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Abstract—In this paper, we present a conformal prediction
(CP) based method to evaluate the performance of a finger-
printing localization system through uncertainty quantification.
The proposed method emphasizes a standalone module that is
compatible with any well-trained fingerprint classifier without
incurring extra training costs. It provides rigorous statistical
guarantees for revealing true labels in the fingerprinting multi-
class classification problems with high efficiency. Uncertainty
quantification of the predictions is accomplished by leveraging
a small calibration dataset and a given error tolerance level.
Three specific metrics are introduced to quantify the uncertainty
of the CP-based method from the perspective of efficiency,
adaptivity, and accuracy, respectively. The proposed method
allows developers to track the model state with minimal effort and
evaluate the reliability of their model and measurements, such
as in a dynamic environment. The proposed technique, therefore,
prevents the intrinsic label inaccuracy and the additional labor
cost of ground truth collection. We evaluate the proposed
method and metrics in two representative indoor environments
using vanilla fingerprint-based localization models with extensive
experiments. Our experimental results show that the proposed
method can successfully quantify the uncertainty of predictions.

Index Terms—Chanel State Information (CSI), Conformal
Prediction (CP), Indoor localization, Uncertainty measurement.

[. INTRODUCTION

Fingerprinting-based localization is an emerging localiza-
tion technique that covers the gap where traditional GPS-
based location services are not available in indoor environ-
ments. Due to the nature of the fingerprinting method, the
localization problem is treated as a pattern recognition task.
Thus, the method is friendly to any stable signals, which has
led to its widespread adoption in localization systems [1]—
[3]. For example, MalLoc [4] uses smartphone sensors to
collect magnetic readings as indoor fingerprints, achieving
centimeter-level localization with the implementation of a
particle filter. NaviLight [5] creatively adopted light intensity
values as indoor fingerprints for pattern matching. More-
over, benefiting from the basic idea of the fingerprinting
method, fingerprinting-based indoor localization evolves with
the progress of pattern recognition in machine learning and
deep learning. For example, LTLoc [6] proposed a device-
free passive fingerprinting localization scheme using a novel
adaptive Deep Neural Network (DNN). CiFI [7] adopted
a Convolutional Neural Network (CNN) as a classifier to
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identify WiFi fingerprints generated from channel state infor-
mation (CSI). Furthermore, the deep reinforcement learning
(DRL) method is applied in [8] to select the optimal APs for
fingerprint collecting.

However, nothing is perfect. The inherent structure of
the fingerprinting method could hamper the performance of
fingerprinting-based indoor localization systems. During fin-
gerprint collection, the indoor environment is divided into
grids. The density and accuracy of fingerprints directly af-
fects the accuracy of fingerprinting-based localization systems.
In [9], a SLAM-enabled robot is introduced to conduct a
site survey and gather dense fingerprints with minimum ef-
fort. A Generative Adversarial Network (GAN) is adopted
in [10] to create synthetic data to cut-down the cost of fin-
gerprint collection. Similarly, a conditional GAN is proposed
in TransLoc [11] to update fingerprints with unlabeled WiFi
signals so that the time-consuming signal collection task is
avoided when the indoor environment changes.

Nonetheless, when we examine the fingerprinting-based lo-
calization system, statistical assurance of system performance
does not receive much attention. Distance error has long
been the only metric used to depict the performance/accuracy
of localization systems. Most existing studies concerning
model parameters or ablation experiments are carried out by
determining how the modification affects distance error. In
fact, distance error implies that ground truth coordinates are
essential, which is a strong prerequisite. On one hand, it is
difficult to gather positional coordinates that are dispersed
throughout a large indoor environment for evaluating the
overall performance of the localization model. On the other
hand, an unreliable ground truth, or test data, may negatively
influence the performance evaluation.

Therefore, a performance assessment metric that is able
to depict the reliability of the generated location prediction
has become an essential need when deploying the majority
of fingerprinting-based systems in real-world scenarios. For
instance, either with contaminated data or an outdated model,
trustworthy fingerprinting systems are supposed to answer:
“We don’t know” [12] rather than generate the most likely
point estimation. Also, an optimal metric should take into
account the limitations of groundtruth labeling. The proposed
metric should be able to depict system performance using a
small number of labeled fingerprints.



To this end, conformal prediction (CP) has been explored as
a promising tool for addressing the challenges and concerns
stated above [13]. It is a model-agnostic and distribution-free
framework [14] to estimate the uncertainty of a machine learn-
ing model [15]. Recently, it has drawn considerable interest in
the Natural language processing (NLP) field [14], especially
with the rapid development of large language models (LLMs).
The authors in [16] proposed a novel CP method for LLM
without accessing the logits output. More important, the CP
algorithm has been deployed in various real-world applications
that require risk control, such as autonomous driving and
Al-aided medical diagnosis. For example, in [17], the CP
method is leveraged for planning paths in unknown dynamic
environments with probabilistic safety guarantees. The proce-
dure of the CP method is to first train a black-box classifier
with the training dataset. Then a small calibration dataset
will be utilized to calculate the nonconformity score, which
describes the similarity between the given sample and the
ground truth of the prediction [18]. As a result, a threshold of
the nonconformity score is determined with a given confidence
level (1 — ).

In this work, we proposed a CP-based method to measure
the uncertainty of a fingerprinting-based localization system.
We highlight our key contributions in this work as follows:

o This work raises concerns about the inadequate per-
formance evaluation that exist in the majority of
fingerprinting-based localization research. We utilize the
CP technique to assess the reliability of the system
by performing uncertainty quantification. This approach
provides the possibility for confidence level calibration
without laborious ground truth measurement or anchor
settings.

« Based on the proposed CP approach, we introduce three
metrics to estimate the system uncertainty comprehen-
sively. The metrics could be a trace to distinguish am-
biguous predictions.

e We apply the proposed method in two representative
indoor environments using WiFi CSI and Bluetooth Low
Energy (BLE) received signal strength indicator (RSSI)
as fingerprints. Extensive experiments demonstrate that
our method can accurately measure the reliability of the
fingerprinting system.

The remainder of this paper is organized as follows. Sec-
tion I introduces the related work and motivation of our
proposed framework. We present the system overview in Sec-
tion III and our experimental study in Section IV. Section IV-B
concludes this paper.

II. PRELIMINARIES AND MOTIVATION

With the fingerprinting method, the localization problem is
converted into a multi-class classification problem. This is a
perfect match to the great power of deep learning models
in pattern recognition, and contributes to the popularity of
the fingerprinting-based indoor localization system. However,
fingerprint collecting is essentially a process of discretizing an
indoor space. The absence of ambiguity among fingerprints
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Fig. 1. The intrinsic ambiguity from ground truth locations.

makes pattern recognition a compromised approach to the
localization problem.

For instance, see the example shown in Fig. 1. Fingerprints
are collected at the grid points for training a deep learning
model as a classifier. The model performance is evaluated
by classification accuracy, by comparing the predicted label
and ground truth. However, if the classification accuracy is
evaluated for the red diamond location, a dilemma arises.
The labels of the neighboring blue dots, i.e., label-0, 1, 2, 3,
could potentially be considered true label candidates for the
red diamond. Yet only one of them would be assigned as the
ground truth label. If label-0 is assigned to the red diamond in
the verification dataset and the model’s classification result is
label-3, we cannot conclude that the prediction is incorrect in
the actual world, but the accuracy would be low. In summary,
it will produce false negative predictions that impair the
performance of the fingerprinting system.

This unavoidable error not only hampers the model training
but also invalidates the classification accuracy, as the false
negative rate increases significantly. Ideally, if the target could
move to a random direction to break this unexpected sym-
metry, classification accuracy would still be an appropriate
criterion for assessing the model performance. However, it
is challenging to address this dilemma case with existing
classification models.

Furthermore, the mismatch among models, fingerprints, and
environments may also trigger a similar issue. Due to the
device update or environmental change, the newly generated
fingerprint could mislead the outdated classification model.
The existing model will be unable to provide uncertain predic-
tion. Thus, in this study, we used CP as an assessment tool, and
propose metrics for assessing ambiguities in the fingerprinting-
based localization system.

III. SYSTEM OVERVIEW
A. Fingerprinting Model

Fig. 2 shows the typical architecture of a fingerprinting-
based localization system. The system operates in two stages.
In the offline stage, wireless signals, such as WiFi CSI and
BLE RSSI, are collected and labeled with the corresponding
positional coordinates. The labeled signal serves as fingerprint
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Fig. 2. Conformal Prediction (CP) is an independent component to the well-
trained fingerprint classifier.

and makes up the training dataset. Then, the fingerprint
classifier is trained with signal-coordinate pairs. In the online
stage, users feed newly collected signals into the well-trained
classifier to obtain the label prediction. The final location
estimation could be the output of the classifier, or it could
be derived with the classifier’s output using post-processing
algorithms. In this paper, we incorporate an additional confor-
mal prediction block to quantify the uncertainty of prediction
from these fingerprinting models. It is an independent block
of the well-trained fingerprint classifier but as a plug-and-play
component.

B. CP-based Fingerprinting

CP is a statistical method that offers uncertainty estimation
for the prediction of any machine learning model [12], [18].
This work focuses on the classification problem and develops a
prototype for quantifying the uncertainty of a fingerprinting lo-
calization system. It guarantees the production of a minimum-
sized prediction set containing the correct label at a specific
confidence level.

In the training stage, we train a fingerprinting classifier with
the training dataset. The classifier utilizes a softmax layer as
activation function to generate the prediction of a probability
distribution for each input sample. This probability indicates a
heuristic confidence in the prediction and does not align with
the likelihood of correctness (e.g., the ground-truth prediction
is associated with the highest score). This prediction process
can be formulated as follows:

F Ti— C(tl) = {(117]71), (l27p2)7 R (lmpc)}' (1)
Specifically, for a given input x; € X, the model F produces
a set of predictions C(z;). Each predicted label I; € £ in the
label space £ = {1,2,---,¢} is associated with a heuristic
confidence p; € (1,0). Then, we propose a prototype system
to convert this empiric set C'(z;) to a rigorous confidence
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guaranteed set C\, (x;) that consists of the true label I; with a
probability greater than or equal to (1 — «).

where o € (0,1) is the user-specified error tolerance
level, Co(z;) C C(x;), and it has the minimum length.
To enable any well-trained model F to satisfy the above
goal in (2), we propose a prototype system of CP-
based fingerprinting. It utilizes a calibration dataset D.q; :
{(1'1’ l%rue)7 (1327 lt2r11.e)7 T (I’n, l?r'u.e)}’ z; € X, lzrue €L,
i = 1,2,--- ,n, to regularize F. The calibration dataset
contains n samples of measurement x; and its corresponding
ground truth label Ii,.,.. Additionally, the D, is usually a
small dataset comprising representative samples of the target
domain and can be independent of the training set D;.

In the calibration stage, we first calculate a non-conformity
score for each sample in D.,;. We deploy a score function to
obtain the non-conformity score S; for sample x; € D.q, as:

Si=1—(pi)ii_ 3

true

where (p;) 1i .. is the heuristic confidence value produced
by (1), and when its associated prediction is the ground truth
label IZ,.,,.. This non-conformity score indicates the degree to
which the trained classifier’s prediction will deviate from the
entire calibration dataset. To be more specific, a larger non-
conformity score indicates a smaller probability of the corre-
sponding label being the correct one. Then, we obtain the non-
conformity score set for D.,;: {Si}?zl = {s1,82, " ,8n}
With a given user-specified error tolerance level a, the adjusted
(14+1/n)(1—«) empirical quantile § of {S;};, can be further
established as:

i {0 -l )

where @Q is the quantile function, and [-] is the ceil function.
For any test data z(,,11) ~ Deas, its conformal prediction set
Co(Znt1) € L is determined when the calculated ¢ achieves
the guaranteed marginal confidence level (1 — ), as:

éa(xn-&-l) = {ij 18 < Q};zla (5)

where [j is the predicted label by F in (1) and S; is the
associated non-conformal score. Thus, the determined confor-
mal prediction set é($n+1) is guaranteed to satisfy (2). We
summarize the above proposed conformal prediction method
in this study in Algorithm 1.

14+n

“

C. Ambiguity Quantification

This section introduces ambiguity quantification of the pre-
dictions to evaluate the fingerprint system’s statistical perfor-
mance. The above proposed conformal fingerprinting system
provides a solution for uncertainty evaluation of the predic-
tions. It is a post hoc method compatible with a pre-trained
fingerprinting system, including the deep learning model and
observation from certain locations. As an unambiguous clas-
sification problem, fingerprinting is always compromised to
predict the most likely location in the search space. The



Algorithm 1 Conformal Prediction based Fingerprinting

Input: Training dataset D,, calibration dataset D,

Input: Test sample z,,+1 ~ D,q, error tolerance level «

Output: The conformal prediction set C, (Tpa1)
1: // n represents the total number of data samples within

the calibration dataset

Train the fingerprinting model F with training dataset D,

that satisfies (1);

:fort=1ton do

Use (3) to calculate the non-conformity score S;;

: end for

: Compute the adjusted (1 — «) empirical quantile ¢ as
in (4);

: Predict C'(z,,41) by the trained model F;

: Based on C(z,+1) and §, determine the conformal pre-
diction set Co (,11) by (5);

: return Conformal prediction set éa (Tn+1);

2:

~

proposed conformal prediction fingerprinting generates the
estimated conformal prediction set to satisfy the rigorous
statistical guarantee. By evaluating the characteristics of this
set, we can determine the uncertainty of the fingerprinting
system. Therefore, we define the potential uncertainty of
conformal prediction fingerprinting as:

Ua(@ntn) : 1 {dim [Ca(@nin)| #1}, ©6)
where dim {CAO, (:z:n+1)} indicates the dimension of C,, (Tnt1)
with the given error level o and test measurement x,,41, and
1 {-} represents the indicator function that maps the input to
zero or one. Thus, Uy (x,+1) = 0 only happens in the case
where the CP set has a single label. Otherwise, we have U = 1,
which indicates an uncertain prediction has been made. There
are two possible scenarios in uncertain prediction, the first of
which is that the cardinality of the prediction set is larger than
1, meaning that the prediction set contains multiple labels that
could be the ground truth label. The other is that the prediction
set is empty, indicating that the system does not know which
label should be assigned to the measurement z,, 1.

Based on U, three metrics are introduced to per-
form quantitative analysis on a test dataset Dicy
{Tn+1, Tnt2, s Tngm)s T € X, 0 = 1,2,-+-  n, which
has the same distribution as the calibration set D,,;. The first
metric is defined as the Average Prediction Set Size (APSS),
which is computed based on the test dataset Dy, as:

Z dim |C [ xnﬂ)} ,

where C, (2n44) represents the estimated conformal prediction
set of sample x,,y; in Dy.s;. By assessing the prediction of
both certainty and uncertainty, the overall efficiency of the
proposed conformal predictor is acquired. Generally, if APSS
is closer to 1, the system will achieve better efficiency. For
instance, a very large APSS (e.g., 80) indicates a lack of

APSS Dte st (7)
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precision for the CP process due to an outmoded classifier
or a contaminated dataset. Note that the smallest APSS does
not necessarily indicate the highest efficiency of the CP.

The metric of Uncertainty Detection Rate (UDR) is intro-
duced to describe the distribution of uncertainty, defined as:

Z‘U anrz )

where UDR is computed as the ratio of uncertain cases
detected, which implies the average uncertainty over the entire
test dataset. UDR is always a number within the range of [0, 1].
By estimating the UDR of a dataset based on the fingerprinting
model, the confidence level of the overall predictions can be
acquired. Similar to APSS, a larger UDR indicates that a more
uncertain prediction exists, and a smaller UDR shows more
confidence in the system.

The Conformal Accuracy (CA) metric illustrates the accu-
racy of prediction when no uncertainty is detected. The CA is
calculated as follows:

UDRa(Diest) = ®)

(D = 2t {Catwnrs) = 5} o

al\test) = )
|Ua(zn+:) = 0|

where | - | is the function of cardinality. The CA metric only

covers cases when the conformal prediction set size is equal
to one, where no uncertainty is detected, and the CP system
claims confident predictions.

IV. EXPERIMENTAL STUDY
A. Experiments Setup

To evaluate the proposed CP-based metrics, we set up the
prototypes of fingerprinting-based localization systems in two
typical indoor environments. First, a public dataset is adopted
to investigate the proposed metrics. The dataset was collected
on the third floor of the Engineering Office Wing (EOW) at the
University of Victoria [19]. The indoor map is generated by a
Turtlebot3 robot using the ROS2 SLAM toolbox. It covers a
square corridor with a side of 20 meters. The dataset includes
102,998 BLE datapoints collected from 85 coordinates with
7 BLE routers. Each unique location in the dataset receives a
class label. To simplify the experiment, we randomly selected
15% datapoints as the test dataset. The datapoints share the
label with the closest training data. A 5-layer MLP model is
trained as a classifier. For each layer, the output feature sizes
are 256, 512, 128, and 85, respectively.

Second, we adopt a Radio Frequency Identification (RFID)
scenario representing a small-scale setting, as shown in Fig. 3.
In this scenario, we collect RSSI from 50 RFID channels
by interrogating the 8 anchor RFID tags to create RFID
fingerprints. Thus, the fingerprints are arrays of dimension
(8,50). The testbed covers an area of 1.5m x 1.5m. Fig. 4
illustrates a corner of the testbed. The area is divided into grids
with side lengths of 10 cm. Training fingerprints are gathered
at the grid points, which are marked as green diamonds. Blue
dots represent the test dataset, dataset-hard; all the blue dots
are located in the center of the training fingerprints, and the
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TABLE I
RFID CLASSIFICATION MODEL
Layers Input_features ~ Output_features  Kernel size
convlD_0 8 3 1
convlD_1 3 16 3
convliD_2 16 32 3
linear_0 640 512
linear_1 512 256
linear_2 256 256

gap between two adjacent blue dots is 20cm. On the other
hand, the test dataset, dataset-easy, is made up of the RSSI
from the yellow dots that are near the grid points. In this
experiment, three 1D convolution layers are leveraged first to
adjust data size and extract features, then a three-layer MLP
serves as a classifier for producing logits. The detailed network
architecture is presented in Table I.
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TABLE II
UNCERTAINTY ESTIMATION WITH THE PUBLIC DATASET

Error Tolerance Level «  APSS  UDR
0.05 1.07 0.12
0.10 1.02 0.06
0.15 0.94 0.07
0.20 0.84 0.15
0.50 0.59 0.40
TABLE III

UNCERTAINTY ESTIMATION WITH THE RFID DATASET

Dataset Easy | Dataset Hard

Error Tolerance Level a |

| APSS UDR CA | APSS UDR
0.1 1.33 0.14 098 86.8 1.00
0.2 1.03 0.21 1.00 63.7 1.00
0.3 0.85 031 099 | 472 1.00
0.5 0.52 047 092 17.4 0.98
0.75 0.29 071  0.84 2.1 0.72

B. Experimental Results

To demonstrate the efficiency of our proposed CP-based
method, experiments are firstly performed with the test data
from the public dataset. The metrics of APSS and UDR are
used with 5 different error levels ranging from 0.05 to 0.5.
As Table II shows, for the error level « 0.10, the APSS
is 1.02 and the UDR is 0.06. We consider this as the best
scenario that achieves the highest efficiency for the proposed
CP-based system. This is not only because the APSS is closest
to 1, but also because that the lowest UDR indicates the least
uncertainty detection. It is obvious that the prediction set size
decreases and UDR increases when a larger « is prescribed.
Therefore, the error rate o = 0.10 is a suitable parameter that
guarantees the (1 — a) = 0.9 confidence level.

Table III illustrates the comparison of two different test
datasets of the RFID scenario: dataset-hard and dataset-easy.
These two datasets have different uncertainty levels depending
on the sampling strategy. The dataset-hard covers the samples
of measurement that represent hard cases that potentially
increase the false negative rate. The dataset-easy contains
the observations from the points that are relatively closer to
certain labels compared with dataset-hard. It can be seen that
the proposed method achieves the high efficiency for dataset-
easy with error rates a = 0.10 and o = 0.20, referring
to APSS of 1.33 and 1.03, and UDR of 0.14 and 0.21,
respectively. However, the system efficiency for dataset-hard
is extremely low when APSS is 86.8 and 63.7, and UDR
is 1.00. This demonstrates the adaptability of the proposed
method. Smaller APSS for easy cases, and larger APSS for
hard inputs that show the underlying uncertainty. Table III also
shows the Conformal Accuracy (CA) for dataset-easy of the
RFID scenario. We observe that the it is initially high (>0.95)
for small « values, and then it decreases when the error rate
o is increased.

We further explore the uncertain predictions that contain
multiple labels. Fig. 5 depicts three examples of corresponding
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Fig. 5. Examples of the Uncertain Conformal Prediction Sets with the
corresponding labels.

non-single prediction sets when uncertainty was reported in
dataset-hard. The grid map covers the RFID testbed area of
0.7mx0.7m, where the fingerprints are measured. Within each
colored area, the circle marker represents the true label, and
the diamond markers are the labels that form the prediction
sets. Each example indicates a different level of uncertainty
individually. In the bottom part of the grid map, the area
in red presents the instance that a prediction set with the
dimension of 2. There is a 5 cm displacement in the vertical
direction for this prediction set. On the right side of the
map, we observe the situation when three out of four nearest
neighbor points are identified as the prediction set, which
implies less uncertainty compared with the previous one.
Nevertheless, more uncertain cases are also been discovered in
the investigation. For instance, the green color area contains
a predicted label at the top right corner, which is far away
from the ground truth. Therefore, these measurements from
ambiguous points express significant uncertainty for the final
prediction results, which should be carefully evaluated when
a reliable fingerprinting system is desired.

CONCLUSIONS

In this study, we presented a CP-based method to study
the uncertainty of multi-class fingerprinting classification. The
proposed method provides a statistical guarantee of accurate
indoor localization predictions for a user-specified error toler-
ance level. With a few samples from the calibration dataset,
uncertainty quantification is executed to assess the reliability
of the system including the deep learning model and input
fingerprints. Our experiments in two scenarios demonstrated
that our method was effective for evaluating the intrinsic uncer-
tainty based on the introduced metrics from the perspectives of
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efficiency and accuracy. Our future work shall further explore
the potential of conformal prediction techniques, which is a
promising tool for dealing with the challenging problem of
dynamic environments with minimal effort.
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