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Abstract

The Random Forests classifier, a widely uti-
lized off-the-shelf classification tool, assumes
training and test samples come from the
same distribution as other standard classifiers.
However, in safety-critical scenarios like med-
ical diagnosis and network attack detection,
discrepancies between the training and test
sets, including the potential presence of novel
outlier samples not appearing during training,
can pose significant challenges. To address
this problem, we introduce the Conformalized
Semi-Supervised Random Forest (CSForest),
which couples the conformalization technique
Jackknife+aB with semi-supervised tree en-
sembles to construct a set-valued prediction
C(z). Instead of optimizing over the training
distribution, CSForest employs unlabeled test
samples to enhance accuracy and flag unseen
outliers by generating an empty set. Theo-
retically, we establish CSForest to cover true
labels for previously observed inlier classes
under arbitrarily label-shift in the test data.
We compare CSForest with state-of-the-art
methods using synthetic examples and various
real-world datasets, under different types of
distribution changes in the test domain. Our
results highlight CSForest’s effective predic-
tion of inliers and its ability to detect outlier
samples unique to the test data. In addi-
tion, CSForest shows persistently good per-
formance as the sizes of the training and test
sets vary. Codes of CSForest are available at
https://github.com/yujinhan98/CSForest.
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1 INTRODUCTION

A classifier typically generates predictions for a test
sample by choosing the class label associated with the
highest predicted probability. This approach proves
inadequate for addressing the increasing demand for as-
sessing prediction reliability in practical scenarios, such
as medical diagnosis (Esteva et al., 2017; Kompa et al.,
2021) and autonomous vehicles (Kalra and Paddock,
2016; Qayyum et al., 2020). One approach for address-
ing this challenge involves minimizing a combined cost
associated with misclassification and rejection, permit-
ting the avoidance of predictions for test samples ex-
hibiting high uncertainty. For example, if the maximum
estimated probability maxye o1y p(k|z) for the binary
response is low where p(k|z) is the estimated probabil-
ity of beging in class k using the training data, we might
choose not to predict a test observation = (Chow, 1970;
Herbei and Wegkamp, 2006; Bartlett and Wegkamp,
2008). This idea has been implemented across various
learning algorithms and expanded to address multi-
class classification problems (Cortes et al., 2016; Ni
et al., 2019; Charoenphakdee et al., 2021). The set-
valued prediction via conformal prediction provides an
alternative framework (Vovk et al., 2005; Papadopoulos
et al., 2002; Lei and Wasserman, 2015; Gammerman
et al., 2013), in which the classifier generates a set cover-
ing all possible labels for a given observation x based on
the conformal score function s(x, k) that measures the
plausibility of label for x being k, e.g., s(x, k) « p(k|x).
For instance, one can form the calibrated set-valued
prediction set C(z) = {k : s(x, k) > 7}, with 75 be-
ing class-dependent and calculated to ensure a desired
coverage of the true label (Vovk et al., 2005).

Traditionally, classification uncertainty quantification
assumes that the training and test samples are indepen-
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dently and identically distributed (i.i.d.) from the same
distribution. In reality, this assumption doesn’t always
hold. For instance, in medical applications, the test
cohort may include samples representing novel patholo-
gies that bear little similarity to the labeled training
set (Lin et al., 2005). Similarly, network attackers may
create new intrusions to evade existing detection sys-
tems (Marchette and Marchette, 2001). Therefore, it
becomes essential to assess uncertainty under distribu-
tional changes and flag test samples where predictions
should not rely solely on the model trained with the
training data.

To address this challenge, we introduce CSForest
(Conformalized Semi-Supervised Random Forest), an
ensemble tree classifier that leverages both labeled
training data and unlabeled test data to form cali-
brated set-valued prediction and flag outliers. The
term “semi-supervision” here refers to the utilization
of unlabeled test data. CSForest builds upon recent
work on test-data optimized calibrated classification
framework(Guan and Tibshirani, 2022). Guan and Tib-
shirani (2022) constructs a calibrated semi-supervised
set-valued prediction via sample-splitting where one
subset of samples is used for training the model while
the remaining part is for calibration. In contrast, CS-
Forest avoids the sample-splitting schema, constructing
the random forest tree ensembles and calibrating the
prediction using all samples. We summarize our con-
tributions into three main aspects:

1. We present a novel classifier, CSForest, designed
for classification with calibrated uncertainty quan-
tification in the presence of distributional shifts
between training and test datasets. It employs a
novel semi-supervised random forest structure that
differentiates between observed training classes
and unlabeled test data, and adapts the confor-
malization technique Jackknife+aB (Kim et al.,
2020) to handle the case of joint and asymmetric
utilization of both training and test samples.

2. We provide a theoretical guarantee for true lable
coverage using C(x) constructed by CSForest, un-
der arbitrarily shifted test distributions. This the-
oretically ensures the effectiveness of CSForest
under varying degrees of data drift.

3. We conduct extensive experiments on simulated
and publicly available datasets under various label
shift settings to demonstrate CSForest’s gain over
existing state-of-the-art methods.

2 RELATED WORK

Distribution Shift. Regarding distributional changes,
both the covariate and label shifts are commonly stud-

ied (Scholkopf et al., 2012). The former assumes
the conditional density p(y|z) to be fixed with f(x),
the marginal density of x, potentially changing (Shi-
modaira, 2000; Bickel et al., 2009; Gretton et al., 2009;
Csurka, 2017); the latter treats f(z), conditional den-
sity of x given the label y = k, as fixed, but the preva-
lence of different labels can vary among the observed
training classes (Storkey, 2009; Lipton et al., 2018).

Recently, Guan and Tibshirani (2022) proposes
BCOPS, a test-data optimized calibrated classifier, and
the Generalized Label Shift (GLS) model defined in
eq. (1), which extends the label shift model to include
unseen classes to handle outliers. Suppose that the
training data is a mixture of K different classes. For
class k, its mixture proportion is 7, and feature density
is fr(z), with 7 satisfying Zszl m, = 1. The gener-
alized label shift model assumes a target distribution
accepting both label shift among training classes and
the appearance of outlier component(s) and requires
only fir(x) to remain the same for each observed class:

K
p(x) = wxfu(z) +6 - fr(), (1)
k=1

where § + Zszl 7, = 1, m, > 0 represents the propor-
tion of samples from class k in the target distribution,
6 > 0 represents the proportion of outlier samples not
from the observed classes, and fr(x) represents the
density for the outlier component. Under the GLS
model, BCOPS utilizes both labeled training samples
and unlabeled test samples to construct calibrated
set-valued prediction. The crucial calibration step of
BCOPS relies on sample-splitting, which results in low
data-utilization efficiency, especially when training or
test samples are limited.

Conformal Prediction. Conformal prediction (also
known as conformal inference) (Vovk et al., 2005; Pa-
padopoulos et al., 2002; Lei and Wasserman, 2015) aims
to create statistically rigorous uncertainty sets/intervals
for the predictions from classical machine learning
models, aiming to cover the true label with a de-
sired probability in the non-asymptotic regime, without
model assumptions on how y depends on x. Consider
(i, 9:)"; as n (feature, label) pairs, and a new sam-
ple (Zp41,Yn+1) where y,41 is unobserved. Based on
the previous n observations, the conformal prediction
creates a prediction set én($n+1) for the new instance
Zny1 and ensure that P(yni1 € Cp(@ng1)) > 1 — o,
where a € (0, 1) is the allowed miscoverage level. For
example, in the classification setting, if « = 0.1, then
the probability that C’n(xn+1) contains the true label
Yn+1 is no smaller than 90%.

A key step in forming the conformal prediction is the
choice of the conformal score function s(x,y), which
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is used for evaluating how plausible of observing cer-
tain (z;,y;), followed by a calibration of the prob-
ability for observing (Z,+1,yn+1) via comparing its
score to those from labeled training samples. As
some examples for classification problems, Romano
et al. (2020) considers s(x, k) as the probability (esti-
mated) of observing labels with estimated conditional
probability p(.|z) no worse than that of class k, and
Colni) = {k : (xpy1, k) > 7} where 7 is a threshold
determined by the empirical distribution {s(z;, y;)}",
Vovk et al. (2005) and Lei (2014) consider the con-
formal score s(x, k) as the conditional probability of
having label k or density of z in class k, and construct
Cr(ny1) = {k : 8(€ni1, k) > 71} using a class-specific
threshold 75, where 71 is determined by the empirical
distribution {s(z;, k) }iy,=k-

Different conformal prediction schemes have been de-
veloped in the literature. During the early times, split
conformal prediction is usually adopted where we train
the conformal score function s(.) using one-fold of the
data and perform calibration 7 using the remaining
(Vovk et al., 2005). In recent years, significant progress
has been made in cross-conformal prediction to improve
data utilization efficiency. Vovk et al. (2018) proposed
splitting data into multiple folds, calculating scores
for each fold using score functions learned from the re-
maining data, and aggregating all scores for calibration.
Barber et al. (2021) developed Jacknife+ for regres-
sion problems, which combines Jacknife with conformal
prediction and constructs the prediction interval as

A 1 i

where §°(z,y) = |/’ (z) —y| is the conformal score func-
tion using the mean-prediction function m’(z) learned
from training samples excluding (z;,y;). Although
Jacknife+ can only provide a worst-case coverage guar-
antee at level (1 —2a), the achieved empirical coverage
is often well-calibrated. Kim et al. (2020) described
Jacknife+aB to mediate the computational burden of
Jacknife4, which ensembles and calibrates prediction
using repeated Bootstraps rather than retraining the
model after excluding each training sample.

3 CONFORMALIZED
SEMI-SUPERVISED RANDOM
FOREST

Despite the popularity of random forest and its vari-
ants, existing work implicitly assumes that training
and test samples originate from the same distribution.
This reliance makes them unreliable in the presence
of distributional changes, which can be particularly
problematic in safe-critical applications. Classification

uncertainty quantification in this setting is also chal-
lenging. To address this issue, we introduce CSForest
(Conformalized Semi-Supervised Random Forest), a
tree-ensemble classifier that produces set-valued predic-
tions designed to incorporate true labels while minimiz-
ing the inclusion of false labels, customized to match a
target distribution u(z).

mm/|C (e (2)

st.PkeCX)|)Y =kl >1—q,forallk=1,..., K.

Specifically, CSForest optimizes for a target distribu-
tion as a mixture of the training density f;.(z) and test
feature density fi.(z) and set p(z) = fie(z) + wfir(z),
where w > 0. If w =0, u(z) = fie(x) and the objective
of CSForest coincides with the objective of BCOPS,
which optimizes for the expected test cohort classifi-
cation accuracy. On the other hand, when w is large,
it has a similar objective as the CRF model and opti-
mizes classification performance on samples generated
the same way as the training cohort. When w is not
excessively large, fi.(z) is a significant contributor to
u(x), the constrained optimization objective in eq. (2)
encourages C(z) = ) for unseen outliers even though
we do not explicitly model outliers. In other words, if
x is unlikely to belong to any of the observed training
classes, we prefer to classify it as an outlier.

The following Proposition 3.1 further provides the ora-
cle solution to eq. (2) under GLS model:

Proposition 3.1. Set the conformal score function as
s(z, k) = [fe(z)/n(x)]. Under the GLS model, the
solution to eq. (2) is C(x) = {k : Ex[1{s(z, k;p) >
s(X, kY =kl > a,k=1,...,K}.

Proposition 3.1 rephrases Proposition 2 from Guan
and Tibshirani (2022), and its proof is provided in Ap-
pendix A for completeness. CSForest estimates C'(z) in
Proposition 3.1 using a semi-supervised random forest
that utilizes labeled training samples and the unlabeled
test cohort, coupled with the Jackknife+aB strategy
for correct calibration to ensure coverage guarantee.
Specifically, for a test sample x; and a training sample
x; from class k with size ng, CSForest constructs a
conformal score function § (z, k; y) trained without
x; and (x4, y;7) to measure how likely a sample is from
class k. More specifically, CSForest replaces the oracle
score s(z, k; ) in Proposition 3.1 when comparing x;
and z;; and replaces expectation Ex[.] is replaced by
an empirical version using corresponding 8% (x, k; 11).
In other words, let nj be the training sample size for
class k, the inclusion criterion in Proposition 3.1 is
replaced by its empirical version below:

§. 1+Zy =k { (xlvklu’)>s” (mlakﬂ)}
ik — nk+1

- 3)
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Figure 1: Overview of CSForest. For class k, let I,’;, Ife and Zyiper be Bootstrap samples from from training class
k, test samples and training samples other than class k. We train a multi-class tree classifier with random feature
selection as in the random forest using the Bootstrapped samples, where we maintain the labels all training
samples and treat the test set as its own class. The resulting B random forest tree classifiers, {G(z), ..., GB(z)},
are used to separate different labeled classes and the test samples. For the sample pair z; € Z;. and 2} € Zj,
we aggregate trees that do not use z; and  (i.e., the data By = {b:i ¢ I}.,i’ ¢ I}) to form an ensemble
classifier, and subsequently, an ensemble conformal score function 5 (x,k; p) . Finally, we use the score function
"' (2, k; p) and compare § (x4, k; p) to 8% (x, ks ) for all ¢/ € Zj to form the calibrated evaluation 8;;, for test

sample z; being in class k and include k in the prediction set C'(x;) if §;; is no smaller than .

The the estimated prediction set C'(x;) is :

Cz;) ={k: 8 > a}. (4)

Given a user-specified weight w, Figure 2 presents a
graphical illustration of its model structure and Al-
gorithm 1 delineates the ensemble tree constructions
and prediction calibrations for CSForest. In Algorithm
1, we use Z;, and Z;. to denote the training and test
sets, respectively, and Z; to denote samples from the
training class k. For each class k, lines 2-5 construct B
Bootstrapped random forest tree classifiers to separate
the training classes and the test samples. The random
forest tree refers to a tree whose split is selected by the
best split from L randomly selected candidate features,
as constructed in the random forest, with L = |/p| as
the default split number in the R range package. Line
6 constructs the conformal score function §”,(m, ks ),
using only the trees excluding test sample z; and the
training sample z;,. In short, Algorithm 1 can be seen
as estimating the oracle conformal score s(z, k; 1) un-
der the target distribution with w being not excessively
large, by utilizing trees from a weighted random forest
classifier.

The estimated conformal score functions are then used
to construct the calibrated score, 3;, and the predic-
tion set, C'(x), in lines 8-13. It is worth noting that, in
line 3, to prevent redundant resampling in Bootstrap,
we constrain Ziper to be the Bootstrap sample of size
min([ngw],n — ng) drawn from training samples, ex-
cluding class k. It is worth noting that the probability
Pr(B;y = () decreases rapidly as B increases.

Remark 3.2. When By is empty, s (z,k; ) is not

T
8
9
10

11

12

13

Algorithm 1: CSForest

Input :Training Data {(x;, y;),i € Ly}, Test
Data {z;,i € Z;.}, B and w (1 by
default.)

Output : Prediction sets C’i(mi) for i € Zy.

for k=1,...,K do

Sample B from Binomial(B; (1 — nklﬂ)"k). for
b=1,...,Bdo
Let Zb, I?. be the Bootstraps of Zj, (index
of training class k) and Z.. Let fother be
the Bootstrap of size min([nsw],n — ng)
from the remaining training sample indices
I\ T.
Grow a single random forest tree classifier
G () separating different labeled classes
and the test samples using
TP UZE U piher
end
For sample pair i € T, € Iy, set
Bii ={b:i ¢ I}.,i' ¢ I?} and construct the
cogformal score function
5 (@, ks ) = (Les,, Gh(@) ) /1B
end
for i € ;. do
for k=1,...,K do
Construct $;; for sample ¢ and class k via
eq. (3).
end
Construct C(z;) = {k : ix > a}.
end
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Figure 2: Panel A shows the first two dimensions of samples are generated from the three classes: green/blue/red
points representing samples from class 1/2/R. Panel B shows the coverage rate which is defined by the proportion
of samples with true labels included in their prediction sets. The horizontal dash line refers to the coverage level
of 95%. Panel B is grouped by the actual labels in the testing data and colored based on if a prediction set
contains only the correct label (blue) or more than the correct label (gray).

defined. In this case, We will exclude training sample
xy € I, when calibrating for test sample x;. Let ng
be the size of Z;.. The probability that B;;; = 0 is
bounded by P[i’ € Z?,Vb < B] + P[i € IL,,Vb < B] =
1= (1= L) )B4 1= (1 - ;)me]B ~ 2(1 - 1)5 for
decently large ns. and ny, which decreases fast with B.

Theorem 3.3 states that CSForest provides a worst-case
coverage guarantee for the true response at the level
(1-2aq).

Theorem 3.3. Suppose the generalized label shift
model holds where features from class k are i.i.d gen-
erated from a distribution Py. For any fixed integers
B > 1, the constructed CA’l(x) from CSForest satisfies:

P[keé’(:mﬂ% :k} >1-2a,
forallieZy and k=1,... K.

()

While the proof relies on the previous arguments used
in Jacknife+aB for supervised regression problem Kim
et al. (2020). However, new conditioning arguments are
needed to estabilish exchangeability due to the paired
sampling of both training and test samples. Please find
the proof of Theorem 3.3 in Appendix A.

Theorem 3.3 ensures per-class coverage for observed
training classes, which means we guarantee true label
coverage for inlier classes even in arbitrarily shifted
test distributions, e.g.,

Plye Cla)lye {1,...,K},(x,y) ~ Pie] > 1 — 2a,

for any test distribution Pj. satisfying the generalized
label shift model assumption. Although the theoretical
guarantee for the worst-case coverage is at the level (1—
2a), the empirical coverage using CSForest is usually
close to or above the targeted level (1 — «).

4 EXPERIMENTS

4.1 Synthetic Data

We begin with a simple illustrative 2D synthetic dataset
and compare the performance using CSForest and three
closely related set-valued conformal classifiers: BCOPS,
which is a conformalized semi-supervised classifier that
uses half of the samples for training while the other half
for calibration (see Section 2); DC (density set classi-
fier)(Cadre, 2006; Lei, 2014; Hechtlinger et al., 2018;
Sadinle et al., 2019) and CRF (conformalized random
forest), which follow the sample-splitting conformal
prediction scheme while using the kernel estimate of
the per-class density for z|y and the estimated condi-
tional probability of observing a label y|z via a random
forest on the training samples as the conformal score
functions, respectively.

Example 1. Let X € R'Y be the feature. We observe
two classes Y € {1,2} in the training data, but the test
data contains outliers labeled with Y = R. We generate
X; ~N(0,1) (j =3,...,10) as noise, with different
classes separated by the first two dimensions:

X, ~ N(0,1), Xo ~ N(0,1), Y =1,
X1 ~ N(3,05), Xz ~N(0,1), Y =2,
X, ~ N(0,1), Xo ~N(3,1), Y =R.

Figure 2(A) shows the first two dimensions of sam-
ples generated from the three classes Y € {1,2, R}.
We generated 200 samples from classes 1 and 2 to
form the training set and 200 samples from each of
the three classes to form the test set. In Figure 2(B),
we evaluated the quality of the set-valued prediction
C(x) using DC, CRF, BCOPS, and CSForest across
20 independent runs with a targeted miscoverage rate
at @ = 0.05. All four methods achieve the desired
95% (1 — «) coverage on true labels. However, both
CSForest and BCOPS adapted to the test cohort and
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(A) Per-class quality evaluation with outliers but no additional
label shift among inlier digits, where the outliers are defined

as R=1{6,7,8,9}.
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(B) Per-class (class 0-5) quality evaluation with addi-
tional label shift among inlier digits but no outliers.

Figure 3: Per-class quality evaluation on MNIST. Panel A and B were grouped by the true labels in the testing
data and colored based on whether a prediction set contains only the correct label (blue) or more than the correct
label (gray). The horizontal dash line refers to the coverage level of 95%.

outperformed CRF and DC significantly in outlier de-
tection. Additionally, compared to BCOPS, CSForest
had fewer samples with multiple labels from classes 1
and 2 and exhibited a higher rejection rate for outliers.

4.2 Real-World Data

In this section, our primary objective is to evaluate the
effectiveness of CSForest on various real-world datasets,
focusing on addressing the following three questions:

Q1. Can CSForest detect outliers efficiently while mak-
ing accurate predictions for inliers in the presence
of outliers but no additional label shift among
inliers? (denoted as outliers w/o shift.)

Q2. Under the traditional label shift model without
outliers, can CSForest achieve competitive perfor-
mance compared to alternative classifiers? (de-
noted as shift w/o outliers.)

Q3. Does CSForest demonstrate stable performance as
the training and test sample sizes vary?

Q1 and Q2 capture two extreme settings of the GLS
model. We have set w at its default value for all exper-
iments in the main paper with w = 1. In Appendix E,
we include the sensitivity analysis of the crucial param-
eter w and shows CSForest performs well for different
values of w, with w = 1 being a reasonable choice to
balance performance for both inliers and outliers.

Datasets and Baselines. Our evaluation is con-
ducted on three well-established image benchmarks:

MNIST (LeCun and Cortes, 2010), FashionMNIST
(Xiao et al., 2017), and CIFAR-10 (Krizhevsky et al.,
2009). Additionally, we have included tabular data
from the Network Intrusion domain and Chest X-ray
data from the medical domain in the Appendix D.1 to
demonstrate the effectiveness of CSForest in handling
diverse datasets. To evaluate CSForest’s performance,
we compared it with BCOPS, CRF, DC along with
two other approaches based on adaptive classification
(Romano et al., 2020) and the covariate shift conformal
prediction Tibshirani et al. (2019): ACRF (Adaptive
classifier via random forest) and ACRFshift (Adap-
tive classifier via random forest under covariate shift).
ACRF is a derandomized version of the existing con-
formalized adaptive random forest classifier (Romano
et al., 2020), denoted as ACRFrandom, which aims
for adaptive coverage across different feature regions.
We will show results using ACRF instead of ACRFran-
dom in the main paper due to the latter’s tendency
to produce overly wide prediction sets, due to the at-
tempt to achieve conditional coverage as indicated in
the original paper (Romano et al., 2020). ACRFshift
combines ACRF with the covariate shift conformal
prediction. BCOPS, ACRF and ACRFshift all utilize
random forest for constructing set-valued predictions,
as a fair comparison to CSForest. More details of these
baselines are provided in Appendix B.

Training Details and Evaluations. We set the
number of trees B = 3000 for CSForest, and repeat all
experiments ten times for performance evaluations. We
evaluate the effectiveness of all methods using the type
I error, type II error, and the average set length of C (z)



Yujin Han', Mingwenchan Xu', Leying Guan

Table 1: Achieved type I and type II errors at a = 0.05 under different distributional shift settings. While most
methods achieved desirable type I errors and true label coverage rates (1 — «), only CSForest consistently achieved

lower type II errors in both settings.

outliers w/o shift

shift w/o outliers

Dataset Method
Type I Error  Type II Error  Type I Error Type IT Error
CSForest ~ 0.049+0.006 0.091 + 0.008 0.048+0.016 0.2914+0.038
BCOPS 0.0484+0.004 0.237+0.019 0.0424+0.007  0.55640.040
MNIST DC 0.049+0.008 0.890+0.021 0.046+0.016  0.968+0.022
CRF 0.048+0.007 0.338+0.035 0.046+0.018  0.428+0.082
ACRF 0.046+0.006 0.430£0.003 0.025+£0.011  0.884+0.012
ACRFshift  0.046+0.006 0.43240.009 0.055+0.013  0.828+0.015
CSForest ~ 0.051+£0.008  0.000+0.000  0.049+0.013  0.00940.035
BCOPS 0.049+0.006 0.001£0.000 0.04240.009  0.02940.006
CIFAR-10 DC 0.046+0.007 0.048+0.091 0.039£0.010  0.071£0.115
CRF 0.049+0.008 0.003£0.000 0.047£0.015 0.000+0.000
ACRF 0.0034+0.001 0.40240.001 0.040+0.009  0.221£0.023
ACRFshift  0.0034+0.001 0.069+0.003 0.046+0.007  0.230£0.035
CSForest  0.050+0.005  0.266+0.018  0.038+£0.009 0.311+0.040
BCOPS 0.050+0.007 0.381£0.020 0.038+0.009 0.311+0.040
FashionMNIST DC 0.05140.007 0.666+0.033 0.038+0.013  0.584+0.066
CRF 0.05140.006 0.514+0.021 0.0384+0.014  0.80440.080
ACRF 0.05140.006 0.537+0.013 0.054+0.009  0.835+0.020
ACRFshift  0.0464+0.005 0.481£0.019 0.072+0.021  0.81440.039

at @ = 0.05. Type I error is the percentage of samples
with the true label excluded from their associated set-
valued prediction C (x) for observed classes. This error
measure is directly linked to the coverage guarantee
in Theorem 3.3. Type II error is calculated as the
percentage of samples with C/() containing labels other
than the true labels. The average length C (x) under the
mixed distribution p(x) is the optimization objective
under the formulation described by eq. (2).

4.2.1 The Outliers w/o Shift Setting

In this section, the test set contains outlier labels rela-
tive to the training set but without any additional label
shift. For each data set, we constructed the training
set by including a subset of class labels and the test set
with all labels, e.g., for the MINIST data, the training
set had digit labels 0-5 of equal size and the test set
included both digit labels 0-5 of equal size and digit
labels 6-9. Details of the data subsampling schemes for
Q1 can be found in Appendix C.

Table 1 displays the average type I and type II errors
of all methods on the test data at a = 0.05. All
methods achieved the the targeted coverage rate at
95% when averaging inlier data. Figure 3(A) presents
detailed classification results with different methods on
the MNIST dataset. Although ACRF, ACRFshift, and
CRF achieved slightly higher accuracy compared to

CSForest among inlier digits under no additional label
shift, CSForest demonstrated the strongest capability
to detect outlier digits 6-9, even compared to BCOPS,
with an outlier detection accuracy of approximately
90%. Similar results are observed on other datasets, as
detailed in Appendix D.2.

4.2.2 The Shift w/o Outliers Setting

In the previous simulations, although we had outliers,
the class ratios among inlier classes were balanced and
remained the same for training and test data. To verify
whether methods like CSForest, designed to achieve
per-class coverage rather than marginal coverage, still
maintain robustness when handling label shifts among
inlier classes, we examine the predictive performance
of all methods under the traditional label shift setting
in the absence of outliers. For example, for the MNIST
data set, the training and test sets contain digit labels
0-5 but with different class proportions. Details of the
data subsampling and label shift schemes for Q2 can
be found in Appendix C.

The achieved type I and type II errors using different
methods in this standard label shift simulation can
be found in Table 1. We observed that all methods
achieved the desired coverage (1 — o) with ACRFshift
exhibiting high variability. However, CSForest is the
only method that achieved consistently low type II
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Figure 4: The type II error for inliers and outliers across different sample sizes on MNIST. Figure 4 demonstrates
that CSForest outperforms the baselines by efficiently detecting outliers while maintaining lower inlier type II
errors across various sample sizes. Note that error bars here are calculated based on repeated sample-splitting
and can be smaller than the standard deviation due to sample dependence from different runs.

errors: CRF has a type II error 10% and 50% more
than CSForest on MNIST and FashionMNIST, respec-
tively; BCOPS has a type II error 25% more than
CSForest on MNIST; ACRF and ACRFshift both have
type II errors more than two folds than those from
CSForest on all three data sets. Figure 3(B) presents
a detailed view of the prediction results for each class
on the MNIST dataset. CSForest contains a higher
proportion of samples with only the correct labels in
almost every class compared to the baseline models,
which underscores the high-quality prediction sets C (x)
generated by CSForest under Q2, consistent with the
lower type II error reported in Table 1. Detailed results
on other datasets can be found in Appendix D.2.

4.2.3 Comparisons with Varying Sample Sizes

We conducted a comparison of different methods under
varying sample size settings. Specifically, we varied the
number of training and test samples per class from 50
to 200. Figure 4 presents the type II errors for inliers

and outliers across all models on the MNIST dataset.

In Figure 4, it is evident that as training sample size
increases, the type II error (inliers) decreases for all
methods, while BCOPS and CSForest also benefit from
increased test sample sizes. CSForest closely matches
the CRF, the best-performing classifier in the inlier
classification, for predicting inlier labels as we vary the
training/test sample sizes from 50 to 200. CSForest
and BCOPs outperformed other methods by a large

margin for varying sample sizes for outlier detection,
with CSForest significantly improving over BCOPS due
to the enhanced data utilization efficiency. Of note,
the ability for outlier detection (higher type II error
for outliers) ACRFshift deteriorated as sample size
increased. This surprising phenomenon is attributed to
ACRFshift’s decision rule for outliers, which strongly
depends on the sample weights under the covariate

shift model, denoted as 7,,(z) = T($0)+Zr(x)z COL
2i€Tcal ‘

A sample is claimed an outlier 7,,(x) is very large,
and 7., (x) tends to increase with increased training
sample sizes (Appendix B). Results on other datasets
are consistent with those on MNIST (Appendix D.2).

5 DISCUSSION

We propose CSForest, which aims to construct a cal-
ibrated and narrow set-valued prediction set under
distributional changes, as a powerful ensemble classifier
for robust inlier classification and outlier detection. We
theoretically justified its robustness for covering the
true class label and confirmed its ability to construct
high-quality prediction sets compared to alternative
methods via extensive experiments.

Future Work. An interesting question is how much
guidance from test samples is needed for effective out-
lier detection. Can CSForest still utilize the limited
test samples for efficient outlier detection? As an ex-
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ploratory experiment, we consider a challenging MNIST
example, where we have 200 samples per class for labels
0-5 in the training set but only five samples per class
for labels 0-9 in the test set. Figure 5 shows CSForest
achieves an average type II error of approximately 42%
for inliers and 60% for outliers, whereas DC exhibits an
average type IT error of as high as 95%. This highlights
the benefits of utilizing a small test set in CSForest and
suggesting the potential of extending the framework
of CSForest to settings with extremely limited or even
single test samples for future exploration.

1.00-

Method
CRF
CSForest
oc

0.25-

inlier outlier

Figure 5: Achieved Type II errors for inliers and out-
liers across 100 repetitions at = 0.05 with merely 5
samples per-class in the test cohort.

Additionally, the GLS model assumes that the distribu-
tion of x|y remains unchanged, which could be violated
in practice. When both the distribution of y and the
distribution of x|y are allowed to change, the problem
becomes much more challenging and less well-defined.
One interesting future direction is to relax GLS model
and assume bounded small changes in x|y, leading to
the investigation of CSForest under an adversarial set-
ting that allows adversarial yet small perturbations in
x|y during test time.

Acknowledgements

This work was supported by NSF award DMS2310836.

References

Barber, R. F., Candes, E. J., Ramdas, A., and Tib-
shirani, R. J. (2021). Predictive inference with the
jackknife+. The Annals of Statistics, 49(1):486-507.

Bartlett, P. L. and Wegkamp, M. H. (2008). Classifica-
tion with a reject option using a hinge loss. Journal
of Machine Learning Research, 9(8).

Bickel, S., Briickner, M., and Scheffer, T. (2009). Dis-
criminative learning under covariate shift. Journal
of Machine Learning Research, 10(9).

Cadre, B. (2006). Kernel estimation of density level sets.
Journal of multivariate analysis, 97(4):999-1023.

Charoenphakdee, N., Cui, Z., Zhang, Y., and Sugiyama,
M. (2021). Classification with rejection based on cost-
sensitive classification. In International Conference
on Machine Learning, pages 1507-1517. PMLR.

Chow, C. (1970). On optimum recognition error and
reject tradeoff. IEFE Transactions on information
theory, 16(1):41-46.

Cortes, C., DeSalvo, G., and Mohri, M. (2016). Boost-
ing with abstention. Advances in Neural Information
Processing Systems, 29.

Csurka, G. (2017). Domain adaptation for visual ap-
plications: A comprehensive survey. arXiv preprint
arXiv:1702.05374.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swet-
ter, S. M., Blau, H. M., and Thrun, S. (2017).
Dermatologist-level classification of skin cancer with
deep neural networks. nature, 542(7639):115-118.

Gammerman, A., Vovk, V., and Vapnik, V.
(2013). Learning by transduction. arXiv preprint
arXiww:1801.7375.

Gretton, A., Smola, A., Huang, J., Schmittfull, M.,
Borgwardt, K., and Scholkopf, B. (2009). Covariate
shift by kernel mean matching. Dataset shift in
machine learning, 3(4):5.

Guan, L. and Tibshirani, R. (2022). Prediction and
outlier detection in classification problems. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 84(2):524-546.

Hechtlinger, Y., Péczos, B., and Wasserman, L.
(2018). Cautious deep learning. arXiv preprint
arXiw:1805.09460.

Herbei, R. and Wegkamp, M. H. (2006). Classifica-
tion with reject option. The Canadian Journal of
Statistics/La Revue Canadienne de Statistique, pages
709-721.

Kalra, N. and Paddock, S. M. (2016). Driving to safety:
How many miles of driving would it take to demon-
strate autonomous vehicle reliability? Transporta-



Conformalized Semi-supervised Random Forest for Classification and Abnormality Detection

tion Research Part A: Policy and Practice, 94:182—
193.

Kim, B., Xu, C., and Barber, R. (2020). Predictive
inference is free with the jackknife+-after-bootstrap.
Advances in Neural Information Processing Systems,
33:4138-4149.

Kompa, B., Snoek, J., and Beam, A. L. (2021). Sec-
ond opinion needed: communicating uncertainty in
medical machine learning. NPJ Digital Medicine,
4(1):1-6.

Krizhevsky, A., Hinton, G., et al. (2009). Learning
multiple layers of features from tiny images.

LeCun, Y. and Cortes, C. (2010). MNIST handwritten
digit database.

Lei, J. (2014). Classification with confidence.
Biometrika, 101(4):755-769.

Lei, J. and Wasserman, L. (2015). Distribution-free pre-
diction bands for nonparametric regression. Quality
control and applied statistics, 60(1):109-110.

Lin, J., Keogh, E., Fu, A., and Van Herle, H. (2005).
Approximations to magic: Finding unusual medical
time series. In 18th IEEE Symposium on Computer-
Based Medical Systems (CBMS’05), pages 329-334.
IEEE.

Lipton, Z., Wang, Y.-X., and Smola, A. (2018). De-
tecting and correcting for label shift with black box
predictors. In International conference on machine
learning, pages 3122-3130. PMLR.

Marchette, D. J. and Marchette, D. (2001). Computer
intrusion detection and network monitoring: a sta-
tistical viewpoint. Springer.

Neyman, J. and Pearson, E. S. (1933). Ix. on the prob-
lem of the most efficient tests of statistical hypotheses.
Philosophical Transactions of the Royal Society of
London. Series A, Containing Papers of a Mathemat-
ical or Physical Character, 231(694-706):289-337.

Ni, C., Charoenphakdee, N., Honda, J., and Sugiyama,
M. (2019). On the calibration of multiclass classifica-
tion with rejection. Advances in Neural Information
Processing Systems, 32.

Papadopoulos, H., Proedrou, K., Vovk, V., and Gam-
merman, A. (2002). Inductive confidence machines
for regression. In Machine Learning: ECML 2002:
13th FEuropean Conference on Machine Learning
Helsinki, Finland, August 19-23, 2002 Proceedings
13, pages 345-356. Springer.

Qayyum, A., Usama, M., Qadir, J., and Al-Fuqaha, A.
(2020). Securing connected & autonomous vehicles:
Challenges posed by adversarial machine learning
and the way forward. IEEE Communications Surveys
& Tutorials, 22(2):998-1026.

Romano, Y., Sesia, M., and Candes, E. (2020). Classi-
fication with valid and adaptive coverage. Advances
in Neural Information Processing Systems, 33:3581—
3591.

Sadinle, M., Lei, J., and Wasserman, L. (2019). Least
ambiguous set-valued classifiers with bounded error
levels. Journal of the American Statistical Associa-

tion, 114(525):223-234.

Scholkopf, B., Janzing, D., Peters, J., Sgouritsa, E.,
Zhang, K., and Mooij, J. (2012). On causal and
anticausal learning. arXiv preprint arXiv:1206.6471.

Shimodaira, H. (2000). Improving predictive inference
under covariate shift by weighting the log-likelihood
function. Journal of statistical planning and infer-

ence, 90(2):227-244.

Storkey, A. (2009). When training and test sets are
different: characterizing learning transfer. Dataset
shift in machine learning, 30:3-28.

Tibshirani, R. J., Foygel Barber, R., Candes, E., and
Ramdas, A. (2019). Conformal prediction under
covariate shift. Advances in neural information pro-
cessing systems, 32.

Vovk, V., Gammerman, A., and Shafer, G. (2005).
Algorithmic learning in a random world. Springer
Science & Business Media.

Vovk, V., Nouretdinov, I., Manokhin, V., and Gammer-
man, A. (2018). Cross-conformal predictive distri-
butions. In Conformal and Probabilistic Prediction
and Applications, pages 37-51. PMLR.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint
arXiv:1708.07747.



Yujin Han', Mingwenchan Xu', Leying Guan

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable] Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable] Yes

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]
Not Applicable

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes/No/Not Applicable]
Yes

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable] Yes

(¢) Clear explanations of any assumptions.
[Yes/No/Not Applicable] Yes

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes/No/Not Applicable] Yes

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable] Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes/No/Not Applicable] Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [Yes/No/Not Applicable]
Not Applicable

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes/No/Not Applicable] Yes

(b) The license information of the assets, if appli-
cable. [Yes/No/Not Applicable] Not Applica-
ble

(¢) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable] Not Applicable

(d) Information about consent from data
providers/curators. [Yes/No/Not Applicable]
Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable] Not
Applicable

5. If you used crowdsourcing or conducted research

with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Yes/No/Not Applica-
ble] Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Yes/No/Not Appli-
cable] Not Applicable

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Yes/No/Not Applicable]
Not Applicable



Conformalized Semi-supervised Random Forest for Classification and Abnormality Detection

A PROOFS

A.1 Proof of Proposition 3.1

For the completeness, we provide a reproduction of the proof presented in Guan and Tibshirani (2022),

Proof. We first decompose the problem in eq. (2) into K independent problems for different classes, referred to as
the problem Pj:

min/ Lica, p(x)de, (6)
st.Plze Ay >1—a (7)

Let Ay be the solution to problem Py, then the solution to problem eq. (2) is C(z) = {k: v € Ax}.

We then define Q(«, g; F') is the lower « percentile of a real-valued function ¢g(z) under distribution F, i.e.,
Qla,g; F) = sup{t : Pr(g(x) <t) < a}. (8)

Following Guan and Tibshirani (2022), we regard the problem Py as a hypothesis testing problem where
the null hypothesis is Hy : ¢ ~ f; and the alternative is Hy : © ~ pg. The optimal solution of Py is
A which is actually the decision region of above hypothesis with the most powerful level a. Therefore,
by Neyman—Pearson Lemma (Neyman and Pearson, 1933), we can construct the likelihood ratio statistic
s(z, k) = fr(x)/p(z) and have the solution Ay = {s(x, k; u) < Q(a, si; Fi)} where the s is the conformal
score function of class k and Fj is the distribution of = from class k. Hence, the solution to eq. ((2) is
Cx) ={k :Ex[L{s(z,k;p) > s(X, ;) }|Y = k] > a,k=1,...,K}.

O

A.2 Proof of Theorem 3.3

Proof. Here, we prove eq. (5) for any given class k and the test sample x;. The original procedure for determining
whether we should assign class k to sample x; can also be described as following. First, generate two events, &
and &:

1. Event £1: Training samples other than class k and bootstrap copies Z0,, . for b=1,..., B.

2. Event £2: Test samples other than x; and bootstrap copies If forb=1,... ,B.

est
Let I,’; for b=1,..., B represent B bootstrap copies of training class k samples. We conduct our conformalized
classification using only copies b with v, = 1 for b =1, ..., B, where v, ~ Bernoulli((1— ﬁ)”k) The comparison
between ;s from class k and the test sample z; is performed by aggregating prediction functions using runs b
with v, = 1 and excluding both z; and x;: G¥ (z; ) = (G (z; p) : b satisties v, = 1,4 ¢ ZP,i ¢ T0.).

We will now condition on &; and &, and define B; = {b: i ¢ 70 }. The function G* (x; ) can be rewritten
as G (z;p) = o(GY(w;p) : b € B; satisfies v, = 1,4/ ¢ V). A key observation is that this can be equivalently

expressed as first sampling B ~ Binomial(|Bi], (1 — nklﬂ)"k) and constructing the ensemble prediction func-

tion comparing z; and zy: GV (z; ) = ©(GY(z; ) : b satisfies ' ¢ Z0,1 < b < B). We have also dropped the
superscript ¢ since this dependence disappears after conditioning and restricting ourselves to B;.

Interestingly, under this new equivalent characterization, sampling B ~ Binomial(|B;], (1 — ﬁ)”’») followed by
bootstrap B copies of the ny class k samples is equivalent to drawing |Bi| bootstrap copies of the ny + 1 samples,
which include nj samples from training class k& and the test sample z;, and then keeping only those bootstrap
samples where z; is not included. A similar equivalence was first noted by Kim et al. (2020) and utilized in the

Jacknife+aB procedure for traditional supervised regression.

In summary, the decision rule in CSForest for whether to include label k in C (z;) can be equivalently expressed
with the following procedure after conditioning on & and &;:
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1. Conduct |Bi| bootstrap resamplings of the nj 4+ 1 samples. Denote these samples as 1, ..., Tn, (representing
ng class k training samples) and x,, +1 < x; as the test sample x;. Let I, be the index of samples in the bth
bootstrap.

2. For each bootstrap, construct a random forest tree G®(z) separates x 7, from other samples (conditioned on).

3. For each pair (I,7) with 1 < [,j < ng + 1, construct G¥ (z) = o({G%(z) : I,j ¢ I;}) and include label k if
and only if

L+ Y UG (@ p1) 2 GI 7 (25)) 2 (ng + e
j=1

Note that § (x, k; 1) is the same as G™ 17 (z,,, 1 1).
Define A;; = ]l{é’l’j(wl) > C;’j’l(xj)} forall 1 <1l,j <ng+1. It is obvious that A;; =1 foralli=1,...,n+ 1.

Define A;q = Z;’i’fl Aj; as the sum of the I*" row from the comparison matrix A. Then,

k¢ Cy(xn,4+1) if and only if Appt1e < (N + Do — 1.
Hence, eq. (5) from Theorem 3.3 is equivalent to (9) below:
P(Ans1e < (26 + D = g1 = ) < 20, )

We now proceed to prove (9), which consists of two steps (1) A;o are exchangeable with each other for j = 1,...,n+1
when y,,,+1 = k, and (2) the strange set S(A) = {j : Ajo < (ngp+1)a—1} satisfies |S(A)| < 2a(ny+1). Combining
these two steps, we immediately have

P [A"k+1. < (nk =+ 1)0& - 1|ynk+1 = k]

1S(4)]

=Pl +1) € SA)lynsr = K = =7

< 2a.

At this stage, proofs to above two steps (1) and (2) become identical to that used in the proofs to Theorem 1 in
Barber et al. (2021) or Theorem 1 in Kim et al. (2020).

O

B MORE DETAILS ON BASELINES

In this section, we provide more details about the baseline models. We first introduce several existing methods
for constructing set-valued predictions C(z), including BCOPS, CRF, DC, and ACRFrandom.

B.1 BCOPS, CRF, DC and ACRFrandom

e BCOPS (Balanced Conformalized Optimal Prediction Sets) (Guan and Tibshirani, 2022) is a semi-supervised
classifier that utilizes half of the training data to train a classifier, separating observed classes from unlabeled
test samples. The remaining half of the training samples is used for calibration through conformal prediction
and constructing a set-valued prediction set. In contrast, BCOPS focuses on optimizing model performance
on the test set, setting u(x) = fie(x), which represents the marginal density for the test data. It constructs
calibrated set-valued predictions by combining empirically estimated vy (z) with the sample-splitting conformal
prediction method(Vovk et al., 2005). While BCOPS excels in abnormality detection, outperforming non-
test-cohort-adaptive methods, it relies on having a large set of test data, and the sample-splitting scheme
results in lower data utilization efficiency(Guan and Tibshirani, 2022).

e CRF (Comformalized Random Forest)(Vovk et al., 2005) constructs the set-valued prediction {k : py(x) > 74}
by including training labels k achieving high estimated probability from the random forest classifier, with
the cut-offs 73, chosen based on sample-splitting conformal prediction.

e DC (Density-set Classifier)(Hechtlinger et al., 2018) constructs the set-valued prediction similarly to CRF,
except for replacing the estimated probability pi(x) by an estimation of the density function for class k using
the training data.
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e ACRFrandom: We refer to the adaptive-coverage classification approach using random forest proposed in
Romano et al. (2020) as ACRFrandom (Adaptive-coverage CRF with randomization) where the randomization
is introduced via an additional uniform random variable U for tie-breaking. ACRFrandom constructs the
prediction set C’(a:) by including labels with large estimated probabilities such that the total probability
is greater than the upper-level quantile of the empirical distribution of {E;}icz,,, U {oo} where Z.4; is the
calibration set in sample-splitting conformal prediction and F; is the sum of estimated probabilities for all
labels proceeding that for the true label.

B.2 ACRF and ACRFrandom

We further introduce the baseline ACRFrandom and its de-randomized version ACRF.

ACRFrandom

In the original proposal of Romano et al. (2020), the authors assume that training and test data to have the
same distribution. ACRFrandom defines a function S with input z, v € [0, 1], the conditional probability
7y = P(Y = y|X = z), and the threshold 7. Define

y indices of the L(x; 7, 7) — 1 largest my(z), if u < V(x;m,7)

y indices of the L(z; 7, 7) largest m,(z),  otherwise (10)

S(avum7) = {
where

L(xym,T
ST g (@) — 7
7T(L(a:;‘/r,‘r))(x)

V(z;m, 1) =

L(z;m,7) = min{c € {1,---,C} : mqy(x) + 7o) () + - + 7oy (w) > T} (12)

and 7(;)(z) is the ith largest conditional probability.

Further, ACRFrandom defines the generalized inverse quantile conformity score function F,

E(z,y,u;7) =min{r € [0,1] : y € S(z,u; 7, 7)}. (13)

And the empirical distribution is

1 1
Ve yB)= ——— 5 6p + ———6.. 14
(z,y; E) |Ical|+1i§1 B, + Zow| + 1 (14)

where E; is constructed at the minimum 7 for the calibration sample ¢ such that y; is included in S(z;, u;; @, 7)

and 0; denotes a point mass at 4. The final prediction set is constructed as C(x) = S(x, u; w, 7,), where 7, is the
upper level o quantile of the empirical distribution {E;}iez.,, U {o0}.

cal

ACRF

We consider a derandomized version of ACRF without the uniform variable U in our experiment. For ACRF, we
define

S(z;m,7) = {y indices of the L(z;m,T) largest m,(x)}, (15)

where
L(z;m,7) =min{c € {1,---,C} : mq)(x) + may(x) + - + 7y () > 7} (16)

We can similarly define a score function F,

E(x,y;7) =min{r € [0,1] : y € S(x; 7, 7)}, (17)
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and construct E; as the the minimum 7 for the calibration sample ¢ such that y; is included in S(x;; 7, 7). Same as
in ACRFrandom, ACRF constructs as C'(z) = S(x; 7, 7o), where 7, is the upper level o quantile of the empirical
distribution {E;};cz,,, U {oo}. Algorithm 2 shows the details of ACRF.

cal

Algorithm 2: Implementation of ACRF

Input :Training Data {z; == (x;,¥:;)" 1,7 € Iy}, Test Data {(z;)",7 € Zie ).

Output : Prediction sets C’i(xi) for i € Zye.

Randomly split the training data into 2 subsets, the training set Z}., the calibration training set Z7..
Train random forest model B on all samples in Z}.: 7y « B((X;, Yi)z‘elb)'

Predict on Z72,: 7ty = B((X;);ez,) and Tye: ftye < B((Xi)iez,.)-

Construct {E;};czz treating Z7,. as the calibration set.

Compute the level (1 — «) quantile of the empirical distribution {E;};cz2 U {oo}.

Use the function S defined in eq. (15) to construct the prediction set at x; € Zye as Cy(x;) = S(Xy; Ty, Ta).

B.3 ACRFshift

Finally, we introduce ACRFshift, another baseline that explicitly accounts for distributional changes under
covariate shift model. ACRFshift combines the covariate shift comformal prediction (Tibshirani et al., 2019) with
ACRF. This has not been discussed in previous work, so we give details about how this is done in our paper.
We split also the test samples into two sets Z}., Z2. Suppose that we now construct the prediction set for test
samples in 77 .

Instead of finding 7 with eq. (17) and (14), we consider the following weighted calibration. The weighted function

is v, (z) = W and r(z) = % is the conditional probability of being generated from the test

data (W = 1 means from the test data, and W = 0 represent from the training data), learned from the classifier
separating the test data Z., from the training data Z}.. Instead of consider 7, as the level (1 — a) quantile of the
empirical distribution {E;};cz2 U {00}, for any z € I7,, we consider the level (1 — a) quantile of the weighted
distribution below:

Vw(xv?ﬁE) = Z ’Yz(xz)(sEl + ’Yz(x)(soo

i€T?,

Similarly, whether to include the random variable U in ACRF will result in two versions: ACRFshiftrandom and
ACRFshift.

Unlike CSForest, BCOPS, and even CRF, which naturally considers samples with () as the ones not close to inlier
classes, and thus, outliers, ACRF and ACRFshift both consider the conditional probability of y|z and do not
have such a feature encoded in their constructions. Hence, we adopt the rule where we reject a sample when r,(z)

is very large compared to others with 2 Te (z;) < 7. (Recall that r,(x;) = ﬁ without covariate shift.)

B.4 Randomized ACRF/ACRFshift vs. derandomized ACRF/ACRFshift

In this section, we further demonstrate the difference between the randomized version and derandomized version
to support our claim that removing the random variable U from ACRFrandom and ACRFshift helps achieve a
desirable type II error.

Table 2 shows the type I error and type II error of ACRF/ACRFrandom and ACRFshift/ACRFshiftrandom
(referred to as derandomized and randomized versions of ACRF/ACRFshift in Table 2). We observe that models
with randomness and those without randomness achieve comparable type I errors when there is not shift in the
inlier labels, while models with randomness tend to have worse type II errors and the final prediction set C is
more likely to contain multiple labels. One potential explanation for this is that randomization can help with
the control of conditional coverage and may lead to increased high type II error due to this more ambitious
goal. Supporting this, the randomized version for both ACRF and ACRFshift controls the type I error while the
derandomized version, especially ACRF, shows inflated type I error under the label shift model.
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Table 2: Randomized version vs. derandomized version: Achieved Type I and Type II errors at a = 0.05 with
outlier components and no additional label shift among inlier digits and achieved Type I and Type II errors at
a = 0.05 with label shift among inlier digits but no outlier digits.

NO ADDITIONAL LABEL SHIFT ADDITIONAL LABEL SHIFT

VERSION METHOD
TyPE I TyPE II TyYPE I TyPE II
RANDOMIZED ACRF 0.04940.007  0.702+0.017  0.02540.007 0.884-+0.014
ACRFSHIFT  0.05340.007 0.68140.014 0.055+0.013  0.82840.015
ACRF 0.04740.006  0.431+0.003 0.17140.024  0.31340.067
DERANDOMIZED A cRFsHFT — 0.03640.009  0.43940.009  0.08040.026  0.630+0.127

C TRAINING DETAILS

In this section, we provide a detailed description of how we constructed datasets satisfying GLS and label shift
using MNIST, CIFAR-10, and FashionMNIST for experimentation.

Q1 outliers w/o shift. For the datasets MNIST, CIFAR-10, and FashionMNIST, each consisting of 10 categories,
we sampled 500 samples from each class (categories 0-5) to create a training set of 2500 samples. From the
remaining samples in categories 0-5, we randomly selected 500 samples from each class, and similarly, we randomly
selected 500 samples from each class in categories 6-9. These 5000 samples formed the test set. Notably, in the
test set, categories 6-9 represent outliers that never appeared in the training set, while categories 0-5 are inlier
samples.

Q2 shift w/o outliers. For the Label Shift setup, we sampled 500 samples from each class (categories 0-5) from
MNIST, CIFAR-10, and FashionMNIST to create a training set of 3000 samples. From the remaining samples
in categories 0-5, we randomly selected 100 samples from each class, and similarly, we randomly selected 500
samples from each class in categories 6-9. These 3000 samples formed the test set.

It is important to emphasize that for MNIST, CIFAR-10, and FashionMNIST, both CSForest and the baseline
methods utilized representations extracted by a pre-trained ResNet-18 model as inputs, rather than the original
images.

D ADDITIONAL EXPERIMENTS RESULTS

In the following section, we present additional experimental results to further substantiate the conclusions made
in Section 4.

D.1 More Datastes

To further illustrate the effectiveness of CSForest under different tasks, we additionally include experiments on
two new datasets: a cyber/network intrusion dataset from the KDD data competition and a chest X-ray dataset
from the medical domain. Results in Tabel 3 shows CSForest achieves low type I errors and minimizes type I1
errors in both datasets, demonstrating its superior capability for outlier detection compared to the baseline.



Yujin Han', Mingwenchan Xu', Leying Guan

Table 3: The achieved type I and type II errors at @« = 0.05 under no additional distribution shift but with
outliers in the test set across 10 repetitions. For Network Intrusion, the test set includes additional 15 intrusion

types as outliers; for Chest X-ray, the test set includes lung abnormalities caused by viruses as outliers.

Method Network Intrusion Chest X-ray

Type I Error Type II Error Type I Error Type II Error
CSForest 0.048 £+ 0.013  9.524e-5 £+ 0.000 0.056 = 0.003 0.566 + 0.002
BCOPS 0.047 £ 0.014 5.905e-4 + 0.000 0.059 £ 0.005 0.576 £ 0.004
DC 0.049 £ 0.010 0.261+ 0.049 0.062 £ 0.010 0.728 £+ 0.013
CRF 0.030 £ 0.004 0.467+ 0.104 0.039 £ 0.033 0.793 + 0.178
ACRF 0.000 £ 0.000 0.857+ 0.000 0.067 £ 0.046 0.922 £ 0.005
ACRFshift  0.001 £ 0.001 0.019 £ 0.004 0.039 £ 0.049 0.885 £ 0.057

D.2 Per-class Quality Evaluation

Figures 6 and 7 provide a detailed breakdown of the predictions made by all methods for each class in the
CIFAR-10 and FashionMNIST datasets. Consistent with the results observed in MNIST, we find that CSForest is
the top-performing method for outlier detection, and it avoids over-predicting by generating prediction sets that

predominantly contain only the correct labels for each class.
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are defined as R = {6, 7,8,9}.

Figure 6: Per-class quality evaluation on CIFAR-10. Figure 6 is grouped by the actual labels in the testing data
and colored based on if a prediction set contains only the correct label (blue) or more than the correct label

(gray). The horizontal dash line refers to the coverage level of 95%.
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Figure 7: Per-class quality evaluation on FashionMNIST. Figure 7 is grouped by the actual labels in the testing
data and colored based on if a prediction set contains only the correct label (blue) or more than the correct label
(gray). The horizontal dash line refers to the coverage level of 95%.

D.3 Average Length of the Prediction Set C

We observe that across all datasets, whether in the setting with outliers and no additional label shift or without
outliers and with additional label shift, CSForest consistently achieves the smallest average prediction set interval
length. This indicates that CSForest’s predictions do not contain a significant amount of redundant information,
aligning with our previous observations of CSForest containing more “only correct labe” content for each class
and exhibiting lower type II error.

To further illustrate that CSForest’s prediction set C results in more accurate label predictions (i.e., predominantly
containing only the correct labels) compared to other methods, Figure 8, 9 and 10 visualize the average interval
length of prediction sets C' for all methods.
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(a) Per-class quality evaluation of all methods with (b) Average length of the prediction set C' of all
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among inlier digits. digits but no outlier components.

Figure 8: Average length of the prediction set C on MNIST. For MNIST, in both settings, CSForest achieves
the smallest average prediction set interval length, which aligns with the high “only correct labels” content

demonstrated in Figure 3 for CSForest across all classes. This conclusion is further supported by the lower type
IT error exhibited by CSForest in Table 1.
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(a) Per-class quality evaluation of all methods with (b) Average length of the prediction set C of all
outlier components but no additional label shift methods with additional label shift among inlier
among inlier digits. digits but no outlier components.

Figure 9: Average length of the prediction set C on CIFAR-10. For CIFAR-10, in both settings, CSForest achieves
the smallest average prediction set interval length, which aligns with the high “only correct labels” content

demonstrated in Figure 6 for CSForest across all classes. This conclusion is further supported by the lower type
IT error exhibited by CSForest in Table 1.
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(a) Per-class quality evaluation of all methods with (b) Average length of the prediction set C' of all
outlier components but no additional label shift methods with additional label shift among inlier
among inlier digits. digits but no outlier components.

Figure 10: Average length of the prediction set C on FashionMNIST. For FashionMNIST, in both settings,
CSForest achieves the smallest average prediction set interval length, which aligns with the high “only correct
labels” content demonstrated in Figure 7 for CSForest across all classes. This conclusion is further supported by
the lower type II error exhibited by CSForest in Table 1.

D.4 CSForest’s Performance with Varying Sample Size

In this section, we present the type II (inlier and outlier) error curves for all methods on CIFAR-10 and
FashionMNIST as sample sizes vary. Consistent with the experimental results on MNIST, CSForest demonstrates
superior outlier detection capabilities relative to the baseline as sample sizes change, and it also maintains lower
inlier type II errors.
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Figure 11: The type II error for inliers and outliers obtained under different sample sizes on CIFAR-10. Figure 11
illustrates that, compared to baselines, CSForest efficiently detects outliers while maintaining lower inlier type II
errors across varying sample sizes.
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Figure 12: The type II error for inliers and outliers obtained under different sample sizes on FashionMNIST.
Figure 12 illustrates that, compared to baselines, CSForest efficiently detects outliers while maintaining lower
inlier type II errors across varying sample sizes.

E DISCUSSION ON w

To avoid oversampling, we impose constraints on fathem where the sample size for other classes is constrained to
min([ngw],n — ng). That is, we weigh the training samples through sampling, and we will cap the influence
of training samples if even taking all training samples becomes insufficient. So the threshold of satisfies
[niew] = n —ng. As a result, CSForest will yield the same Type I and Type II error once w exceeds a certain
threshold depending on the data.

Assuming a training dataset with K classes and T samples per class, and a test dataset with K’ classes and T’
samples per class. We have:

Ngew + 121 —ng > nyew
— KTw+1>KT-T>KTw
(K - 1)T (K -1)T -1
N T s> /T ©
KT~ K'T'

(18)

Based on eq. (18), we have the following conclusions:

1. If w exceeds the threshold %, increasing w will have no effect on CSForest.
2. If the test sample size n,, = K'T’ > KT = ny, where ny, is the training sample size, w — 1. In this case,
greater than 1 will achieve the same errors as w = 1.

In this section, we experiment with different choices of weights w from small 0 to large (exceeding the weight
threshold) as opposed to fixing w = 1 at the default value. Although small w can sometimes lead to improved
outlier detection and large w can sometimes improve the inlier classification, w = 1 tend to provides a good
tradeoff between these two objectives on the three real data sets considered.
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Table 4: Achieved Type I and Type II errors at a = 0.05 and w > 1 on MNIST. We observed that when w > 2,
CSForest achieves the same Type I and Type II error as w > 2.

w TYPE I ERROR  TYPE II ERROR (INLIER) TYPE II ERROR (OUTLIER)
0 0.057+£0.018 0.251+£0.033 0.31440.068
LOG 0.053+0.016 0.224+0.031 0.315+0.061
1 0.058+0.014 0.119+0.018 0.346+0.065
1.5 0.055+0.016 0.106+0.014 0.34940.068
2 0.056+0.018 0.099+0.016 0.373+0.072
5 0.056+0.018 0.099+0.016 0.373+0.072
10 0.056+0.018 0.099+0.016 0.373+0.072
100 0.056+0.018 0.099+0.016 0.373+0.072

Table 5: Achieved Type I and Type II errors at o = 0.05 and w > 1 on CIFAR-10. We observed that when w > 2,
CSForest achieves the same Type I and Type II error as w > 2.

w TypE I ERROR  TYPE II ERROR (INLIER) TYPE II ERROR (OUTLIER)
0 0.045+0.015 0.001+0.001 0.000+0.000
LOG 0.043+0.016 0.000+£0.001 0.000+0.000
1 0.043+0.016 0.000+0.001 0.000+0.000
1.5 0.043+0.014 0.000+0.001 0.000+0.000
2 0.043+0.016 0.000+0.001 0.000+0.000
5 0.043+0.016 0.000+£0.001 0.000+0.000
10 0.043+0.016 0.000+0.001 0.000+0.000
100 0.043+0.016 0.000+0.001 0.000+0.000

E.1 MNIST

For the MNIST data, we consider K = 6,T = 200, K’ = 10,7’
2.000. For the MNIST dataset, we indeed observed in Table 4 that once w > 2, the type I error and type II error

of CSForest no longer change.

E.2 CIFAR-10

50 and we can get the threshold 1.998 < w <

For CIFAR-10, we consider K = 6,7 = 200, K’ = 10,7’ = 50 and get the threshold 1.998 < w < 2.000. Similarly
to MNIST, for CIFAR-10, once w exceeds the threshold of 2, the performance of CSForest remains unchanged.

E.3 FashionMNIST

For the CIFAR-10 data, we consider K = 6,7 = 200, K’ = 10,7’ = 50 and get the threshold 1.998 < w < 2.000.
For FashionMNIST as well, the performance of CSForest remains constant once w surpasses the threshold of 2.

Table 6: Achieved Type I and Type II errors at & = 0.05 and w > 1 on FashionMNIST. We observed that when
w > 2, CSForest achieves the same Type I and Type II error as w > 2.

w TyYpPE I ERROR  TYPE II ERROR (INLIER) TYPE II ERROR (OUTLIER)
0 0.04940.011 0.4214:0.001 0.406+0.045
LOG  0.048%+0.012 0.39140.047 0.3994:0.043
1 0.046+0.012 0.287+0.028 0.403+0.037
1.5 0.04740.010 0.27240.029 0.4084:0.038
2 0.048+0.012 0.26240.032 0.410£0.034
5 0.04840.012 0.26240.032 0.410£0.034
10 0.048+0.012 0.26240.032 0.410£0.034
100 0.04840.012 0.26240.032 0.410£0.034




