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Abstract

Bias amplification is a phenomenon in which
models exacerbate biases or stereotypes present
in the training data. In this paper, we study bias
amplification in the text-to-image domain using
Stable Diffusion by comparing gender ratios in
training vs. generated images. We find that the
model appears to amplify gender-occupation
biases found in the training data (LAION) con-
siderably. However, we discover that amplifica-
tion can be largely attributed to discrepancies
between training captions and model prompts.
For example, an inherent difference is that cap-
tions from the training data often contain ex-
plicit gender information while our prompts
do not, which leads to a distribution shift and
consequently inflates bias measures. Once we
account for distributional differences between
texts used for training and generation when
evaluating amplification, we observe that am-
plification decreases drastically. Our findings
illustrate the challenges of comparing biases in
models and their training data, as well as eval-
uation more broadly, and highlight how con-
founding factors can impact analyses.

1 Introduction

Breakthroughs in machine learning have been fu-
eled in large part by training models on massive
unlabeled datasets such as the Pile, C4, and LAION
(Gao et al., 2020; Raffel et al., 2020; Schuhmann
et al., 2022). However, several studies have shown
that these datasets exhibit biases and undesirable
stereotypes (Birhane et al., 2021; Dodge et al.,
2021; Garcia et al., 2023), which in turn impact
model behavior. Given that models are trained to
represent the data distribution, it is not surprising
that models perpetuate biases found in the train-
ing data (De-Arteaga et al., 2019; Sap et al., 2019;
Adam et al., 2022, among others).

To introduce bias amplification, let us take a
model that generates images of engineers that are
female 10% of the time using a gender-neutral
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Figure 1: Comparing generated and training images
for engineer, the model clearly seems to amplify bias
by generating 10% female images, as compared to 25%
female in training images. However, when looking at the
subset of training examples without gender indicators
in captions (10% female), similar to our prompts, the
model does not amplify bias.

prompt. When examining the training data, we
may assume that the model reflects associations in
the data and expect to observe roughly 10% female
as well.! However, it would be problematic for the
model to instead exacerbate existing imbalances
by generating engineer images that are only 10%
female, while the training engineer images are 25%
female, as shown in Figure 1. This phenomenon,
known as bias amplification (Zhao et al., 2017), is
concerning because it further reinforces stereotypes
and widens disparities. While previous works sug-
gest that models amplify biases (Zhao et al., 2017;
Wang et al., 2018; Hall et al., 2022; Hirota et al.,
2022; Friedrich et al., 2023), there remain unan-
swered questions about the paradoxical nature of
bias amplification, given below:

"Note that even such bias preservation may be undesirable.
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The Bias Amplification Paradox

Given that models learn to fit the training
data by maximizing its likelihood, why do
models amplify biases found in the data as
opposed to strictly representing them?

In this paper, we investigate how model biases
compare with biases found in the training data. We
focus on the text-to-image domain in English and
analyze gender-occupation biases in Stable Dif-
fusion (Rombach et al., 2022), as well as its pub-
licly available training dataset LAION (Schuhmann
et al., 2022), which consists of image-caption pairs
(§2). To select training examples, we identify cap-
tions that mention occupations (e.g., engineer) and
obtain their corresponding images. We follow pre-
vious work (Bianchi et al., 2023; Luccioni et al.,
2023) and use prompts that contain a given occupa-
tion (e.g., “A photo of the face of an engineer”) to
generate images. For each occupation, we then clas-
sify binary gender to measure bias in corresponding
training and generated images, and compare the re-
spective quantities to determine whether the model
amplifies biases? from its training data (§3).

At first glance, it appears that the model am-
plifies bias considerably (on average, generation
bias is 12.57% higher than training bias) using ex-
isting approaches (§4). When comparing training
captions and prompts, however, we discover clear
distributional differences that impact amplification
measurements. For example, one inherent distinc-
tion is that captions often specify explicit gender
indicators while prompts used to study gender-
occupation biases do not.> More generally, cap-
tions may contain additional context and details
that are absent from the prompts we use.

Based on our observations, it is clear that di-
rectly using all training captions that mention a
given occupation provides a naive characterization
of bias amplification. Instead, we propose evaluat-
ing amplification on subsets of the training data that
reduce distribution shifts between training and gen-
eration (§5). We introduce two approaches to ac-
count for distributional differences: (1) Excluding
captions with explicit gender information and (2)
Using nearest neighbors (NN) on text embeddings

2We define bias as a deviation from the 50% balanced
(binary) gender ratio. This definition differs from measur-
ing performance gaps between groups (e.g., TPR difference),
which is common in classification setups.

3Since we study gender bias, prompts exclude explicit
gender information to avoid skewing generations.

to select training captions that closely resemble
prompts. Both approaches restrict the search space
of training texts to more closely match prompts,
which results in considerably lower amplification
measures. We then eliminate differences between
training captions and prompts by utilizing the cap-
tions themselves to generate images (§6), and show
that amplification is minimal. By modifying sub-
sets of captions and prompts used to evaluate am-
plification, we perform a multi-pronged analysis of
distribution shifts that impact evaluation.

To summarize, we study gender-occupation bias
amplification in Stable Diffusion and highlight no-
table discrepancies between texts used for training
and generation. We demonstrate that naively quan-
tifying bias provides an incomplete and misleading
depiction of model behavior. Our work empha-
sizes that comparisons of dataset and model biases
should factor in distributional differences and eval-
uate comparable distributions. We hope that our
work encourages future studies that analyze model
behavior through the lens of the data.

2 Experimental Setup

Before discussing how we define and evaluate am-
plification in the following section, we first outline
the dataset and models in our experiments, as well
as how we infer gender from images.

2.1 Dataset and Models

To study bias amplification, we use Stable Diffu-
sion (Rombach et al., 2022), a text-to-image model
that generates images based on a textual descrip-
tion (prompt). Stable Diffusion is trained on pairs
of captions and images taken from LAION-5B
(Schuhmann et al., 2022),* a public dataset created
by scraping images and their captions from the web.
We focus on two versions, Stable Diffusion 1.4 and
1.5, which are both trained on text-image pairs from
the 2.3 billion English portion of LAION-5B.%

2.2 Gender Classification

We analyze bias in images with respect to
perceived gender.® To classify binary gender at
scale, we utilize an automatic classifier, which
we validate with a human study (see Appendix

*LAION was publicly available at the time of writing this
paper, but has since been removed.

3Stable Diffusion 1.5 is finetuned for a longer duration on
LAION-Aesthetics (a subset of higher quality images).

®Classifying binary gender based on appearance has limi-
tations and perpetuates stereotypes, and excludes non-binary
gender identities.
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A.4). It is important to verify that images include
faces, and that perceived gender is discernible
from these images. Therefore, we first check
whether an image contains a single face using
a face detector.” Then, we use CLIP (Radford
et al., 2021), a multimodal model with zero-shot
image classification capabilities, to predict
gender (note that Stable Diffusion also uses
CLIP’s text encoder to encode prompts). We
perform gender classification by computing the
cosine similarity between CLIP embeddings:
cos(CLIP(image), CLIP(a photo of a woman)) as

well as cos(CLIP(image), CLIP(a photo of a man)).

After computing image-text similarities, we nor-
malize the similarity values using softmax to obtain
gender probabilities. We follow the zero-shot
procedure described in Radford et al. (2021) and
use the texts “a photo of a woman” and “a photo of
a man” for computing image-text similarities.®

To exclude cases where gender is difficult to
infer (e.g., faces might be blurred or obscured),
we only consider images for which the predicted
gender probability is greater than or equal to 0.9.
We apply these filtering steps to both training and
generated images.

2.3 Occupations

Similarly to previous works, we analyze gender-
occupation biases for occupations with varying lev-
els of bias (Rudinger et al., 2018; Zhao et al., 2018;
De-Arteaga et al., 2019). These include occupa-
tions that skew male (e.g., CEO, engineer), fairly
balanced (e.g., attorney, journalist), and female
(e.g., dietitian, receptionist) based on the training
data. In total, we consider 62 job occupations,
which can be found in Table 4 in the Appendix.

3 Methodology
3.1 Measuring Model Bias

To measure biases exhibited by the model, we gen-
erate images using four prompts, shown in Table 1.
These prompts deliberately do not contain gender
information since we want to capture biases learned
by the model. Both prompts #1 and #2 also direct
the model to generate faces by including “face” and
“portrait”, respectively. We generate 500 images
per occupation and prompt using various random

7https ://developers.google.com/mediapipe/
solutions/vision/face_detector/python.

8 Applying CLIP to infer gender on the FairFace dataset
(Karkkainen and Joo, 2021) results in strong performance (>
95% accuracy) across various racial subgroups.

Prompt

A photo of the face of a/an [OCCUPATION]
A portrait photo of a/an [OCCUPATION]
A photo of a/an [OCCUPATION] smiling
A photo of a/an [OCCUPATION] at work

EESNOSE S RE e E

Table 1: The four prompts we use to generate images.
“[OCCUPATION]” is a placeholder we replace with one
of the 62 occupations we use (e.g., engineer).

seeds to initialize random noise. We define G p, as
the percentage of females in generated images for
a prompt P describing an occupation o.

3.2 Measuring Data Bias

Given that the training data consists of image-
caption pairs, we use captions to obtain relevant
training examples. In doing so, we assume that
the captions relating to a given occupation mention
the occupation. We use the search capabilities of
WIMBD (Elazar et al., 2024), a tool that enables
exploration of large text corpora, to query LAION.
We define Ts, as the percentage of females in im-
ages for a training subset S corresponding to occu-
pation o (we provide more details on how training
examples are selected in Section 4).

3.3 Evaluating Bias Amplification

We compute bias amplification by comparing the
female percentage in generated images (Gp,) vs.
training images (1's,) for a specific occupation o
using the approach outlined in Zhao et al. (2017):

Ap, s, = |Gp, — 50| — |Ts, — 50|

This formulation takes into account that ampli-
fication for a given occupation is specific to the
prompt P, used to generate images, as well as the
chosen subset of training examples .S,. For a set of
occupations O, the expected amplification is:

1
E [Ap,s,)=— > Ap,s,
€0 ‘O| 0€0

Ap, s, is calculated for each occupation and
is aggregated across occupations (O) to obtain
E[Ap, s,] for each prompt. We then average
E[Ap, s,] across all four prompts. For occupations
that skew male in the training data, bias is ampli-
fied if it skews further male in generated images,
and vice versa for occupations that skew female.
Bias decreasing from training to generation is con-
sidered de-amplification. We exclude occupations
that exhibit different directions of bias at training
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Example Captions

Portrait of smiling young female mechanic inspecting
a CV joint on a car in an auto repair shop

Young male nurse wearing surgical antiviral mask

Muscular bearded athlete drinks water after good work-
out session in city park

Portrait of a salesperson standing in front of electrical
wire spool with arms crossed in hardware store

Radiology technician performing mammography scan

Table 2: Training captions often include additional de-
tails (e.g., descriptions, actions) that reduce ambiguity,
and may contain explicit and implicit gender informa-
tion. In contrast, the prompts we use to generate images
(Table 1) lack context and specificity.

and generation from our analysis since they do
not adhere to our definition of amplification/de-
amplification (i.e. model bias is more/less severe
than training bias along the same direction).

4 Estimating Bias Amplification: A
Baseline

We examine the extent to which Stable Diffusion
amplifies gender-occupation biases from the data
by selecting training examples that contain a given
occupation in the caption (e.g., all captions that
contain the word “president”). In practice, we ran-
domly sample a subset of 500 training examples
containing each occupation. We find that Stable
Diffusion amplifies bias relative to the training data
by 12.57%° on average across all occupations and
prompts (10.24% for Prompt #1, as shown in Fig-
ure 2). This behavior is concerning because instead
of reflecting the training data and its statistics, the
model compounds bias by further underrepresent-
ing groups. However, when qualitatively inspecting
examples, we observe discrepancies in how occu-
pations are presented in captions vs. prompts due
to varying levels of ambiguity.

For example, we notice the use of explicit gender
indicators to emphasize deviations from stereotypi-
cal gender-occupation associations, such as female
engineers in Figure 1. While gender information is
used frequently in captions, we hypothesize that us-
age is more common for underrepresented groups.
If this hypothesis holds, the gender distribution
would shift closer towards balanced in resulting
training images. As a result, the decision to focus

We report values for Stable Diffusion 1.4 throughout the
paper, but results for both model versions are presented in
Table 3. Overall, we observe similar trends for both models.
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Figure 2: Bias is amplified consistently using our
baseline approach (by 10.24% for Prompt #1). The x-
axis corresponds to the % female in training images, and
the y-axis corresponds to the % female in generated im-
ages (using Prompt #1). Each point represents an occu-
pation. Shading: and

on all captions vs. captions without any gender
indicators can exaggerate amplification measures,
as we see in Section 5.1.

More generally, prompts commonly used to
study gender-occupation bias are intentionally un-
derspecified, or lack detail. Underspecification re-
sults in the model having to generate images from
textual inputs that are vague and open to interpreta-
tion (Hutchinson et al., 2022; Mehrabi et al., 2023).
For instance, the prompt “A photo of the face of
a/an [OCCUPATION]” does not contain any adjec-
tives or information about surroundings, activities,
etc. In contrast, captions from the training data
may contain context and details that result in less
ambiguous descriptions, as shown in Table 2.1°

Discrepancies in how captions and prompts are
written also impact how occupations are depicted in
training and generated images. These differences
are especially notable for occupations that have
multiple interpretations. For example, when query-
ing for training examples containing “president”,
the resulting captions may refer to various types of
presidents, including the president of a company
or organization, as shown in Figure 3a. However,
when generating images using the prompt “A photo
of the face of a president”, the model appears to
interpret president as a leader of a country, often
the United States (we also showcase similar dif-
ferences for the occupation teacher in Figure 3b).
Given that there are evident qualitative differences
in images, we should not expect the training and
generation gender distributions to match.

To compare bias at training and generation, we
need to consider gender ratios for similar cap-
tions and prompts. Therefore, we cannot conclude

1OWe showcase examples that include descriptions of indi-
viduals and activities they are engaged in.
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President

Training Generation

(a) Training captions for President: 1) “Leana Wen, Planned
Parenthood president...” 2) “New Schaumburg Business As-
sociation President...” 3) “BCCI president N Srinivasan...” 4)
“Indiana Pacers president of basketball operations...”

Teacher )
Generation

Training

(b) Training captions for Teacher: 1) “Brad Draper, percus-
sion teacher...” 2) “teacher/author in the 80s sits in yoga lotus
pose...” 3) “Jo Anne Young Art Teacher...” 4) “Classical Guitar
Teacher...”

Figure 3: Differences between training and generated examples using our baseline approach. Here, we
handpick examples of discrepancies in how occupations are depicted in training vs. generated examples for
President (left) and Teacher (right) professions. For instance, the model interprets “president” as a president of a
country, often the U.S., while the term president can refer more broadly to a president of a company or organization,

as shown in the shortened captions. Border shading: perceived gender is

whether differences in gender ratios are due solely
to the model amplifying bias, or other confound-
ing factors that contribute to amplification. Next,
we focus on decreasing the impact of distribution
shifts on bias amplification evaluation.

5 [Estimating Bias Amplification:
Reducing Distributional Differences

In this section, we reduce training and generation
discrepancies by restricting the search space of
training examples. The prompts P, remain fixed,
while the subset of training examples S, varies.

5.1 Excluding Explicit Gender Indicators

A notable distinction between training and genera-
tion is the use of explicit gender indicators, which is
absent from the prompts we use. On average, more
than half the captions (59.5%) contain explicit gen-
der information. It is important to note that gender
indicators can emphasize the underrepresented gen-
der for a given occupation. For example, images
of female mechanics in the training data frequently
accompany captions that indicate the mechanic is
female. In comparison, this specification is less
common for male mechanics (only 30% of male
mechanic examples contain explicit gender indi-
cators, as opposed to 68% for female mechanics,
using the approach discussed in Appendix A.5).
To validate these observations, we compute the
correlation between the percentage of females in
training images and the percentage of correspond-
ing captions with female indicators. We expect that
female-skewing occupations are less likely to con-

and male.

tain explicit female gender indicators in captions,
resulting in a negative correlation. The Pearson’s
correlation coefficient is indeed negative, with a co-
efficient value of -0.458 and statistically significant
(significance level < 0.05). These results suggest
that including training examples with gender men-
tions in evaluations may exaggerate amplification.

Addressing Gender Indicators To assess
whether amplification differs for the subset of
captions without indicators, we split the training
examples selected in Section 4 by detecting explicit
gender mentions in the captions (more details in
Appendix A.5 and example image-caption pairs in
Table 5). We focus on the subset of captions, S,,
without explicit male or female indicators.

Reduced Bias Amplification We observe that
bias amplification is noticeably lower when focus-
ing on the no-gender indicator subset of training
examples. Compared to the initial amplification
of 12.57% for our baseline, the average amplifi-
cation for captions without gender indicators is
8.66% (| 31%), as shown in Table 3. This behav-
ior aligns with the reasoning described above —
gender indicators often delineate the presence of
the underrepresented gender, which in turn inflates
amplification measures.

5.2 Nearest Neighbor Captions

Beyond explicit gender indicators, there are clear
differences in the information conveyed by prompts
vs. captions. The prompts we use are concise and
structured, but lack concrete details. On the other
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hand, randomly sampled training captions are more
diverse and vary in their usage of the occupation
and contextual information, as highlighted in Table
2 and Figure 3. Furthermore, captions may contain
implicit gender information (e.g., descriptors, attire,
activities) that is absent from prompts.

These qualitative differences are also apparent
when comparing caption and prompt text embed-
dings. We use SBERT (Reimers and Gurevych,
2019) to compute text embeddings,'' and calcu-
late the average pairwise cosine similarity between
caption and prompt embeddings for each occupa-
tion. We find that the average cosine similarity
across occupations is 0.385, indicating that caption
and prompt similarity is relatively low (relative to
nearest neighbors, which we will see next).

Addressing Similarity Discrepancies To ac-
count for these gaps, we propose using nearest
neighbors (NN) to select captions that closely re-
semble prompts. We can find neighbors by con-
sidering all captions that contain a given occupa-
tion, and selecting examples based on the similar-
ity between caption and prompt text embeddings
instead of sampling randomly. As a result, the cho-
sen captions are closer in structure and wording
to prompts. We compute the cosine similarity be-
tween text embeddings to measure the similarity
between captions and prompts.!> For a given oc-
cupation, we consider the top-k similar captions,
where k£ = 500.

Applying NN, the average cosine similarity be-
tween caption and prompt embeddings increases
to 0.704 (1 83% from the naive approach), which
occurs by design since we directly target exam-
ples that resemble prompts. Note however, that
the increase in similarity is also reflected in image
embeddings. The pairwise similarity of CLIP im-
age embeddings increases with NN (1 13% from
the naive approach), indicating that chosen training
and generated images are slightly more similar.

There are noticeable qualitative improvements
as well. NN chooses captions that are closer in
structure and meaning to prompts (e.g., “Picture of
a teacher in the classroom”), which also impacts
corresponding training images. In contrast to the
naive approach, the training images corresponding

"Specifically, we use the all-MiniLM-L6-v2 model to com-
pute text embeddings with SBERT.

Text embeddings used to compute NN can reinforce bi-
ases. By using SBERT (Reimers and Gurevych, 2019), we
avoid leaking biases from Stable Diffusion’s text encoder
(CLIP) for selecting training examples.

President

Teacher

(a) Training captions for Pres- (b) Training captions for
ident: 1) “The president is Teacher: 1) “Picture of a
pictured smiling.” 2) “Pres- teacher in the classroom” 2)
ident Donald J. Trump - Of- “Portrait of a smiling teacher
ficial Photo” 3) “Portrait of in a classroom.” 3) “Portrait
President George H. W. Bush” of teacher woman working” 4)
4) “Official Portrait of Presi- “Teacher smiling in classroom,
dent Ronald Reagan” portrait”

Figure 4: Training examples chosen with Nearest
Neighbors (using the prompt "A photo of the face of
a/an [OCCUPATION]"). Selected training captions and
images are more similar to prompts and generated im-
ages as compared to the examples in Figure 3. Border
shading: perceived gender is and male.

to NN captions for “president” primarily represent
world leaders (often US presidents), while captions
for “teacher” depict educators in classroom settings,
as shown in Figure 4.

Reduced Bias Amplification When selecting
training examples S, using NN, we see that bias
amplification reduces considerably across occupa-
tions and prompts, as shown in Table 3. The aver-
age amplification drops to 6.76% (] 46% relative
to the naive approach). While NN yields increased
similarity between training and generated exam-
ples, there are still unresolved sources of distribu-
tion shift that impact amplification measures.

5.3 Combining Approaches

We observe that amplification further reduces when
combining the no-gender indicator subset with NN,
as shown in the last rows in Table 3. The average
amplification decreases to 4.35% ({. 65% from the
naive approach), which is noticeably lower com-
pared to the values for each method individually.
Both methods work in tandem to reduce distribu-
tional differences in complementary ways, perhaps
by targeting both explicit and implicit gender infor-
mation. We also observe greater reductions for spe-
cific prompts (e.g., amplification is just 1.11% for
Prompt #1), which indicates that distribution shifts
are more effectively addressed for some prompts
than others.

We perform a one-sample t-test to test the null
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SD 1.4 SD 1.5
Approach #1 #2 #3 #4  Average #1 #2 #3 #4  Average
Naive Approach 1024 17.57 10.77 11.68 12.57 10.87 1636 11.15 991 12.07
No Gender Indicators 649 1358 7.09 749 8.66 6.76 1241 6.82 5.87 7.97
Nearest Neighbors (NN) ~ 3.59 12.62 558  5.27 6.76 401 11.14 521 3.65 6.01
NN + No Indicators 1.11 872 306 4.05 4.35 1.55 729 278 272 3.59

Table 3: Bias Amplification across occupations using Stable Diffuson (SD) 1.4 and 1.5. Results are shown for
each prompt and averaged across prompts. Amplification lowers considerably when excluding captions with gender
indicators and using nearest neighbors to select captions. We see further reductions when combining approaches.

hypothesis that the expected amplification is O for
each of the prompts; we fail to reject the null hy-
pothesis for prompts #1 and #3 and reject the null
hypothesis for prompts #2 and #4 (significance
level < 0.05). Our results indicate a portion of
amplification is unexplained for all prompts, espe-
cially prompts #2 and #4, and may involve more
subtle confounding factors. Although the proposed
methods do not account entirely for discrepancies
between training and generation, we observe that
the bias measures become closer as we select sub-
sets of training captions that resemble prompts.

6 Removing Distributional Differences: A
Lower Bound

The previous approaches reduce discrepancies be-
tween training and generation by evaluating am-
plification with captions that are more similar to
prompts. Instead, we can focus our efforts in the
other direction and modify the prompts we use
to align with captions more closely. One way to
achieve this is to eliminate differences altogether
by making prompts and captions identical. We then
ask: Does using identical texts to measure training
and generation bias lower amplification? We use
the original training subset (S,) from Section 4 and
make the prompts (F,) match the captions verba-
tim. In this setup, we generate 10 images for every
prompt in P,, and then compute amplification us-
ing P, := S, for each occupation.

We hypothesize that enforcing prompts and cap-
tions to match yields similar bias measurements,
which reduces amplification. As shown in Figure
Sa, amplification is small when P, = .S, and most
occupations reside along the diagonal (no amplifi-
cation). The average amplification drops to 0.68%,
indicating that the model mostly reflects training
bias.!3 Furthermore, amplification remains consis-
tently low, even for highly imbalanced occupations.

BHowever, we reject the null hypothesis that the expected
amplification is O using a one-sample t-test.
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Figure 5: Bias amplification when prompting with
training captions. We observe minimal amplification
when P, = S, (left). This behavior mostly holds when
focusing on captions without explicit gender indicators
(right). Shading: and

For captions that contain either male or female
gender indicators, the model generates images that
match the gender of corresponding training images
(with 98.41% accuracy), since this information is
directly provided in the prompt. Therefore, we ana-
lyze the results separately on the subset of captions
without gender indicators. As shown in Figure 5b,
bias amplification is larger for the no gender in-
dicator subset as compared to all captions. That
being said, the average amplification remains low
at 2.05% (| 84% relative to our naive approach).!?
We also observe similar results when paraphras-
ing the original training captions and using these
texts as prompts, as discussed in Appendix A.6,
which suggests our results are not simply due to
memorization of captions.

Although practitioners are unlikely to utilize
prompts that exactly match training captions, this
experiment highlights the impact of distributional
similarity between captions and prompts when
comparing biases. In addition, it provides a lower
bound to the bias amplification problem. In sum-
mary, we conclude that the model nearly mimics
biases from the data when we eliminate distribu-
tional differences.

7 Related Work

Relating pretraining data to model behavior
There is a growing body of work focused on study-
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(a) “A photo of the face of an
attorney” (42.8%)

(b) “A portrait photo of an
attorney” (9.4%)

(d) “A photo of an attorney at
work” (65.1%)

(c) “A photo of an attorney
smiling” (43.1%)

Figure 6: Generations for ‘““attorney” using different prompts. Specific wording choices in prompts lead to
notable differences in the percentage of generated images that are predicted as female. Border shading: perceived

gender is and male.

ing pretraining data properties and their relation
to model behavior. This type of large-scale data
and model analysis provides useful insights into
model learning and generalization capabilities (Car-
lini et al., 2023). Recent work shows that few-shot
capabilities of large language models are highly
correlated with pretraining term frequencies, and
that models struggle to learn long-tail knowledge
(Kandpal et al., 2023; Razeghi et al., 2022). Several
works have also explored the relationship between
pretraining data and model performance from a
causal perspective (Biderman et al., 2023; Elazar
et al., 2022; Longpre et al., 2023). For example,
Longpre et al. (2023) comprehensively investigate
how various data curation choices and pretraining
data slices affect downstream task performance.

Bias Amplification Our work is strongly in-
spired by the findings of Zhao et al. (2017), who
show that structured prediction models amplify bi-
ases present in the data. However, there are im-
portant differences to note. First, their task jointly
predicts multiple target labels (including gender),
as opposed to generating images. Furthermore,
their work largely focuses on mitigating amplifica-
tion, as opposed to investigating underlying factors
that affect amplification. Hall et al. (2022) consider
how data, training, and modeling choices influence
amplification using a classification setup with syn-
thetic bias, but do not examine distribution shifts.
Friedrich et al. (2023) also compare biases ex-
hibited by LAION and Stable Diffusion, and show
that the model demonstrates amplification. Instead
of identifying relevant training examples using cap-
tions, they use image-text similarity between train-
ing images and prompts. Furthermore, their work
primarily focuses on bias mitigation, while our
work is centered around analyzing confounding

factors that impact amplification.

Bias in text-to-image models While it is well-
established that language and vision models are
prone to biases individually, recent work has shown
that text-to-image models display similar biases.
Several works analyze various biases in text-to-
image models, including gender biases (Wu et al.,
2023; Zhang et al., 2023), geographical disparities
(Basu et al., 2023; Naik and Nushi, 2023), and
intersectional biases (Fraser et al., 2023; Luccioni
et al., 2023). Bianchi et al. (2023) demonstrate
that stereotypes persist even after using counter-
stereotypes. However, these works solely evaluate
model biases, and do not examine the training data.

8 Discussion
Our results bring up a number of key issues.

Generalizability Our work demonstrates that us-
ing naive procedures to evaluate bias amplification
can lead to exaggerated amplification measures.
While our analysis does not account for all sources
of distribution shift that contribute to amplification,
it is meant to be illustrative. We encourage future
studies to build on our findings by examining dif-
ferent experimental setups (i.e., datasets, models,
and types of bias) to gain a more comprehensive
understanding of bias amplification and the impact
of confounding factors.

Variation Across Prompts As we highlight in
Figure 6, small changes to prompts can have a re-
sounding effect on conclusions about bias. For
example, “A portrait photo of an attorney” skews
heavily male while “A photo of an attorney at work”
skews female in generated images. Furthermore, re-
ductions in amplification differ based on the prompt
(e.g., 89% reduction for Prompt #1 vs. 49% for
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Prompt 2), indicating that there are prompt-specific
sources of distribution shift. Our findings match
prior work demonstrating that model biases are
highly sensitive to wording and phrasing choices
(Seshadri et al., 2022; Selvam et al., 2023).

Amplification Baseline Our interpretation of am-
plification is centered around models exacerbating
biases in the training data as opposed to real-world
statistics (Kirk et al., 2021; Bianchi et al., 2023).
Both approaches are useful to study but answer
fundamentally different questions. Our approach
offers insights into whether model behavior reflects
the training data, while real-world amplification
captures how well the model reflects reality.

Connection to Simpson’s Paradox The title of
our paper alludes to Simpson’s Paradox (Simpson,
1951), a phenomenon in which a trend or relation-
ship observed in subgroups within the data reverses
or disappears when subgroups are combined. We
draw direct parallels to our analysis and insights;
although we observe substantial amplification in
our initial setup, amplification reduces drastically
after selecting specific subsets of the training data
and decreasing the impact of confounding factors.

Recommendations Our findings underscore how
distribution shifts contribute to bias amplification,
which has important implications. Those involved
in data-focused efforts should consider how practi-
tioners specify prompts and interact with models
when curating training data. Alternatively, crowd-
sourcing or automatically rewriting existing train-
ing captions to reflect real-world model usage may
result in lower amplification. Additionally, we rec-
ommend that evaluations use multiple prompts and
remove prompt-specific confounding factors (e.g.,
by using NN to select relevant training examples).

9 Conclusion

In summary, we investigate whether Stable Diffu-
sion amplifies gender-occupation biases by com-
paring training data and model biases. We high-
light how naive evaluations of amplification fail to
consider distributional differences between train-
ing and generation, which leads to a misleading
understanding of model behavior. Although am-
plification is not eliminated entirely, we observe
that reducing discrepancies between captions and
prompts during evaluation results in substantially
lower measurements. We recommend that analyses
comparing training data and model biases, or any

data and model properties more generally, account
for various distribution shifts that skew evaluations.

Limitations

Beyond the training data, another source of bias is
the text embeddings obtained from CLIP. By solely
comparing biases in the data vs. those exhibited by
Stable Diffusion, our analysis overlooks biases that
arise from encoding prompts. As a result, we can-
not disentangle how much this component impacts
overall amplification. Note that the effect of such
an external embedding cannot be easily accounted
for, since CLIP’s training data is not public. More
work is needed to understand the impact of using
external, frozen models as a model component.

Additionally, we automate gender classification
using CLIP because previous works have shown
that CLIP gender predictions align with human
annotations and CLIP gender classification perfor-
mance on the FairFace dataset!? is strong (> 95%)
across various racial categories. Nevertheless, we
recognize the limitations of using a model to clas-
sify gender in images, since CLIP inherits biases
from its training data.

Ethics Statement

Scope of Work Our work centers around criti-
cally examining bias amplification evaluation. The
approaches we propose to reduce distribution shifts
observed during evaluation do not solve underlying
gaps between the data used to train models and how
users interact with models. Rather, they serve to
deepen our understanding of why models amplify
biases present in the training data. Ideally, our find-
ings will motivate future work on 1) thorough and
nuanced evaluations of bias amplification and 2)
fundamentally addressing training and generation
discrepancies from a data perspective.

Bias Definition Our work focuses on a narrow
slice of social bias analysis by studying gender-
occupation stereotypes. Since models exhibit vari-
ous types of discriminatory bias (e.g., racial, age,
geographical, socioeconomic, disability, etc.), as
well as intersectional biases, it is equally impor-
tant to perform evaluations for these definitions of
bias. Furthermore, we only consider binary gen-
der, which has clear drawbacks. Our analysis ig-
nores how text-to-image models perpetuate biases

Our code is released here: https://github.com/

preethiseshadri518/bias-amplification-paradox
“https://github.com/joojs/fairface
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for non-binary identities and relies on information
such as appearance and facial features to infer gen-
der in training and generated images, which can
propagate gender stereotypes.

Geographical Diversity The captions and
prompts used to study bias are solely written in
English. We hope future work will shed light on
multilingual bias amplification in text-to-image
models. It is also worth noting that the gender-
guesser library (infers gender from names) likely
performs worse on non-Western names. The
documentation mentions that the library supports
over 40,000 names and covers a ‘“‘vast majority
of first names in all European countries and in
some overseas countries (e.g., China, India, Japan,
USA)”. Therefore, the name coverage (or lack
thereof) impacts our ability to identify captions
with gender information.
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A Appendix

A.1 Occupations

A full list of occupations is shown in Table 4. We
exclude occupations that switch bias directions in
our analysis since they do not adhere to our defini-
tion of amplification/de-amplification (i.e. model
bias is more/less severe than training bias along the
same direction). The extent to which these swaps
occur depends on the prompt and model version,
since model bias results are specific to both. More
research is needed to understand and explain this
behavior.

There are 9 occupations that exhibit switching
behavior consistently for all prompts using SD 1.4
and 6 occupations using SD 1.5 (5 occupations are
common to both). In many of these cases, there are
strong deviations from 50% at training, generation,
or both. For example, in the case of “painter”, even
though the training bias is 52.6%, the average bias
is 17.5% for SD 1.4 and 19.3% for SD 1.5.

Tables 6 (SD 1.4) and 7 (SD 1.5) show bias
values for each occupation at both training and gen-
eration. For some occupations (e.g., attorney, cook,
surgeon), the gender distributions in generated im-
ages varies considerably across prompts.

A.2 LAION

LAION is a large dataset of image-caption pairs re-
leased under CC-BY 4.0. Instead of saving scraped
images, LAION stores URLs that link to the im-
ages, which we then use to download images. We
only download a subset of examples that pertain to
the occupations in Table 4.

There are notable issues to point out with
LAION. Since the dataset only contains URLSs to
images, some of these URLs may suffer from link
rot and may no longer be accessible. Therefore, it
is impossible to reproduce the exact set of images
used during training. Furthermore, the dataset in-
cludes copyrighted and not-safe-for-work (NSFW)
content. We acknowledge these issues and empha-
size that our use of LAION is for research purposes
to 1) analyze gender-occupation biases in the data
and 2) evaluate bias amplification.

A.3 Generating Images

Stable Diffusion 1.4 and 1.5 contain roughly 1 bil-
lion parameters. Using a single TITAN RTX GPU,
it takes about 3.5 seconds to generate one image.
To generate 500 images for each occupation (x62),

prompt (x4), and model version (x2), it takes ap-
proximately 240 hours. We use the default gener-
ation parameters, which include a guidance scale
of 7.5 and 50 inference steps. We also use a batch
size of 4.

A4 Image Gender Classification

While CLIP is susceptible to biases (Hall et al.,
2023), its gender predictions have been shown to
align with human-annotated gender labels (Bansal
et al., 2022; Cho et al., 2023). In addition, we per-
form human evaluation with 7 participants on 200
randomly selected training and generated images.
We ask participants to provide binary gender anno-
tations (or indicate that they are unsure), and find
that Krippendorff’s coefficient, which measures
inter-annotator agreement, is high (o = 0.948).
Additionally, 98% of CLIP predictions match the
majority vote annotations.

A.5 Explicit Gender Indicators

To identify captions with explicit gender infor-
mation, we consider 1) gender words (male,
female, man, woman, gent, gentleman, lady,
boy, girl), 2) binary gender pronouns (he, him,
his, himself, she, her, hers, herself), and
3) names. We perform named entity recog-
nition using the en_core_web_lg model from
spaCy to identify name mentions, and then use
the gender-guesser library https://pypi.org/
project/gender-guesser/ to infer gender. We
include example training captions with explicit gen-
der mentions in Table 5. After excluding examples
with gender indicators (§5.1), the average number
of examples remaining is 202 out of 500 training
examples (40.4%) per occupation.

A.6 Paraphrasing Captions

In Section 6, we align the train and test distribu-
tions by directly prompting the model with training
captions. We show that amplification is minimal
when eliminating distributional differences. As a
follow-up, we study what happens if we instead
use prompts that are similar but not identical to
training captions when evaluating amplification.
To construct similar examples, we paraphrase the
original captions using gpt-3.5-turbo. We set
the temperature to 0 and use the following prompt
to generate paraphrases:

Please paraphrase the phrase/sentence below.
You can change words without changing the
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original meaning or intent. You must include
the word [OCCUPATION].
Phrase/Sentence: [CAPTION]

Using the training subset .S, from Section 6 and
the paraphrased captions as prompts F,, we find
that amplification still remains low — amplification
is 0.69% for all captions (compared to 0.68% in
Section 6) and 2.49% for captions without explicit
gender indicators (compared to 2.05% in Section
6). The paraphrasing results indicate that our orig-
inal findings from Section 6 extend beyond using
exact training captions. In other words, these re-
sults suggest the model can generalize, and does
not rely solely on memorization to achieve low
amplification.
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Occupations

accountant
architect
assistant
athlete
attorney
author
baker
bartender
ceo

chef
comedian
cook
dancer

dentist

dietitian

doctor

engineer
entrepreneur
fashion designer
filmmaker
firefighter
graphic designer
hairdresser
housekeeper
intern

janitor

journalist
lawyer
librarian
manager
mechanic
musician
nurse
nutritionist
painter
pharmacist
photographer
physician
pilot

poet
politician
president
prime minister
professor
programmer
psychologist
receptionist
reporter
researcher
salesperson
scientist
senator

singer
student
supervisor
surgeon
teacher
technician
therapist
tutor
veterinarian
writer

Table 4: List of 62 occupations used to study gender-occupation biases.
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across all prompts. Regions are shaded based on and
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Image | Caption | Gender Indicator

Portrait of young woman programmer working at a computer in the data center | woman
filled with display screens

Tired young indian programmer almost sleeping at his desk after working on | his
difficult project all day long

Female accountant very busy in office female
Accountant managing manual bill monitoring tasks in his home office his
Iowa Republican Senator Chuck Grassley first name

U.S. Senator Kirsten Gillibrand (D-NY) pauses during a news conference on | first name
Capitol Hill in Washington

Portrait of young male mechanic in bicycle store, Beijing male

African american woman mechanic repairing a motorcycle in a workshop woman

Attractive woman photographer taking images with dslr camera outdoors in park. | woman

Photographer John G. Zimmerman with his pipe and Hucher camera, 1972. first name/his

Table 5: Example training images and captions with explicit gender indicators for select occupations (in bold).
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Occupation \ Training \ Prompt #1 Prompt#2 Prompt#3 Prompt #4

accountant 29.8 29.5 34 43.8 35.7
architect 314 42 22 3.0 0.0
assistant 44.6 67.1 56.3 71.9 75.6
athlete 44.8 80.0 51.9 69.3 71.3
attorney 29.2 42.8 9.4 43.1 65.1
author 42.8 83.6 53.0 81.5 61.0
baker 41.4 81.1 31.2 58.8 59.3
bartender 36.8 16.8 2.6 12.9 229
ceo 15.0 2.6 1.8 4.8 11.9
chef 28.0 7.0 1.2 1.4 5.8
comedian 21.8 24 0.0 3.6 1.0
cook 35.0 34.7 8.6 494 69.3
dancer 81.0 88.7 98.8 99.0 100.0
dentist 58.6 41.4 44 29.2 41.8
dietitian 95.2 100.0 100.0 100.0 99.8
doctor 40.8 33.7 3.8 14.6 57.6
engineer 20.6 2.6 0.2 1.2 0.0
entrepreneur 43.6 42.8 1.8 12.8 34.6
fashion_designer 76.0 93.4 80.8 89.8 97.2
filmmaker 29.2 12.6 32 8.3 14.9
firefighter 14.6 1.6 1.0 15.9 32
graphic_designer 52.8 11.8 14.4 32.7 41.6
hairdresser 79.2 97.0 95.6 94.6 97.6
housekeeper 914 99.0 99.8 100.0 100.0
intern 57.6 65.8 31.5 77.2 53.4
janitor 20.4 1.6 3.0 14.6 5.7
journalist 384 49.9 59.9 68.8 64.0
lawyer 27.6 26.5 8.0 39.0 47.7
librarian 74.4 88.1 83.6 93.6 94.8
manager 13.0 20.6 7.8 29.7 42.8
mechanic 17.6 1.6 0.0 0.2 353
musician 22.6 54 4.2 7.2 32
nurse 88.8 100.0 100.0 100.0 100.0
nutritionist 83.6 99.8 92.8 96.6 97.5
painter 52.6 36.4 12.2 17.6 3.6
pharmacist 68.0 84.2 26.9 54.9 91.7
photographer 55.0 52.0 27.5 46.5 13.2
physician 39.4 35.5 2.0 37.5 59.3
pilot 304 34.7 12.2 66.3 15.9
poet 30.8 15.2 2.0 19.5 32.8
politician 21.6 14.5 42 159 9.6
president 19.6 1.4 0.2 8.0 0.8
prime_minister 24.0 15.7 10.6 13.2 214
professor 28.2 7.8 2.8 9.2 53
programmer 23.0 0.2 0.0 0.2 0.0
psychologist 58.6 443 21.6 57.2 52.9
receptionist 91.4 99.8 100.0 99.8 99.8
reporter 444 54.8 55.2 55.1 67.8
researcher 44.6 80.2 41.8 67.6 50.9
salesperson 39.8 43.0 5.2 33.1 33.7
scientist 334 25.7 24.0 29.3 232
senator 35.0 13.4 2.0 8.2 54
singer 57.6 73.2 60.3 69.2 60.1
student 63.0 55.3 48.5 62.1 433
supervisor 65.2 18.3 4.8 16.6 14.9
surgeon 30.2 82.5 15.6 67.6 82.5
teacher 63.0 75.8 55.7 94.0 88.0
technician 31.2 0.6 0.0 0.6 0.0
therapist 74.8 82.6 63.3 79.2 87.5
tutor 59.2 48.1 23.1 32.7 43.5
veterinarian 55.2 66.7 44.7 64.1 89.9
writer 30.2 73.3 30.1 76.0 63.8

Table 6: The percentage of females across occupations in training images (using our initial approach from Section
4) and generated images using SD 1.4. We display generation results for each prompt. Highlighted rows indicate
occupations for which bias switches direction from training to generation across all prompts.
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Occupation \ Training \ Prompt #1 Prompt#2 Prompt#3 Prompt #4

accountant 29.8 34.9 54 42.1 45.2
architect 314 10.0 22 22 34
assistant 44.6 69.2 60.8 58.6 77.8
athlete 44.8 76.6 46.0 50.0 74.3
attorney 29.2 50.8 11.7 443 68.3
author 42.8 88.2 574 75.4 69.0
baker 41.4 82.3 339 533 66.6
bartender 36.8 10.0 22 4.8 12.2
ceo 15.0 1.4 2.0 54 18.5
chef 28.0 12.0 0.8 1.4 7.0
comedian 21.8 1.6 0.0 14 0.6
cook 35.0 384 16.4 43.5 75.1
dancer 81.0 83.8 97.4 97.6 100.0
dentist 58.6 41.9 54 22.7 20.4
dietitian 95.2 100.0 100.0 100.0 99.8
doctor 40.8 382 8.8 12.6 534
engineer 20.6 10.6 0.6 1.6 0.0
entrepreneur 43.6 59.7 4.6 16.9 41.6
fashion_designer 76.0 97.4 90.3 92.2 98.6
filmmaker 29.2 18.4 52 8.8 7.8
firefighter 14.6 1.4 0.2 12.5 4.5
graphic_designer 52.8 22.6 15.3 29.5 63.3
hairdresser 79.2 99.6 98.0 95.4 97.3
housekeeper 914 99.6 100.0 100.0 100.0
intern 57.6 72.6 37.1 68.8 60.4
janitor 20.4 3.6 32 8.4 6.2
journalist 384 572 60.2 59.7 60.7
lawyer 27.6 34.1 8.8 36.8 48.2
librarian 74.4 934 85.8 87.8 94.6
manager 13.0 24.0 14.2 28.7 413
mechanic 17.6 6.4 0.2 1.0 20.8
musician 22.6 54 1.4 2.8 2.8
nurse 88.8 100.0 100.0 100.0 100.0
nutritionist 83.6 99.8 97.8 97.2 98.0
painter 52.6 43.7 20.0 10.6 2.7
pharmacist 68.0 87.3 26.1 49.6 83.8
photographer 55.0 58.1 32.5 44.8 26.0
physician 394 46.4 32 36.5 62.0
pilot 304 20.9 11.4 353 7.5
poet 30.8 12.4 2.6 11.6 42.1
politician 21.6 24.9 10.2 16.7 15.7
president 19.6 4.6 0.4 12.9 22
prime_minister 24.0 25.5 23.0 20.0 429
professor 28.2 9.2 3.0 5.6 8.6
programmer 23.0 0.8 0.0 1.0 0.0
psychologist 58.6 51.0 22.4 40.8 52.2
receptionist 91.4 99.6 100.0 99.2 99.8
reporter 44.4 53.7 52.5 44.0 57.6
researcher 44.6 77.3 47.8 52.8 55.0
salesperson 39.8 56.8 7.0 374 30.5
scientist 334 23.0 22.1 159 453
senator 35.0 22.7 8.0 12.0 12.5
singer 57.6 74.0 54.1 66.6 61.2
student 63.0 44.6 323 51.8 40.5
supervisor 65.2 20.9 5.6 18.2 15.0
surgeon 30.2 82.0 20.4 50.8 81.6
teacher 63.0 78.7 58.2 87.4 84.6
technician 31.2 0.4 0.2 1.6 0.0
therapist 74.8 88.5 80.8 82.2 88.7
tutor 59.2 48.8 24.1 24.4 50.4
veterinarian 55.2 65.6 48.9 48.7 89.5
writer 30.2 79.2 347 69.1 76.6

Table 7: The percentage of females across occupations in training images (using our initial approach from Section
4) and generated images using SD 1.5. We display generation results for each prompt. Highlighted rows indicate
occupations for which bias switches direction from training to generation across all prompts.
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