
Assume-Guarantee Reinforcement Learning
Milad Kazemi1, Mateo Perez2, Fabio Somenzi2,

Sadegh Soudjani3, Ashutosh Trivedi2, and Alvaro Velasquez2
1King’s College London, UK

2University of Colorado Boulder, USA
3Max Planck Institute for Software Systems, Germany

milad.kazemi@kcl.ac.uk
{mateo.perez, fabio, ashutosh.trivedi, alvaro.velasquez}@colorado.edu

sadegh@mpi-sws.org

Abstract

We present a modular approach to reinforcement learning (RL)
in environments consisting of simpler components evolving
in parallel. A monolithic view of such modular environments
may be prohibitively large to learn, or may require unrealiz-
able communication between the components in the form of a
centralized controller. Our proposed approach is based on the
assume-guarantee paradigm where the optimal control for the
individual components is synthesized in isolation by making
assumptions about the behaviors of neighboring components,
and providing guarantees about their own behavior. We ex-
press these assume-guarantee contracts as regular languages
and provide automatic translations to scalar rewards to be used
in RL. By combining local probabilities of satisfaction for each
component, we provide a lower bound on the probability of sat-
isfaction of the complete system. By solving a Markov game
for each component, RL can produce a controller for each
component that maximizes this lower bound. The controller
utilizes the information it receives through communication,
observations, and any knowledge of a coarse model of other
agents. We experimentally demonstrate the efficiency of the
proposed approach on a variety of case studies.

Introduction
One approach to synthesize a distributed controller is to first
synthesize a centralized controller and then decompose it
into a controller for each component. However, the resulting
controllers require the full state information of all the com-
ponents in general, which may be unrealizable. In the case
where there is only partial or no communication between each
component, producing a distributed controller is undecidable
for infinite time horizons and NP-hard for fixed time hori-
zons (Chatterjee, Chmelik, and Tracol 2016). Can we apply
reinforcement learning (RL) for distributed policy synthesis
without incurring these costs while still providing guarantees
on performance? In addressing this question, we propose an
assume-guarantee approach to RL, where we locally design
a controller for each component by abstracting the behavior
of neighboring components as an assume-guarantee contract.
This contract defines a game: the opponent (environment)
may produce the worst-case behavior for the neighboring

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1) Solve Markov games 2) Compose

1 2
3

...
...

Guarantee Assume
1

32

Figure 1: An overview of assume-gurantee RL. We first form
a two player game for each assume-guarantee contract and
solve these games with RL. We then compose the resulting
controllers and provide a lower bound on its performance.

components that still satisfy the assumption, while the con-
troller maximizes the probability of satisfying the guarantee.
The probabilities of satisfaction from each game can then be
combined to provide a lower bound on the performance of
the resulting distributed controller.
Large environments are often composed of a number of

smaller environments with well-defined and often slim in-
terfaces. For instance, consider the traffic intersection signal
control problem for a 3 × 3-grid traffic network shown in
Fig. 2 with 9 intersections each equipped with a traffic light.
The goal is to design policies to schedule the traffic light
signals to keep congestion below some defined threshold.
Note that the dynamics for each intersection only depends on
the condition of adjacent intersections. It may be desirable to
reduce unnecessary communication between the controllers
of various intersections; in particular, a centralized control
algorithm may be undesirable. Additionally, since the dynam-
ics depend on the flow of traffic, the exact dynamics may not
be known and, hence, it is desirable to use RL to design a
control policy.
We work with environments that are naturally decompos-

able into simpler entities, whose interaction with the rest
of the environment is abstracted as an uncontrollable envi-
ronment. We apply RL to compute policies for individual
components in the environment by making assumptions on
the behavior of other components in the environment, under
which the correctness of the behavior of the individual com-
ponent is guaranteed. Furthermore, we need to orchestrate

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21223

Figure 2: A traffic network with nine intersections.

the assumptions and guarantees in such a way that the success
of RL for individual agents guarantees the success for the
network. We call such learning assume-guarantee RL.

A naı̈ve application of assume-guarantee reasoning quickly
gets circular. For instance, if we can learn a controller for all
the intersections in the previous example (Fig. 2) assuming
that the controllers in their adjacent intersections satisfy their
objectives, does that mean that all intersections satisfy their
objectives? Of course not: if all of the intersections operate
away from the safety zone, the learning requirements on indi-
vidual agents is vacuously satisfied, and the composed system
is not guaranteed to satisfy the objective. The same reasoning
can be extended to more general assumptions. Mathematical
induction provides a way to circumvent this challenge. If all
controllers begin in their safe zones (base case), and, at every
step, assuming that the neighboring components are in the
safe state allows each component to guarantee its safety for
the next step (inductive step), then by induction it follows
that all components in the system will indefinitely remain in
their safe zones (McMillan 1998).

We generalize the inductive reasoning to handle objectives
beyond safety by assuming that we are given qualitative reg-
ular specifications as deterministic finite automata (DFA) for
all components in the system, and that, every component
could receive the exact locations of its neighboring compo-
nents on their objective DFA at every step either through
communication or observation. Under these assumptions, we
derive probabilistic bounds on the global behavior by com-
puting optimal policies for individual components locally
with an adversarial view of the environment. Building on
this result, we employ minimax-Q learning (Littman 1994;
Littman and Szepesvari 1996) to compute policies for individ-
ual components providing guarantees on the global behavior.
The proposed approach gives policies that can also utilize any
knowledge of a coarse model of other components. Our exper-
imental evaluation demonstrates that such assume-guarantee
RL is not only helpful in designing controllers with minimal
communication, it also scales well due to 1) the reduced state
space of individual RL agents and 2) the need to learn poli-
cies of homogeneous components only once (i.e., when the
components have the same underlying model).

The closest data-driven approach to our problem setting is
multi-agent reinforcement learning (Buşoniu, Babuška, and
De Schutter 2010; Tan 1993; Castellini et al. 2021) that has
the following two challenges. First, the multiple objectives

in the multi-agent system may be in conflict with each other.
Second, having multiple agents learn their policies at the
same time may introduce non-stationarity to the system. Our
approach solves these two major challenges by enabling the
learning to use coarse abstractions of other agents that are
correct over-approximations of their behaviors. These ab-
stractions bound the behavior of other agents and their states
are used in the local policies through observations.

Contributions. The key contributions of this paper are
summarized below:
1. We address the problem of satisfying temporal properties

on multi-agent systems (Ritz et al. 2020), where the spec-
ification is modeled by a deterministic finite automaton.

2. We provide a modular data-driven approach adapted to
the underlying structure of the system that uses local RL
on assume-guarantee contracts and assumes access to the
current labels of other neighboring subsystems.

3. The designed policies are able to use any knowledge of
(coarse) abstractions of other agents and observations of
states of such abstractions.

4. We use the dynamic programming characterization of the
solution to prove a lower bound for the satisfaction proba-
bility of the global specification using local satisfaction
probabilities of contracts.

5. We demonstrate the approach on multiple case studies:
a multi-agent grid world, room-temperature control in a
building, and traffic-signal control of intersections.
Due to space limitations, some proofs are presented in

(Kazemi et al. 2023).

Problem Statement
We write R and N to denote the set of real and natural num-
bers, respectively. A finite sequence t over a set S is a finite
ordered list; similarly, an infinite sequence t is an infinite
ordered list. We write S∗ and Sω for the set of all finite
and infinite sequences over S. For a sequence t ∈ S∗∪Sω

we write t(i) for its i-th element. Similarly, for a tuple
t = (a1, . . . , ak) we write t(i) for its i-th element.

Network of Markov Decision Processes
For assume-guarantee RL, we consider environments that
consist of a network of component environments, each mod-
eled by a finite Markov decision process (MDP). Throughout,
we assume a fixed set of Boolean observations over the state
of the MDP called the atomic propositions AP .
Definition 1 (MDPs). An MDPM is a tuple (S, s0, A,P,L)
where S is a finite state space, s0 ∈ S is the initial state, A
is the finite set of actions of the controller, P : S×A×S →
[0, 1] is the transition function, and L : S → 2AP is a state
labeling function, mapping states to a subset of the atomic
propositions. The transition function is stochastic, i.e., it
satisfies

∑
s′∈S P(s, a, s′) ∈ {0, 1} for all s ∈ S and a ∈ A.

We assume the states are non-blocking, i.e., there is at least
one a ∈ A for any s ∈ S such that

∑
s′∈S P(s, a, s′) = 1.

We denote by A(s) = {a |
∑

s′∈S P(s, a, s′) = 1} the set
of actions enabled at state s ∈ S. A state trajectory of M

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21224

is a sequence s(0), s(1), . . . ∈ Sω such that s(0) = s0, and
s(n+1) ∼ P(s(n), a(n), ·) under the action a(n) ∈ A(s(n))
taken at time n.
Definition 2 (Markov Games). A Markov game G is a tuple
(S, s0, A,B,P,L) where S is a finite state space, s0 is the
initial state,A andB are finite sets of actions of the controller
and the environment, respectively, P : S × (A×B)× S →
[0, 1] is the transition function, and L : S → 2AP is a state
labeling function.
The semantics of a Markov game is a concurrent two-

player game (Littman 1994) between two agents: the con-
troller and its environment. The state evolution of the Markov
game is very similar to an MDP. The only difference is that
the probability distribution over the next state depends on
the actions chosen concurrently by the controller and the
environment from the sets A and B, respectively.
Definition 3 (MDP Network). Consider a set G =
{G1, G2, . . . , Gn} of components (Markov games) where
for every 1 ≤ i ≤ n the component Gi is given by the tuple
(Si, s0i, Ai, Bi,Pi,Li). An MDP network over G is a graph
(G, E) whose vertices are associated with the components
from G and the set of edges E ⊂ G × G (that excludes self-
loops) represents the dependencies between the transition
functions of various games.

Given an edge fromGj toGi, the transition function ofGi

contains probabilities that depend on the state ofGj modeled
as actions chosen by the environment, i.e., for each Gi we
have that Bi :=×j,Gj∈Pre(Gi)

Sj , where× is the Cartesian
product and Pre(Gi) = {Gj : (Gj , Gi) ∈ E}.

Coarse Abstraction of Components
We incorporate additional knowledge on the dynamic be-
havior of other components with transition systems de-
fined as Kripke structures. Such a transition system over-
approximates all possible behaviors of a component.
Definition 4 (Kripke structure). A Kripke structure M over
Σa is a tuple (S, I,R, L)where S is finite set of states, I ⊆ S
is set of initial states, R ⊆ S × S is transition relation such
that R is left-total, i.e., ∀s ∈ S, ∃s′ ∈ S such that (s, s′) ∈
R, and L : S → Σa is labeling function.

Component Specifications
A deterministic finite automaton (DFA) is a tuple A =
(Q, q0, F,Σa,σ) where Q is the state space, q0 is the ini-
tial state, F is the accepting state, Σa is the input alphabet
and σ : Q×Σa → Q is the transition function. The transition
function q′ = σ(q, a) specifies the next state q′ ∈ Q from
the current state q ∈ Q under a ∈ Σa. The language L(A)
of A is the set of sequences a0a1a2 . . . ∈ Σ∗

a such that in the
sequence q0q1q2 . . . with qn = σ(qn−1, an−1), n ∈ N, we
have qi ∈ F for some i ∈ N.
Given two DFAs A1 = (Q1, q10 , F

1,Σ1
a,σ

1) and
A2 = (Q2, q20 , F

2,Σ2
a,σ

2), we define their product
DFA A1×A2 as the tuple (Q×, q×0 , F

×,Σ×
a ,σ

×), where
Q×=Q1×Q2, q×0 =(q10 , q

2
0), F×=F 1×F 2, Σ×

a =Σ1
a×Σ2

a,
σ×((q1, q2), (a1, a2)) = (σ1(q1, a1),σ2(q2, a2)). The ac-
cepting language of A1 × A2 is the product of L(A1) and

G2G1

s2
s2 s1

a1 a2

Figure 3: Feedback composition of two Markov games G1

and G2 in an MDP network.

L(A2). In other words, the language accepted by the product
is the subset of Σ×

a such that the projection of each element
ontoΣ1

a andΣ2
a is accepted by the respective automaton. This

construction can be extended to define the accepting language
of multiple DFAs.
We often use linear temporal logic (LTL) notation to suc-

cinctly express regular specifications. In particular, we write
♦nF to express bounded reachability property that within a
finite bound n a set satisfying F is visited. Similarly, we write
"nF to express bounded invariance property that no state
violating F is visited within n steps. We write ♦F and"F to
capture unbounded reachability and invariance, respectively.

Problem Definition
For ease of presentation, we focus on the network of two com-
ponents connected in a feedback loop as shown in Fig. 3. Our
proofs can be extended to general networks in a straightfor-
ward fashion. We are given an MDP network (G, E)with G =
(G1, G2) and components Gi = (Si, s0i, Ai, Bi,Pi,Li).
We are also given a local specification φi, modeled as a
DFA Ai = (Qi, qi0, F

i,Σi
a,σ

i), for each component Gi for
i = {1, 2}. Without loss of generality, we assume that the
states F 1 and F 2 of A1 and A2, are absorbing, thus we can
interpret the global specification φ = φ1 ∧φ2 as reaching the
accepting state F×=F 1×F 2 in the product A = A1 ×A2.

A policy is a recipe to select actions. We represent the poli-
cies of both controllers as a pair of policies. In particular, we
distinguish between the following three classes of policies:
• Policies with full state information. The set Πf of poli-
cies with full state information consists of policy pairs
(µ1, µ2) having the form µi = (µi1, µi2, µi3 . . .) where
µin : S1×S2 → Ai selects the input actions at time n for
component i based on the full state information of both
components.

• Policies with no communication. The set Πn of policies
with no communication consists of policy pairs (µ1, µ2)
having the form µi = (µi1, µi2, µi3, . . .) where µin :
Si → Ai, for i ∈ {1, 2} and n ≥ 0, selects the input
action for component i based only on its local state.

• Policies with limited communication. The set Πl of poli-
cies with limited communication consists of policy pairs
(µ1, µ2) ∈ Πl having the form µi = (µi1, µi2, µi3, . . .)
with µin : Si ×Q3−i → Ai, with i ∈ {1, 2}, selects the
input action for component i based on the specification
automaton state of the other component 3−i.
Note that these definitions allow policies to be time-

dependent: µin for selecting the input action of Gi depends
also on the time index n. This general form is needed to

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21225

capture optimal policies for finite-horizon specifications. For
infinite-horizon specifications, the policies can be chosen to
be stationary (time-independent), and can also be chosen as
limits of time-dependent policies.
Lemma 5. We have that Πn ⊂ Πl ⊂ Πf . Therefore, the
following inequality holds for any global specification φ
defined on the joint state evolution of the network:

sup
µ∈Πn

Pµ(φ) ≤ sup
µ∈Πl

Pµ(φ) ≤ sup
µ∈Πf

Pµ(φ), (1)

where Pµ(φ) is the probability of satisfying φ when policy µ
is implemented in the MDP network.
Theorem 6 (Policies and Complexity (Chatterjee, Chmelik,
and Tracol 2016)). The optimal policy with full state informa-
tion can be computed in polynomial time, while the problem
of computing optimal policy with limited or no observation
is undecidable for infinite horizon objectives and NP-hard
for fixed-horizon problems.
Assumption 7. For taking action at each time step
n, the component Gi of the Markov game G =
{G1, G2, . . . , Gn} do not have access to the exact state trajec-
tories sj(0), sj(1), . . . , sj(n) of other components, but it has
knowledge of all labeling functions Lj : Sj → Σj

a and the
labels Lj(sj(0)), . . . ,Lj(sj(n)) along the trajectories of the
neighboring components Gj ∈ Bi either through communi-
cation or observation. Component have policies under which
the local properties are satisfied with positive probability.
Moreover, the components are aware of coarse abstractions
of their neighboring components modeled with Kripke struc-
tures Mi = (Si, Ii, Ri, Li), and observe the transitions in
these abstract models.

For example, in robotic applications, this assumption could
be seen as knowing the mission of other robots and observing
which part of the environment they move to in each time step,
but not knowing their exact location, their velocity or other
physical variables.

A policy that maximizes the satisfaction probability Pµ(φ)
will be in general a member of Πf that requires the knowl-
edge of the state of the neighboring Markov games. Under
Assumption 7, we have restricted the class of policies to
have only knowledge of the labels of their neighbors. This
limited observation necessitates finding policies for partially
observed MDPs (POMDPs).
Computing exact optimal policies on POMDPs requires

constructing a belief state, which allows a POMDP to be
formulated as an MDP that models the evolution of the be-
lief state (Kaelbling, Littman, and Cassandra 1998). The
resulting belief MDP is defined on a continuous state space
(even if the original POMDP has a finite state space). This
makes the exact solution of the problem computationally in-
tractable (Kaelbling, Littman, and Cassandra 1998; Littman,
Cassandra, and Kaelbling 1995). We develop an approxima-
tion method by considering the worst-case scenario of the
neighboring components under the assumption that we have
unlimited control for simulating each MDP in the network.
Problem 8 (Compositional Synthesis). Given components
Gi = (Si, s0i, Ai, Bi,Pi,Li), their local specifications

A2L2

A1L1

µ1

G1

q2

q1

s2

Σ1
a

s1
s1

L2(s2)

L1(s1)

s2

Figure 4: The control structure for G1. The state s2 automati-
cally affects the evolution of G1. The policy uses the state of
both automata A1,A2.

φi modeled as DFA Ai = (Qi, qi0, F
i,Σi

a,σ
i), their

coarse abstractions modeled with a Kripke structure Mi =
(Si, Ii, Ri, Li) for i ∈ {1, 2}, and a bound pmin, find policies
(µ1, µ2) ∈ Πl under Assumption 7 such that

Pµ1,µ2(φ1 ∧ φ2) ≥ pmin.

Remark 9. Our first observation is that for the theoretical re-
sults, one can take the product of the DFAAj and the Kripke
structureMj and use the product state for the policy synthe-
sis. Note that the non-determinism in the product originates
from the coarse abstraction and will be resolved adversarially
by taking the worst-case over the non-deterministic transi-
tions. Therefore, we consider only DFA Ai without Mi for
derivations in the next section.
Closed-form models of systems are often unavailable or

too complex to reason about directly. Model-free reinforce-
ment learning (Sutton and Barto 2018) is a sampling-based
approach to synthesize controllers that compute the optimal
policies without constructing a full model of the system, and
hence are asymptotically more space-efficient than model-
based approaches. To solve both of aforementioned problems,
we develop a sound assume-guarantee based RL algorithm
for the compositional synthesis problem.

Assume-Guarantee RL
We start by presenting the dynamic programming formulation
of the probability of satisfying the global specification φ =
φ1 ∧ φ2. When considering the joint state evolution of the
Markov games and their DFAs {(si(n), qi(n)), n ≥ 0}, this
probability is

Pµ1,µ2(φ1 ∧ φ2) = Eµ1,µ2 [∃n (q1(n)∈F1∧q2(n)∈F2)]

= Eµ1,µ2

[∞∑

n=0

1 (q1(n)∈F1∧q2(n)∈F2)

]
. (2)

The infinite sum on the right-hand side can be interpreted
as the limit of the partial sum whose expectation can be
denoted by vn = Eµ1,µ2 [

∑n
k=0 1 (q1(k)∈F1∧q2(k)∈F2)]

with n ≥ 0 such that

Pµ1,µ2(φ1 ∧ φ2) = lim
n→∞

vn. (3)

The values vn are generally computed recursively as a func-
tion of states (s1, s2, q1, q2). To get P(φ1 ∧ φ2) for an initial

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21226

state s0 = (s01, s02), we need to evaluate the right-hand
side at (s01, s02, q01, q02). We can use dynamic program-
ming to characterize vn, which gives v0(s1, s2, q1, q2) =
1(q1 ∈ F1)1(q2 ∈ F2), and vn+1(s1, s2, q1, q2) equals 1 if
(q1, q2) ∈ F1 × F2 and equals

Eµ1,µ2 [vn(s̄1, s̄2, q̄1, q̄2) | s1, s2, q1, q2] (4)

otherwise, where q̄i = σi(qi,Li(si)), i ∈ {1, 2}. The ex-
pectation is taken over the one-step transition probability
matrices of the product MDP under the policies (µ1, µ2).
The optimal policies that maximize P(φ1 ∧ φ2) are ob-
tained by maximizing the right-hand side of (4) with re-
spect to (µ1, µ2). This will give policies µ1(s1, s2, q1, q2)
and µ2(s1, s2, q1, q2) that belong to Πf and require full state
information. Since local MDPs have only access to limited
observations and will use policies from Πl, we discuss in
the following how such policies can be designed using the
framework of stochastic games.

Similar to the value functions vn in (4) for the specification
φ1 ∧ φ2, let us define local value functions v1n and v2n as
v1n(s1, q1, q2) = v2n(s2, q1, q2) = 1 for all q1 ∈ F1, q2 ∈
F2, s1 ∈ S1, s2 ∈ S2 and n ∈ N0, and

v1n+1(s1, q1, q2) = (5)

min
ℓ̄∈

L+
2 (q2)

max
a1

min
s2∈

L−1
2 (ℓ̄)

∑

s̄1

v1n(s̄1, q̄1, q̄2)P1(s1, a1, s2, s̄1),

v2n+1(s2, q1, q2) = (6)

min
ℓ̄∈

L+
1 (q1)

max
a2

min
s1∈

L−1
1 (ℓ̄)

∑

s̄2

v2n(s̄2, q̄1, q̄2)P2(s2, a2, s1, s̄2),

where L+
i (qi) is the set of all one step reachable labels ℓ̄ from

current state of the automaton qi, L+
i (qi) := {ℓ̄ |σi(qi, ℓ̄) ̸=

∅}, and v10(s1, q1, q2) = v20(s2, q1, q2) = 0 for all (q1, q2) /∈
F1×F2, with q̄i = σi(qi,Li(si)), i ∈ {1, 2}. The value func-
tion vin depends on the local state (si, qi) and the information
received from the neighboring component encoded in q3−i,
i ∈ {1, 2}. Intuitively, these value functions give a lower
bound on the probability of satisfying the local specification
within the time horizon n.

We next show that the computation of value functions in
(4) can be decomposed into the computation of local value
functions v1n and v2n. The product of these local value func-
tions gives a lower bound for the original value functions
of (4). Each local value function gives a local policy that
produces local actions only based on the limited observations
available locally.
Theorem 10. The value functions vn, v1n, v

2
n defined in

(4),(5),(6) satisfy the inequality

vn(s1, s2, q1, q2) ≥ v1n(s1, q1, q2)v
2
n(s2, q1, q2), (7)

for all n ∈ N0 and all s1, s2, q1, q2. Moreover, the policy
(µi0, µi1, µi2, . . .) ∈ Πl computed as µin : Si × Qi ×
Q3−i → Ai, i ∈ {1, 2} that maximizes the right-hand sides
of (5)–(6) will generate the obtained lower bound for the
value of the global game vn:

Pµ1,µ2(φ1 ∧ φ2) ≥ lim
n→∞

v1n × lim
n→∞

v2n. (8)

Assume-Guarantee Interpretation
Theorem 11. Let ♦nF denote reachability to a set F within
finite time bound n, and suppose policies µ1, µ2 are given,
and according to Assumption 7 there are runs of the sys-
tems (s1(0), . . . , s1(n)) and (s2(0), . . . , s2(n)) that satisfy
respectively ♦nF1 and ♦nF2. Then,

Pµ1,µ2(♦n(F1 ∧ F2)) ≥
inf

(s2(0),...,s2(n))
∈Γ2

Pµ1(♦nF1 | s2(0), . . . , s2(n))

× inf
(s1(0),...,s1(n))

∈Γ1

Pµ2(♦nF2 | s1(0), . . . , s1(n)), (9)

where the infimum is taken over the set of satisfying runs:

Γi := {(si(0), . . . , si(n)) |
(Li(si(0)), . . . ,Li(si(n))) |=♦nFi}.

Proof. When the policies are given, the definition of v1 re-
duces to

v1n+1(s1, q1, q2) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if (q1, q2) ∈ F1 × F2

minℓ̄∈L+
2 (q2)

mins2∈L−1
2 (ℓ̄) [∑

s̄1
(v1n(s̄1, q̄1, q̄2)·

Pµ1
1 (s1, a1, s2, s̄1))] if (q1, q2) /∈ F1 × F2,

This recursive definition is exactly the computation of
v1n defined as v1n(s1, q1, q2) = 0 if there is no se-
quence (s2(0), . . . , s2(n)) satisfying ♦nF2 when the au-
tomaton A2 is initialized at q2, Otherwise, v1n(s1, q1, q2) =
infΓ2 Pµ1(♦nF1 | s2(0), . . . , s2(n)). This concludes the
proof considering the fact that Pµ1,µ2(♦n(F1 ∧ F2)) =
vn(s1, s2, q10, q20) and combining it with inequality (7).

Corollary 12. By taking the limit n → ∞ from the inequality
(9) and then optimizing with respect to policies, we get the
following result under Assumption 7:

sup
(µ1,µ2)∈Πl

Pµ1,µ2(φ1 ∧ φ2) ≥

sup
µ1∈Πl

inf
(s2(0),s2(1),...)|=φ2

Pµ1(φ1 | s2(0), s2(1), . . .)

× sup
µ2∈Πl

inf
(s1(0),s1(1),...)|=φ1

Pµ2(φ2 | s1(0), s1(1), . . .).

(10)

The Case of No Communication
When there is no communication between the individual
components, the policy (µ1, µ2) will be in the set Πn: each
component takes action using only the information of its
own state and considering the worst case behavior of the
other components. Since there is no interaction between the
subsystems, the optimization now targets the entire set of
labels Σ2

a instead of just the labels one-step reachable on
the automaton state ℓ̄ ∈ L+

2 (q2). The satisfaction probability
computed under no-communication will be lower than the
probability under limited communication, as formalized next.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21227

Theorem 13. We have that

sup
(µ1,µ2)∈Πn

Pµ1,µ2(φ1 ∧ φ2) ≥
[
sup
µ1

inf
s2∈S2

Pµ1(φ1)

]
·
[
sup
µ2

inf
s1∈S1

Pµ2(φ2)

]
, (11)

where the first term in the right-hand side is computed fully
on the G1 by assuming that the state of G2 can be anywhere
in its state space (similarly for the second term). Moreover,
the lower bound in (10) improves the one in (11).

Putting it All Together
Theorems 10 and 11 provide a lower bound for the complete
system based on values computed for the individual com-
ponents via (5) and (6). Each of these equations represents
a game (see Fig. 4) where the minimizing player first se-
lects a label, the maximizing player then selects an action,
and the minimizing player finally resolves the state of their
component. This game can be solved via RL and the policy
extracted for the corresponding component is the one used
by the maximizing player.

Case Studies
We provide a range of case studies to showcase the capa-
bility of the assume-guarantee RL approach 1. We employ
Minimax-Q Learning (Littman and Szepesvari 1996) (de-
tailed in (Kazemi et al. 2023)) and its deep learning exten-
sion to compute policies for each of the components that
maximizes the lower bound on the global satisfaction of the
objective. The computations are performed on a laptop with
Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, and 16GB
RAM.

Multi-Agent Grid World
Consider a 4×3 grid with two agents located at the center-top
and center-bottom of the grid. The task for agents is to swap
positions while avoiding each other. Due to the deterministic
nature of the agent movements, the probability of satisfying
such a specification is expected to be one, and the task of the
learning is to find a policy that satisfies such a specification.
Note that collision avoidance requires some form of com-
munication between agents. We decompose the specification
into two assume-guarantee specifications

φ1 = (A2 ⇒ ♦B1) and φ2 = (A1 ⇒ ♦B2),

where Ai indicates the knowledge of the path of agent i, and
Bi is its target location, for i ∈ {1, 2}. The optimal policy for
the first agent is to go left, then up for three time steps, and
then turn right (Red arrow in Fig. 5 Left). The other agent’s
optimal policy is to go right, then down for three time steps,
and then turn left (blue arrow in Fig. 5 Left).
Using both minimax-Q learning and deep minimax-Q

learning, we successfully learn the optimal policies of agents.
Note that since the two agents have the same dynamics, and

1The implementation is available at https://doi.org/10.5281/
zenodo.10377136

Figure 5: Multi-Agent Grid World. Left: Learned (optimal)
policy for both agents. Right: The probability of satisfaction
computed with policies learned in each training step.

the grid-world environment and the specifications and sym-
metric, we are able to learn the policy of one agent and use
this symmetry to get the policy of the other agent. Fig. 5 Right
shows the satisfaction probability as a function of training
step. In training steps i× 105, i ∈ {0, 1, 2, 3, 4, 5}, we apply
to the agents the policies learned up to that training step, and
estimate the satisfaction probability empirically using Monte-
Carlo simulations. The learning procedure takes 10 minutes.
Since both the agent and the policies are deterministic in this
case study, the satisfaction probability is either zero or one.
The initial random policy does not satisfy the specification
and the learning finds the optimal policy.

Room Temperature Control
Consider a network of rooms that are in a circular topology
as in Fig. 6. Each room has a heater and its temperature
is affected by the temperature of two adjacent rooms. The
evolution of temperature adapted from the work by (Meyer,
Girard, and Witrant 2017), can be described as

T j
k+1 = T j

k + α(T j+1
k + T j−1

k − 2T j
k)

+ β(T e − T j
k) + γ(Th − T j

k)u
j
k, (12)

where T j
k is the jth room temperature at time step k, T e = −1

is the outside temperature, Th = 50 is the heater temperature,
uj
k ∈ [0, 1] is the control input. The conduction factors are

α = 0.45, β = 0.045, and γ = 0.09. The local specification
for the jth room is

φj = "n(T j ∈ [17, 23]) ∧ ♦n(T j ∈ [21, 22]),

with n = 40 time steps. Note that the dynamics of the agents,
the topology of the network, and the local specifications are
symmetric. Therefore, we train once with three agents to max-
imize the probability P(φj) with the assumption that rooms
(j−1) and (j+1) satisfy respectively φj−1 and φj+1. We use
deep minimax-Q learning to learn the policies, which took 10
minutes. Fig. 6 shows the empirical satisfaction probability
(with a 95% confidence interval) as a function of training step
by running 1000Monte-Carlo simulations under the policy
learned at each training step.

Traffic Lights Control
Consider the traffic intersection signal control problem for
the kind of networks shown in Fig. 2 with n2 intersections

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21228

Figure 6: Room Temperature Control. Top: Sixteen rooms in
a circular topology. Bottom: The probability of satisfaction
computed with policies learned in each training step.

each with a traffic light. The goal is to design policies to
change the colors of the traffic lights. The desired property is
to keep the number of cars behind each traffic light at most
20 in the next 100 time steps: φ = ∧n2

i=1φi with

φi="100(cars behind the ith intersection is at most 20).

A centralized approach for controlling the traffic light is
not scalable for large traffic networks. We decompose the
network into n2 intersections as agents with the properties
φi. The goal of each agent is to maximize P(φi) under the
assumption that the neighboring intersections satisfy their
local specifications. The information communicated to each
agent from other neighboring agents is the following: number
of cars behind the traffic light is less than 10 cars, between
10 and 20 cars, or more than 20 cars.

We utilize the symmetric properties of the traffic network
and use deep minimax-Q learning. The learning procedure
takes 100 minutes. Fig. 7 shows the empirical satisfaction
probability (with 95% confidence interval) as a function of
training step by running 1000Monte-Carlo Simulations un-
der the policy learned in each training step.

Related Work
To address the complexity of large scale systems one ap-
proach is to decompose the system into subsystems or the
general task into sub-tasks. There is a large body of litera-
ture about decomposing tasks into sub-tasks (Pnueli 1985;
Benveniste et al. 2018; Chen et al. 2019; Eqtami and Girard
2019). Given a large-scale system decomposed into subsys-
tems with their own sub-tasks, the question is to synthesize
controllers for these subsystems to satisfy the global specifi-

Figure 7: Traffic Lights Control (with nine intersections). The
probability of satisfaction computed with policies learned in
each training step.

cation. Assume-guarantee reasoning intends to design con-
trollers for the subsystems assuming the environment behaves
in a certain way (the assumption). We, then, need to make
sure the environment actually satisfies the assumption. The
design of local policies has been studied in several disciplines
(Amato and Oliehoek 2015; Guestrin, Koller, and Parr 2001;
Matignon, Laurent, and Le Fort-Piat 2012; Hammond et al.
2021; Jothimurugan et al. 2021; Abate et al. 2021; Yang
and Gu 2005; Vinyals et al. 2019). In machine learning, this
problem is considered as the policy synthesis for partially ob-
servable MDPs; in control theory, it takes the form of control
synthesis for decentralized systems; while in game theory it
is treated as stochastic games with imperfect information.
Most of the research on assume-guarantee reasoning re-

quire knowing the model of the systems (Henzinger, Qadeer,
and Rajamani 1998; Kwiatkowska et al. 2010). Model-based
learning using the L⋆ algorithm is proposed by Angluin Fis-
man (2018). The works (Bobaru, Păsăreanu, and Gian-
nakopoulou 2008; Cobleigh, Giannakopoulou, and Păsăreanu
2003; Gheorghiu Bobaru, Păsăreanu, and Giannakopoulou
2008) utilize the L⋆ algorithm for assume-guarantee reason-
ing using abstraction-refinement, where counter-examples
are generated to learn policies or verification.
There is also a large body of literature on decentralized

control of dynamical systems, in which controllers are de-
signed locally (Malikopoulos, Cassandras, and Zhang 2018;
Bakule 2008; Siljak 2011; Lavaei, Soudjani, and Zamani
2019; Zhang, Wu, and Lin 2016). The goal is to find a con-
troller with the same performance as provided by a central-
ized controller. The assume-guarantee reasoning follows the
same goal as persistence monitoring problem. One can con-
sider the automaton associated with every subsystem as an
event-trigger system. A controller is designed by just know-
ing the events of other subsystems.
Another paradigm is to model the system as partially ob-

servable Markov decision processes (POMDPs) or partially
observable Markov games (Hansen, Bernstein, and Zilber-
stein 2004; Brown and Sandholm 2018). For collaborative
agents, the state labels of other subsystems are imperfect
information available for the policy synthesis. However, the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21229

problem of finding optimal policies for POMDPs is PSPACE-
hard (Mundhenk et al. 2000).

Conclusion
We studied the problem of satisfying temporal properties
modeled by deterministic finite automata (DFA) on systems
with inherent structures. A number of well-establish formal
languages, including linear temporal logic (LTL) on finitary
traces, co-safe LTL, and LTL with only past operators, can be
compiled into DFA. We provided a modular data-driven ap-
proach that uses local RL on assume-guarantee contracts and
used the dynamic programming characterization of the solu-
tion to prove a lower bound for the satisfaction probability of
the global specification. The agent utilizes the information it
receives through communication and observing transitions in
a coarse abstraction of neighboring systems. In the future, we
plan to go beyond specifications captured by DFA and extend
our approach to full LTL specifications using approximation
methods with formal guarantees.

Acknowledgments
M. Kazemi’s research is funded in part by grant
EP/W014785/1. The research of S. Soudjani is supported
by the following grants: EPSRC EP/V043676/1, EIC
101070802, and ERC 101089047. This work was supported
in part by the NSF through grant CCF-2009022 and the NSF
CAREER award CCF-2146563.

References
Abate, A.; Gutierrez, J.; Hammond, L.; Harrenstein, P.;
Kwiatkowska, M.; Najib, M.; Perelli, G.; Steeples, T.; and
Wooldridge, M. 2021. Rational verification: game-theoretic
verification of multi-agent systems. Applied Intelligence,
51(9): 6569–6584.
Amato, C.; and Oliehoek, F. 2015. Scalable planning and
learning for multiagent POMDPs. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 29-1.
Bakule, L. 2008. Decentralized control: An overview. Annual
reviews in control, 32(1): 87–98.
Benveniste, A.; Caillaud, B.; Nickovic, D.; Passerone, R.;
Raclet, J.-B.; Reinkemeier, P.; Sangiovanni-Vincentelli, A.;
Damm, W.; Henzinger, T. A.; Larsen, K. G.; et al. 2018.
Contracts for system design. Now Publishers.
Bobaru, M. G.; Păsăreanu, C. S.; and Giannakopoulou, D.
2008. Automated assume-guarantee reasoning by abstraction
refinement. In International Conference on Computer Aided
Verification, 135–148. Springer.
Brown, N.; and Sandholm, T. 2018. Superhuman AI for
heads-up no-limit poker: Libratus beats top professionals.
Science, 359(6374): 418–424.
Buşoniu, L.; Babuška, R.; and De Schutter, B. 2010. Multi-
agent reinforcement learning: An overview. Innovations in
multi-agent systems and applications-1, 183–221.
Castellini, J.; Oliehoek, F. A.; Savani, R.; and Whiteson, S.
2021. Analysing factorizations of action-value networks for
cooperative multi-agent reinforcement learning. Autonomous
Agents and Multi-Agent Systems, 35(2): 1–53.

Chatterjee, K.; Chmelik, M.; and Tracol, M. 2016. What is
decidable about partially observable Markov decision pro-
cesses with omega-regular objectives. Journal of Computer
and System Sciences, 82(5): 878–911.
Chen, Y.; Anderson, J.; Kalsi, K.; Low, S. H.; and Ames,
A. D. 2019. Compositional set invariance in network systems
with assume-guarantee contracts. In 2019 American Control
Conference (ACC), 1027–1034. IEEE.
Cobleigh, J. M.; Giannakopoulou, D.; and Păsăreanu, C. S.
2003. Learning assumptions for compositional verification.
In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 331–346. Springer.
Eqtami, A.; and Girard, A. 2019. A quantitative approach
on assume-guarantee contracts for safety of interconnected
systems. In 2019 18th European Control Conference (ECC),
536–541. IEEE.
Fisman, D. 2018. Inferring regular languages and ω-
languages. Journal of Logical and Algebraic Methods in
Programming, 98: 27–49.
Gheorghiu Bobaru, M.; Păsăreanu, C. S.; and Gian-
nakopoulou, D. 2008. Automated assume-guarantee rea-
soning by abstraction refinement. In Computer Aided Verifi-
cation: 20th International Conference, CAV 2008 Princeton,
NJ, USA, July 7-14, 2008 Proceedings 20, 135–148. Springer.
Guestrin, C.; Koller, D.; and Parr, R. 2001. Multiagent Plan-
ning with Factored MDPs. In NIPS, volume 1, 1523–1530.
Hammond, L.; Abate, A.; Gutierrez, J.; and Wooldridge, M.
2021. Multi-Agent Reinforcement Learning with Temporal
Logic Specifications. In Proceedings of the 20th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems, 583–592.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic programming for partially observable stochastic
games. In AAAI, volume 4, 709–715.
Henzinger, T. A.; Qadeer, S.; and Rajamani, S. K. 1998. You
assume, we guarantee: Methodology and case studies. In
Computer Aided Verification: 10th International Conference,
CAV’98 Vancouver, BC, Canada, June 28–July 2, 1998 Pro-
ceedings 10, 440–451. Springer.
Jothimurugan, K.; Bansal, S.; Bastani, O.; and Alur, R. 2021.
Compositional reinforcement learning from logical specifica-
tions. Advances in Neural Information Processing Systems,
34.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence, 101(1-2): 99–134.
Kazemi, M.; Perez, M.; Somenzi, F.; Soudjani, S.; Trivedi, A.;
and Velasquez, A. 2023. Assume-Guarantee Reinforcement
Learning.
Kwiatkowska, M.; Norman, G.; Parker, D.; and Qu, H. 2010.
Assume-guarantee verification for probabilistic systems. In
Tools and Algorithms for the Construction and Analysis of
Systems: 16th International Conference, TACAS 2010, Held
as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings 16, 23–37. Springer.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21230

Lavaei, A.; Soudjani, S.; and Zamani, M. 2019. Composi-
tional construction of infinite abstractions for networks of
stochastic control systems. Automatica, 107: 125–137.
Littman, M. L. 1994. Markov Games as a Framework for
Multi-Agent Reinforcement Learning. In International Con-
ference on Machine Learning, 157–163.
Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P. 1995.
Efficient dynamic-programming updates in partially observ-
able Markov decision processes.
Littman, M. L.; and Szepesvari, C. 1996. A generalized
reinforcement-learning model: Convergence and applications.
In International Conference on Machine Learning, 310–318.
Malikopoulos, A. A.; Cassandras, C. G.; and Zhang, Y. J.
2018. A decentralized energy-optimal control framework
for connected automated vehicles at signal-free intersections.
Automatica, 93: 244–256.
Matignon, L.; Laurent, G. J.; and Le Fort-Piat, N. 2012. Inde-
pendent reinforcement learners in cooperative Markov games:
a survey regarding coordination problems. The Knowledge
Engineering Review, 27(1): 1–31.
McMillan, K. L. 1998. Verification of an Implementation of
Tomasulo’s Algorithm by Compositional Model Checking.
In Computer Aided Verification (CAV’98), 110–121. LNCS
1427.
Meyer, P.-J.; Girard, A.; and Witrant, E. 2017. Compositional
abstraction and safety synthesis using overlapping symbolic
models. IEEE Transactions on Automatic Control, 63(6):
1835–1841.
Mundhenk, M.; Goldsmith, J.; Lusena, C.; and Allender, E.
2000. Complexity of finite-horizon Markov decision process
problems. Journal of the ACM (JACM), 47(4): 681–720.
Pnueli, A. 1985. In transition from global to modular tem-
poral reasoning about programs. In Logics and models of
concurrent systems, 123–144. Springer.
Ritz, F.; Phan, T.; Müller, R.; Gabor, T.; Sedlmeier, A.;
Zeller, M.; Wieghardt, J.; Schmid, R.; Sauer, H.; Klein,
C.; et al. 2020. SAT-MARL: Specification Aware Train-
ing in Multi-Agent Reinforcement Learning. arXiv preprint
arXiv:2012.07949.
Siljak, D. D. 2011. Decentralized control of complex systems.
Courier Corporation.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learning:
An Introduction. MIT Press, second edition.
Tan, M. 1993. Multi-agent reinforcement learning: Inde-
pendent vs. cooperative agents. In Proceedings of the tenth
international conference on machine learning, 330–337.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; et al. 2019. Grandmaster level in StarCraft II
using multi-agent reinforcement learning. Nature, 575(7782):
350–354.
Yang, E.; and Gu, D. 2005. A Survey on Multiagent Rein-
forcement Learning Towards Multi-Robot Systems. In CIG.
Citeseer.
Zhang, X.; Wu, B.; and Lin, H. 2016. Assume-guarantee
reasoning framework for MDP-POMDP. In 2016 IEEE 55th
Conference on Decision and Control (CDC), 795–800. IEEE.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21231

