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Abstract—1In this paper, we study the problem of unsuper-
vised graph representation learning by harnessing the control
properties of dynamical networks defined on graphs. Our ap-
proach introduces a novel framework for contrastive learning,
a widely prevalent technique for unsupervised representation
learning. A crucial step in contrastive learning is the creation
of ‘augmented’ graphs from the input graphs. Though different
from the original graphs, these augmented graphs retain the
original graph’s structural characteristics. Here, we propose
a unique method for generating these augmented graphs by
leveraging the control properties of networks. The core concept
revolves around perturbing the original graph to create a
new one while preserving the controllability properties specific
to networks and graphs. Compared to the existing methods,
we demonstrate that this innovative approach enhances the
effectiveness of contrastive learning frameworks, leading to
superior results regarding the accuracy of the classification
tasks. The key innovation lies in our ability to decode the
network structure using these control properties, opening new
avenues for unsupervised graph representation learning.

I. INTRODUCTION

Networks serve as fundamental data structures for rep-
resenting relationships, connectivity, and interactions across
various domains, such as social networks, biology, trans-
portation, brain connectivity, and recommendation sys-
tems [1], [2]. Network representation learning plays a piv-
otal role in acquiring meaningful network representations,
which find applications in tasks like node classification,
link prediction, and community detection [3]. Traditional
network representation learning heavily relies on supervised
learning, necessitating substantial labeled data for effective
training [4]. However, obtaining labeled network data is often
challenging, expensive, and limited in availability.

Contrarily, contrastive learning (CL) has emerged as a
prominent self-supervised learning (SSL) technique in un-
supervised network representation learning [5]. CL methods
operate by comparing augmented positive and negative sam-
ples with the original graph. The positive samples exhibit
similarity, while the negative samples manifest dissimilarity.
This framework empowers CL methods to acquire represen-
tations that capture the inherent network structure, even when
labeled data is absent [6]. Graph Contrastive Representation
Learning has recently gained attention in the context of
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graph representation learning, aiming to maximize agree-
ment between similar subgraphs and produce informative
embeddings that capture the graph structure [7]. While
existing GCRL approaches primarily focus on node-level
embeddings [8], our proposed architecture has the potential
to generate graph-level embeddings suitable for SSL.

In this work, we introduce a novel approach that leverages
control properties to design graph-level embeddings for self-
supervised learning. Recent research has uncovered deep
connections between network controllability and various
graph-theoretic constructs, including matching, graph dis-
tances, and zero forcing sets [9]-[11]. Additionally, signif-
icant progress has been made in characterizing the control-
lability of different families of network graphs, including
paths, cycles, random graphs, circulant graphs, and product
graphs [11]. These investigations shed light on the interplay
between network structures and their controllability proper-
ties, enhancing our understanding of network dynamics. Our
aim is to explore and harness the interconnections between
network structures and their controllability properties to form
a foundation for comprehensive graph representations.

Furthermore, we introduce systematic graph augmentation
for creating positive and negative pairs in CL, in contrast to
previous random edge perturbation methods [7]. Our sys-
tematic approach focuses on preserving the graph’s control
properties, leading to improved performance in downstream
machine-learning tasks.

Our main contributions can be summarized as follows:

e We introduce a novel graph embedding—representing
graphs as vectors— called CTRL, which is based on
the control properties of networks defined on graphs,
including meaningful metrics of controllability such as
the spectrum of the Gramian matrix.

o We present the Control-based Graph Contrastive Learn-
ing architecture for unsupervised representation learning
of networks, applicable to various downstream graph-
level tasks.

o« We devise innovative augmentation techniques that
mainly preserve the controllability of the network.

e We conduct extensive numerical evaluations on real-
world graph datasets, showcasing the effectiveness of
our method in graph classification compared to several
state-of-the-art (SOTA) benchmark methods.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations

A network composed of interconnected entities is rep-
resented as a graph, denoted as G = (V,E), where the
set of vertices V = V(G) = vy,v2,...,vy represents the



entities, and the collection of edges £ = F(G) CV xV
represents pairs of entities with established relationships. In
this context, the terms ’vertex,” 'node,” and ’agent’ are used
interchangeably. The neighborhood of a vertex v; is defined
as N; = vj € V: (vj,v;) € E. The distance between ver-
tices v; and v;, denoted as d(v;,v;), represents the shortest
path length between them. The transpose of a matrix X is
denoted as X”. An N-dimensional vector with all its entries
set to zero is represented as Op, and a vector with all its
entries set to 1 is denoted as 1. Although our primary
focus is on undirected graphs for simplicity in explanation, it
is important to note that all methods and findings are equally
applicable to directed graphs.

B. Problem Description

In this subsection, we introduce the problem of generat-
ing graph-level representations in an unsupervised manner.
We begin by providing a formal definition of the problem
and then present a contrastive learning-based solution. For
graph-level embeddings, we develop a control-based graph
embedding method in Section III

A graph embedding, denoted as ¢(G) : G — RY, maps
graphs from the family G to a Euclidean space of dimension
d. The main goal of graph embedding is to meet specific
design criteria. Due to the limited availability of labeled
data for large real-world benchmark datasets, we need a
mechanism to learn graph representations without heavy
reliance on labels. One crucial objective is to ensure that ¢
retains information about structural similarities between pairs
of graphs, both at local and global scales. This means that
if two graphs share structural similarities, their embeddings
should yield vectors that are close to the target vector space,
as measured by Euclidean distance. It’s important to note
that the notion of similarity between graphs depends on the
specific application and the type of graphs being considered,
such as chemical compounds or social networks.

Another crucial design objective for graph embeddings
is scalability. An optimal graph embedding should not only
map graphs of different sizes to a fixed-dimensional space
but should also transcend graph size to capture underlying
structural characteristics. For example, an effective graph
embedding would position the mapping of a ten-node
circulant graph closer to that of a twenty-node circulant
graph compared to the mapping of a fifteen-node wheel
graph. In this paper, we tackle the challenge of generating
graph embeddings while adhering to these design objectives.

Problem 1: Given a graph G, generate unsupervised graph
representations ¢(G) that capture essential structural in-
formation and node relationships for subsequent machine
learning tasks.

These learned representations ¢(G) are intended to be se-
mantically meaningful and effective for various downstream
tasks, including node classification, link prediction, graph
classification, and community detection.

C. Proposed Approach

A typical approach to learning unsupervised representation
of raw data is called self-supervised learning (SSL). One

of the powerful techniques of SSL is contrastive learn-
ing which has achieved remarkable success across various
domains, including computer vision [6]. In the realm of
graph representation learning, researchers have introduced
Contrastive Graph Representation Learning (CGRL) [12].
This approach operates on the principle of generating diverse
augmented perspectives of the same data samples through
pretext tasks. We propose to introduce a dynamical system on
graphs, examining the control characteristics of this system,
and subsequently crafting an embedding that utilizes these
control attributes, as elaborated in Section III.

a) Graph Contrastive Representation Learning: Graph
Contrastive Representation Learning (GCRL) offers distinct
advantages over traditional unsupervised graph representa-
tion methods. GCRL encourages the model to bring similar
nodes or subgraphs closer together in the embedding space
while pushing dissimilar nodes or subgraphs farther apart
[7], enhancing performance in various downstream tasks
[13]. It excels in data efficiency, leveraging limited labeled
data efficiently with unlabeled data sources [7]. GCRL is
scalable, handling large-scale graph datasets effectively [7],
[14]. It facilitates easy transfer of learned representations to
diverse downstream tasks, including node classification, link
prediction, and graph classification [7]. Lastly, GCRL often
produces interpretable embeddings, aiding in the understand-
ing and analysis of the learned representations [13].

b) Control-based Graph Contrastive Learning (CGCL):
We introduce Control-based Graph Contrastive Learning
(CGCL), which computes control-based graph-level features
denoted as CTRL(.). These features are utilized to bring
an augmented version G’ of a graph G closer together in
a latent space z(.) using the normalized temperature-scaled
cross-entropy loss (NT-Xent) [5]. Additionally, we propose
various augmentation techniques designed to preserve the
CTRL properties of the graph to a certain extent. This is
illustrated in Figure 1.

For a given graph G, we apply a control-based augmen-
tation 7 (@) to obtain G’, creating a positive pair. We then
compute control-based features CT RL(.) for both G and G’
and pass them through a learnable encoder f(.) to transform
them into a new latent space. The goal is to optimize the
similarity of each positive pair in this latent space. This
concept is illustrated in Figure 1, where the embeddings zg
and zg- are represented as yellow cuboids.

This optimization is achieved using the NT-Xent loss
proposed by Oord et al. [5]. The loss function encourages the
similarity between the embeddings of the original graph and
its transformed counterpart (positive pair) while minimizing
the similarity with the transformed embeddings z(.) of other
graphs in the dataset (negative pairs). This self-supervised
learning approach enables the model to capture meaningful
representations effectively. The NT-Xent loss is employed as:

L=E |-log—~ emp(szm(zg,tzg,)/T)
Il Y gcq gz €xD(sim(2G, 29)/T)

)

where sim(zq, zg) represents the cosine similarity between
the embeddings of the graph G and its augmentation G’, G
is the set containing all the graphs in the dataset, ¢’ is the
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Fig. 1: Block diagram of the proposed CGCL approach

augmented version of graph g, and E is the expectation.
The temperature hyperparameter 7 is used to control the
sharpness of the distribution.

In summary, CGCL leverages contrastive learning princi-
ples to generate expressive graph representations by consid-
ering control-based graph-level features and optimizing the
similarity of positive pairs, demonstrating its potential for
self-supervised graph representation learning.

III. NETWORK CONTROLLABILITY AND GRAPH
EMBEDDINGS

In this section, we introduce a novel graph embedding
approach rooted in the control properties of networks. We
begin by presenting a network as a controllable dynamic
system. We then provide a formal definition of network
controllability and subsequently explore several metrics em-
ployed to quantify it. These metrics serve as the foundation
for constructing control-based graph embeddings, denoted as
CTRL(G), for a given graph G [15].

A. Networks as Dynamical Systems

In the context of network dynamics, each agent, denoted as
v;, represents a dynamic unit with a state x;(t) € R at time
t. These agents share their states with neighboring agents in
N; and update their states based on specific dynamics, like
consensus dynamics. The collective system state at time ¢ is
represented as the vector z(t) = [z1(t) z2(t) ... xx(t)].

To control the states of this dynamical system, we intro-
duce external control signals applied to a subset of agents
known as leaders. These leader agents have states that can be
directly manipulated, expressed as &; = u;(t), where u;(t)
represents the input signal. Conversely, non-leader agents,
referred to as followers, update their states by aggregating
information from their local neighborhoods. The dynamics
of the followers, denoted as & (t) in this leader-follower
system, can be expressed as:

27(t) = —M(G)as(t) + H(G)u(t),

where M(G) represents system matrices related to the
followers’ subgraph, and #H(G) denotes the topological in-
teractions between leader and follower agents. We use the
Laplacian matrix for a matrix representation of a network.
For a network represented as a graph G = (V, E), we
partition the node set V' into two groups: followers (V)
and leaders (V;), where |Vy| = Ny and |V;| = N, We

establish an ordered arrangement for the nodes, with Vy
consisting of nodes vy, v, ...,vN;, and V4 containing nodes
UNp+1,-- -5 UN- The subgraph composed of follower nodes
is referred to as the follower graph (G ¢), represented mathe-
matically using the Laplacian matrix L, which is partitioned
as:
A | B
L= { BT[C } ’

where A € RN *Ns B e RNs*Ne and C € RNexNe,

In this configuration, we introduce an external input signal
u; applied to leader agent v; € V. The follower nodes update
their states according to the dynamics given by:

@f(t) = —Amy(t) — Bu(t),

where x () € RYNs represents the state vector of follower
nodes at time ¢, and u(t) = [un,4+1(t) -+ un ()]’ € RV
is the control signal at time ¢. The matrices —A and — B in
these dynamics are derived from the network structure and
leader agent selection.

From a control perspective, we are interested in assessing
the feasibility of steering the system described by these
dynamics from an initial state to a final state within a finite
time interval ¢;. If control is achievable, we aim to quantify
the control energy &£ (u) required, as defined below:

E(u) = / : Ju(r)|dr.

We also investigate the dimension of the subspace containing
reachable states and the impact of changing leader agents.
These inquiries provide insights into the underlying graph
structure and guide the derivation of network controllability
metrics for graph embeddings.

B. Network Controllability Metrics

The process of controlling a network entails the respon-
sibility of directing it from an initial state to a desired final
state by applying control inputs to specific leader nodes
within the network. A state # € RN is considered reach-
able when there exists an input that can propel the network
from the origin Oy, to the state % within a finite timeframe.
The set comprising all such reachable states defines what
we refer to as the controllable subspace. Importantly, in
continuous linear time-invariant systems, such as the one
described by equation (III-A), if a state xz* is reachable



from the origin, it is also reachable from any arbitrary initial
state within any given duration of time.

The dimension of this controllable subspace v(G, V;), is
a pivotal concept in control theory. It can be determined
by examining the rank of the Controllability matrix: C =
[ -B (—A)(-B) (=A)Ns=1(=B) |. The rank of
this matrix hinges on the properties of matrices A and B,
which, in turn, are contingent on the network’s structure and
the selection of leader nodes.

The Controllability Gramian serves as a significant math-
ematical construct that offers vital insights into the control
characteristics of a network [16]-[18]. Utilizing the Control-
lability Gramian, we can quantitatively assess the ease of
transitioning from one state to another, taking into account
the necessary control energy as defined in equation (III-A).

For the system delineated in equation (III-A), the infinite
horizon controllability Gramian is defined as follows:

W:/ e_AT(—B)(—B)Te_ATTdT e RNrxNs,
0

If the system is stable, signifying that all eigenvalues of
—A have negative real parts, ¥V asymptotically converges
and can be computed through the Lyapunov equation:

(~AW+W(=A)T + (=B)(-B)" =0,

For a solution to exist for (III-B), it is necessary for — A
to be a stable matrix. This condition holds for connected
graphs.

Lemma I: If we partition the Laplacian matrix L of an
undirected connected graph as shown in (III-A), the matrix
A is positive definite [11].

In summary, when partitioning the Laplacian matrix L of
an undirected connected graph, as demonstrated in equation
(III-A), the matrix A is revealed to be positive definite,
ensuring the system’s stability. This stability enables the
computation of the Controllability Gramian )V, which serves
as a valuable measure of controllability in terms of energy-
related quantification. It also facilitates the derivation of
various controllability statistics [16]-[18]. Some of these
statistics are further discussed below.

i Trace of WW: The trace of the controllability Gramian
inversely correlates with the average control energy
required to reach random target states. It also indicates
the overall controllability across all directions within the
state space.

ii Minimum eigenvalue of )V: This metric represents
the worst-case scenario and demonstrates an inverse
relationship with the control energy required to navigate
the network in the least controllable direction.

iii Rank of W: The rank of W corresponds to the dimen-
sion of the controllable subspace.

iv Determinant of W: The daw) =

log (HJ ;W) ), where p;(W) denotes a non-zero
eigenvalue of VW, provides a volumetric assessment of

the controllable subspace that can be accessed with
one unit or less of control energy.

metric

Examples: We illustrate, through examples, that net-
work controllability is influenced by both the network’s

topological configuration and the placement of leaders within
it. The impact of leader selection on network controllability
is visualized in Figure 2. In this scenario, we examine a
network consisting of 10 agents, with one designated as the
leader, resulting in Ny = 9. In Figure 2(b), the dimension of
the controllable subspace is 9, indicating complete control-
lability of the follower network. The edges connecting the
leader and follower nodes, which define the structure of the
B matrix in (III-A), are highlighted in red. Transitioning to
Figure 2(c), we opt for a different leader while preserving
complete controllability; however, this results in a modified
trace of W.

N \
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(b) rank = 9, tr = 1.5

(c)rank = 9, tr = 3.5 (d) rank = 8, tr = 7.1

Fig. 2: Controllability metrics vary with leader selection

To gather valuable insights into the graph structure, we
employ an effective probing strategy. By varying the number
and positions of leader nodes, we can observe the resulting
controllability behavior, as quantified by metrics such as
trOV), p; OV), rank(W), and 1d(W). In our empirical eval-
uation in Section V, we primarily focus on the rank, trace,
and both minimum and non-zero eigenvalues of the Gramian
matrix, considering multiple leader set configurations.

IV. CONTROL-BASED GRAPH AUGMENTATIONS

Contrastive Graph Representation Learning (CGRL) is
a self-supervised technique that relies on augmented data
to create positive and negative pairs. As discussed in the
previous section, we have developed graph-level control
embeddings that act as inputs to the encoder, minimizing the
NT-Xent loss [5]. In this section, we will introduce several
innovative methods for data augmentation.

The primary purpose of data augmentation is to generate
new data that is logically consistent while preserving the
semantic labels. As depicted in Figure 1, CGRL incorporates
a contrastive module into the conventional Graph Machine
Learning (GML) architecture, introducing a contrastive loss
for fine-tuning the models. This process involves contrasting
the original graph with an augmentation graph using posi-
tive—positive and positive—negative pairs. The core idea be-
hind CGRL is that the original graph should, to some extent,
be equivalent to the augmentation graph. Therefore, each
graph in the dataset should have precisely one corresponding
positive pair (an equivalent graph) in the augmented dataset,
while the remaining augmented graphs serve as negative
pairs. During training, CGRL strives to optimize the sim-
ilarities of positive—positive pairs to approach unity and the
similarities of positive—negative pairs to approach zero.

Since the graph-level embeddings used in our work are
based on control properties, the primary goal is to devise an



augmentation technique that primarily preserves the control
properties of the original graph in the augmented version.

Problem 1V.1: Given a graph G = (V| E) and a leader
set V, perform an augmentation 7 (G) to obtain G’ by
perturbing £ edges while ensuring that the controllability
properties are preserved.

In this context, edge perturbation can refer to actions such
as edge deletion, edge addition, or edge substitution.

While performing augmentation, our primary focus is on
preserving one of the key features of our CTRL embedding,
which is the rank of controllability denoted as (G, V).
However, preserving the exact rank of controllability is a
highly complex task. Consequently, the literature has ex-
plored lower bounds on network controllability [9], [19],
[20]. In our edge perturbation techniques, we employ a
rigorous lower bound based on topological node distances
and introduce algorithms to augment the original network
while preserving this lower bound [9].

Assuming the presence of m leaders denoted as V, =
{l1,05,--+ ,£,,} within a leader-follower network G =
(V, E), we define the distance-to-leader (DL) vector for each
vertex v; € V' as follows:

D; = [ d(ty,v;) d(lz,v;) d(lmyv;) T € 2™

In this vector, the jth component, denoted as [D;] j» repre-

sents the distance between leader ¢; and vertex v;. We then
proceed to define a sequence of distance-to-leader vectors,
referred to as a pseudo-monotonically increasing sequence
(PMI), as described in [9].

Definition (Pseudo-monotonically Increasing Sequence
(PMI)) A sequence D = [Dy Dy --- Dy] of distance-to-
leader vectors is a PMI if, for any vector D; in the sequence,
there exists a coordinate 7 (i) € {1,2,--- ,m} such that

[Dilx(iy < [Djlr(iy, Vi > i.

In essence, the PMI property (IV) ensures that for each
vector D; in the PMI sequence, there is an index/coordinate
m(i) such that the values of all subsequent vectors at the
coordinate 7 (i) are strictly greater than [Dy] ;).

The length of the PMI sequence provides a precise
lower bound on the dimension of the controllable subspace
~v(G, Vg). This is presented in the subsequent result.

Theorem 4.1: [9] If we denote the length of the longest
PMI sequence of DL vectors in a network G = (V, E)
with V; leaders as 6(G,V;) or simply §(G), then we can
establish the inequality: §(G, Vy) < v(G,Vy) Here, (G, V;)
represents the dimension of the controllable subspace.

We propose the following three sophisticatedly designed
edge perturbation methods that maintain the lower bound
§(G, Vi) on the rank of controllability. They are illustrated in
Figure 3. The red vertices represent leaders, the gray dashed
edge can be removed, and the blue dashed edge can be
added while ensuring that the bound 6(G,V;) = Ny = 4

is maintained for all augmented graphs.
A. Egde Deletion

We propose using the concept of discerning essential
edges, referred to as controllability backbone edges that we

50

(b) Edge deletion

(c) Edge addition (d) Edge substitution

Fig. 3: Control-based graph augmentations where § = v = 4
for original and augmented graphs.

introduced in [21], which do not decrease 0(G,V;). We
begin by introducing the concept of the distance-based con-
trollability backbone and subsequently present an algorithm
for computing an augmented graph with k-perturbed edges
while utilizing the controllability backbone.

Definition (Controllability Backbone) [21] For a given graph
G = (V,E) and a set of leaders V;, the controllability
backbone is represented as a subgraph B = (V,Ep). In
this subgraph B, the condition 6(G,V;) < &(G,Vs). holds
for any subgraph G = (V, E) where the edge set satisfies
Ep CECE.

In other words, for any subgraph G = (V, E) of G that
includes the backbone edges E'p, it ensures that at least the
same level of controllability as the original graph G is main-
tained. Essentially, retaining the backbone edges guarantees
that controllability remains unchanged or improves within
any subgraph G.

Now, we present Algorithm 1 to perform graph augmen-
tation by deleting edges from a graph. First, we compute
the important edges (of the controllability backbone) that
need to be preserved to maintain the minimum bound on
controllability. The controllability backbone can be found
by using Algorithm 2 of [21]. Then, we calculate a set of
potential edges in the given graph G that does not include
any edges from the backbone graph B. Finally, we randomly
select k edges from the set of potential edges and remove
them from the original graph G to obtain an augmented graph
G'. If k is larger than the set of potential edges, we delete
all the edges of the potential edge set.

Algorithm 1 Edge_Deletion

Imput: G = (V, E), Vp, k
Output: G' = (V. E'), |E|—|E'| =k
1: Compute the distance-based controllability backbone
B = (V,Eg) for G = (V,E) and V,.
2: pot_edges <+ E \ Ep % Set of potential
edges.
3: Epot < randomly selected k edges from pot_edges
4 E' < E\ Epp
5. return G’ = (V, E')

Proposition 4.2: Given a graph G = (V,E) and a
leader set V,, Algorithm 1 returns an augmented graph



G' = (V,E’), where E' C F, while ensuring 6(G,V;) <
(G, V).

Proof: Let G = (V,E) be a graph with a set of
leaders V;. The backbone graph B = (V, Ep) is defined
as the smallest set of essential edges required to maintain
the necessary distances within the graph for establishing
the lower bound on controllability, as formally described in
Theorem 4.2 of [21]. The theorem establishes that for any
edge e present in G but absent in B, the removal of edge e
does not diminish the lower bound on (G, V;). Therefore,
any edge that is not part of the backbone graph B can be
eliminated from G without reducing the lower bound on the
rank of the controllability matrix. Furthermore, this property
implies that the removal of any subset of these non-backbone
edges from G continues to maintain the bound on the rank
of the controllability matrix. [ ]

B. Egde Addition

Building on the concept of recognizing removable edges
while preserving the distance-based bound 6(G, V;), as pro-
posed in our previous work [22], we use an augmentation
method that determines the edges that can be added to a given
graph G = (V, E) while still maintaining the distance-based
bound §(G, V). We employ the same approach outlined in
[22] to identify edges that can be added to G without dimin-
ishing the distance-based bound §(G, V;). After determining
such potential edges that can be safely incorporated into
G without reducing the controllability rank (G, V;), we
randomly select k such potential edges and introduce them
into G, resulting in the augmented graph G’ = (V, E').

Proposition 4.3: [22]If 6(G, V) serves as a lower bound
for the dimension of the controllable subspace v(G,V;) of
a graph G = (V, E) with leaders V; C V, then it also
serves as a lower bound for v(G’, V) of an augmented graph
G' = (V,E'), where E C E’ and E’ contains the edges
that preserve the distances of DL vectors in the longest PMI
sequence of G.

C. Egde Substitution

Next, we propose a novel approach that combines the
edge deletion and edge addition methods while preserving
the size of the edge set |E| of the given graph G = (V, E)
and the bound (G, V;). Algorithm 2 outlines this approach.
First, we remove k edges from G to create G = (V, E)
using Algorithm 1. Then, we introduce k distinct edges
into G using the method described in IV-B, resulting in
G' = (V,E'), where |E| = |F'|.

The maximal edge set E,,,, can be computed by from
Algorithm 1 of our previous work [22].

Proposition 4.4: Given a graph G = (V, E') and a leader
set Vy, Algorithm 2 yields an augmented graph G’ = (V, E’),
where |E’| = |E|, ensuring that 6(G, V;) < §(G', Vp),

Proof: Let D be the longest PMI sequence of length
(G, V) in G = (V,E) and Vp C V are the nodes whose
DL vectors are in D. If we remove k edges from G to form
G = (V, E), then by Proposition 4.2, §(G,V;) < 6(G,V,)
i.e. the longest PMI sequence of G is a subsequence of the
longest PMI sequence of G as the distances between leaders
and nodes in Vp are exactly the same in G and G.

Algorithm 2 Edge_Substitution

Input: G = (V, E), Vp, k
Output: G' = (V, E’')
. G = (V,E) + Edge_Deletion(G, Vy, k)
2: Compute the maximal edge set F,,,, for G = (V, E)
and V.
3: pot_edges < FEne — F % Set of potential
edges.
4: Epor + randomly selected k£ edges from pot_edges
5: B/« FEUEF'.
6: return G’ = (V, E')

TABLE I: Statistics of the datasets. Number of graphs,
average number of nodes and edges, range of number of
vertices, and the number of classes.

Dataset #Graphs avg.|V| avg.[E| Range(|V|) #Classes
MUTAG 188 17.93 19.79 10-28 2
PTC 344 14.29 14.69 2-109 2
PROTEINS 1113 39.06 72.82 4-620 2
DD 1178 284.32 715.66 30-743 2
COLLAB 5000 284.32 715.66 32-492 3
IMDB-B 1000 19.77 96.53 12-136 2
IMDB-M 1500 13.00 65.94 7-89 3

Now, from Algorithm 1 of [22], we find a maximal set
of edges E,,q, for the original graph G = (V, E). This
edge set contains all the edges that can be added to G while
preserving the distances between leaders and nodes in Vp.
Hence, any edge added to G from F,,,, will maintain the
lower bound 6(G,V;) for v(G, V). Hence, by deleting k
edges that are mutually exclusive from the controllability
backbone and adding k edges that keep the distances between
leaders and nodes in Vp the same, we can substitute k£ edges
in G for given V; such that 6(G,V;) < §(G', Vo). |

These edge perturbation methods are employed to create
positive pairs. Subsequently, we use the CTRL embeddings
to generate graph representations for these pairs and apply
the NT_Xent loss for unsupervised learning of representa-
tions for each graph within the dataset. In the following
section, we conduct an empirical assessment using real-world
graph datasets. Our proposed approach is numerically eval-
vated through the task of graph classification and compared
with state-of-the-art methods.

V. NUMERICAL EVALUATION

A. Benchmark Datasets

Datasets: We conducted experiments on 7 standard graph
classification benchmark datasets, which include MUTAG,
PTC_MR, PROTEINS, and DD, representing bioinformat-
ics datasets, as well as IMDB-BINARY, IMDB-MULTI,
and COLLAB, representing social network datasets [23].
The bioinformatics datasets provide descriptions of small
molecules and chemical compounds. Among the social net-
work datasets, IMDB-BINARY and IMDB-MULTI describe
actors’ ego-networks, while COLLAB is a scientific collab-
oration dataset where graphs consist of researchers as nodes
and their collaborations as edges. Basic dataset statistics are
provided in Table 1.



B. The Role of Data Augmentation in Graph CL

We evaluate the effectiveness of our proposed framework
for graph classification using the TUDataset benchmark [23].
We utilize the CL method to unsupervisedly learn represen-
tations z(.) from CTRL embeddings, followed by the eval-
uation of these representations for graph-level classification.
This evaluation involves training and testing a linear SVM
classifier using the acquired representations. We employ
a 10% label rate and 10-fold cross-validation, conducting
experiments over 5 repetitions and reporting the evaluation
accuracy as a mean value along with the standard deviation.

As a baseline reference, we directly employ the CTRL
embeddings for training the SVM classifier. The results for
four distinct bioinformatics datasets are summarized in Table
II. Edge deletion yields the best result on MUTAG and PTC,
while on PROTEINS and DD, edge addition and substitution
provide the best results, respectively. We vary the number of
edges perturbed from 1 to 3. Our augmentation techniques,
combined with contrastive learning, consistently yield higher
classification accuracies across all datasets compared to the
baseline approach.

TABLE II: Graph Classification accuracy (%) with 10% label
rate. The baseline involves a linear SVM trained directly on
CTRL embeddings.

MUTAG PTC PROTEINS DD
75.86 £ 11.0 52.85+£95 5872+ 119 59.10 £ 139
79.54 £ 11.0 56.10 £83 6997 =45 6322 £ 11.1

Method
Baseline
CGCL

C. Comparison with the State-of-the-art Methods

The effectiveness of CGCL is assessed in the context of
unsupervised representation learning, following the approach
outlined in [13], [24]. We closely adhere to the established
approach within Graph CL for graph classification [7], [13].
We compare our results with the following kernel-based,
unsupervised, and self-supervised methods.

a) Graph Kernels Methods: Graph kernel-based tech-
niques represent traditional approaches to graph classifica-
tion. They engage directly with graph data by crafting kernel
functions that preserve the graph’s structural information. For
the purpose of this comparative analysis, we have chosen
four well-established graph kernel-based methods: Graphlet
kernel (GK) [25], Weisfeiler-Lehman sub-tree kernel (WL)
[26], and deep graph kernels (DGK) [27].

b) Unsupervised Methods: Unsupervised techniques
for graph representation learning leverage sub-graph and
node similarity scores to guide the learning process, all with-
out relying on label information. In this comparative analysis,
we have chosen three prominent unsupervised benchmarks
methods: node2vec [28], sub2vec [29], and graph2vec [24].

c) Self-Supervised Methods: Unlike traditional unsu-
pervised graph representation techniques, the self-supervised
approach to graph representation harnesses the capabilities
of contrastive learning to unearth profound insights between
data samples, leading to significant improvements in graph
representation learning. In this comparative study, we’ve
chosen two state-of-the-art contenders, InfoGraph [13] and

GraphCL [7], which both employ graph neural networks as
their foundational architecture.

The results of graph classification are presented in Table
III. When compared to the top-performing unsupervised
methods, our proposed approach exhibits significant im-
provements across several datasets, including MUTAG, PTC,
PROTEINS, COLLAB, and IMDB-B, resulting in gains of
6.76%, 6.17%, 0.83%, 13.0%, and 1.6%, respectively. No-
tably, our method consistently outperforms all unsupervised
competitors across all datasets except IMDB-M.

In contrast to self-supervised counterparts, our proposed
method surpasses the current SOTA on MUTAG, PRO-
TEINS, and COLLAB, and achieves the second-best accura-
cies on DD and IMDB-B datasets. Specifically, in MUTAG,
PROTEINS, and COLLAB, our approach outperforms the
existing standards by margins of 0.90%, 4.64%, and 3.74%,
respectively. However, on PROTEINS and IMDB-M, our
method falls short by 0.31% and 1.17%, respectively, com-
pared to the best self-supervised approaches.

In summary, as demonstrated by Table III, our proposed
method outperforms its competitors on two out of seven
graph classification datasets by a considerable margin and
achieves top-two accuracy rankings for five out of seven
datasets. For the remaining two datasets, our method achieves
accuracy levels within 2% of the SOTA methods.

We also perform an evaluation of our proposed CGCL
approach using the edge augmentation method proposed by
You [7]. We follow an i.i.d. uniform distribution to add/drop
edges instead of the systematic edge perturbation methods
mentioned in Section IV. We call this approach Random-
CGCL. Table IV presents the results for graph classification
accuracies for all seven datasets under consideration. It can
be seen that the accuracy of Random-CGCL is comparable
to both GraphCL and CGCL. However, CGCL outperforms
Random-CGCL on all the datasets. These results suggest
that a sophisticated augmentation technique, as employed in
CGCL, is essential for effectively leveraging control-based
embeddings in graph contrastive learning.

VI. CONCLUSION

In this work, we introduced Control-based Graph Con-
trastive Learning (CGCL), a novel framework for unsu-
pervised graph representation learning that leverages graph
controllability properties. We employed advanced edge aug-
mentation methods to create augmented data for contrastive
learning while preserving the controllability rank of graphs.
Our extensive experiments on standard graph classification
benchmarks showcased CGCL’s effectiveness, outperforming
SOTA unsupervised and self-supervised methods on multiple
datasets. We also compared CGCL with a random edge
augmentation approach, underscoring the significance of our
controllability-driven augmentation strategy. The success of
CGCL suggests that incorporating domain-specific structural
knowledge, like controllability, can significantly enhance
graph representation learning, opening avenues for further
research. Overall, CGCL presents a promising approach
for applications requiring informative graph representations.
In the future, we aim to refine our graph augmentation
techniques to preserve all relevant control features.



TABLE III: Comparing classification accuracy on top of graph representations learned from graph kernels, SOTA
representation learning method. The top two results are highlighted by First, Second. The numerical values presented for
comparison are obtained from the respective papers, following the identical experimental configurations.

Methods MUTAG PTC PROTEINS DD COLLAB IMDB-B IMDB-M
Kernel Approaches

GK 81.70 + 2.1 5730 £ 14 - - 72.80 + 0.3 65.90 £+ 1.0 4390 £+ 04

WL 80.63 + 3.1 5691 + 2.8 72.92 £ 0.6 - 7890 + 1.9 7230 £ 3.4 47.00 £+ 0.5

DGK 8744 + 2.7 60.10 &+ 2.6 73.30 &+ 0.8 - - 66.96 + 0.6 44.60 £+ 0.5
Unsupervised Approaches

node2vec 72.63 £ 10.2 58.85 £+ 8.0 57.48 + 3.6 - 55.70 + 0.2 50.20 £+ 0.9 36.0 £ 0.7

sub2vec 61.05 + 15.8 59.99 + 6.4 53.03 £ 5.6 - 62.10 + 1.4 5526 £ 1.5 36.7 £+ 0.8

graph2vec 83.15 + 9.2 60.17 £ 6.9 73.30 £ 2.1 - 59.90 #+ 0.0 71.10 & 0.5 50.40 4= 0.9
Self-Supervised Approaches

InfoGraph 89.01 + 1.1 61.70 + 1.4 7444 + 0.3 72.85 £ 1.8 70.65 + 1.1 73.03 + 0.9 49.70 £+ 0.5

GraphCL 86.80 + 1.3 6130 £ 2.1 7439 £ 0.5 78.62 + 0.4 7136 £ 1.2 71.14 £ 04 48.58 £+ 0.7

CGCL 89.91 + 6.4 66.34 + 7.9 7413 £ 2.8 7533 £+ 3.3 75.10 £ 1.8 72770 £ 4.4 48.53 £ 3.1

TABLE IV: Graph Classification accuracies using different Augmentation methods. The top accuracies are highlighted.

Methods MUTAG PTC PROTEINS DD COLLAB IMDB-B IMDB-M
GraphCL 86.80 + 1.3 61.30 £+ 2.1 74.39 £ 0.5 78.62 + 0.4 71.36 £ 1.2 71.14 £ 0.4 48.58 + 0.7
Random-CGCL 87.81 + 7.4 65.73 £+ 6.6 7323 + 1.8 7515 £ 2.9 75.04 £ 1.8 71.40 £+ 4.0 47.40 £+ 2.7
CGCL 89.91 + 6.4 66.34 £+ 7.9 74.13 £ 2.8 75.33 £+ 3.2 75.10 £ 1.8 72.70 £ 44 48.53 £+ 3.1
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