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Abstract—This project introduces a framework to enable
robots to recognize human hand signals, a reliable and feasible
device-free means of communication in many noisy environments
such as construction sites and airport ramps, to facilitate efficient
human-robot collaboration. Various hand signal systems are
accepted in many small groups for specific purposes, such as Mar-
shalling on airport ramps and construction site crane operations.
Robots must be robust to unpredictable conditions, including var-
ious backgrounds and human appearances, an extreme challenge
imposed by open environments. To address these challenges, we
propose Instant Hand Signal Recognition (IHSR), a learning-
based framework with world knowledge of human gestures
embedded, for robots to learn novel hand signals in a few samples.
It also offers robust zero-shot generalization to recognize learned
signals in novel scenarios. Extensive experiments show that our
IHSR can learn a novel hand signal in only 50 samples, which is
30+ times more efficient than the state-of-the-art method. It also
demonstrates a robust zero-shot generalization for deploying a
learned model in unseen environments to recognize hand signals
from unseen human users.

Index Terms—Zero-shot Generalization, Gesture Recognition,
Hand signals, Cross-modality Embedding

I. INTRODUCTION

Significant advancements in recent robotics enable more and

more robots to be deployed in open and human-shared environ-

ments in the short future [1], [2]. This trend demands effective

communication among robots and non-technique people to

ensure safety and foster efficient human-robot collaboration.

Visual hand signals are essential in many circumstances of our

daily lives and workspaces, especially in noisy environments

such as construction sites and airport ramps. Their reliability,

feasibility, and device-free make visual hand signals one of

the best forms of interaction between humans and robots in

loud and voice-prohibiting environments.

In recent years, we have seen more and more research [3]–

[6] focused on the recognition of hand signals, such as the Air

Marshalling signal. For example, the authors in [3] used Con-

volutional Pose Machines and learning classifiers to segment

and classify gestures with 97% accuracy despite dataset diver-

sity and ambient circumstances. Another study [4] introduced

OpenMarshall, an 88% accurate gesture-tracking model for

aircraft Marshalling signal recognition. This model struggled

with Marshalling signal variability and environmental effects

on signal visibility. Despite these advances, existing studies

highlight several limitations, including hardware configuration

dependence, the need for more diverse and extensive datasets

to improve model robustness and accuracy, and poor gener-

alization across novel conditions and environments (includ-

ing diversities in backgrounds, human appearances, motion

patterns, etc.). Furthermore, this is a challenging and open

problem in robotics and human-robot collaboration systems.

First, there are lots of different hand signal systems that are

accepted in many small groups for specific purposes, such

as Marshalling on airport ramps and construction site crane

operations. Even the same type of hand signals have several

variants, and many new customized hand signals have also

been introduced by various groups for their requirements. This

situation makes it an infeasible mission to design a method to

recognize and react to all hand signals.

To address the above challenges, this work introduces

Instant Hand Signal Recognition (IHSR), a learning-based

framework with world knowledge of human gestures, to em-

power robots to communicate with humans with hand signals

by learning from very few examples. The proposed IHSR

comprises a Cross-modality Embedded Network for Gesture

Recognition (CENGeR) to capture the temporal and spatial

information of human gestures efficiently. We also proposed a

self-supervised pre-training process to embed world knowl-

edge of various human gestures by utilizing the massive

task-unrelated gesture dataset from the internet. The main

contribution of our work is summarized as follows:

• Our proposed method significantly improves the training

efficiency by deploying a self-supervised pre-training

process. Experiments show that it only consumes about

50 samples to learn a new hand signal.

• The embedded world knowledge of human gestures in

our proposed method offers a supernal zero-shot gen-

eralization to handle domain shift, which is a problem

arising in significant discrepancies between its application

and training domain. Our learned model is robust to a

variety of novel conditions, including new environmental

backgrounds, different persons, motions, and more.

• We conduct rigorous experiments to enable a real mobile

robot to recognize and react to tailored marshaling-liked

hand signals.

The remainder of the paper is organized as follows. We

present the problem statement in Section II and the proposed

solution in Section III. We evaluate the proposed IHSR in

Section IV and conclude this paper in Section V.
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Fig. 1. High-level architecture of our IHSR. The green block highlights the
proposed CENGeR. In this system, raw video Rt and landmark video Kt are
the input, abstract embedding St is the intermediate output from CENGeR,

while predicted label lt and action at are the final outputs.

II. PROBLEM STATEMENT

In this project, we aim to design and develop a learning-

based framework to enable various robotic platforms to com-

municate with their human co-workers by hand signals. To

this end, we will train a model that can extract an abstract

embedding St from visual observation Ot to represent a hand

signal. Subsequently, St can condition a robotic action decoder

to generate expected action at for current step t.

The visual observation, Ot = [Rt,Kt], comprises observed

raw visual video Rt = [rt�T , . . . , rt] and landmark video

Kt = [kt�T , . . . , kt]. Both Rt and Kt are sequences with a

length of T ≤ t. A raw frame rt ∈ R
H⇥W⇥C of video Rt will

be acquired from a camera with C channels, H height, and

W width. The skeleton-based landmark frame kt ∈ R
H⇥W⇥C

with the same dimensions as the raw frame. Thanks to the

prevalent human skeleton detection methods, we can easily

access kt by converting an rt or directly gain it from a 3D

camera. Besides the observed Ot, a label lt is also requested

and available at the training stage; it provides the expected

action of the robot, for example, “move ahead” or “left,” which

offers ground-truth information for training.

III. METHODS

We propose Instant Hand Signal Recognition(IHSR), a

learning-based framework that empowers robots to commu-

nicate with humans using hand signals. The core of this

framework is the Cross-modality Embedded Network for Ges-

ture Recognition (CENGeR), highlighted as green in Fig. 1.

CENGeR can efficiently and effectively extract a hand signal

from raw video Rt and landmark video Kt and represent it

as an abstract embedding St, which will subsequently guide

the action decoder to generate expected robotic action at. To

facilitate our proposed system to be trained by a non-technique

user, we deploy a frozen and well-trained action decoder that

can output expected at from St. In this way, to enable the

robot to learn to react with a novel hand signal, we only need

to train the CENGeR by minimizing the error between ground

truth lt and predicted lt, which is converted from St by the

Fig. 2. Model architecture of CENGeR

MLP module. This training error is highlighted by the red dot

line in Fig. 1.

A. CENGeR: Cross-modality Embedded Network for Gesture

Recognition

A hand signal comprises several consecutive hand gestures,

such as the “move ahead” in Marshaling signals: “Bend

extended arms at elbows and move up and down from chest

height to head.” To effectively recognize hand signals, the

proposed IHSR shall be able to detect and explore the gesture

in each frame and explore the transition among consecutive

gestures; in other words, it should efficiently capture the

spatial and temporal patterns of hand gestures. To meet all

these requirements, we design and develop CENGeR, whose

architecture is illustrated in Fig. 2. It consists of two CNN-

based encoders and a self-attention encoder to extract spatial

and temporal features and represent them as an abstract feature

St for the downstream action decoder.

1) CNN Encoders: The raw encoder and landmark encoder

are deployed to extract spatial features in raw frame rt and

landmark frame kt, respectively. In prior studies [7]–[9], Con-

volutional Neural Networks (CNNs) were utilized as encoders

for feature extraction in gesture recognition tasks involving

images and videos, motivating our exploration of novel CNN-

based encoders for similar applications. These two encoders

extract the gesture features from input visual observation

frame by frame: rt → ert : R1⇥d and kt → ekt : R1⇥d,

where d is the dimension of extracted features. Thus, we can

represent the raw video Rt and landmark video Kt as extracted

features ERt
= [ert−T , . . . , ert ] and EKt

= [ekt−T , . . . , ekt ],
respectively. Then, we concatenate the ERt

and EKt
to form

a comprehensive feature Et to represent the visual observation

Ot of a hand signal.

2) Cross-modality Embedding Fusion and Spatial Feature

extraction: In our system, kt is a sparse presentation with only

positions of body joints. To augment these sparse gesture fea-

tures with rich environmental and task context, we introduce

a novel cross-modality embedding fusion technique by adding

latent connections between the raw encoder and landmark

encoder, as shown in Fig. 2. Both encoders comprise an equal

number of blocks and produce outputs of matching dimension

di at each block i: ekt

i ∈ R
di and erti ∈ R

di are the output
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embeddings from block i of raw and landmark encoders,

respectively. This symmetry facilitates the cross-modality em-

bedding fusion, where we augment the embeddings from the

raw encoder using those from the landmark encoder. The

latent connection between two encoders enables us to use the

ekt

i + erti as the input of the raw encoder’s block i+1 instead

of using only the output from its block i. In this way, the

raw encoder extracts the feature ert from raw frame rt and

augments it by the corresponding ekt . This approach leverages

the strengths of both encoders, combining detailed landmark

and joint information with more general spatial features. This

fusion enhances the overall feature representation, which is

crucial for tasks requiring a nuanced understanding of human

poses and gestures.

3) Self-Attention Encoder: With the raw encoder, landmark

encoder, and the latent connection between them, we can

efficiently extract the spatial hand gesture features from Ot

and represent them as a comprehensive embedding Et. This

subsection introduces a self-attention encoder to detect and

extract the temporal features among consecutive gestures from

Et and represent them as an abstracted feature St. First, we

deploy convolutional layers to reduce the channels of Et to

convert it as a more abstracted embedding Et. The attention

mechanism is introduced by the transformer [10] and has

become a powerful tool in extracting temporal features [1],

[11] and presented them as an abstract representation:

Ah(Q,K, V ) = softmax

✓

QK>

√
dk

◆

V (1)

Where Q, K, and V denote queries, keys, and values in the

attention mechanism, and dk is the dimension of K. We deploy

self-attention layers to capture all spatial gestures and temporal

relationships to obtain St as:

St = Ah(Et, Et, Et) (2)

Thus, St is an abstract embedding that captures all spatial

and temporal information of consecutive hand gestures for

downstream components. Based on a St, the subsequent

MLP module can predict hand signal label lt for training or

indication purposes. The deployed frozen action decoder also

utilizes St to generate expectation action at for robots.

B. Train CENGeR

a) Pre-training process for world knowledge of human

gestures: A properly designed pre-training process can sig-

nificantly improve the learning efficiency of downstream

tasks [12], [13]. An essential objective of our IHSR is to

provide exceptional training efficiency to learn a new hand

signal with minimal samples. To this end, we proposed a

pre-training method based on Masked Autoencoder(MAE) to

enable IHSR with world knowledge of human hand gestures,

which significantly accelerates our downstream hand signal

recognition. The MAE is a self-supervised learning algorithm

with an encoder-decoder architecture to acquire visual rep-

resentations from unlabeled data [14] by learning unmasked

patches to reconstruct randomly masked-out patches, com-

pelling the model to identify and represent essential image

features, even partially or fully obscured.

The raw encoder and landmark encoder, without latent

connection between them, will be pre-trained independently

and separately. Two auxiliary decoders will be deployed to pair

with our encoders to form two independent MAEs: Raw-MAE

comprises the raw decoder and encoder, while Landmark-

MAE comprises the Landmark decoder and encoder. We

develop the auxiliary decoders with mirroring network archi-

tecture, exactly the same blocks but arranged in reverse order,

with their corresponding encoder. These MAEs will be trained

by different data sets with the same training architecture shown

in Fig. 3: the encoder extracts discriminative features from the

visible patches, distilling them into a compact representation;

subsequently, the decoder reconstructs the image from the

representation. Minimizing the error between the reconstructed

and the original image enables the encoder to learn to capture

the essence features.

Fig. 3. The proposed MAE training architecture. The raw gesture images
are deployed to train Raw-MAE, while landmark images are used to train
Landmark-MAE.

By pre-training two separate MAEs, Raw-MAE and

Landmark-MAE, we harness vast, task-unrelated datasets to

imbue our model with world knowledge of human gestures

and poses. This pre-trained knowledge, encapsulated within

the raw encoder and landmark encoder, is directly applied to

the CENGeR, enhancing spatial feature extraction across video

frames. Massive, unrelated datasets allow our two encoders to

generalize well, capturing a wide variety of visual patterns

crucial for understanding complex gestures and poses from

raw and landmark images, which facilitate subsequent task-

specific applications.

b) End-to-end training for hand signals: As we men-

tioned before, once our CENGeR can recognize the hand

signal and extract a related abstracted embedding St, the

frozen robot action decoder will generate the expected robot

action. This ensures a user without a robotic background

to train our IHSR by providing a small training dataset:

{(O1, l1), . . . , (OM , lM )}, with M length. Our IHSR frame-

work offers two end-to-end training methods, transfer-learning

and fine-tuning, to train the CENGeR that enables a robot to

recognize and react to hand signals from this dataset.

The CENGeR’s Raw and landmark encoders in both train-

ing methods will be initialized with the well-trained models

resulting from our pre-training process introduced above. In

transfer learning, the raw encoder and landmark encoder are

961



frozen, with optimization focused on the self-attention encoder

and MLP layers. Conversely, fine-tuning involves optimizing

both the raw encoder and landmark encoder, along with the

self-attention encoder and MLP layers. During this end-to-end

training process of both methods, an observation Ot, will be

input to CENGeR to generate abstracted embedding St, then,

the MLP will convert St to a predicted label lt. We deployed

the Mean Square Error(MSE) as our loss function:

L =
1

M

M
X

t=1

(lt − lt)
2 (3)

This strategy of using the pre-trained raw encoder and land-

marks encoder imbues the CENGeR architecture with exten-

sive world knowledge of human gestures and poses, signifi-

cantly improving the learning efficiency of hand signal recog-

nition to facilitate state-of-the-art results even with minimal

datasets.

IV. EXPERIMENTS

We implemented the proposed system using the PyTorch

Lightning package and Python 3.8.0 and evaluated it on a

computer with an NVIDIA GeForce RTX 3090 with 128GB

of RAM. Below are further details of each experiment.

A. Experiments for Pretraining Models

Thanks to the openly accessible datasets: HaGrid

dataset [15], Bangla Sign Language dataset [16], WASL-2000

dataset [17] and Arabic Sign Language dataset [18], we

compose a pre-training raw dataset with 70K+ images. To

form a landmark pre-training dataset, we used Mediapipe [19]

to create landmark images from all raw images in the above

dataset. A qualitative result is shown in Fig. 4: the pre-trained

Raw-MAE and Landmark-MAE can both reconstruct images

that keep essential visual information, which indicates that our

raw encoder and landmark encoder are capable of efficiently

capture essential features to represent the hand gestures.

Fig. 4. Visual representation of image reconstruction of Raw-MAE and
Landmark-MAE.

B. Experiments for Hand Signal Recognition

1) Training Setup and Dataset: To evaluate the perfor-

mance of our IHSR, we create a customized AirMarshVideo

dataset that includes three actions with labels: “Move ahead,”

Fig. 5. A sample to illustrate three representative hand signals in our
AirMarshVideo dataset.

“Right,” and “Left.” Its raw video Rt in an observation Ot

is recorded by RGB cameras from several volunteers, while

the landmark video Kt is generated using Mediapipe [19].

The sample of this AirMarshVideo dataset is given in Fig. 5.

This dataset has 59, 60, and 61 data video samples in both

raw and landmark for the “Move ahead”, “Right,” and “Left”

classes, respectively. Each video sample has only 20 frames

ranging from 3 to 6 seconds, each frame with a dimension

of 224×224. We employed a cross-validation technique that

divided this dataset into three cross-folds for the objectives

of training, validation, and testing. In each fold, about 60%

of video samples(around 36 samples) were for training, 15%

of video samples(9 samples) for validation, and the remaining

25% of video samples(15 samples) for testing. In this way,

we ensured the three folds had different training, validation,

and testing samples. During 100-epoch training, the hyper-

parameters were updated using a validation loss-based early

stop criteria with an early stop patience of 15 epochs. TABLE I

provides more hyperparameters used in this study.

TABLE I
HYPERPARAMETERS

Hyperparameter Value

Batch Size 6
Initial Learning Rate 0.0001

Learning Rate Drop Factor 0.1
Learning Rate Drop Patience 15

Number of Epochs 100
Early Stopping Patience 35
Early Stopping Monitor Validation Loss
Early Stopping Mode min

Optimizer Adam

2) Learning Efficiency: Based on the above three folds

of datasets, we trained three CENGeR models using the

fine-tuning method and the other three CENGeR models by

transferring learning to assess the learning efficiency of our

proposed IHSR framework. Then, we tested how accurately

the learned models can predict the labels, lt, for all samples

in the testing set of all three folds. Note that samples in the

testing set were not included in the training and validation set;

they may be subjected to totally different backgrounds, people,

and gesture patterns. We also compared our predicted accuracy

and average consumed training samples with two state-of-the-

art Marshalling recognition models. TABLE II illustrates the

experiment results.
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under poor lighting scenarios, the raw encoder and the cross-

modality fusion help to enhance the accuracy of the system.

5) Robots experiments: To evaluate the proposed IHSR’s

feasibility in facilitating robot-human coordination by hand

signals, we deployed the trained model Mf2 in a virtual

environment introduced in [1] and a real-world experiment

using a LoCoBoT, which is presented in Fig. 7. In both

experiments, the robotic action decoder took the output from

Mf2 to generate an action at to navigate the robots in a

step-by-step mode. We designed experimental scenarios that

require a user navigated mobile robots to follow given routes,

blue lines in Fig. 7(a) and yellow arrows in Fig. 7(b), by

combining three hand signals that Mf2 has been trained for:

“move ahead”, “right,” and “left.”

In the virtual environmental experiment, we deployed an

RGB camera face to a user to collect raw video Rt and convert

it to landmark video Kt, then inputted to IHSR to generate

at for the robot. Fig. 7(a) shows it is capacity to follow a

blue-lined route towards a green-circled target in the virtual

environment. This demonstrates the IHSR’s capability in real-

time gesture and pose recognition for robotic navigation. We

deployed our real-world experiment in a conference room

with a size of 5 × 5 m2. A user stood in front of the robot

and used air Marshalling gestures to maneuver it toward a

planned course to move from one side of a table to the door,

as shown in Fig. 7(b). The successful navigation results in

both experiments demonstrate the IHSR’s ability to enable

robotic navigation via gesture recognition, providing a promis-

ing method for intuitive human-robot collaboration. These

results also show the IHSR’s robustness, gesture interpretation

accuracy, and suitability for various robotic platforms.

V. CONCLUSIONS

In this work, we presented IHSR, a learning-based frame-

work that empowers robots to communicate with humans

using hand signals. IHSR comprises CENGeR, an elaborated

network architecture, and delicate training methods to rapidly

learn novel hand signals from very few samples in complex

environments. The proposed CENGeR captures the latent

spatial relation between the spare joint-based landmark and

context-rich raw frames. Its self-attention encoder captures the

latent relations in the temporal gesture patterns and implants

them with spatial information into abstract embedding for

downstream robotic tasks. Additionally, IHSR proposed a pre-

training on massive and tasks unrelated datasets to embed

CENGeR with elemental knowledge in detecting various hand

gestures and poses, which will facilitate the rapid training for

hand signal recognition. Extensive experiments showed that

our IHSR could efficiently learn a novel hand signal in less

than 50 samples and offer strong out-of-distribution robustness

in novel scenarios. In summary, IHSR makes a promising

future of enabling hand signal-based communication to foster

robot-human collaboration in many voice-forbidden environ-

ments, such as construction sites and airport ramps. Our future

work will focus on the robotic action decoder, which could

fuse environmental observations and CENGeR’s hand signal

(a) Virtual environment experiment: the user navigated the robot, marked as
a red block, to follow the blue route by Marshalling signals. A red dot line
illustrates the robot’s trajectory, which tracks the designed blue route well.

(b) Real-world environment experiment: The top left figures show a user
standing before the robot to provide hand signals. The top right figure
illustrates our experimental design, in which a user navigates the robot to
follow the arrows on the floor, and the human symbols indicate the users’
positions while the robot navigates. The rest of the figures show photos of
the robot navigating and following the designed route to reach the target.

Fig. 7. The robot experiments in (a) virtual and (b) Real-world scenarios.

embeddings to form an intelligent task policy for complex

scenarios. For example, it could compensate its human co-

workers when it finds potential failures/mistakes in received

hand signals. Meanwhile, we also found that misclassification

of gestures, even if it is highly unlikely, may lead to the robot

performing incorrect actions. To overcome this limitation, one

of our future research directions will focus on using formal

methods to prevent incorrect hand signal recognition and

downstream action performed by robots.
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