


The Bias Amplification Paradox

Given that models learn to fit the training

data by maximizing its likelihood, why do

models amplify biases found in the data as

opposed to strictly representing them?

In this paper, we investigate how model biases

compare with biases found in the training data. We

focus on the text-to-image domain in English and

analyze gender-occupation biases in Stable Dif-

fusion (Rombach et al., 2022), as well as its pub-

licly available training dataset LAION (Schuhmann

et al., 2022), which consists of image-caption pairs

(§2). To select training examples, we identify cap-

tions that mention occupations (e.g., engineer) and

obtain their corresponding images. We follow pre-

vious work (Bianchi et al., 2023; Luccioni et al.,

2023) and use prompts that contain a given occupa-

tion (e.g., “A photo of the face of an engineer”) to

generate images. For each occupation, we then clas-

sify binary gender to measure bias in corresponding

training and generated images, and compare the re-

spective quantities to determine whether the model

amplifies biases2 from its training data (§3).

At first glance, it appears that the model am-

plifies bias considerably (on average, generation

bias is 12.57% higher than training bias) using ex-

isting approaches (§4). When comparing training

captions and prompts, however, we discover clear

distributional differences that impact amplification

measurements. For example, one inherent distinc-

tion is that captions often specify explicit gender

indicators while prompts used to study gender-

occupation biases do not.3 More generally, cap-

tions may contain additional context and details

that are absent from the prompts we use.

Based on our observations, it is clear that di-

rectly using all training captions that mention a

given occupation provides a naive characterization

of bias amplification. Instead, we propose evaluat-

ing amplification on subsets of the training data that

reduce distribution shifts between training and gen-

eration (§5). We introduce two approaches to ac-

count for distributional differences: (1) Excluding

captions with explicit gender information and (2)

Using nearest neighbors (NN) on text embeddings

2We define bias as a deviation from the 50% balanced
(binary) gender ratio. This definition differs from measur-
ing performance gaps between groups (e.g., TPR difference),
which is common in classification setups.

3Since we study gender bias, prompts exclude explicit
gender information to avoid skewing generations.

to select training captions that closely resemble

prompts. Both approaches restrict the search space

of training texts to more closely match prompts,

which results in considerably lower amplification

measures. We then eliminate differences between

training captions and prompts by utilizing the cap-

tions themselves to generate images (§6), and show

that amplification is minimal. By modifying sub-

sets of captions and prompts used to evaluate am-

plification, we perform a multi-pronged analysis of

distribution shifts that impact evaluation.

To summarize, we study gender-occupation bias

amplification in Stable Diffusion and highlight no-

table discrepancies between texts used for training

and generation. We demonstrate that naively quan-

tifying bias provides an incomplete and misleading

depiction of model behavior. Our work empha-

sizes that comparisons of dataset and model biases

should factor in distributional differences and eval-

uate comparable distributions. We hope that our

work encourages future studies that analyze model

behavior through the lens of the data.

2 Experimental Setup

Before discussing how we define and evaluate am-

plification in the following section, we first outline

the dataset and models in our experiments, as well

as how we infer gender from images.

2.1 Dataset and Models

To study bias amplification, we use Stable Diffu-

sion (Rombach et al., 2022), a text-to-image model

that generates images based on a textual descrip-

tion (prompt). Stable Diffusion is trained on pairs

of captions and images taken from LAION-5B

(Schuhmann et al., 2022),4 a public dataset created

by scraping images and their captions from the web.

We focus on two versions, Stable Diffusion 1.4 and

1.5, which are both trained on text-image pairs from

the 2.3 billion English portion of LAION-5B.5

2.2 Gender Classification

We analyze bias in images with respect to

perceived gender.6 To classify binary gender at

scale, we utilize an automatic classifier, which

we validate with a human study (see Appendix

4LAION was publicly available at the time of writing this
paper, but has since been removed.

5Stable Diffusion 1.5 is finetuned for a longer duration on
LAION-Aesthetics (a subset of higher quality images).

6Classifying binary gender based on appearance has limi-
tations and perpetuates stereotypes, and excludes non-binary
gender identities.
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A.4). It is important to verify that images include

faces, and that perceived gender is discernible

from these images. Therefore, we first check

whether an image contains a single face using

a face detector.7 Then, we use CLIP (Radford

et al., 2021), a multimodal model with zero-shot

image classification capabilities, to predict

gender (note that Stable Diffusion also uses

CLIP’s text encoder to encode prompts). We

perform gender classification by computing the

cosine similarity between CLIP embeddings:

cos(CLIP(image),CLIP(a photo of a woman)) as

well as cos(CLIP(image),CLIP(a photo of a man)).
After computing image-text similarities, we nor-

malize the similarity values using softmax to obtain

gender probabilities. We follow the zero-shot

procedure described in Radford et al. (2021) and

use the texts “a photo of a woman” and “a photo of

a man” for computing image-text similarities.8

To exclude cases where gender is difficult to

infer (e.g., faces might be blurred or obscured),

we only consider images for which the predicted

gender probability is greater than or equal to 0.9.

We apply these filtering steps to both training and

generated images.

2.3 Occupations

Similarly to previous works, we analyze gender-

occupation biases for occupations with varying lev-

els of bias (Rudinger et al., 2018; Zhao et al., 2018;

De-Arteaga et al., 2019). These include occupa-

tions that skew male (e.g., CEO, engineer), fairly

balanced (e.g., attorney, journalist), and female

(e.g., dietitian, receptionist) based on the training

data. In total, we consider 62 job occupations,

which can be found in Table 4 in the Appendix.

3 Methodology

3.1 Measuring Model Bias

To measure biases exhibited by the model, we gen-

erate images using four prompts, shown in Table 1.

These prompts deliberately do not contain gender

information since we want to capture biases learned

by the model. Both prompts #1 and #2 also direct

the model to generate faces by including “face” and

“portrait”, respectively. We generate 500 images

per occupation and prompt using various random

7
https://developers.google.com/mediapipe/

solutions/vision/face_detector/python.
8Applying CLIP to infer gender on the FairFace dataset

(Karkkainen and Joo, 2021) results in strong performance (>
95% accuracy) across various racial subgroups.

# Prompt

1 A photo of the face of a/an [OCCUPATION]
2 A portrait photo of a/an [OCCUPATION]
3 A photo of a/an [OCCUPATION] smiling
4 A photo of a/an [OCCUPATION] at work

Table 1: The four prompts we use to generate images.

“[OCCUPATION]” is a placeholder we replace with one

of the 62 occupations we use (e.g., engineer).

seeds to initialize random noise. We define GPo
as

the percentage of females in generated images for

a prompt P describing an occupation o.

3.2 Measuring Data Bias

Given that the training data consists of image-

caption pairs, we use captions to obtain relevant

training examples. In doing so, we assume that

the captions relating to a given occupation mention

the occupation. We use the search capabilities of

WIMBD (Elazar et al., 2024), a tool that enables

exploration of large text corpora, to query LAION.

We define TSo
as the percentage of females in im-

ages for a training subset S corresponding to occu-

pation o (we provide more details on how training

examples are selected in Section 4).

3.3 Evaluating Bias Amplification

We compute bias amplification by comparing the

female percentage in generated images (GPo
) vs.

training images (TSo
) for a specific occupation o

using the approach outlined in Zhao et al. (2017):

APo,So
= |GPo

− 50| − |TSo
− 50|

This formulation takes into account that ampli-

fication for a given occupation is specific to the

prompt Po used to generate images, as well as the

chosen subset of training examples So. For a set of

occupations O, the expected amplification is:

E
o∈O

[APo,So
] =

1

|O|

∑

o∈O

APo,So

APo,So
is calculated for each occupation and

is aggregated across occupations (O) to obtain

E[APo,So
] for each prompt. We then average

E[APo,So
] across all four prompts. For occupations

that skew male in the training data, bias is ampli-

fied if it skews further male in generated images,

and vice versa for occupations that skew female.

Bias decreasing from training to generation is con-

sidered de-amplification. We exclude occupations

that exhibit different directions of bias at training
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Prompt 2), indicating that there are prompt-specific

sources of distribution shift. Our findings match

prior work demonstrating that model biases are

highly sensitive to wording and phrasing choices

(Seshadri et al., 2022; Selvam et al., 2023).

Amplification Baseline Our interpretation of am-

plification is centered around models exacerbating

biases in the training data as opposed to real-world

statistics (Kirk et al., 2021; Bianchi et al., 2023).

Both approaches are useful to study but answer

fundamentally different questions. Our approach

offers insights into whether model behavior reflects

the training data, while real-world amplification

captures how well the model reflects reality.

Connection to Simpson’s Paradox The title of

our paper alludes to Simpson’s Paradox (Simpson,

1951), a phenomenon in which a trend or relation-

ship observed in subgroups within the data reverses

or disappears when subgroups are combined. We

draw direct parallels to our analysis and insights;

although we observe substantial amplification in

our initial setup, amplification reduces drastically

after selecting specific subsets of the training data

and decreasing the impact of confounding factors.

Recommendations Our findings underscore how

distribution shifts contribute to bias amplification,

which has important implications. Those involved

in data-focused efforts should consider how practi-

tioners specify prompts and interact with models

when curating training data. Alternatively, crowd-

sourcing or automatically rewriting existing train-

ing captions to reflect real-world model usage may

result in lower amplification. Additionally, we rec-

ommend that evaluations use multiple prompts and

remove prompt-specific confounding factors (e.g.,

by using NN to select relevant training examples).

9 Conclusion

In summary, we investigate whether Stable Diffu-

sion amplifies gender-occupation biases by com-

paring training data and model biases. We high-

light how naive evaluations of amplification fail to

consider distributional differences between train-

ing and generation, which leads to a misleading

understanding of model behavior. Although am-

plification is not eliminated entirely, we observe

that reducing discrepancies between captions and

prompts during evaluation results in substantially

lower measurements. We recommend that analyses

comparing training data and model biases, or any

data and model properties more generally, account

for various distribution shifts that skew evaluations.

Limitations

Beyond the training data, another source of bias is

the text embeddings obtained from CLIP. By solely

comparing biases in the data vs. those exhibited by

Stable Diffusion, our analysis overlooks biases that

arise from encoding prompts. As a result, we can-

not disentangle how much this component impacts

overall amplification. Note that the effect of such

an external embedding cannot be easily accounted

for, since CLIP’s training data is not public. More

work is needed to understand the impact of using

external, frozen models as a model component.

Additionally, we automate gender classification

using CLIP because previous works have shown

that CLIP gender predictions align with human

annotations and CLIP gender classification perfor-

mance on the FairFace dataset14 is strong (> 95%)

across various racial categories. Nevertheless, we

recognize the limitations of using a model to clas-

sify gender in images, since CLIP inherits biases

from its training data.

Ethics Statement

Scope of Work Our work centers around criti-

cally examining bias amplification evaluation. The

approaches we propose to reduce distribution shifts

observed during evaluation do not solve underlying

gaps between the data used to train models and how

users interact with models. Rather, they serve to

deepen our understanding of why models amplify

biases present in the training data. Ideally, our find-

ings will motivate future work on 1) thorough and

nuanced evaluations of bias amplification and 2)

fundamentally addressing training and generation

discrepancies from a data perspective.

Bias Definition Our work focuses on a narrow

slice of social bias analysis by studying gender-

occupation stereotypes. Since models exhibit vari-

ous types of discriminatory bias (e.g., racial, age,

geographical, socioeconomic, disability, etc.), as

well as intersectional biases, it is equally impor-

tant to perform evaluations for these definitions of

bias. Furthermore, we only consider binary gen-

der, which has clear drawbacks. Our analysis ig-

nores how text-to-image models perpetuate biases

Our code is released here: https://github.com/

preethiseshadri518/bias-amplification-paradox
14
https://github.com/joojs/fairface
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for non-binary identities and relies on information

such as appearance and facial features to infer gen-

der in training and generated images, which can

propagate gender stereotypes.

Geographical Diversity The captions and

prompts used to study bias are solely written in

English. We hope future work will shed light on

multilingual bias amplification in text-to-image

models. It is also worth noting that the gender-

guesser library (infers gender from names) likely

performs worse on non-Western names. The

documentation mentions that the library supports

over 40,000 names and covers a “vast majority

of first names in all European countries and in

some overseas countries (e.g., China, India, Japan,

USA)”. Therefore, the name coverage (or lack

thereof) impacts our ability to identify captions

with gender information.

Acknowledgements

This work was funded by the Hasso Plattner Insti-

tute (HPI) through the UCI-HPI fellowship, as well

as the NSF awards IIS-2008956, IIS-2046873, and

IIS-2040989. We would also like to thank the mem-

bers of UCI NLP, Danish Pruthi, Shauli Ravfogel,

Vered Shwartz, and the anonymous reviewers for

helpful discussions and feedback on our paper.

References

Hammaad Adam, Ming Ying Yang, Kenrick Cato, Ioana
Baldini, Charles Senteio, Leo Anthony Celi, Jiaming
Zeng, Moninder Singh, and Marzyeh Ghassemi.
2022. Write it like you see it: Detectable differ-
ences in clinical notes by race lead to differential
model recommendations. In Proceedings of the 2022
AAAI/ACM Conference on AI, Ethics, and Society,
AIES ’22, page 7–21, New York, NY, USA. Associa-
tion for Computing Machinery.

Hritik Bansal, Da Yin, Masoud Monajatipoor, and Kai-
Wei Chang. 2022. How well can text-to-image gen-
erative models understand ethical natural language
interventions? In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1358–1370, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Abhipsa Basu, R. Venkatesh Babu, and Danish Pruthi.
2023. Inspecting the geographical representativeness
of images from text-to-image models. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 5136–5147.

Federico Bianchi, Pratyusha Kalluri, Esin Durmus,
Faisal Ladhak, Myra Cheng, Debora Nozza, Tat-
sunori Hashimoto, Dan Jurafsky, James Zou, and

Aylin Caliskan. 2023. Easily accessible text-to-
image generation amplifies demographic stereotypes
at large scale. In Proceedings of the 2023 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’23, page 1493–1504, New York,
NY, USA. Association for Computing Machinery.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
Usvsn Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research, pages 2397–2430.

Abeba Birhane, Vinay Uday Prabhu, and Emmanuel
Kahembwe. 2021. Multimodal datasets: misogyny,
pornography, and malignant stereotypes.

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew
Jagielski, Vikash Sehwag, Florian Tramèr, Borja
Balle, Daphne Ippolito, and Eric Wallace. 2023. Ex-
tracting training data from diffusion models. In Pro-
ceedings of the 32nd USENIX Conference on Security
Symposium, SEC ’23, USA. USENIX Association.

Jaemin Cho, Abhay Zala, and Mohit Bansal. 2023. Dall-
eval: Probing the reasoning skills and social biases
of text-to-image generation models. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 3043–3054.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
and Adam Tauman Kalai. 2019. Bias in bios: A case
study of semantic representation bias in a high-stakes
setting. In Proceedings of the Conference on Fair-
ness, Accountability, and Transparency, FAT* ’19,
page 120–128, New York, NY, USA. Association for
Computing Machinery.

Jesse Dodge, Maarten Sap, Ana Marasović, William
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A Appendix

A.1 Occupations

A full list of occupations is shown in Table 4. We

exclude occupations that switch bias directions in

our analysis since they do not adhere to our defini-

tion of amplification/de-amplification (i.e. model

bias is more/less severe than training bias along the

same direction). The extent to which these swaps

occur depends on the prompt and model version,

since model bias results are specific to both. More

research is needed to understand and explain this

behavior.

There are 9 occupations that exhibit switching

behavior consistently for all prompts using SD 1.4

and 6 occupations using SD 1.5 (5 occupations are

common to both). In many of these cases, there are

strong deviations from 50% at training, generation,

or both. For example, in the case of “painter”, even

though the training bias is 52.6%, the average bias

is 17.5% for SD 1.4 and 19.3% for SD 1.5.

Tables 6 (SD 1.4) and 7 (SD 1.5) show bias

values for each occupation at both training and gen-

eration. For some occupations (e.g., attorney, cook,

surgeon), the gender distributions in generated im-

ages varies considerably across prompts.

A.2 LAION

LAION is a large dataset of image-caption pairs re-

leased under CC-BY 4.0. Instead of saving scraped

images, LAION stores URLs that link to the im-

ages, which we then use to download images. We

only download a subset of examples that pertain to

the occupations in Table 4.

There are notable issues to point out with

LAION. Since the dataset only contains URLs to

images, some of these URLs may suffer from link

rot and may no longer be accessible. Therefore, it

is impossible to reproduce the exact set of images

used during training. Furthermore, the dataset in-

cludes copyrighted and not-safe-for-work (NSFW)

content. We acknowledge these issues and empha-

size that our use of LAION is for research purposes

to 1) analyze gender-occupation biases in the data

and 2) evaluate bias amplification.

A.3 Generating Images

Stable Diffusion 1.4 and 1.5 contain roughly 1 bil-

lion parameters. Using a single TITAN RTX GPU,

it takes about 3.5 seconds to generate one image.

To generate 500 images for each occupation (×62),

prompt (×4), and model version (×2), it takes ap-

proximately 240 hours. We use the default gener-

ation parameters, which include a guidance scale

of 7.5 and 50 inference steps. We also use a batch

size of 4.

A.4 Image Gender Classification

While CLIP is susceptible to biases (Hall et al.,

2023), its gender predictions have been shown to

align with human-annotated gender labels (Bansal

et al., 2022; Cho et al., 2023). In addition, we per-

form human evaluation with 7 participants on 200

randomly selected training and generated images.

We ask participants to provide binary gender anno-

tations (or indicate that they are unsure), and find

that Krippendorff’s coefficient, which measures

inter-annotator agreement, is high (α = 0.948).

Additionally, 98% of CLIP predictions match the

majority vote annotations.

A.5 Explicit Gender Indicators

To identify captions with explicit gender infor-

mation, we consider 1) gender words (male,

female, man, woman, gent, gentleman, lady,

boy, girl), 2) binary gender pronouns (he, him,

his, himself, she, her, hers, herself), and

3) names. We perform named entity recog-

nition using the en_core_web_lg model from

spaCy to identify name mentions, and then use

the gender-guesser library https://pypi.org/

project/gender-guesser/ to infer gender. We

include example training captions with explicit gen-

der mentions in Table 5. After excluding examples

with gender indicators (§5.1), the average number

of examples remaining is 202 out of 500 training

examples (40.4%) per occupation.

A.6 Paraphrasing Captions

In Section 6, we align the train and test distribu-

tions by directly prompting the model with training

captions. We show that amplification is minimal

when eliminating distributional differences. As a

follow-up, we study what happens if we instead

use prompts that are similar but not identical to

training captions when evaluating amplification.

To construct similar examples, we paraphrase the

original captions using gpt-3.5-turbo. We set

the temperature to 0 and use the following prompt

to generate paraphrases:

Please paraphrase the phrase/sentence below.

You can change words without changing the

6379



original meaning or intent. You must include

the word [OCCUPATION].

Phrase/Sentence: [CAPTION]

Using the training subset So from Section 6 and

the paraphrased captions as prompts Po, we find

that amplification still remains low — amplification

is 0.69% for all captions (compared to 0.68% in

Section 6) and 2.49% for captions without explicit

gender indicators (compared to 2.05% in Section

6). The paraphrasing results indicate that our orig-

inal findings from Section 6 extend beyond using

exact training captions. In other words, these re-

sults suggest the model can generalize, and does

not rely solely on memorization to achieve low

amplification.
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Image Caption Gender Indicator

Portrait of young woman programmer working at a computer in the data center
filled with display screens

woman

Tired young indian programmer almost sleeping at his desk after working on
difficult project all day long

his

Female accountant very busy in office female

Accountant managing manual bill monitoring tasks in his home office his

Iowa Republican Senator Chuck Grassley first name

U.S. Senator Kirsten Gillibrand (D-NY) pauses during a news conference on
Capitol Hill in Washington

first name

Portrait of young male mechanic in bicycle store, Beijing male

African american woman mechanic repairing a motorcycle in a workshop woman

Attractive woman photographer taking images with dslr camera outdoors in park. woman

Photographer John G. Zimmerman with his pipe and Hucher camera, 1972. first name/his

Table 5: Example training images and captions with explicit gender indicators for select occupations (in bold).
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Occupation Training Prompt #1 Prompt #2 Prompt #3 Prompt #4

accountant 29.8 29.5 3.4 43.8 35.7
architect 31.4 4.2 2.2 3.0 0.0
assistant 44.6 67.1 56.3 71.9 75.6
athlete 44.8 80.0 51.9 69.3 77.3
attorney 29.2 42.8 9.4 43.1 65.1
author 42.8 83.6 53.0 81.5 61.0
baker 41.4 81.1 31.2 58.8 59.3
bartender 36.8 16.8 2.6 12.9 22.9
ceo 15.0 2.6 1.8 4.8 11.9
chef 28.0 7.0 1.2 1.4 5.8
comedian 21.8 2.4 0.0 3.6 1.0
cook 35.0 34.7 8.6 49.4 69.3
dancer 81.0 88.7 98.8 99.0 100.0
dentist 58.6 41.4 4.4 29.2 41.8
dietitian 95.2 100.0 100.0 100.0 99.8
doctor 40.8 33.7 3.8 14.6 57.6
engineer 20.6 2.6 0.2 1.2 0.0
entrepreneur 43.6 42.8 1.8 12.8 34.6
fashion_designer 76.0 93.4 80.8 89.8 97.2
filmmaker 29.2 12.6 3.2 8.3 14.9
firefighter 14.6 1.6 1.0 15.9 3.2
graphic_designer 52.8 11.8 14.4 32.7 41.6
hairdresser 79.2 97.0 95.6 94.6 97.6
housekeeper 91.4 99.0 99.8 100.0 100.0
intern 57.6 65.8 31.5 77.2 53.4
janitor 20.4 1.6 3.0 14.6 5.7
journalist 38.4 49.9 59.9 68.8 64.0
lawyer 27.6 26.5 8.0 39.0 47.7
librarian 74.4 88.1 83.6 93.6 94.8
manager 13.0 20.6 7.8 29.7 42.8
mechanic 17.6 1.6 0.0 0.2 35.3
musician 22.6 5.4 4.2 7.2 3.2
nurse 88.8 100.0 100.0 100.0 100.0
nutritionist 83.6 99.8 92.8 96.6 97.5
painter 52.6 36.4 12.2 17.6 3.6
pharmacist 68.0 84.2 26.9 54.9 91.7
photographer 55.0 52.0 27.5 46.5 13.2
physician 39.4 35.5 2.0 37.5 59.3
pilot 30.4 34.7 12.2 66.3 15.9
poet 30.8 15.2 2.0 19.5 32.8
politician 21.6 14.5 4.2 15.9 9.6
president 19.6 1.4 0.2 8.0 0.8
prime_minister 24.0 15.7 10.6 13.2 21.4
professor 28.2 7.8 2.8 9.2 5.3
programmer 23.0 0.2 0.0 0.2 0.0
psychologist 58.6 44.3 21.6 57.2 52.9
receptionist 91.4 99.8 100.0 99.8 99.8
reporter 44.4 54.8 55.2 55.1 67.8
researcher 44.6 80.2 41.8 67.6 50.9
salesperson 39.8 43.0 5.2 33.1 33.7
scientist 33.4 25.7 24.0 29.3 23.2
senator 35.0 13.4 2.0 8.2 5.4
singer 57.6 73.2 60.3 69.2 60.1
student 63.0 55.3 48.5 62.1 43.3
supervisor 65.2 18.3 4.8 16.6 14.9
surgeon 30.2 82.5 15.6 67.6 82.5
teacher 63.0 75.8 55.7 94.0 88.0
technician 31.2 0.6 0.0 0.6 0.0
therapist 74.8 82.6 63.3 79.2 87.5
tutor 59.2 48.1 23.1 32.7 43.5
veterinarian 55.2 66.7 44.7 64.1 89.9
writer 30.2 73.3 30.1 76.0 63.8

Table 6: The percentage of females across occupations in training images (using our initial approach from Section

4) and generated images using SD 1.4. We display generation results for each prompt. Highlighted rows indicate

occupations for which bias switches direction from training to generation across all prompts.
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Occupation Training Prompt #1 Prompt #2 Prompt #3 Prompt #4

accountant 29.8 34.9 5.4 42.1 45.2
architect 31.4 10.0 2.2 2.2 3.4
assistant 44.6 69.2 60.8 58.6 77.8
athlete 44.8 76.6 46.0 50.0 74.3
attorney 29.2 50.8 11.7 44.3 68.3
author 42.8 88.2 57.4 75.4 69.0
baker 41.4 82.3 33.9 53.3 66.6
bartender 36.8 10.0 2.2 4.8 12.2
ceo 15.0 1.4 2.0 5.4 18.5
chef 28.0 12.0 0.8 1.4 7.0
comedian 21.8 1.6 0.0 1.4 0.6
cook 35.0 38.4 16.4 43.5 75.1
dancer 81.0 83.8 97.4 97.6 100.0
dentist 58.6 41.9 5.4 22.7 20.4
dietitian 95.2 100.0 100.0 100.0 99.8
doctor 40.8 38.2 8.8 12.6 53.4
engineer 20.6 10.6 0.6 1.6 0.0
entrepreneur 43.6 59.7 4.6 16.9 41.6
fashion_designer 76.0 97.4 90.3 92.2 98.6
filmmaker 29.2 18.4 5.2 8.8 7.8
firefighter 14.6 1.4 0.2 12.5 4.5
graphic_designer 52.8 22.6 15.3 29.5 63.3
hairdresser 79.2 99.6 98.0 95.4 97.3
housekeeper 91.4 99.6 100.0 100.0 100.0
intern 57.6 72.6 37.1 68.8 60.4
janitor 20.4 3.6 3.2 8.4 6.2
journalist 38.4 57.2 60.2 59.7 60.7
lawyer 27.6 34.1 8.8 36.8 48.2
librarian 74.4 93.4 85.8 87.8 94.6
manager 13.0 24.0 14.2 28.7 41.3
mechanic 17.6 6.4 0.2 1.0 20.8
musician 22.6 5.4 1.4 2.8 2.8
nurse 88.8 100.0 100.0 100.0 100.0
nutritionist 83.6 99.8 97.8 97.2 98.0
painter 52.6 43.7 20.0 10.6 2.7
pharmacist 68.0 87.3 26.1 49.6 83.8
photographer 55.0 58.1 32.5 44.8 26.0
physician 39.4 46.4 3.2 36.5 62.0
pilot 30.4 20.9 11.4 35.3 7.5
poet 30.8 12.4 2.6 11.6 42.1
politician 21.6 24.9 10.2 16.7 15.7
president 19.6 4.6 0.4 12.9 2.2
prime_minister 24.0 25.5 23.0 20.0 42.9
professor 28.2 9.2 3.0 5.6 8.6
programmer 23.0 0.8 0.0 1.0 0.0
psychologist 58.6 51.0 22.4 40.8 52.2
receptionist 91.4 99.6 100.0 99.2 99.8
reporter 44.4 53.7 52.5 44.0 57.6
researcher 44.6 77.3 47.8 52.8 55.0
salesperson 39.8 56.8 7.0 37.4 30.5
scientist 33.4 23.0 22.1 15.9 45.3
senator 35.0 22.7 8.0 12.0 12.5
singer 57.6 74.0 54.1 66.6 61.2
student 63.0 44.6 32.3 51.8 40.5
supervisor 65.2 20.9 5.6 18.2 15.0
surgeon 30.2 82.0 20.4 50.8 81.6
teacher 63.0 78.7 58.2 87.4 84.6
technician 31.2 0.4 0.2 1.6 0.0
therapist 74.8 88.5 80.8 82.2 88.7
tutor 59.2 48.8 24.1 24.4 50.4
veterinarian 55.2 65.6 48.9 48.7 89.5
writer 30.2 79.2 34.7 69.1 76.6

Table 7: The percentage of females across occupations in training images (using our initial approach from Section

4) and generated images using SD 1.5. We display generation results for each prompt. Highlighted rows indicate

occupations for which bias switches direction from training to generation across all prompts.
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