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Abstract—In this work, we integrate digital twin technol-
ogy with RFID localization to achieve real-time monitoring of
physical items in a large-scale complex environment, such as
warehouses and retail stores. To map the item-level realities into
a digital environment, we proposed a sensor fusion technique that
merges a 3D map created by RGB-D and tracking cameras with
real-time RFID tag location estimation derived from our novel
Bayesian filter approach. Unlike mainstream localization meth-
ods, which rely on phase or RSSI measurements, our proposed
method leverages a fixed RF transmission power model. This
approach extends localization capabilities to all existing RFID
devices, offering a significant advancement over conventional
techniques. As a result, the proposed method transforms any
RFID device into a digital twin scanner with the support of RGB-
D cameras. To evaluate the performance of the proposed method,
we prototype the system with commercial off-the-shelf (COTS)
equipment in two representative retail scenarios. The overall
performance of the system is demonstrated in a mock retail
apparel store covering an area of 207 m2, while the quantitative
experimental results are examined in a small-scale testbed to
showcase the accuracy of item-level tag localization.

Index Terms—Digital twin, radio-frequency identification
(RFID), Bayesian filter, localization, Real-time appearance-based
mapping (RTAB-Map)

I. INTRODUCTION

With the rapid development of the Internet of Things

(IoT), the Radio-frequency identification (RFID) technology

has drawn growing attention from numerous fields [1]–[3],

and has been utilized for a broad range of applications

such as retailing, asset tracking, healthcare, and supply chain

management [4]. In the last two decades, the RFID technology

has been a popular choice for item localization due to its low

cost and simplicity of deployment [5]. On the other hand,

the concept of digital twin has recently been brought to the

attention of RFID researchers considering its high potential

for improving customer services in the retail industry [6]. A

digital twin refers to a virtual representation (usually in the

digital world) of a physical system, while the digital twinning

technology aims at building a high-fidelity virtual model or

depiction of a real-world entity or system, which involves

both digital and physical elements [7]. With the integration of

the RFID technology and digital twin, we can create precise

models to better analyze the status of inventory and offer

retailers an accurate and timely overview of the retail store

for effective exploration and management.

With the rapid growth since 2016, the digital twin has been

considered a critical component of many fields such as smart

manufacturing. The innovative data streaming through digital

twins could potentially benefit the real-world process [8]–[10].

Although the digital twin has shown great success in many

areas of industry, the number of studies that have integrated

RFID technology is limited, especially in relation to retail

store and warehouse management. Some researchers transform

a simulation model to establish a digital twin that could

interact with incoming data and optimize the model efficiency.

Braglia et al. [11] present an agent-based simulation model

of a large paper warehouse, in which the forklifts and the

pallets are identified by reading their attached Ultra High

Frequency (UHF) RFID tags. The sensors update data for

the locations of products and forklifts in the digital twin

at certain time intervals. The simulation model (which is

the digital twin) quickly develops new alternative scenarios,

attempting to optimize the warehouse allocation and the routes

that the forklifts should take to minimize the overall costs of

warehouse management. Then, the optimized routes are shown

to the drivers and are then carefully followed.

The amalgamation of robotics and digital twin technolo-

gies has been developed in the retail store and warehouse

management scenarios. Various studies have been focused on

deploying RFID techniques to localize items to benefit inven-

tory tracking [12]. The prior works mainly adopted RFID tags

as landmarks to accurately pinpoint the tagged products [13].

Maı̈zi and Bendavid developed an RFID-based digital twin

system for inventory tracking, customer monitoring, and oper-

ations management [6]. Various machine learning techniques

have been applied in operation optimization of digital twins.

For instance, Pous et al. [14] designed a digital twin of a retail

store that contains item information of product name and price.

A ground RFID robot collected data for product inventory and

localization, and then the data was fed into the 3D-like digital

twin interface that allowed customers to browse virtually.

In this paper, we present a pilot model of retail store digital

twin based on the Real-Time Appearance-Based Mapping

(RTAB-map) [15] technology. Each product attached with an

RFID tag was localized and marked in the proposed digital

twin model. Our system deploys two RGB-D cameras to

capture visual information and a handheld RFID reader to



scan RFID tags in the deployed environment. While the human

operator is scanning RFID tags, both visual and localization

data are fed into the digital twin model in the system. The 3D

digital twin was constructed in real-time, and the localization

results will be shown once the data collection is complete.

Finally, all scanned tags are labeled in the 3D environment

of the generated retail store digital twin. we prototype the

system with commercial off-the-shelf (COTS) equipment in

two representative retail scenarios. The overall performance

of the system is demonstrated in a mock retail apparel store

covering an area of 207 m2, while the quantitative experimen-

tal results are examined in a small-scale testbed to showcase

the accuracy of item-level tag localization. The experiments

illustrated accurate localization results, within 0.5 meters,

were achieved even under strong multipath effects. With the

integration of digital twin and RFID localization in such retail

store environments, our proposed system could greatly benefit

the efficiency of inventory and supply chain.

The rest of this paper is organized as follows. In Section II,

we present the system design. In Section III, we present the

experiment results. Section IV concludes this paper.

II. METHODOLOGY

In this section, the Bayesian filter is presented for passive

UHF RFID tag localization. Then we introduce the fixed

transmission power RF model for improved location estima-

tion. Finally, we describe the RTAB-Map method and show

how the digital twin is established to merge the map and

localization results, including coordinate transformation from

camera frames to global frames.

A. Bayesian filter-based RFID localization

Bayesian filtering is known as a classical method to estimate

the position of RFID tags in a specific environment, which

has also been widely used in robotics [12]. As a statistical ap-

proach, it is used to probabilistically determine the most likely

position of RFID tags by accounting for multiple sources of

uncertainty, including fluctuations in signal strength, multipath

effects, and environmental impediments.

Assuming a noise-affected dynamic system, presenting a

random variable of xt at time point t. Bayesian filter aims

to sequentially determine the uncertainty of a probability

distribution over xt, which is called belief B(xt) that is based

on a sequential observation zt. The belief B(xt) is determined

by the posterior distribution state xt and all the available

observations z1, z2, · · · , zt at time t, given by

B(xt) = p(xt|z1, z2, · · · , zt), (1)

In general, B(xt) denotes the probability that the subject is in

state xt with all the known observations z1, z2, · · · , zt. The

Bayesian filter can be divided into two stages in one update

loop. The first stage is the prediction stage, in which the system

gets a new observation at time t:

B(xt) =

∫

P (xt|xt−1)B(xt−1)dxt−1, (2)

where B(xt−1) denotes the previous estimated probability at

time t − 1. P (xt|xt−1) is a motion model that indicates the

probability of the subject moving from state xt−1 to state

xt. Since the new belief B(xt) is generated, then the process

comes to the second stage which is the update or correction:

B(xt) = β · B(xt) · P (zt|xt), (3)

where we have the observation model P (zt|xt), which is the

probability of the subject capturing observation zt in state xt.

In this study, it was assumed, without loss of generality,

that the environment is static, which means that all the RFID

tags are stationary and located in the detecting area during the

experiments. As we discussed above, the user hold the RFID

reader with two cameras mounted to collect data at various

positions. Every read of RFID tag response was recorded and

correlated to the specific pose in the predetermined global

map. Then, after all the readings from the RFID tags are

received, the locations will be estimated using the Bayesian

filter. With the testing environment, we have state x as a

three-dimensional (3D) vector indicating the location of an

RFID tag. At each time t, we obtain observation zt from the

RFID reader, and B(xt) = B(xt−1) based on the stationary

assumption. Then we have the following equation:

B(xt) = β · B(xt−1) · P (zt|x, rt), (4)

where rt is the location of the RFID reader at time t.

Based on (4), we have the observation model P (zt|x, rt),
it shows the probability of the RFID reader at location rt,

with the measurements of RFID response zt from the tag’s

fixed location x. With the recursively updating algorithm, the

Bayesian filter can determine the most likely location of the

RFID tag.

A one-dimensional (1D) illustration of the Bayesian filter is

shown in Fig. 1, and the detailed steps are presented in Algo-

rithm 1. At the beginning of algorithm, based on all the obser-

vations from the RFID tag, the hypothetical location x can be

estimated. Having the set of all observations {z1, z2, · · · , zt}
recorded for RFID tags, an individual observation zt at time

t indicates the probability of the hypothetical location in the

entire sensing area. Considering a sensing area divided into

equal-sized grids, the hypothetical location could be presented

as the set of all the grids in the area. The posterior state

could be accumulated as a union based on all the observations

temporally. Finally, the estimated location of the RFID tag is

determined according to the maximal belief, as

x̂ = argmax
x

B(x). (5)

Moreover, the geometrical center is adopted if there are

multiple locations with the maximal belief x̂.

Fig. 1 and Algorithm 1 show that the results of Bayesian

filter mainly depend on the model P (zt|x, rt). Considering

the complex experimental environment, a simple RF signal

radiation model may not be sufficient. Therefore, we apply an

empirical model according to numerous observations during

experiments. In general, the observations are captured by an



Fig. 1: An illustration of RFID tag localization with Bayesian filter. As the figure shows, the operator is holding an RFID

reader to scan a tag at different locations. Each frame indicates the updated belief B(xt) at time t.

Algorithm 1 Bayesian filter for RFID tag localization

Input: observations for an RFID tag and the reader pose ;

Output: the estimated tag location x̂ ;

1: //M denotes the total number of observations

2: //N represents the total number of location grids in the

entire sensing zone

3: Initialize the set of grids to represent hypothetical location

x according to the observation set ;

4: x = {s1 ∪ s2 · · · ∪ sM} ;

5: Hypothetical location grids st =
{

x1

t , x
2

t , ..., x
N
t

}

based

on observation zt ;

6: for t = 1 : t do

7: Update B(xt) as in (4) ;

8: end for

9: //estimate the tag location

10: x̂ = argmax
x

B(x) ;

11: return x̂ ;

RFID reader at a fixed position, while the RFID tag has

dynamic locations with random orientation. The entire search

zone is evenly gridded at a fixed spatial interval of 10 cm,

and the tag is attached at the center of each grid during each

recording. In each round of data collection, the RF transmit

power is constant. By putting an RFID tag in each grid, we

can observe multiple reads from the reader’s antenna. The

observation collection consists of 20 rounds of the experiment,

and we establish a map of successful readings from each

grid in the sensing zone. The probabilistic RFID observation

model is acquired, in which a higher observation probability

indicates a larger number of successful readings. More details

on the observation experiment can be found in our previous

work [12]. The Bayesian filter with a fixed RF transmit power

model is developed based on the approaches in [16].

B. RTAB-Map based digital twin construction

Real-Time Appearance-Based Mapping (RTAB-Map) [15]

is a powerful open-source approach of a Simultaneous Local-

ization And Mapping (SLAM) solution [17]. It is widely used

in robotics localization and mapping studies to provide real-

time environment map construction based on sensors such as

cameras and LiDAR.

In this work, we create digital twin models in small

and large environments by deploying RTAB-Map with two

cameras mounted on an RFID portable reader. Specifically,

the RealSense D435 camera is capable of capturing both

RGB and depth images (i.e., RGB-D), thus furnishing the

essential data required for constructing a 3D map [18]. The

RealSense T265, as a specialized tracking camera, can offer

odometry data, enabling the localization and mapping of the

entire scanning system [19]. Before data acquisition starts, two

cameras ought to be properly calibrated. The procedure of

calibration comprises the identification and adjustment of both

intrinsic and extrinsic parameters of the cameras to establish

a precise correspondence between pixel coordinates and the

global coordinate [18]. Synchronization of the sensing process

plays an essential role in ensuring the creation of an accurate

digital twin. The objective is not only to achieve temporal

alignment of RGB images, depth images, and odometry data

by synchronizing the data streams from both cameras, but

also to align the visual data from cameras with continuous

RF signals. The visual features, including key points and

descriptors, are extracted from the RGB-D images acquired

with the D435 camera. The odometry data gathered from the

t265 camera offers motion estimation that facilitate feature

matching over consecutive frames and the identification of

loop closures [17]. Loop closure detection denotes the crucial

procedure of comparing the current visual data with previously

acquired data. It enhances the digital twin’s consistency and

mitigates the drift over time when the system refines the

map and the agent’s estimated pose in the map. The RTAB-

Map method leverages graph optimization to maximize the

consistency and accuracy of the map based on the designed

graph structure of inter-frame agent pose and landmarks.

To integrate the odometry data and the RGB-D data from

both cameras, we can build a comprehensive 3D spatial map

as a digital twin of the target region. However, the pose of

two cameras mounted together on the RFID reader antenna is

described in the t265’s built-in frame coordinate [18]. In the

data acquisition phase, the user carries the RFID reader and

camera system in the 3D space with six degrees of freedom (6-

DoF) [13]. Its pose is defined as the combination of position T

and orientation R, which are three translation DoFs and three

rotation DoFs, respectively [20]. We assume a predetermined

frame coordinates as L and a pose P was assigned to this

coordinate according to its relative position and orientation of



Fig. 2: The coordinate system: (i) the global coordinate and

(ii) the camera local coordinate.

axes. A pose P related to the coordinate frame L is:

P = [T,R]
T
, (6)

where position T is a 3D vector, orientation R is a 3D matrix,

and (·)
T

denotes the transpose operation.

As illustrated in Fig. 2, we defined two coordinate systems

to represent the camera-reader pose in the 3D space. One is the

camera’s local coordinate c, which is the origin at the center

point of the t265 camera. The other coordinate is the global

coordinate g as the environment coordinate frame, with the

origin located at a fixed location on the ground. The RFID

reader detects a UHF tag at position Pc = (xc, yc, zc)
T

in the

local camera coordinate. To perform the rigid transformation

from the camera coordinate to the global coordinate, the

translation vector T g
c and rotation matrix Rg

c are calculated.

The 3D-translation represents the offset from the camera frame

coordinate c relative to the global frame g, specified as :

T g
c = [ogx − ocx, o

g
y − ocy, o

g
z − ocz]

T
= [tx, ty, tz]

T , (7)

which [ocx, o
c
y, o

c
z] and [ogx, o

g
y, o

g
z ] denote the origins of the

camera coordinate frame and the global coordinate frame,

respectively. The 3D-rotation matrix from the local camera

coordinates to the global coordinates is specified as a 3 × 3
matrix, given by:

Rg
c =





X̂c · X̂g Ŷc · X̂g Ẑc · X̂g

X̂c · Ŷg Ŷc · Ŷg Ẑc · Ŷg

X̂c · Ẑg Ŷc · Ẑg Ẑc · Ẑg



 =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 ,

where X̂c, Ŷc, and Ẑc denote the unit vector of local camera

coordinate axes and X̂g , Ŷg , Ẑg denote the unit vector of

global coordinate axes. Based on the derived translation vector

T g
c and rotation matrix Rg

c , the frame coordinate transforma-

tion from local camera to global is given by:

Pg = Rg
c · Pc + T g

c

=





r11 r12 r13
r21 r22 r23
r31 r32 r33



Pc + [tx, ty, tz]
T , (8)

RFID Reader
RSS

Readings
BFFP Model

RGBD Camera

Tracking Camera

Image Data RTAB Map

Digital

Twin

Fig. 3: System architecture of proposed approach: blue blocks

represent the RFID pipeline, whereas the yellow blocks are

the visual components.

By exporting the transformed tag locations to the RTAB-

Map built 3D real-time map, we established the digital twin

of the target area, which contains the visual features, structural

geometry, and the RFID tags localization results. The system

architecture of the proposed method is illustrated in Fig. 3.

III. EXPERIMENTS AND RESULTS

A. Experimental setup

To evaluate the constructed digital twin, we perform a series

of experiments at the RFID Lab of Auburn University. The

experiment environment is the mock retail apparel store within

an enclosed area of about 12×17 m2, which has 10 shelves of

products and furniture including tables and sofas. The overall

layout of the retail store area are shown in Fig. 5 and a photo

is shown in Fig. 6(a). There are 427 items with UHF RFID

tags attached, including 33 pairs of shoes, 18 dresses, 22 pairs

of short pants, 26 khakis, 124 T-shirts, and 204 jeans. As the

top view of the layout map in Fig. 5 shows, the shoes are

placed on a wooden shelf that is marked by block number 1.

The dresses are distributed on two metal racks of numbers 8

and 9. Number 6 is a metal rack on which most of the T-

shirts are hung. Some short pants and T-shirts are distributed

on the metal racks, which are denoted as numbers 5 and 7,

respectively. The block marked as number 10 is a metal shelf

hung on the wall near the back door.

As shown in Fig. 6(b), a Realsense D435 RGB-D camera

and a Realsense T265 tracking camera are mounted on top

of the the Zebra RFD8500 Bluetooth Handheld UHF RFID

Reader as our prototype of the RF-visual sensing component.

The RGB-D camera and the tracking camera are connected

to a host computer through USB3 Type-C and USB Micro B

cables respectively. Connection between the Zebra RFD8500

reader [21] and the host computer is established via Bluetooth

2.1. ROS Noetic is leveraged to synchronize all the sensors in

the proposed prototype.

The passive UHF RFID tag we used is the Avery Dennison

AD-237 [22], which is widely utilized in retail inventory. It has

an IC-type Impinj Monza R6 and 96-bit EPC for identification.

In the large-scale experiment, all the merchandise item is

attached with an AD-237 tag that is randomly orientated. The

tags are allocated at a height from 1 ∼ 1.5 meters above

the floor of the retail store. The system is not restricted to



Fig. 4: The overview of all the localized RFID tags in the 3D map.
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43

8

7
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2
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Fig. 5: The overall layout of the mock retail store. The indexed

blocks indicate the locations of tagged items.

any specific tag model and other types of tags have been

recognized during the data acquisition process.

To evaluate the performance of the tag localization in the

digital twin, we also conduct a small-scale experiment in

the same environment to obtain quantitative results. In this

scenario, the shoe shelf is scanned and its digital twin is

created. The actual location of the tags attached to the shoes

are carefully measured to serve as the ground truth, facilitating

the performance evaluation of the proposed system.

B. Experimental results and discussions

Fig. 4 shows an example of the digital twin we built for

the retail store to evaluate the performance of the proposed

prototype in a large-scale scenario. In Fig. 4, the 3D map

(a) (b)

Fig. 6: (a) The retail store environment. (b) The RF-visual

sensing component: Realsense D435 RGB-D camera (Top),

Realsense T265 tracking camera (Middle) and the Zebra

RFD8500 Bluetooth Handheld UHF RFID Reader (Bottom).

involves the reception desk, four racks (numbers 5-9), and

block number 10, which is a shelf of jeans. All the RFID

tags are localized and shown in the figure as red dots. This

digital twin was created by the proposed method performed

with the equipment shown in Fig. 6. In the data collection

phase, users carry the equipment along with a host laptop

computer to explore the target area. RGB-D images and the

RFID tag readings are captured simultaneously to build the

real-time digital twin of the retail store. All the racks are

scanned in 360 degrees at various heights. The entire process

of the experiment is accomplished within 5 minutes. The large-

scale scenario experiment was performed in a heavy clutter.

Since it is an application of manual inventory counts, our RF

model does not consider the situation of non-line-of-sight.



(a) (b)

Fig. 7: (a) The digital twin of a shoe shelf. (b) The shoe shelf.

Furthermore, Fig. 7 illustrates the generated digital twin for

a small-scale scenario. Similar to the digital twin of the retail

store, all the tags are localized and marked as red spheres

with the last four digits of individual EPC. To evaluate the

performance of the item-level tag localization, tag locations are

manually measured to establish the ground truth. According to

Fig. 7, thirty three RFID tags are deployed in this experiment

and are all detected and localized. Furthermore, all the tags are

distributed within a reasonable range. The average localization

error is 0.304 m and the maximum error is 0.600 m in this

experiment.

IV. CONCLUSIONS

In this work, we developed a portable system to establish

a prototype model of the digital twin of a retail store. Two

cameras and a portable RFID reader were utilized to collect

data. A Bayesian filter-based RFID tag localization algorithm

was adopted in the proposed system. As a result, the digital

twin model of a retail store can be easily created. The

performance of tag localization was evaluated in the smalls-

scale experiment, with an average error of 0.304 m. The digital

twin could improve customers’ experience at the store as well

as the efficiency of inventory management.
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