Universal Sign Language Recognition System
Using Gesture Description Generation and Large
Language Model

Kanchon Kanti Podder!, Jian Zhang?[0000—0003-0813=2350] " 51\ Lingyan Wang?

! Department of Electrical and Computer Engineering, Kennesaw State University,
Marietta, GA 30060, USA kpodder@students.kennesaw.edu
2 Department of Information Technology, Kennesaw State University, Marietta, GA
30060, USA jianzhang@ieee.org
3 Department of Computer Science, Kennesaw State University, Marietta, GA 30060,
USA lwang40@kennesaw.edu

Abstract. Sign language is a priceless means of communication for deaf
and hard-of-hearing people to fully enable them to participate in soci-
ety and interact with others. This study introduces a novel universal
sign language system that uses the Gesture-script to generate a detailed
description of gestures in videos, which involve continuous movement
of hands, arms, heads, and body language. Subsequently, we input this
description into a Large Language Model (LLM) to interpret sign lan-
guage. We deployed a few-shot prompting technique for LLM, enabling
it to precisely transfer the sign videos into corresponding sentences in
natural language. Furthermore, the Few-shot prompting technique en-
ables our system to interpret multiple types of sign language without
pre-training or fine-tuning.
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1 Introduction

Sign language communicates information through hand shapes, gestures, and
facial expressions using a distinct lexicon and grammar. This communication
system goes beyond hand signals and has syntax, semantics, and pragmatics
like spoken languages. Sign languages vary by culture and place, with their own
vocabulary and organization. This diversity reflects deaf communities’ diverse
linguistic heritage worldwide. Sign language helps the deaf and hard of hear-
ing communicate, including social inclusion, education, and services, despite its
complexity and variety.

Research into technological understanding and recognizing sign language is
crucial to breaking down communication barriers between deaf and hearing peo-
ple. The recent advancements in sign language recognition and translation high-
light a broad spectrum of methodologies and challenges encountered in the field.
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In literature [11] includes developing a real-time interpreter for BASL alpha-
bets and numerals with an impressive accuracy of 99.99% using ResNet18 and
introducing a comprehensive dataset for BASL. The authors in literature [10] ex-
plored transfer learning and CNNs for BASL alphabet recognition, emphasizing
the importance of advanced image processing in bridging communication gaps
for the Deaf and Hard of Hearing (DHH) community. Similarly, the authors in
literature [13] proposed a work of a Sign Language Transformer (SLT) model
that aims to enhance remote healthcare accessibility, although specific results
were not detailed. Another notable contribution is the development of a signer-
independent Arabic Sign Language recognition system reported in literature [12],
which achieved significant improvement over previous studies with an accuracy
of 87.69% using a combination of CNN-LSTM-SelfMLP on segmented datasets.

On the other hand, the authors in study [9] adopted a different approach
by using accelerometry and surface electromyography (SEMG) sensors to recog-
nize Colombian Sign Language (LSC), demonstrating the effectiveness of sensor
data in capturing the dynamic nature of sign language. The studies [1, 2] intro-
duced innovative approaches through Neural Sign Language Translation (NMT)
and a transformer architecture that jointly learns sign language recognition and
translation, addressing the challenges of grammar and word order differences.
The research by the same authors [3] proposed a SubUNets model that tackles
simultaneous alignment and recognition in sign language, offering state-of-the-
art hand-shape recognition accuracy. Despite these advancements, limitations
persist across studies, including the need for larger, more diverse datasets, the
generalizability of models to different sign languages and environments, and the
practical application challenges in real-world scenarios. These limitations un-
derscore the necessity for ongoing research and development to enhance the
accuracy, robustness, and applicability of sign language recognition and trans-
lation technologies. This makes them less scalable and adaptable to new sign
languages.

Currently, transformers are increasingly being utilized in many deep learn-
ing applications [17,8,16], including large language models, and are achieving
state-of-the-art results. To overcome this gap, we propose a novel universal sign
language recognition and translation system by generating hand gesture descrip-
tions and using the knowledge-based few-shot prompting method with a Large
Language Model (LLM). Instead of costly fine-tuning, it only requires a small
number of prompting samples to interpret a new sign language video into natural
language sentences. The contributions of the proposed research include:

— An image-description paired dataset with hand gesture images and corre-
sponding descriptions to describe gestures.

— A self-supervised encoder augmented architecture to generate hand gesture-
related descriptions from images.

— Sequentially generating video descriptions to prompt the LLM in a few-shot
manner for sign language interpretation.
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2 Method and Materials

The proposed universal sign language recognition system comprises three mod-
ules: Multi-modal Image Generator, Gesture-Script module, and Sign Language
Interpreter. We illustrate its architecture in Fig. 1. The Multi-modal Image Gen-
erator extracts individual frames to generate raw and landmark images from
a video demonstrating sign language. The Gesture-Script module generates a
comprehensive gesture description for each frame, including details such as hand
shapes and hand positions. Based on these gesture descriptions, the Sign In-
terpreter utilizes the few-shot prompting technology to condition a frozen large
language model (LLM) for interpreting the sign language.
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Fig. 1. System overview of our proposed sign language recognition system. Here, the
black blocks indicate the frozen models, while the blue blocks denote the learnable
models, and the dot edge blocks are the data or related embeddings.

2.1 Multi-modal Image Generator

The Multi-modal Image Generator serves as a pre-processing module to create
the Raw Image dataset and the Landmark Image dataset, and it also associates
each individual raw and landmark image with their coordinated descriptions to
train our subsequent modules.

Raw Image Dataset: It is a custom dataset generated by extracting unique
hand gesture frames from the WLASL [5], an open-sourced dataset of sign
language-centered videos. The WLASL video dataset comprises 2,000 common
American sign words performed by 100 sign-language users(signers). We extract
all frames from each video, remove similar hand gesture frames, and retain only
those displaying unique hand gestures. In total, we collected 10,232 raw image
frames from the WASL dataset.

Landmark Image Dataset: We derived each image from the abovementioned
Raw Image Dataset to create the Landmark Image Dataset, which consisted of
the same amount of 10,232 images. A landmark image is synthesized with land-
marks of hand joints with connecting lines superimposed on a black background
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created by MediaPipe [7]. The MediaPipe detects landmarks’ positions, (z,y, z),
in 3D space from a 2D RGB image. Usually, it collects 66 landmarks (24 upper-
body pose and 42 hand landmarks) to represent the hand and pose. We used
each landmark’s x and y to generate a landmark image, and an example is shown
in Fig. 2.

Description associated dataset: Last, we bonded each related raw and land-
mark image and associated them with coordinated descriptions to create a com-
prehensive dataset for training the subsequent GestureScript Module. This new
dataset can be denoted as Z = {(i0,lo,do), ..., (in,In,dn)}, where i; represents
the raw image, [; represents the corresponding landmark image, and d; corre-
sponds to the collected description of the gesture for the j image. Here, N is our
dataset’s length, comprising over 10,232 pairs of images and corresponding de-
scriptions. A group of volunteers curated the descriptions to describe the gesture
of each raw and related landmark image. Fig. 2 provides a visual representation
of the dataset, showcasing the raw images, corresponding landmark images, and
the accompanying descriptions of the hand gestures. It’s important to note that
raw and landmark images were sourced from the Raw Image Dataset and Land-
mark Image Dataset, as previously discussed.

Raw Image Landmark Image Description

' Signer is holding up a number 5 symbol in the
middle of his chest with his right hand. The left
i hand of the signer is down at his side out of the
| picture.

Fig. 2. Sample representation of description associated dataset. The raw and landmark
images were obtained from the Raw and Landmark Image Dataset.

2.2 Gesture-script Module

Our Gesture-script module is an image-description generation system that can
detect the hand gesture and translate it into a text-based description. Its over-
all module architecture is illustrated by Blocks 2 in Fig. 1. It consists of three
components: Cross-encoder, Querying-adapter, and the Gesture-descriptor. The
Cross-encoder comprises two Masked Autoencoders (MAEs) to extract embed-
ding from raw and landmark images, respectively; then, an attention layer is
deployed to investigate the underlying relations between two images to generate
a cross-image embedding. Querying-adapter is based on a Q-former [6] to adapt
these cross-image embeddings to optimize the subsequent Gesture-descriptor, a
frozen LLM model, to precisely describe the gesture in the input images.
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Cross-encoder: As Fig. 1 shows, our Cross-encoder is based on two MAEs
and an attention layer. The MAE is a self-supervised learning algorithm to
acquire visual representations from unlabeled data [4]. An MAE learns to re-
construct randomly masked-out images, compelling the model to identify and
represent essential image features, even when partially or fully obscured. This
learning methodology enables us to train an MAE separately from the main
training stream and not require any labeled data, making it a stand-alone and
self-supervised process. Based on a pre-trained ViTMAE-Large model [4], we
obtained the RawEncoder and the LandmarkEncoder by training two MAEs by
Raw Image Dataset and Landmark Image Dataset, respectively.

To efficiently capture the hand gesture’s shape, position, and orientation, we
pre-train these two MAEs using self-supervised learning. Both MAEs are based
on a well-trained ViTMAE-Large model with an encoder-decoder architecture,
and we use our Raw Image Dataset and Landmark Image Dataset to fine-tune
RawMAE and LandmarkMAE, respectively. In this process, the RawMAE and
LandmarkMAE models were trained to generate visual representations by recon-
structing randomly masked-out raw images and landmark images, respectively,
ensuring the models’ ability to discern and depict essential features. We highlight
this pre-training process in Fig. 3, which enables us to efficiently and effectively
learn two MAEs capable of representing raw and landmark images by abstract
embeddings. After training, we discarded their decoders to keep only the en-
coder to form our well-trained RawEncoder and LandmarkEncoder. Then, we
deployed a cross-attention layer [15] to learn the latent relations from the out-
puts of these two encoders to enhance gesture detection and present them as
cross-image embeddings.

Querying-adapter: The extracted cross-image embeddings can provide com-
prehensive information about the given gesture images. However, there is an ap-
parent gap between those embeddings and the frozen Gesture-descriptor module
to generate precise text context to depict the gesture. The original LLM-based
Gesture-descriptor is trained to describe the overall scenario from the images
and will not focus on the gesture details. For example, by giving the images in
Fig. 2, the Gesture-descriptor will generate a description as “A person makes a
pose in front of the camera.", which is a literaturally correct statement for the
images but is meanless for us to interpret the sign-language. We need to enable
the Gesture-descriptor to generate a description with details of the hand and
gesture, as shown in the right column of Fig. 2. To bridge this gap, we proposed
the Querying-adapter to adapt these cross-image embeddings to optimize the
subsequent Gesture-descriptor in describing the gesture precisely.

As shown in Fig. 1, the core of the proposed Querying-adapter is a Q-Former,
a lightweight transformer that acts as an information bridge between a frozen
image encoder and a frozen language model (LLM)[6]. The Q-Former is a train-
able module that extracts a fixed number of embeddings from the image encoder
regardless of the image resolution. It utilizes learnable query vectors to extract
relevant visual features from the image encoder and then transfers the most
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Fig. 3. The self-supervised training process for our proposed RawEncoder and Land-
markEncoder: They are both trained with their decoder parts that will be discarded
later.

useful visual feature to the LLM for text generation. Then, a Fully Connected
Layer is deployed to linearly project the query embeddings from the Q-Former to
match the dimension of the subsequent LLM-based Gesture-descriptor. We used
our description associated dataset 7 to fine-tune a Q-Former that was initial-
ized with BERT|[14] pre-trained weights and trained our Fully Connected Layer.
They were fine-tuned end-to-end with the frozen RawEncoder, frozen Land-
markEncoder, and the subsequent frozen LLM-based Gesture-descriptor. Then,
the well-trained Querying-adapter could provide optimized Query embeddings
to enable subsequent modules to describe the hand gesture precisely.

Gesture-descriptor: The Gesture-descriptor is a frozen LLM encoder-decoder.
It receives the Query embedding from our Querying-adapter and output descrip-
tions to depict the gesture of sign language. These query embeddings serve as
soft visual prompts to condition the LLM on the visual representation. These
prompts will take advantage of the generative capability of the LLM to enable
the Gesture-descriptor to depict the precise details of the gesture, which can
be used to interpret the corresponding sign language. A well-trained Gesture-
descriptor is capable of generating a meaningful description of the hand gesture
in raw and landmark images. For example, it will depict the gesture for a person
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using sign language as “The signer’s hands are at chest level, with the right hand
below the left. Both palms face the body. ...."

2.3 Sign Interpreter:

The Sign Interpreter is the final step of our system. It will transfer frame-by-
frame gesture descriptions of a sign language video into natural language sen-
tences, facilitated by a few-shot prompt framework, as depicted in Block 3 of
Fig. 1. Few-shot prompting is a technique that uses a small number of examples
to guide a large language model (LLM) towards generating the desired output.
Let D = {wvo,...,vn} represents our dataset consisting of m videos to represent
M unique sign language classes (usually m = M), where each video v; is asso-
ciated with a sequence of sign gestures. Additionally, we have a set of n natural
language sentences S = {so,...,S,}, where each sentence s; corresponds to a
specific sequence of signs in D. Our goal is to develop a prompt P that can
effectively map the sign language sequences to the corresponding sentences. To
achieve this, we create a set of few-shot examples or support set, denoted as
& ={(do,50), .., (dn,sn)}, consists of each sign language classes that presented
in D. Here, d; is a frame-by-frame description generated from our Gesture-Script
for a video, and s; € S is the corresponding natural language sentence. £ is a
tiny dataset with a length h < m, which guides the LLM to generalize and gen-
erate coherent natural language representation from a given gesture description
d;. By giving a support set S, this approach is generalized to any sign language
recognition as S contains d; describes a hand gesture, and s; represents the
corresponding natural language representation in that particular sign language.
This enables our proposed model to interpret any sign language video into nat-
ural language sentences with a small support set £ instead of computing-costly
fine-tuning.

3 Experimental Study

3.1 Experimental Setup

In this Work-in-progress paper, we only conducted experiments to assess the
pre-training process of our proposed RawEncoder and LandmarkEncoder. Their
performances were evaluated by how precisely the fine-tuned RawMAE and
LandmarkMAE can reconstruct the raw and landmark images, respectively. As
we introduce in the section 2.2, the RawMAE consists of the RawEncoder and
a decoder, and the LandmarkEncoder consists of the LandmarkEncoder and
a decoder. Hence, the reconstruction results can reflect the RawEncoder’s and
LandmarkEncoder’s performance in feature extraction. In these experiments,
we took 9,227 images from the Raw Image Dataset to train RawMAE and the
rest of 1,005 for validation. We designed our experimental setup such that the
LandmarkMAE was trained and validated on the same corresponding landmark
images as the RAWMAE, that is, 9,227 training images and 1,005 validating
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images from the Landmark Image Dataset. By adopting this structured exper-
imental design, we ensured that the LandmarkMAE model followed a similar
training and validation regimen as RawMAE.

The experiment was conducted using the PyTorch deep learning framework
and Python 3.7. The model underwent training using a computational setup
consisting of a 128GB random access memory (RAM) and a 24GB NVIDIA
GeForce graphics processing unit (GPU). The combined parameter count for
the raw image MAFE and skeleton image MAE was 329,541,888. In order to train
both RawMAE and LandmarkMAE, a masking ratio of 0.75% was employed.
The models underwent training for a total of 1000 epochs, with a batch size of
24.

3.2 Preliminary Results

In our preliminary experiment, We fine-tuned our RawMAE and LandmarkMAE
with our data set. The rationale behind fine-tuning the MAEs on raw and land-
mark images was to obtain more coherent embeddings of hand, face, and skeleton
compared to the original pre-trained version of the MAE. We evaluated our fine-
tuned RawMAE against the reconstructed result from the original pre-trained
ViTMAE-Large. As shown in Fig. 4(a), the reconstructed raw image using the
pre-trained ViTMAE-arge is more blended and blurred, and it misses the sharp-
ness and edges of the gesture. The fine-tuned RawMAE trained on our custom
dataset preserved the sharpness and edges of the fingers, eyes, mouth, and hand,
although it may be limited in reconstructing clothing and background. The re-
construction of the fine-tuned LandmarkMAE also outperformed the pre-trained
ViTMAE-Large, as shown in Fig. 4(b).

These preliminary results show that our fine-tuned RawMAFE and Landmark-
MAE performed better than the original ViTMAE-Large model and prove that
our proposed RawEncoder and LandmarkEncoder are both efficient and effective
in extracting features to present the hand gesture. In our future work, we will
investigate other modules, such as the Gesture-script Module and the Sign In-
terpreter, and assess the end-to-end performance of our proposed sign language
recognition system.

4 Conclusion

This research proposes a universal sign language interpretation system that does
not require pre-training or fine-tuning on a specific sign language video dataset.
The system only requires a few-shot prompt containing a few frame-by-frame
descriptions of gestures generated by the proposed Gesture-script to an LLM
for interpreting any sign language sign video. The preliminary results in the
work-in-progress show the efficiency and effectiveness of our proposed feature-
extracting module and make a promising future for the entire system. We believe
that this system will significantly help the deaf and hard-of-hearing community
by providing a sign language interpreter to non-sign language users.
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Fig. 4. Reconstruction results comparison: our proposed RawMAE and Landmark-
MAE outperform the original Pretrained ViTMAE-Large in retaining the features
of gestures, including the edges of the fingers, eyes, mouth, and hand. a).Pretrained
ViTMAE-Large vs. RawMAE and b). Pretrained VITMAE-Large vs. LandmarkMAE.
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