supply-
side emissions), and additional emissions related to auxiliary
demands, such as GHG emissions from cooling systems.
The total energy expended is influenced by the energy
requirements of the computing resources used such as the
computing cores, memory units, etc., and the characteristics
of the computation to be executed such as running time. The
supply-side emissions vary with the time and location of
energy generation.

The energy consumption of computing operations can be
modeled as a combination of the energy drawn by computing
cores (e.g., CPU) and by that of memory. Additionally, if
these operations are carried out in data centers, the efficiency
of the data center should also be taken into consideration.
The efficiency represents how much extra power is necessary
to run the facility (e.g., cooling and lighting) [4]. Assuming
consistent power and efficiency, the energy consumption of
computing operations can be calculated as [4]:

E(loc, t) = runtimex (ne*ue* Pot-My, x P )% PUE(loc, t)

(H
where runtime denotes the running time, n. denotes the
number of cores used, u. denotes the core usage factor
between 0 and 1, P, denotes the power draw of a computing
core, n,, denotes the size of memory available, P,, denotes
the power draw of memory, and PUE denotes the efficiency

coefficient of the data center and is dependent on the spatial
(loc) and temporal (¢) coordinates. The carbon intensity of
computing can be represented by a function of the location
and time of operation, denoted as CI(loc,t). Then, given a
quantity of energy E consumed by computing operations, the
carbon footprint C' is obtained as:

C(loc,t) = E(loc,t) * CI(loc,t) ()

By combining Equations [2] and [I] the carbon footprint of
computation operations can be calculated by:

to+runtime
C = (nc*uc*Pc—l-nm*Pm)*/ PUExCIdt (3)

to

where t( denotes the starting timestamp of the computation
and loc denotes the location where the computation is
performed. In conclusion, Equation |§| shows that the carbon
footprint of computing operations is influenced by five factors:
run time, power draw from computing cores, power draw
from memory, energy efficiency of data centers, and carbon
intensity.

Carbon intensity data is crucial for the estimation of
carbon footprint using Equation [3] as well as in numerous
methodologies implemented to mitigate carbon emissions,
which will be discussed in detail in Section [l Until
recently, real-time energy production and carbon emissions
data from the balancing authorities were not available to
consumers. However, authorities have started providing this
information to consumers through web APIs. WattTime [6]
and electricityMap [5] are two such examples that not only
provide historical and real-time data but also forecast data
for grids around the world. An electrical grid’s marginal
emissions rate data [6], [5] represents the emissions rate of
electricity generators responding to changes in load on the
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Fig. 3. Electrical grid marginal emissions rate (CI in Equation data of US at different time stamps [5].

local grid by location and time. As shown in Figure E|, the
carbon intensity can change drastically for different regions
and different time stamps.

B. Challenges and Opportunities

We focus our review on four sub-domains highlighted in
blue in Figure 2] We begin our review with the topic of carbon-
aware site selection within the sub-domain of infrastructure
management

1) Carbon-Aware Site Selection

Carbon-aware site selection is the process of strategically
choosing locations for facilities with the goal of minimizing
carbon emissions. An important application of carbon-aware
site selection is the supply chain industry. Every site within
a supply chain network such as suppliers, manufacturing
plants, distribution centers, customer locations etc. constitutes
a distinct element in the local transportation ecosystem,
characterized by infrastructure, transport modes, reliability
and cost considerations. By strategically relocating sites or
adding new sites to the network, companies can minimize
transportation distances, leading to reduced emissions as-
sociated with product distribution. Current research works
implement site selection criteria such as road connectivity
([8], [9]), water supply ([8], [9]), and proximity to main
markets ([10], [8]). Optimizing for component-wise carbon
footprint is an unexplored area.

Another application is in the data center market. With
data center vacancy rates dropping to record lows [11] and
increasing projected demand for high-performance computing
(HPC) [3], data center and cloud computing enterprises face
significant pressure to establish new facilities or expand
existing ones. Current research in the data center placement
problem (DCP) focus on minimizing different cost factors
and addressing specific objectives. The authors of [12]
consider the total data center ownership cost (split into capital
and operating expenses), while [13] emphasizes minimizing
network costs during disaster failure scenarios. [14] aims to
minimize the consumption of dirty energy and data center
ownership costs.

INote that Figure shows the spatiotemporal variability of the carbon
intensity instead of the absolute values of the carbon emissions. This
distinction sets it apart from emission maps such as those in [7], which
display aggregated emissions for the research area.

Open Problems: The selection of suitable sites for
various vertical markets pose complex challenges. In supply
chains, finding locations that optimize the distribution’s
carbon footprint while satisfying operational demands remains
challenging. Sites can be strategically positioned to reduce
the transportation of heavy materials that result in higher
emissions, which can particularly benefit industries with high
transportation-related carbon footprints, such as heavy machin-
ery, electronics, and construction materials. Similarly, cloud
computing companies prioritize low operation costs including
energy prices. Unfortunately, energy prices do not strongly
correlate with the carbon intensity of energy production,
necessitating the consideration of carbon intensity in the
placement of computing facilities. Developing robust spatial
methodologies like clustering and geospatial optimization can
integrate these additional factors with carbon intensity into
the site selection process.

2) Balancing Power Systems

The idea of balancing the load of a power system (or grids)
through strategic management of consumer-side activities
can help minimize the reliance on fossil fuel-based power
generation, thereby potentially reducing carbon footprint. One
such example of strategic management is the Vehicle-to-Grid
(V2G) system. V2G is a bi-directional charging system that
enables electric vehicles (EVs) to both absorb excess power
as well as push energy back to the grid, thus promoting grid
stability. Umoren and Shakir [15] introduced the concept
of Electric-Vehicle-as-a-service (EVaaS) which focuses on
the allocation of EVs in a microgrid with the aim of outage
mitigation and grid balancing. However, consumers would be
incentivized mostly only by net-positive monetary benefits.

Another such example is the implementation of a technique
called spatial workload migration. One study [16] evaluated
the economic feasibility of balancing power load by spatially
migrating workload using geographically distributed data
centers, where one data center can modify its workload by
taking on a fractional share of the overall workload. This
adjustment affects the power demand and contributes to grid
stability. However, this workload shift impacts the load at the
other location, potentially leading to high load volatility. The
authors explore this phenomenon by focusing on the spatial
migration of load to locations that can satisfy unbalanced
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Fig. 4.  Share of primary energy from renewable sources including
hydropower, solar, wind, geothermal, bioenergy, wave, and tidal, 2021. [23].

demand in a cheaper or less carbon-intensive way. The authors
of [17] extend this approach to a larger scale by virtually
interconnecting multiple distant markets using data centers,
addressing the drawback of limited balancing potential [16].

Open Problems: In seeking to minimize carbon emissions,
scheduling algorithms can create bottlenecks as demand
surges in areas with the lowest carbon intensity, potentially
destabilizing power demand. This often leads to the use of
backup power sources to stabilize the grid which can increase
the local carbon intensity. Future methods may be able to
solve this problem by accounting for the interaction between
the decisions made by scheduling algorithms and the grid
supplying large computing resources.

3) Spatio-temporal Workload Shifting

Supply-side emissions are the primary contributors to
the carbon footprint of computing operations. It has been
widely acknowledged that promoting sustainable computing
necessitates not only energy-awareness but also carbon-
awareness [18]. The grid’s energy demand, and consequently
the carbon intensity of generation, vary based on consumer
behavioral patterns. Daytime typically experiences higher
energy demand and high carbon intensity. Additionally,
weather conditions impact heating and cooling requirements,
and the availability of renewable energy sources. As a result,
the practice of temporally shifting computing workloads to
low carbon-intensive periods has become prevalent [19], [20],
[21]. Google’s carbon-intelligent platform reduces emissions
by leveraging the temporal flexibility of Google’s workloads
that tolerate delays of up to 24 hours [19], [20]. The temporal
flexibility of such time-shiftable workloads depends on
characteristics such as estimated running time, interruptibility,
and deferrability [22]. In solving the problem of temporal
workload shifting, appropriate weights are assigned to these
factors, along with other modeled performance objectives.

In light of the spatial variation in carbon intensity (Figure
M), another approach is spatial workload shifting [24], [25],
[26], [27]. It involves migrating computing jobs to cloud
centers that utilize comparatively greener energy. However,
the trade-offs of migration include increased time delays
due to network latencies and data transfer requirements, and

additional energy costs for the migration, especially for long-
running and memory-intensive jobs.

Open Problems: Existing methods are able to effectively
reduce the carbon footprint of computation by scheduling
jobs to run in areas and at times where the grid carbon
intensity is lower. However, this incentivizes the use of
computing resources in countries with cleaner energy grids,
which are concentrated in the global north, and may incur
overlooked time, space, and energy costs. Methods for
dynamic workload balancing should account for these variable
costs of transferring jobs. Furthermore, future work could
investigate whether it is less expensive in the long term to
integrate renewable energy sources into data centers located
in areas with high grid carbon intensity. Creating clean data
center microgrids within otherwise carbon-intense areas could
help reduce overall job times and reduce HPC resource
bottlenecks while keeping carbon emissions low.

4) Carbon Complexity

Time complexity, or the total amount of time required by
an algorithm to complete its execution, and space complexity,
the total space taken by an algorithm with respect to the input
size, are widely used metrics for algorithm analysis. Kansal
et al. [28] presented a power consumption estimation model
for virtual machines using resource usage data at runtime.
The authors of [29] then posed the question "Should software
applications be redesigned based on energy-optimality?" and
consequently introduced an energy complexity model. Various
other energy consumption models have also been proposed
toward the same goal [30], [31]. However, these models
to estimate the energy usage of computational operations
differ in important ways from the notions of time and space
complexity, which do not account for location and time and
can be determined through the relatively simple analysis of
algorithms. Space and time complexities are often measured
using Big O notation representing the worst-case performance
with respect to the input size, but no equivalent notation exists
for energy complexity. Furthermore, energy usage is one step
removed from carbon emissions, which must take into account
the carbon intensity of the local grid and therefore depends
on the place and time in which computing resources are being
used.

Open Problems: Introducing a new algorithmic definition
of energy complexity, and a standard process to determine
carbon complexity could be a valuable development for
the computing industry. An apt representation of carbon
complexity could provide a standardized and quantitative way
for facilities to assess the carbon footprint implications of
employing different algorithms and computational processes
and would facilitate the comparison of computing operations
based on their carbon complexity. Current methods of defining
energy complexity lack the simplicity and intuition that make
space and time complexity popular metrics with which to
compare algorithms. It is an open problem to explore ways
to explicitly incorporate location and time into computational



complexity models. Toward this end, empirical analysis of the
relationship between energy utilization and space and time
complexity of algorithms run with inputs of various sizes
may prove constructive.

III. CONCLUSION

CASC is concerned with reducing the carbon footprint
of spatial computing itself and leveraging spatial computing
techniques to minimize carbon emissions in other domains.
We identify and elaborate on four key problem areas within
CASC that could benefit from optimized spatiotemporal
methods. The applications discussed in this paper exemplify
the significant impact CASC can have in achieving sustain-
ability goals within various vertical markets. In addition to
summarizing recent literature on these topics and highlighting
open research problems within these areas, we introduce
a hierarchical taxonomy that researchers may consult to
navigate this field and explore areas that could lead to other
research opportunities.

IV. FUTURE WORK

In future work, we will investigate new algorithms and
present experimental findings to address the open problems
discussed in this paper. Furthermore, we aim to quantify the
theoretical benefits of using specific techniques from CASC
as well as to initiate discussions around the economic and
political feasibility of CASC.
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