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Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities in
performing complex tasks. Moreover, recent research has shown that incorporating
human-annotated rationales (e.g., Chain-of-Thought prompting) during in-context
learning can significantly enhance the performance of these models, particularly on
tasks that require reasoning capabilities. However, incorporating such rationales
poses challenges in terms of scalability as this requires a high degree of human
involvement. In this work, we present a novel framework, Amplifying Model
Performance by Leveraging In-Context Learning with Post Hoc Explanations
(AMPLIFY), which addresses the aforementioned challenges by automating the
process of rationale generation. To this end, we leverage post hoc explanation
methods which output attribution scores (explanations) capturing the influence
of each of the input features on model predictions. More specifically, we
construct automated natural language rationales that embed insights from post
hoc explanations to provide corrective signals to LLMs. Extensive experimentation
with real-world datasets demonstrates that our framework, AMPLIFY, leads to
prediction accuracy improvements of about 10-25% over a wide range of tasks,
including those where prior approaches which rely on human-annotated rationales
such as Chain-of-Thought prompting fall short. Our work makes one of the first
attempts at highlighting the potential of post hoc explanations as valuable tools
for enhancing the effectiveness of LLMs. Furthermore, we conduct additional
empirical analyses and ablation studies to demonstrate the impact of each of the
components of AMPLIFY, which, in turn, lead to critical insights for refining in-
context learning.

1 Introduction

In recent years, Large Language Models (LLMs) [3] have ushered in a new era for machine learning
research. These models are exhibiting emergent capabilities that enable them to excel at complex
tasks that involve sophisticated capabilities such as reasoning and language understanding [34, 5].
Moreover, these models do not only exhibit remarkable performance on tasks they were trained for
but also quickly adapt to other novel and complex tasks. This is made possible through a mechanism
known as in-context learning, which allows these models to learn from a limited number of input
and label pairs, commonly referred to as few-shot prompts[8], provided during test time. Prior
research has also demonstrated that the performance of these models on sophisticated reasoning
tasks can be significantly improved by presenting them with human-annotated rationales alongside
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in the previous step; (4) Construct a few-shot prompt using the samples chosen in step (2), their true
labels, and the post hoc explanations obtained in step 3 as rationales. This prompt is then provided as
input to the LLM at test time.

Our findings demonstrate that AMPLIFY leads to performance improvements of about 10-25% across
a wide range of tasks, including those where previously considered prompting techniques such as
Chain-of-Thought prompting which rely on human-annotated explanations, fall short. This highlights
the potential of post hoc explanation methods as valuable tools for enhancing the effectiveness of
LLMs. Furthermore, we conduct an extensive empirical analysis to examine the impact of each step
of our framework AMPLIFY. This allows for a better understanding of the change in LLM performance
with different choices of proxy model (step 1), selection strategy (step 2), post hoc explanation method
(step 3), and rationale templates (step 4). Thus, we offer critical insights for refining in-context
learning while addressing the limitations posed by methods dependent on human-annotated rationales.

2 Related Works

In-context Learning. Over the past decade, numerous language models have been developed
to excel at a wide range of complex predictive tasks [34]. This is accomplished by training and
fine-tuning language models on datasets associated with various tasks. While these advancements
have led to highly effective language models for numerous tasks, they have also increased the models’
parameter sizes and the computational costs for additional fine-tuning on new tasks. To address this
issue, recent research has demonstrated that modern language models can learn new tasks in-context,
which allows the model to perform well on new tasks by simply providing a few task samples in
the prompt [16]. This method of learning contrasts with the conventional fine-tuning process, which
incurs additional computational costs [16]. This in-context learning ability is even more pronounced
in extremely large language models (>100 billion parameters), where it is also referred to as an
"emergent ability" [34]. These findings have garnered significant attention, and various approaches
have been proposed to enhance in-context learning by incorporating additional signals into the
prompt [15]. The current state-of-the-art among such approaches is the Chain-of-Thought (CoT)
technique [35] which augments prompts with human-annotated rationales comprising of step-by-step
instructions on how to perform a new task. This method has substantially improved language models’
capacity to tackle highly challenging tasks that involve sophisticated reasoning. However, this method
relies heavily on human annotations and is therefore not very scalable. Further, prior works have
demonstrate that this method also leads to poor performance in certain kinds of reasonings tasks[31].
These limitations persist, and there are largely no solutions for them yet. In this work, we propose an
approach that demonstrates a lot of promise in alleviating the aforementioned issues.

Post Hoc Explanations. As language models have become more capable and complex,
understanding their behavior and the rationale behind their predictions has grown increasingly
challenging [9]. To understand the predictions made by these black boxes, various methods have
been developed to provide explanations in the form of feature attributions which capture the influence
of each input feature on a given model prediction. These methods are known as post hoc explanation
methods [19]. Post hoc explanation methods can be broadly classified into two primary categories:
(1) perturbation-based methods and (2) gradient-based methods. Perturbation-based methods involve
creating an interpretable approximation of the original black-box model using perturbations of input
samples. Notable examples of these methods include LIME [23], SHAP [18], Occlusion [37], and
others. In addition, gradient-based methods such as SmoothGrad and Integrated Gradients [28, 30]
calculate model gradients with respect to input features to determine the sensitivity of the model’s
output to each feature. However, to the best of our knowledge, the utility of these explanation methods
has not been studied in the context of LLMs. Our work makes the first attempt at exploring the utility
of these methods in improving the performance of LLMs.

3 Our Framework AMPLIFY

In this section, we describe our framework Amplifying Model Performance by Leveraging In-
Context Learning with Post Hoc Explanations (AMPLIFY) in detail. Recall that the main goal of our
framework is to eliminate the need for human-annotated rationales, and to instead generate automated
rationales which can, in turn, provide corrective signals to improve the performance of LLMs on
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sophisticated reasoning and language understanding tasks. To this end, our framework leverages
post hoc explanations to construct such rationales. More specifically, our framework adopts the
following four-step approach: (1) Select a proxy model for which post hoc explanation generation
is computationally viable; (2) Identify samples that are most likely to provide corrective signals
to LLMs; (3) Compute post hoc explanations for the samples identified in the previous step; (4)
Construct a few-shot prompt using the samples chosen in step (2), their true labels, and the post hoc
explanations (rationales) obtained in step 3. This prompt is then provided as input to the LLM at test
time. We discuss each of these steps in more detail below.

Step (1): Proxy Model Selection. In this step, we choose a proxy model, typically one that is
substantially smaller in size compared to LLMs with billions of parameters, so that generating post
hoc explanations is computationally viable. Further, we consider a couple of strategies when selecting
a suitable proxy model: (i) Use a pre-trained model such as GPT-2, BERT, etc., which has been shown
to perform quite well on several tasks and is thousands of times smaller than LLMs (GPT-3, Bloom,
etc.) or (ii) Fine-tune or pre-train a smaller language model from scratch on the target task. The
major difference between the two strategies is that the first one requires no additional computational
cost as we directly use a pre-trained (potentially open-sourced) model. We test both proxy model
selection strategies to discern performance variations between them. Lastly, it is important to note
that proxy models of the size we select in this step (e.g., GPT-2, BERT etc.) do not exhibit complex
reasoning abilities [34]. Consequently, they do not perform well on reasoning tasks by themselves
[29]. However, our analyses (more details in Section 4) demonstrate that such smaller models can be
used to improve the reasoning capabilities and task performance of LLMs.

Step (2): Few-shot Sample Selection. The goal of this step is to identify samples i.e., (input,
label) pairs that are most likely to provide corrective signals to the LLM. To this end, we first
identify instances from the validation set that are misclassified by the LLM. We then rank these
instances using a metric we introduce called the Misclassification Confidence Score (MCS). Formally,
MCS(x) = f(x)y − f(x)ŷ. Here, x ∈ R

N represents the input sequence containing N tokens,

f : RN → R
|L| is the fine-tuned language model that produces class probability scores for each label

in the label set L, f(x)y represents the class probability score for the incorrect label (y) predicted by
the model, and f(x)ŷ represents the class probability score for the ground truth label (ŷ). The samples
that exhibit the highest MCS represent the most egregious misclassifications. By incorporating these
samples and their corresponding corrective rationales into the few-shot prompt, the LLM is likely
to receive strong supervision to avoid similar misclassifications. In summary, this step results in s
samples of (input (x), label (ŷ)) pairs, filtered from the validation set, that are likely to carry the most
useful corrective signals to assist LLMs.

Step (3): Rationale Generation. In this step, we compute post hoc explanations for each sample
obtained from the previous step. Specifically, for each sample, we use a post hoc explanation method
with the (input, label) pair, along with the proxy model, which then calculates the attribution scores
for each token in the input sentence. These attribution scores, associated with each token, indicate
the contribution each token in the input sentence makes towards the proxy model’s prediction of
the provided label. We then compute attribution scores for each word by averaging the attributions
obtained for each token in that word. Finally, we filter the top-k words with the highest attribution
scores. As a result, this step outputs a set of k words for each sample selected in the previous step.
The most commonly used post hoc explanation methods for computing attribution scores of input
tokens are based on gradient computations [19]. That is, the attribution for the token xi in input

x ∈ R
N is computed as

∂f(x)ŷ
∂xi

, as is the case with Vanilla Gradients [25]. We experiment with

several other post hoc explanation methods discussed in more detail in the experiment section.

Step (4): Prompt Design for LLMs. In the final step, we proceed to construct the corrective
rationale for each selected sample using the template: "The key words: word1, word2, ...and wordk
are important clues to predict [Label] as the correct answer." In this template, "[ word1, word2...,
and wordk ]" refers to the top-k most important words in the input sentence for the true label,
which were obtained from the previous step. Using the few-shot template [Input][Rationale][Label],
we construct the s-shot prompt as "[Input1][Rationale1][Label1]...[Inputs][Rationales][Labels]",
which is simply the concatenation of [Input][Rationale][Label] for each selected sample. This
constructed prompt is then combined with the input of the test sample to form the final input prompt
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for the LLMs, enabling them to make predictions for the samples in the test set. This process is
illustrated in the last step of Figure 1.

4 Experimental Evaluation

In this section, we discuss our empirical evaluation in detail. First, we describe our experiment
setup and provide details about the datasets and tasks we experiment with. Next, we evaluate the
effectiveness of our framework in improving task performance of LLMs on a variety of real-world
tasks. Lastly, we examine the impact of each step of our framework AMPLIFY by conducting rigorous
ablation studies.

Datasets. We evaluate our framework AMPLIFY on some of the popular datasets from the Big-
Bench-Hard[29] benchmark. More specifically, we experiment with: (1) The Snarks[29] dataset
which gauges a model’s proficiency in discerning sarcastic sentences from a selection of alternatives;
(2) The Causal Judgment[29] dataset, designed to evaluate a model’s ability in accurately deducing
the causative factors of an event from a detailed summary; (3) The Ruin Names[29] task, which
involves the identification of comical modifications to artist or movie names; (4) The Formal
Fallacies[29] task, where machine learning models are put to the test to distinguish between
logically sound arguments and those with logical discrepancies; (5) The Salient Translation Error
Detection[29] task, engineered to train models in identifying one out of six predetermined translation
errors given a pair of translations; (6) The CommonsenseQA [32] dataset, a multiple-choice question
answering platform that necessitates a wide variety of commonsense knowledge for accurately
determining the correct responses; (7) Lastly, the Coin Flip [35] dataset, a synthetically generated
dataset used for assessing the symbolic reasoning capacity of LLMs.

Large Language Models. Our methodology is assessed in comparison to baseline approaches
on two LLMs. First, GPT-3 [4], a language model with 175 billion parameters, demonstrates robust
performance across a range of natural language processing tasks without the need for explicit training
or fine-tuning. Second, GPT-3.5 [1] is a series of models that were trained on a mix of text and
code data before the end of the fourth quarter in 2021. These models, expressly crafted for chat
applications, function as an advanced version of InstructGPT [20].

Post Hoc Explanation Techniques. In this study, we use three widely adopted post hoc explanation
methods to generate explanations that are later incorporated as rationales into prompts for in-context
learning. These methods include Vanilla Gradients [25], Gradient x Input [24], and contrastive
explanations [36]. Vanilla Gradients [25] calculates feature attributions by computing the norm of the
gradients of model output with respect to each token’s embedding. Gradient x Input derives attribution
scores by taking the product of gradient and input embedding. Finally, contrastive gradients determine
attribution scores by subtracting the gradients with respect to the model prediction token from those
associated with the truth label. We apply these explanation techniques to two proxy models for the
generation of corrective rationales in step 3 of AMPLIFY: GPT-2 (∼125 Mn parameters)[21] and
BERT (∼110 Mn parameters) [7].

Baseline Methods. In our experiments, we evaluate the performance of AMPLIFY in comparison
to two alternative approaches, namely Answer-Only (AO) prompts [29] and Chain-of-Thought (CoT)
[35]. AO prompting represents the standard few-shot prompting technique, in which the input prompt
consists of a few (input, label) pairs and the test input sentence, followed by an answer delimiter (’A:’)
for the LLM to generate the response. Chain-of-Thought (CoT), on the other hand, is the current
state-of-the-art method that enhances the input prompt by including human-annotated rationales for
each few-shot example. The LLM is then expected to generate a rationale followed by an answer.

Implementation Details. In our experiments, we implemented the AO and CoT baselines using
the same methodology as described in their respective works. For CoT, we directly used the provided
rationales from the original work for the corresponding datasets [35]. In the case of AMPLIFY, we
employed GPT-2[22] fine-tuned for the target task as the proxy model for step 1, unless stated
otherwise. We utilized a rationale template with k = 5, which is of the form: "The key words: word1,
word2, ...and word5 are important clues to predict [ground truth label] as the correct answer". These
keywords "word1, word2, ...and word5" were chosen based on the highest attribution scores obtained
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Table 1: Few-shot prompting performance of several large language models on the seven datasets. AO: standard
“answer-only” prompting. CoT: chain-of-thought prompting. Best model performance is in bold. The LLMs we
experimented with are GPT-3 and GPT-3.5. The recorded performance in this table represents the percentage of
test samples for which the LLM accurately predicted the true label.

[29, 35] Human-Rater [38] GPT-3 GPT-3.5

Experiment Tasks Random SOTA Avg. Max AO CoT AMPLIFY AO CoT AMPLIFY

Snarks 50.0 71.3 76.7 100 52.7 61.1 80.5 75.0 69.4 91.6
Causal Judgment 50.0 62.1 69.6 100 55.2 55.2 60.5 57.8 63.1 76.3
Ruin Names 25.0 72.8 77.7 100 64.0 62.9 78.6 69.6 62.9 77.5
Formal Fallacies 25.0 52.2 90.8 100 53.6 50.8 60.1 51.4 54.6 59.9
Salient Translation Error Detection 16.7 31.9 36.7 80.0 48.2 50.2 51.7 43.2 54.7 60.8
CommonsenseQA 20.0 80.0 90.0 100 69.3 72.6 73.5 75.7 75.2 77.9
Coin Flip (OOD) - - - - 54.7 63.3 65.7 52.9 61.0 65.3

All Tasks (avg) 31.1 61.7 73.5 96.6 56.8 58.0 67.2 60.8 62.9 72.7

Table 2: Few-shot prompting performance of multiple LLMs on the seven datasets when post hoc explanations,
which form the rationale in the prompt constructed during step 4 of AMPLIFY, are generated using models with
varying degrees of fine-tuning of the proxy model (GPT-2 in this case). Here, "E" represents the number of
epochs the proxy model was fine-tuned. "E = 0" indicates that the proxy model was used to generate post hoc
explanations without any fine-tuning. The recorded performance in this table represents the percentage of test
samples for which the LLM accurately predicted the true label.

GPT-3 GPT-3.5

Experiment Tasks E = 0 E = 10 E = 200 E = 0 E = 10 E = 200

Snarks 77.7 80.5 80.5 88.8 88.8 91.6
Causal Judgment 55.2 57.8 60.5 71.0 73.6 76.3
Ruin Names 74.1 75.2 78.6 65.1 67.4 77.5
Formal Fallacies 53.7 56.9 60.1 48.3 51.6 59.8
Salient Translation Error Detection 49.7 51.2 51.7 57.7 60.8 60.8
CommonsenseQA 69.1 72.6 73.5 71.9 75.8 77.9
Coin Flip (OOD) 56.4 60.8 65.7 55.4 61.4 65.3

All Tasks (avg) 62.2 65.0 67.2 65.4 68.4 72.7

from the post hoc explanation computed in step 3. To compute these attribution scores, we used
Gradient x Input as the default post hoc explanation method for generating explanations.

4.1 Empirical Analysis

Overall Task Performance. We demonstrate the effectiveness of AMPLIFY by comparing the
prediction accuracy of LLMs using prompts generated by AMPLIFY against baselines, i.e., Answer-
Only (AO) prompts and Chain-of-Thought (CoT) prompts. Table 1 displays the results of GPT-3 and
GPT-3.5 across all datasets. We observe that incorporating rationales generated by our approach leads
to a substantial improvement in accuracy compared to both standard Answer-Only (AO) prompts and
Chain-of-Thought (CoT) prompts. Specifically, GPT-3.5 achieves state-of-the-art performance on
the Snarks dataset with a 91.6% accuracy in identifying the correct option; this is 16% better than
standard answer-only prompting and over 20% better than CoT. Similar trends were observed for
Causal Judgment, where our method delivered the best performance of 76.3%, significantly surpassing
CoT (63.1%) and AO (57.8%). When using GPT-3, our approach attained the highest performance
in Ruin Names (78.6%), a trend also evident in the case of Formal Fallacies. Finally, our method
achieved the top performance with the GPT-3.5, registering an accuracy of 60.8% for the Salient
Translation Error Detection task. In the scenarios of commonsense reasoning (CommonsenseQA)
and symbolic reasoning (Coin Flip) tasks, we noticed consistent trends, with AMPLIFY recording the
highest performance. In the next set of analyses, we examine the effects of different steps in AMPLIFY
on the performance of LLMs.

Impact of Proxy Model Selection on LLM Performance. In the following analysis, we investigate
how the choices made at each step of AMPLIFY affect the performance of LLM on the seven tasks.
We begin with step 1, which involves selecting a proxy model for sample selection (step 2) and
computing post hoc explanations(step 3). In the experiments conducted to calculate the overall
model performance, as shown in Table 1, we utilized a finetuned GPT-2 model for the target task as
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Table 3: Few-shot prompting performance of various large language models on the seven datasets is analyzed
based on different selection strategies used for choosing samples during prompt design of LLMs, specifically in
step 2 of Figure 1. The "Random" selection refers to randomly chosen samples. "L-MCS " signifies the selection
of samples with the lowest Misclassification Confidence Score (MCS). "H-MCS " represents the selection
strategy of choosing samples with the Misclassification Confidence Score (MCS) for prompt design. "F-Exp"
indicates the selection strategy of choosing samples with the most faithful explanations for LLM prompt. The
recorded performance in this table represents the percentage of test samples for which the LLM accurately
predicted the true label.

GPT-3 GPT-3.5

Experiment Tasks Random L-MCS H-MCS F-Exp Random L-MCS H-MCS F-Exp

Snarks 69.4 80.5 80.5 77.7 69.4 88.8 91.6 88.8
Causal Judgment 57.8 60.5 60.5 57.8 68.4 73.6 76.3 71.0
Ruin Names 65.1 77.5 78.6 74.1 66.2 77.5 77.5 73.0
Formal Fallacies 52.3 57.9 60.1 59.7 46.7 51.5 59.9 58.6
Salient Translation Error Detection 48.7 50.2 51.7 51.7 53.2 59.2 60.8 58.7
CommonsenseQA 67.6 71.5 73.5 70.9 72.9 76.6 77.9 77.2
Coin Flip (OOD) 54.7 60.1 65.7 58.5 57.8 61.6 65.3 61.1

All Tasks (avg) 59.3 65.4 67.2 64.3 62.0 69.8 72.7 69.7

Table 4: The table presents a performance comparison for when prompt is created using explanations generated
by four different post hoc explanation methods. Grad: Vanilla Gradient Method, Grad × Inp : Gradient x Input
Method , C-Grad and C-Grad×Inp are contrastive version of Vanilla gradient and Gradient x Input. The recorded
performance in this table represents the percentage of test samples for which the LLM accurately predicted the
true label.

GPT-3 GPT-3.5

Experiment Tasks Grad Grad×Inp C-Grad C-Grad×Inp Grad Grad×Inp C-Grad C-Grad×Inp

Snarks 77.7 80.5 80.5 86.1 88.8 91.6 88.8 91.6
Causal Judgment 60.5 60.5 57.8 60.5 71.0 76.3 71.0 73.6
Ruin Names 71.9 78.6 75.2 77.5 65.1 77.5 73.0 74.1
Formal Fallacies 59.7 60.1 59.7 58.6 59.9 59.9 59.4 57.6
Salient Translation Error Detection 49.7 51.7 51.7 50.7 59.7 60.8 60.8 60.8
CommonsenseQA 72.1 73.5 72.9 73.0 73.7 77.9 75.5 77.9
Coin Flip (OOD) 62.9 64.1 62.6 65.7 62.6 63.9 62.4 65.3

All Tasks (avg) 64.9 67.0 65.7 67.3 68.6 72.5 70.1 71.5

the proxy model. While using GPT-2 for finetuning is computationally cheaper compared to other
LLMs, it is still expensive to finetune a model with more than 100 million parameters. Therefore,
we examined the performance of LLMs based on the amount of fine-tuning, measured in terms of
the number of epochs (E). This analysis aimed to understand the impact of finetuning on improving
model performance. Table 2 presents the model performance scores of LLMs when the proxy
model is GPT-2 without any fine-tuning on the target task (E=0), with minor fine-tuning (E=10),
and when GPT-2 has achieved its best performance at epoch E=200. As depicted in Table 2, we
observe that the model performance of LLMs with GPT-2 (E=0) is already quite close to the best
performance achieved when GPT-2 is finetuned to saturation (E=200) for most datasets. Specifically,
the performance of GPT-3.5 for Snarks with GPT-2 (E=0) is 88.8%, which is significantly better than
the best performance of CoT shown in Table 1. This pattern is also evident in the case of Causal
Judgment, Salient Translation Error Detection, and Ruin Names. There are two primary reasons
for this behavior. Firstly, GPT-2 possesses sufficient language understanding capabilities to provide
useful post hoc explanations that lead to accurate predictions. Secondly, most of the tasks where
GPT-2 (E=0) achieved the best or near-best performance have very limited training data, which might
not be sufficient for GPT-2 to learn anything beyond what it has already acquired during pre-training.
This observation is further supported by the findings presented in Table 5 in Appendix A, where the
accuracy improvements for most datasets are not substantial. These findings suggest that an additional
step of fine-tuning a pre-trained model may not always be necessary when selecting a proxy model in
step 1 of AMPLIFY, thereby reducing computational costs even further. Lastly, we observe similar
trends when BERT is chosen as the proxy model, and the detailed results are presented in Appendix
A.4.
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Impact of Post Hoc Explanation Method on LLM Performance. We then examine the impact
on LLM performance due to the choice of post hoc explanation used to identify top-k keywords in
step 3. To investigate this, we employ four different explanation methods for step 3 of AMPLIFY
and record the LLM performance corresponding to each post hoc explanation method choice in
Table 4. Specifically, the four post hoc explanation methods used in this analysis are: (1) Vanilla
Gradients [25] (Grad), (2) Gradient × Input [24] (Grad×Inp), (3) Contrastive Gradient [36] (C-
Grad), and (4) Contrastive Gradient × Input [36] (C-Grad×Inp). Based on Table 4, we observe
that the LLM performs best in general when Gradient x Input or its contrastive variant is used to
generate explanations. However, we also note that there aren’t drastic changes in LLM performance
across different methods. For instance, GPT-3.5 performance on Snarks doesn’t change much across
different methods, as the accuracy remains consistently around 88.8-91.6%. This suggests that LLM
performance isn’t sensitive to rationales generated using different variants of gradient-based post hoc
explanation methods.

Impact of Rationale Template on LLM Performance. Lastly, in the final step of AMPLIFY, we
generate a few-shot prompt by combining an (input, label) pair and its corresponding set of more
important words using the rationale template as "The key words: word1, word2, ...and word5 are
crucial clues for predicting [ground truth label] as the correct answer". We have observed that while
using a task-independent rationale template leads to improvements in performance, tailoring the
rationale to the question asked in the input sentence for a given dataset also provides benefits. For
example, in the case of Causal Judgment, each sample includes a generic question: "How would a
typical person answer each of the following questions about causation?" If we utilize the rationale
template as "After observing the key words: word1, word2, ...and word5, a typical person would
respond with [label] as the correct answer", we notice a slight enhancement in GPT-3 performance,
rising from 60.5% to 63.1%. However, we did not observe the model’s sensitivity to minor changes
in the template, such as punctuation variations. Further discussions on the impact of hyperparameters
associated with AMPLIFY can be found in Appendix A.3.

Qualitative Analysis. In addition to quantitatively evaluating the performance of AMPLIFY
compared to other baselines, we also qualitatively examine how LLM responses differ for certain
test samples using each of the baseline prompting approaches, and compare them to the responses
generated by AMPLIFY. Figure 2 illustrates the responses generated by GPT-3.5 for an input sample
using the Standard Prompt (AO), Chain-of-Thought (CoT), and AMPLIFY. In this particular example,
both AO and CoT yield incorrect responses, whereas AMPLIFY produces the correct response.
Analyzing the responses reveals that CoT and AO miss an important sentence in the sample: "The red
wire is never supposed to touch the battery as it moves around inside the machine". Interestingly,
GPT-3.5 captures this crucial information when the prompt is augmented with post hoc explanations
using AMPLIFY. We observe similar examples for CommonsenseQA, such as "Q: Unlike a spider and
its many observers, people only have what? Answer Choices: (A) tongues (B) names (C) brains (D)
feelings (E) two eyes.". In this case, CoT incorrectly selects option (C), whereas AMPLIFY correctly
predicts option (E). The complete response is shown in Figure 3 in the Appendix A. This error also
stems from the same issue of CoT overlooking crucial information that the question pertains to eyes
rather than the entire body, a nuance that AMPLIFY successfully captures. This demonstrates that
the rationales generated by AMPLIFY can assist LLMs in capturing critical signals that might have
otherwise been overlooked.

5 Conclusion

In this work, we introduce AMPLIFY, a novel framework aimed at improving the performance of
LLMs by replacing human-annotated rationales with automated rationales obtained using post hoc
explanation techniques. Our unique four-step approach leverages smaller, open-source models for
efficient computation of post hoc explanations. Our framework results in performance improvements
of 10-25% across diverse tasks, outperforming conventional techniques such as CoT prompting which
rely on human-annotated rationales. Our findings highlight the potential of post hoc explanation
methods as valuable tools for enhancing the effectiveness of LLMs.
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A Appendix

A.1 Proxy Model Task Performance

Table 5: Proxy models performance on the target tasks with and without fine-tuning.

GPT-2 BERT

Experiment Tasks Pre-trained Fine-tuned Pre-trained Fine-tuned

Snarks 38.8 47.2 30.5 38.8
Causal Judgment 44.7 55.2 44.7 52.6
Ruin Names 07.8 26.9 10.1 22.4
Formal Fallacies 50.5 54.4 51.6 53.5
Salient Translation Error Detection 14.0 27.1 11.5 22.6
CommonsenseQA 07.4 29.1 08.8 26.9
Coin Flip 45.2 59.4 51.1 59.7

A.2 Qualitative Analysis

Figure 3 shows an example from CommonsenseQA where GPT-3.5 responses using AO and CoT
prompting yield an incorrect answer. The most likely reason for this is that these prompt strategies
don’t seem to capture all the key points of the input sentence, i.e., the context in the input is based on
eyes rather than the overall body. However, this crucial detail is captured when GPT-3.5 is prompted
with AMPLIFY. We observe that the GPT-3.5 response is correct, and it acknowledges "eyes" as the
most important clue in making the correct prediction.

A.3 Hyper-parameter Analysis

Recall that AMPLIFY has two other primary hyper-parameters apart from the rationale template choice
discussed in our empirical findings, namely, s, which is the size of the few-shot prompt created for
LLMs, and k, which is the number of most important tokens identified by the post hoc explanation.
Table 6 shows the LLM performance variations for different combinations of (k, s). It is important
to note that AMPLIFY does not have scalability constraints with increasing s and k, as AMPLIFY
computes prompts automatically. This is unlike CoT, where increasing the size of the few-shot
prompt would require more human effort to generate relevant chains of thoughts.

A.4 Impact of BERT as Proxy Model on LLM Performance

Table 7 shows LLM performance when BERT is used as the proxy model in step 1 of AMPLIFY.
We observe similar trends as those observed for the case of GPT-2, where fine-tuning proxy model
provides marginal improvements in general. This indicates that the fine-tuning step could be avoided
in most cases to reduce additional computational overhead.

B Limitations and Broader Impacts

Our work proposes a new framework, AMPLIFY, which focuses on improving the task performance
of LLMs by injecting automatically generated rationales. This framework results in the reduction
of reliance on processes that require heavy human intervention. These processes, which rely on
rationales based on human annotations, often suffer from noise and biases, which may transfer
to LLMs during in-context learning. We hope that automated rationale creation will provide a
solution to mitigate this problem. While our approach provides significant improvements in model
performance, the broader negative impact pertaining to LLMs, such as safety concerns in the form of
misinformation[2], social bias[2], hallucination[12], etc., and the massive carbon footprint due to
heavy usage of LLMs [17], may still persist even when using our proposed framework. Other than
the limitations of LLMs, our framework relies on post hoc explanation methods to create automated
rationales; hence, AMPLIFY may also inherit widely studied issues with post hoc explanations such as
robustness[14], the disagreement problem[13], stability[26], etc.
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Table 6: This figure shows LLM performance for the different selections of k and s hyper-parameters of
AMPLIFY, as denoted by (k, s) for each column. In general, we observe (k = 7, s = 10) achieves the best results
for most of the datasets.

GPT-3 (k,s) GPT-3.5 (k,s)

Experiment Tasks (2, 5) (5, 5) (5, 10) (7, 10) (2, 5) (5, 5) (5, 10) (7, 10)

Snarks 63.8 72.2 80.5 80.5 75.0 80.5 91.6 88.8
Causal Judgment 52.6 57.8 60.5 60.5 65.7 73.6 76.3 76.3
Ruin Names 64.0 75.2 76.4 78.6 73.0 75.2 77.5 77.5
Formal Fallacies 55.5 57.9 59.8 59.8 56.3 58.8 59.6 59.6
Salient Translation Error Detection 49.7 50.2 51.2 51.2 52.7 56.2 60.8 60.8
CommonsenseQA 72.8 73.1 73.3 73.5 76.0 76.7 77.6 77.9
Coin Flip (OOD) 64.9 65.3 65.7 65.7 63.3 65.0 65.3 65.3

All Tasks (avg) 60.4 64.5 66.7 67.1 66.0 69.4 72.6 72.3

Table 7: Few-shot prompting performance of multiple LLMs on the seven datasets when post hoc explanations,
which form the rationale in the prompt constructed during step 4 of AMPLIFY, are generated using models with
varying degrees of fine-tuning of the proxy model (BERT in this case). Here, "E" represents the number of
epochs the proxy model was fine-tuned. "E = 0" indicates that the proxy model was used to generate post hoc
explanations without any fine-tuning. The recorded performance in this table represents the percentage of test
samples for which the LLM accurately predicted the true label.

GPT-3 GPT-3.5

Experiment Tasks E = 0 E = 10 E = 200 E = 0 E = 10 E = 200

Snarks 66.6 72.2 72.2 80.8 80.8 88.8
Causal Judgment 50.0 52.6 57.8 71.0 73.6 73.6
Ruin Names 70.7 73.0 73.0 71.9 71.9 71.9
Formal Fallacies 56.2 56.9 58.5 56.7 56.9 57.8
Salient Translation Error Detection 50.2 51.2 51.2 56.2 59.2 60.8
CommonsenseQA 71.3 71.8 72.4 76.1 76.5 77.4
Coin Flip (OOD) 65.4 65.8 65.9 63.7 64.3 65.1

All Tasks (avg) 61.2 63.1 68.0 68.0 69.0 70.7

C Additional Experiments

C.1 Larger Proxy Model: GPT-2-Medium

While we experimented with the fine-tuning of proxy models, it’s important to note that this step can
be eliminated by using a more capable pretrained proxy model, while still achieving performance
gains over baselines. The Table 8 shows that the performance of LLM surpasses the baseline (CoT)
when we use gpt2-medium instead of gpt2-small, without any fine-tuning. This demonstrates that
fine-tuning of the proxy model is not mandatory. Our motivation to show results for fine-tuning
models in the paper is to demonstrate the improvement in LLM performance when the proxy model
is further fine tuned.

C.2 Multi-step Problem Solving : GSM8k

For our experiments, we focused on tasks that require complex language understanding[31], which
are also cases where post hoc explanations have been found to be useful in capturing important
features, hence providing useful explanations[19]. However, we also experimented with GSM8k
(math problem dataset) used in CoT [35] and observed that AMPLIFY outperforms AO but performs
lower than CoT, as shown in Table 9.

While we outperform the standard few-shot approach, the underperformance of AMPLIFY when
compared to CoT is expected because solving math problems requires multi-step reasoning, a
complex function which is beyond what post hoc explanations are designed to explain. We further
wish to clarify that we do not present AMPLIFY as a replacement for CoT, but rather as a superior
alternative for tasks requiring complex language understanding; these are tasks for which obtaining
chains-of-thought through human annotations is exceptionally challenging [31].
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Table 9: The table presents a performance comparison for the GSM8k task using three different methods: AO,
CoT, and AMPLIFY with gpt2-small as the proxy model. The recorded performance in this table represents the
percentage of test samples for which the model accurately solved the math problem.

Experiment Tasks AO CoT AMPLIFY (proxy model : gpt2-small)

GSM8k 22.7 43.5 27.4

Table 10: The table presents a performance comparison for the Disambiguation QA, Word Sorting, and
Hyperbaton. The recorded performance in this table represents the percentage of test samples for which the
model accurately solved the task.

Experiment Tasks Random SOTA Avg. Max AO CoT AMPLIFY

Disambiguation QA 33.2 51.6 66.6 93.3 66.6 70.5 74.5
Word Sorting 0 33.1 62.6 100 37.8 43.1 43.6
Hyperbaton 50.0 67.1 74.7 100 68.5 77.4 79.7
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