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Abstract

Supervised learning aims to train a classifier under the assumption that training and test
data are from the same distribution. To ease the above assumption, researchers have studied
a more realistic setting: out-of-distribution (OOD) detection, where test data may come
from classes that are unknown during training (i.e., OOD data). Due to the unavailability
and diversity of OOD data, good generalization ability is crucial for effective OOD detection
algorithms, and corresponding learning theory is still an open problem. To study the
generalization of OOD detection, this paper investigates the probably approximately correct
(PAC) learning theory of OOD detection that fits the commonly used evaluation metrics in
the literature. First, we find a necessary condition for the learnability of OOD detection.
Then, using this condition, we prove several impossibility theorems for the learnability of
0OO0OD detection under some scenarios. Although the impossibility theorems are frustrating,
we find that some conditions of these impossibility theorems may not hold in some practical
scenarios. Based on this observation, we next give several necessary and sufficient conditions
to characterize the learnability of OOD detection in some practical scenarios. Lastly, we
offer theoretical support for representative OOD detection works based on our OOD theory.
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1. Introduction

The success of supervised learning is established on an in-distribution (ID) assumption
that training and test data share the same distribution (Dosovitskiy et al., 2021; Huang
et al., 2017; Hsu et al., 2020; Yang et al., 2021). However, in many real-world scenarios, the
distribution of test data violates the assumption and, instead, contains out-of-distribution
(OOD) data whose labels have not been seen during the training process (Bendale and
Boult, 2016; Chen et al., 2021a). To mitigate the risk brought by OOD data, a more
practical learning scenario is considered in the machine learning field: OOD detection, which
determines whether an input is ID/OOD, while classifying the ID data into respective classes.

OOD detection can significantly increase the reliability of machine learning models when
deploying them in the real world. Many seminar algorithms have been developed to empiri-
cally address the OOD detection problem (Hendrycks and Gimpel, 2017; Liang et al., 2018;
Lee et al., 2018; Zong et al., 2018; Pidhorskyi et al., 2018; Nalisnick et al., 2019; Hendrycks
et al., 2019; Ren et al., 2019; Lin et al., 2021; Salehi et al., 2021; Sun et al., 2021). A
common solution paradigm to OOD detection is to propose a new learning objective or/and
a score function to identify if one upcoming data point is OOD data. When evaluating
algorithms under this solution paradigm, both threshold-dependent metrics (e.g., risk) and
threshold-independent metrics (e.g., AUC) will be used to see to what extent the algorithms
can successfully identify OOD data. However, very few works study theory of OOD detec-
tion, which hinders the rigorous path forward for the field. This paper aims to bridge the gap.

In this paper, a theoretical framework is proposed to understand the learnability of OOD
detection problem in view of threshold-dependent metrics and threshold-independent met-
rics!. We investigate the probably approximately correct (PAC) learning theory of OOD
detection when the evaluation metrics are risk and AUC, which is posed as an open problem
to date. Unlike the classical PAC learning theory in a supervised setting, our problem
setting is fundamentally challenging due to the absence of OOD data in training. Because
OOD data can be diverse in many real-world scenarios, we want to study whether there
exists an algorithm that can be used to detect data from various OOD distributions in-
stead of merely data from some specified OOD distributions. Such is the significance of
studying the learning theory for OOD detection (Yang et al., 2021). This motivates our
question: is OOD detection PAC learnable? i.e., is there the PAC learning theory to guar-
antee the generalization ability of OOD detection under two common metrics: risk and AUC?

To answer the above research question and investigate the learning theory, we mainly focus on
two basic spaces: domain space and function space. The domain space is a space consisting
of some distributions, and the function space is a space consisting of some classifiers or
ranking functions. Existing agnostic PAC theories in supervised learning (Shalev-Shwartz
and Ben-David, 2014; Mohri et al., 2018) are distribution-free, i.e., the domain space consists
of all domains. Yet, in Theorem 5 and Theorem 8, we show that the learning theory of OOD
detection is not distribution-free. Furthermore, we find that OOD detection is learnable only
if the domain space and the function space satisfy some special conditions, e.g., Conditions

1. This paper is an extended version of our previous conference paper (Fang et al., 2022a). In Section 7, we
discuss the main difference between this paper and Fang et al. (2022a).
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1, 2, and 4. Notably, there are many conditions and theorems in existing learning theories
and many OOD detection algorithms in the literature. Thus, it is very difficult to analyze
the relation between these theories and algorithms, and explore useful conditions to ensure
the learnability of OOD detection, especially when we have to explore them from the scratch.
Thus, the main aim of our paper is to study these essential conditions under risk and AUC
metrics. From these essential conditions, we can know when OOD detection can be successful
in practical scenarios. We restate our question and goal in the following;:

Given hypothesis spaces and several representative domain spaces, what are the conditions
to ensure the learnability of OOD detection in terms of risk and AUC? If possible, we
hope that these conditions are necessary and sufficient in some scenarios.

Main Results. We start to study the learnability of OOD detection in the largest space—
the total space, and give two necessary conditions for the learnability of OOD detection
under risk and AUC (Condition 1 for risk and Condition 2 for AUC). However, we find
that the overlap between ID and OOD data may result in that both necessary conditions
do not hold. Therefore, we give two impossibility theorems to demonstrate that OOD
detection fails in the total space (Theorem 5 under risk and Theorem 8 under AUC). Then,
we investigate OOD detection in a separate space, where the ID and OOD data do not
overlap. Unfortunately, there still exists impossibility theorems (Theorem 6 under risk and
Theorem 9 under AUC), meaning that we cannot expect OOD detection is learnable under
risk and AUC in the separate space under some conditions of the developed theorems.

It is frustrating to find the impossibility theorems regarding OOD detection in a separate
space, but we find that some conditions of these impossibility theorems may not hold in
several practical scenarios. Stemming from this observation, we give several necessary and
sufficient conditions to characterize the learnability of OOD detection under risk and AUC
in the separate space (Theorems 10 and 16 under risk, and Theorems 12 and 17 under AUC).
Especially, when our function space is based on fully-connected neural network (FCNN),
OOD detection is learnable under risk and AUC in the separate space if and only if the
feature space is finite. Then, we focus on other more practical domain spaces, e.g., the
finite-ID-distribution space and the density-based space and investigate the learnability of
OOD detection in both spaces. Theorem 13 shows a necessary and sufficient condition of
learnability of OOD detection under risk. Theorems 14 and 15 show two sufficient conditions
for the learnability of OOD detection under risk and AUC, respectively. It should be noted
that when studying learnability of OOD detection in the finite-ID-distribution space, we
discover a compatibility condition (Condition 4) that is a necessary and sufficient condition
of learnability of OOD detection under risk for this space. Then, we explore the compatibility
condition in the density-based space, and find that such condition is also the necessary and
sufficient condition in some practical scenarios (Theorem 18).

Implications and Impacts of Theory. Our study is not of purely theoretical interest; it
has also practical impacts. (i) From the perspective of domain space, we consider the finite-
ID-distribution space that fits the common scenarios in the real world: we normally only
have finite ID datasets. In this case, Theorem 13 gives a necessary and sufficient condition
to the success of OOD detection under risk. More importantly, our theory shows that OOD
detection is learnable in image-based scenarios when ID images have clearly different semantic
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labels and styles (far-OOD) from OOD images. (ii) From the perspective of function space,
we investigate the learnability of OOD detection under risk and AUC for commonly used
FCNN-based function spaces. Our theory provides theoretical support (Theorems 16 and 18
under risk, and Theorems 17 and 19 under AUC) for several representative OOD detection
works (Hendrycks and Gimpel, 2017; Liang et al., 2018; Liu et al., 2020). (iii) From the
perspective of evaluation metrics, our paper studies the learnability of OOD detection under
risk and the learnability of OOD detection under AUC, which covers the major evaluation
metrics used in OOD detection evaluation and provides theoretical guidance when users
have different requirement in evaluating OOD detection performance. Based on all of our
theoretical results, they suggest we should not expect a universally working OOD detection
algorithm. It is necessary to design different algorithms in different scenarios.

2. Learning Setups

We begin by introducing the necessary concepts and notations for our theoretical framework.
Given a feature space X C R? and a label space ) := {1,..., K}, we have an ID joint
distribution Dx,y; over X x ), where X1 € & and Y7 € ) are random variables. We also
have an OOD joint distribution Dx,y,, where X¢ is a random variable from X', but Yo
is a random variable whose outputs do not belong to ). During testing, we encounter a
mixture of ID and OOD joint distributions: Dxy = (1 — 7°)Dxy; + 7" Dx,y,, and
we can only observe the marginal distribution Dy = (1 — 7r°‘It)D x; + ot D Xo, Where the
constant 7°" € [0, 1) represents an unknown class-prior probability. Next, we provide the
formal definition of the OOD detection problem and key concepts used in this paper.

2.1 Problem Setting and Concepts

Problem 1 (OOD Detection (Yang et al., 2021)) Given an ID joint distribution Dx,y;
and a training data S = {(x',y'), ..., (x",y™)} drawn independent and identically distributed
from Dx,y;, the aim of OOD detection is to train a classifier f by using the training data S
such that, for any test data x drawn from the mized marginal distribution Dx :

e if x is an observation from Dx,, f can classify x into correct ID classes;

e if x is an observation from Dx., f can detect x as OOD data.

According to Yang et al. (2021), when K = 1, OOD detection reduces to one-class novelty
detection or semantic anomaly detection (Ruff et al., 2018; Goyal et al., 2020; Deecke et al.,
2018). Next, we introduce some basic and important concepts and notations.

OOD Label and Domain Space. Based on Problem 1, we know it is not necessary to
classify OOD data into the correct OOD classes. Without loss of generality, let all OOD
data be allocated to one big OOD class, i.e., Yo = K + 1 (Fang et al., 2021, 2020). To
investigate the PAC learnability of OOD detection, we define a domain space Zxy, which is
a set consisting of some joint distributions D xy mixed by some ID joint distributions and
some OOD joint distributions. In this paper, the joint distribution Dxy mixed by ID joint
distribution Dx,y; and OOD joint distribution Dxy,, is called domain.
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Hypothesis Spaces and Scoring Function Spaces. A hypothesis space H is a subset
of function space, i.e., H C {h: X — Y U{K + 1}}. We set H® C {h : X — Y} to the ID
hypothesis space. We also define H® C {h: X — {1,2}} as the hypothesis space for binary
classification, where 1 represents the ID data, and 2 represents the OOD data. The function
h is called the hypothesis function. A scoring function space is a subset of function space,
ie, FC{f: X — Rl}, where [ is the output’s dimension of the vector-valued function f.
The function f is called the scoring function.

Ranking Function Spaces. Most representative OOD detection algorithms (Liu et al.,
2020) output a ranking function from a given ranking function space R C Ran = {r: X — R}.
If the ranking function r(x) has a higher value, then x is from Dy, with a higher probability.
A perfect ranking function r* fulfills the condition r*(x) > r*(x’) for all x from Dx, and all
x’ from Dx,,, indicating that rankings of ID data are always higher than rankings of OOD
data. The general strategy to construct the ranking function space R is to design a scoring
function E : R! — R and integrate it with the scoring function space Fi, i.e., R = E o F.

Loss, Risks and AUC Metric. Let Yoy = YU {K + 1}. Given a loss function ¢ :
Yan X Van — R satisfying that £(y;,y2) = 0 if and only if y; = y2, and any h € H, then
the risk with respect to Dxy is

RD(h) = E(x,y)NDXye(h@()a y) (1)
The a-risk RY(h) := (1 — a)RB(h) + aR%*(h),Va € [0,1], where RIE(h) and R%*(h) are
RB(h) = Biegymnyy LX), y),  RB(R) = Exupy L(A(x), K +1).

Except for using risk to evaluate the OOD detection performance, AUC is also a promising
metric to see if a ranking function r can separate the ID and OOD data:

1
AUC(7; Dxy) = Exapy, Eximby,, [0 5r(x) + §1r(x):r(xf)]- (2)

Note that since value of AUC only denpends on the marginal distributions Dy, and Dx,,
therefore, it is also convientent for us to rewrite AUC(r; Dxy) as AUC(r; Dx,, Dx,)-

2.2 Learnability under Risk

Based on risk defined in Eq. (1), OOD detection aims to select a hypothesis function
h € H with approximately minimal risk, based on finite data. Generally, we expect the
approximation to get better, with the increase in sample size. Algorithms achieving this are
said to be consistent under risk. Formally, we have:

Condition 1 (Learnability of OOD Detection under Risk) Given a domain space
PDxy and a hypothesis space H C {h : X — Y}, we say OOD detection is learnable
in Dxy for H under risk, if there exists an algorithm A% : U (X x V)" — H and a

2. Similar to Shalev-Shwartz et al. (2010), in this paper, we regard an algorithm as a mapping from
U= (X x V)™ to H or R.
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monotonically decreasing sequence €cons(n), such that €cons(n) — 0, as n — 400, and for
any domain Dxy € Dxy,

ESND?{IYI [RD(A(S)) - }%1617{; RD(h)] < €cons (1) (3)

An algorithm A for which this holds is said to be consistent with respect to Pxy .

Definition 1 is a natural extension of agnostic PAC learnability of supervised learning
(Shalev-Shwartz et al., 2010). If for any Dxy € Zxy, 7°" = 0, then Definition 2 is the
agnostic PAC learnability of supervised learning. Although the expression of Definition
1 is different from the normal definition of agnostic PAC learning in Shalev-Shwartz and
Ben-David (2014), one can prove that they are equivalent if ¢ is bounded, see Appendix A.3.
Since OOD data are unavailable, it is impossible to obtain any information about the
class-prior probability 7°". Furthermore, in the real world, it is possible that 7°%* can be
any value in [0,1). Therefore, the imbalance issue between ID and OOD distributions, and
the priori-unknown issue (i.e., 7° is unknown) are the core challenges. To mitigate this
challenge, we revise Eq. (3) as follows:

ESND}IYI [RH(A(S)) — fig?f-t R (h)] < €cons(n), Yo € [0,1]. (4)
If an algorithm A satisfies Eq. (4), then the imbalance issue and the prior-unknown issue
disappear. That is, A can simultaneously classify the ID data and detect the OOD data
well. Based on the above discussion, we define the strong learnability of OOD detection
under risk as follows:

Condition 2 (Strong Learnability of OOD Detection under Risk) Given a domain
space Dxy and a hypothesis space H C {h : X — Yan}, we say OOD detection is strongly
learnable in Zxy for H, if there exists an algorithm A : U2 (X x V)" — H and a
monotonically decreasing sequence €cons(n), such that €cons(n) — 0, as n — 400, and for
any domain Dxy € Dxv,
IE:SND’;(IYI [R%(A(S)) - i}%f{ R%(h)] < €cons(n), Vo € [0, 1].

Remark. In Theorem 1, we have shown that the strong learnability of OOD detection
under risk is equivalent to the learnability of OOD detection under risk, if the domain space
PDxy is a prior-unknown space (see Definition 4). In this paper, we mainly discuss the
learnability in the prior-unknown space. Therefore, when we mention that OOD detection is
learnable under risk, we also mean that OOD detection is strongly learnable under risk.

2.3 Learnability under AUC

Based on AUC defined in Eq. (2), OOD detection aims to select a ranking function r € R with
approximately maximal AUC, based on finite data. Generally, we expect the approximation
to get better, with the increase in sample size. Algorithms achieving this are said to be
consistent under AUC. Formally, we have:

Condition 3 (Learnability of OOD Detection under AUC) Given a domain space
PDxy, a ranking function space R C {r : X — R}, we say OOD detection is learnable



ON THE LEARNABILITY OF OUT-OF-DISTRIBUTION DETECTION

in Dxy for R under AUC, if there exists an algorithm A : U5 (X x Y)* — R and a
monotonically decreasing sequence €cons(n), such that €cons(n) — 0, as n — 400, and for
any domain Dxy € Pxy,

ESNDS?IYI [sug AUC(r; Dxy) — AUC(A(S); Dxy)] < €cons(n). (5)
re

An algorithm A for which this holds is said to be AUC consistent with respect to Dxy .

Definition 3 is another version of Definition 1. Here, we use AUC instead of risk to evaluate
the performance of the OOD detection. Note that the learnability of OOD detection under
AUC is not influenced by the 7o, as AUC is directly calculated by using Dx, and Dx,.

2.4 Goal of Our Theory

Note that the agnostic PAC learnability of supervised learning is distribution-free, i.e., the
domain space Zxy consists of all domains. However, due to the absence of OOD data
during the training process (Liang et al., 2018; Ren et al., 2019; Fang et al., 2021), it is
obvious that the learnability of OOD detection is not distribution-free (i.e., Theorem 5 and
Theorem 8). In fact, we discover that the learnability of OOD detection is deeply correlated
with the relationship between the domain space Zxy and the hypothesis space H (or the
ranking function space R). That is, OOD detection is learnable only when the domain space
Pxy and the hypothesis space H (or the ranking function space R) satisfy some special
conditions, e.g., Conditions 1, 4 (under risk), Conditions 2 (under AUC). We present our
goal as follows:

Goal: given a hypothesis space H (or a ranking function space R), and
several representative domain spaces Pxy, what are the conditions to
ensure the learnability of OOD detection? Furthermore, if possible, we hope
that these conditions are necessary and sufficient in some scenarios.

Therefore, compared to the agnostic PAC learnability of supervised learning, our theory
doesn’t focus on the distribution-free case, but focuses on discovering essential conditions to
guarantee the learnability of OOD detection in several representative and practical domain
spaces Pxy. By these essential conditions, we can know when OOD detection can be
successful in real applications.

3. Learning in Priori-unknown Spaces

We first investigate a special space, called prior-unknown space and prove that if OOD
detection is strongly learnable under risk or learnable under AUC in a space Zxy, then one
can discover a larger domain space, which is prior-unknown, to ensure the learnability of
OOD detection under risk or AUC. These results imply that it is enough to study learnabiligy
of OOD detection in the prior-unknown spaces. The prior-unknown space is as follows:

Condition 4 Given a domain space Zxy , we say Pxy is a priori-unknown space, if for any
domain Dxy € Pxy and any o € [0,1), we have D%y := (1 — a)Dxv; + aDxoyv, € Dxy -

Then the following theorem presents importance and necessity of priori-unknown space.
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Theorem 1 Given spaces Pxy and P, = {D%y : VDxy € Pxy,Va € [0,1)}, then

1) D is a priori-unknown space and Dxy C Dy ;

2) if Dxvy is a priori-unknown space, then Definition 1 and Definition 2 are equivalent;
3) 00D detection is strongly learnable in Pxy under risk if and only if OOD detection is
learnable in P’ under risk;

4) OOD detection is learnable in Pxy under AUC if and only if OOD detection is learnable
in D under AUC.

The second result of Theorem 1 bridges the learnability and strong learnability under risk,
which implies that if an algorithm A is consistent with respect to a prior-unknown space,
then this algorithm A can address the imbalance issue between ID and OOD distributions,
and the priori-unknown issue well. The fourth result of Theorem 1 shows that the learnability
of OOD detection under AUC is not influenced by the unknown class-prior probability 7.
Based on Theorem 1, we focus on our theory in the prior-unknown spaces. To demystify the
learnability of OOD detection, we introduce five representative priori-unknown spaces:

e Single-distribution space .@)%)5". For a domain Dxy, @)%)5’” = {D%y : Va € [0,1)}.

e Total space @?g%,, which consists of all domains.

e Separate space 9%y, which consists of all domains that satisfy the separate condition,
that is for any Dxy € 2%y, suppDx, NsuppDx, = 0, where suppD means the
support set of a distribution D.

e Finite-ID-distribution space @?Y, which is a prior-unknown space satisfying that the
number of distinct ID joint distributions Dx,y; in 2%, is finite, i.e., [{Dx;y; : VDxy €
28} < +oo.

. b Lo . e :
e Density-based space Z4y-, which is a prior-unknown space consisting of some domains

satisfying that: for any Dxy, there exists a density function f with 1/b < f <'b
in suppy and 0.5 % Dx, + 0.5« Dx, = [ fdp, where p is a measure defined over X.
Note that if u is discrete, then Dx is a discrete distribution; and if u is the Lebesgue
measure, then Dy is a continuous distribution.

The above representative spaces widely exist in real applications. For example, 1) if the
images from different semantic labels with different styles are clearly different, then those
images can form a distribution belonging to a separate space 2%y ; and 2) when designing an
algorithm, we only have finite ID datasets, e.g., CIFAR-10, MNIST, SVHN, and ImageNet,
to build a model. Then, finite-ID-distribution space 9§Y can handle this real scenario. Note
that the single-distribution space is a special case of the finite-ID-distribution space. In this
paper, we mainly discuss these five spaces.

4. Impossibility Theorems for OOD Detection

In this section, we first give a necessary condition for the learnability of OOD detection.
Then, we show this necessary condition does not hold in the total space @3}1%/ and the
separate space Zxy-.
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4.1 Necessary Conditions for Learnability of OOD Detection

We first find a necessary condition for the learnability of OOD detection under risk (AUC),
i.e., Condition 1 (Condition 2).

Condition 1 (Linear Condition under Risk) For any Dxy € Zxy and any o € [0,1),

inf R} (h) = (1 —a) inf RE(h inf RY(h).

jof Rpp(h) = (1 - ) inf Rp(h) + o inf Rp™(h)

The importance of Condition 1 is reflected by Theorem 2, showing that Condition 1 is a
necessary and sufficient condition for the learnability of OOD detection under risk if the
Dxv is the single-distribution space.

Theorem 2 Given a hypothesis space H and a domain Dxy, OOD detection is learnable
under risk in the single-distribution space .@)%’;Y for H if and only if Condition 1 holds.

Theorem 2 implies that Condition 1 is important for the learnability of OOD detection under
risk. Due to the simplicity of single-distribution space, Theorem 2 implies that Condition 1 is
the necessary condition for the learnability of OOD detection under risk in the prior-unknown
space, see Lemma 1 in Appendix C. Then, we focus on finding a necessary condition for
the learnability of OOD detection under AUC. The condition is similar to Condition 1 but
replacing risk with AUC. Note that, for simplicity, in the following of this paper, we use
AUC(r; Dx,, Dx,) to present AUC(r; Dxy).

Condition 2 (Linear Condition under AUC) For any Dxy = Dxv;+(1—5)Dxove,
Dy = ' Dxyy; + (1 = 8) DYy, € Zxv, then for any a € [0,1),

asup AUC(r; Dx;, Dx,,) + (1 — a) sup AUC(r; Dx;, DY) = sup AUC(r; Dx;, D),
reR reR reR

where DS = aDx, + (1 —a)DY, .

The importance of Condition 2 is reflected in Theorem 3, showing that Condition 2 is a
necessary condition for the learnability of OOD detection under AUC if the Zxy is a simple
distribution space.

Theorem 3 Given a ranking function space R and a domain space Pxv, if OOD detection
is learnable under AUC for R in Pxy, then for any Dxy, D/XY € Dxvy, the linear condition
under AUC (i.e., Condition 2) holds.

Since the Condition 2 is a necessary condition for the learnability of OOD detection under
AUC, this condition provides a new way to check if an OOD detection is learnable under
AUC. Namely, if Condition 2 does not hold, OOD detection is not learnable under AUC.

4.2 Impossibility Theorems under Risk

In this subsection, we first study whether Condition 1 holds in the total space .@}“Y If

Condition 1 does not hold, then OOD detection is not learnable under risk. Theorem 4
shows that Condition 1 is not always satisfied, especially, when there is an overlap between
the ID and OOD distributions:
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Condition 5 (Overlap Between ID and OOD) We say a domain Dxy has overlap
between ID and OOD distributions, if there is a o-finite measure fi such that Dx is absolutely
continuous with respect to fi, and fi(Aoverlap) > 0, where Aoverlap = {x € X : fi(x) >
0 and fo(x) > 0}. Here fi and fo are the representers of Dx, and Dx, in Radon-Nikodym
Theorem (Cohn, 2013),

Dy, = / fidi, Dx, = / Jodji.

Lemma 4 Given a hypothesis space H and a prior-unknown space Pxvy, if there is Dxy €
Dxy, which has overlap between ID and OOD, and infney RS(h) = 0, infrey RAE(h) =0,
then Condition 1 does not hold. Therefore, OOD detection is not learnable under risk in

Dxy for H.

Lemma 4 clearly shows that under proper conditions, Condition 1 does not hold, if there
exists a domain whose ID and OOD distributions have overlap. By Lemma 4, we can
obtain that the OOD detection is not learnable in the total space _@S‘(HY for any non-trivial
hypothesis space H.

Theorem 5 (Impossibility Theorem for Total Space under Risk) OOD detection is
not learnable under risk in the total space .@;‘(HY for H, if |poH| > 1, where ¢ maps ID labels
to 1 and maps OOD labels to 2.

Since the overlaps between ID and OOD distributions may cause that Condition 1 does not
hold, we then consider studying the learnability of OOD detection in the separate space %y,
where there are no overlaps between the ID and OOD distributions. However, Theorem 6
shows that even if we consider the separate space, the OOD detection is still not learnable
in some scenarios. Before introducing the impossibility theorem for separate space, i.e.,
Theorem 6, we need a mild assumption:

Assumption 1 (Separate Space for OOD under Risk) A hypothesis space H is sepa-
rate for OOD data, if for each data point x € X, there exists at least one hypothesis function
hx € H such that hx(x) = K + 1.

Assumption 1 means that every data point x has the possibility to be detected as OOD data.
Assumption 1 is mild and can be satisfied by many hypothesis spaces, e.g., the FCNN-based
hypothesis space (Proposition 3 in Appendix N), score-based hypothesis space (Proposition
4 in Appendix N) and universal kernel space. Next, we use Vapnik—Chervonenkis (VC)
dimension (Mohri et al., 2018) to measure the size of hypothesis space, and study the
learnability of OOD detection in %%, based on the VC dimension.

Theorem 6 (Impossibility Theorem for Separate Space under Risk) If Assumption
1 holds, VCdim(¢ o H) < 400 and supycy {x € X : h(x) € V}| = +00, OOD detection is
not learnable under risk in the separate space 9% for H, where ¢ maps ID labels to 1 and
maps OOD labels to 2.

The finite VC dimension normally implies the learnability of supervised learning. However,
in our results, the finite VC dimension cannot guarantee the learnability of OOD detection
under risk in the separate space, which reveals the difficulty of the OOD detection.

10
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4.3 Impossibility Theorems under AUC

We then study whether Condition 2 holds in the total space @;‘(HY If Condition 2 does not
hold, then OOD detection is not learnable under AUC. We first present Lemma 7 to point
out when Condition 2 does not hold.

Lemma 7 Given a ranking function space R, a domain space Pxy and Dxy = fDx,y; +
(1 -8)Dxyvy, Dy = B8'Dxyy; + (1 — 5’)D3(OYO € 9xvy, let P be the overlap set between
Dx, and Dx, and P’ be the overlap set between Dx, and D' based on the Definition 5. If

sup AUC(r; Dx,, Dx,) = sup AUC(r; Dx,,Dx,)

reR r€Ran
sup AUC(r; Dx;, D’) = sup AUC(r; Dx;, D),
r€ER r€Ran

and Dx, (PN P’") < min{Dx,(P), Dx,(P’)}, then Condition 2 does not hold, where Ray is a
ranking function space consisting of all ranking functions from X to R. Therefore, OOD
detection is not learnable under AUC in Dxy for R.

Based on Lemma 7, we know that, under proper conditions, Condition 2 does not hold once
there is one domain whose ID and OOD distributions overlap. Then, based on Lemma 7,
we can obtain that the OOD detection is not learnable in the total space @?g%/ for any
non-trivial ranking function space R.

Theorem 8 (Impossibility Theorem for Total Space under AUC) Given ranking func-
tion space R, if there exist x,x' € X and r,r’ € R such that

r(x) > r(x') and v (x') > r'(x),
then the learnability of OOD detection under AUC is not distribution-free for R.

From Lemma 7, we know that the overlap between Dx, and Dx, is an important factor
to influence the learnability of OOD detection under AUC. Thus, similar to the situation
under risk, we want to study the learnability of OOD detection under AUC in separate
space Y%y first. Before introducing the impossibility theorem for separate space, we need a
mild assumption demonstrated below.

Assumption 2 (Separate Space for OOD under AUC) A ranking function space R
1s called separate ranking function space, if for any x € X, there exists r« € R such that
r«(X) < rx(x'), for any x' € X — {x}.

Note that, the above assumption is weak and can be satisfied by some well-known spaces
(see Propositions 1 and 2). The above assumption means that, for any data point x, its
ranking can be the lowest one compared to other data points in the space X. Finally, we
use Vapnik—Chervonenkis (VC) dimension (Mohri et al., 2018) to help measure the size of
ranking function space, and study the learnability of OOD detection under AUC in %%
with the help the VC dimension.

11
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Theorem 9 (Impossibility Theorem for Separate Space under AUC) Given a sep-
arate ranking function space R, if VC[poR| = d < +00 and |X| > (28d+14) log(14d+T7), then
OO0D detection is not learnable under AUC in D% for R, where poR = {lr(x)>r(x/) :T € R}.

Based on Theorem 9, we obtain a similar result to the learnability of OOD detection under
risk: the finite VC dimension cannot guarantee the learnability of OOD detection under
AUC in the separate space, which further reveals the difficulty of OOD detection. Although
the above impossibility theorems (under risk and AUC) are frustrating, there is still room to
discuss the conditions in Theorem 6 and Theorem 9, and to find out the proper conditions
for ensuring the learnability of OOD detection under risk and AUC in the separate space
(see the following section).

5. When OOD Detection Can Be Successful

Here, we discuss when the OOD detection can be learnable under risk/AUC in different
spaces. We first study the separate space 7% .

5.1 OOD Detection in the Separate Space

Both Theorem 6 and Theorem 9 have indicated that VCdim(¢ o H) = 400 or sup,cy [{x €
X h(x) € Y} < 400 (or sup,er [{x € X : 7(x) € R}| < +00 under AUC metric) is neces-
sary to ensure the learnability of OOD detection under risk or AUC in %% if Assumption
1 or Assumption 2 holds. However, generally, hypothesis spaces generated by feed-forward
neural networks with proper activation functions have finite VC dimension (Bartlett et al.,
2019; Karpinski and Macintyre, 1997). Therefore, we study the learnability of OOD detec-
tion in the case that |X| < 400, which implies that supj,cy [{x € X : h(x) € Y}| < 400
under risk metric or sup,cg [{x € R : r(x) € X'}| < +00 under AUC metric. Additionally,
Theorem 16 also implies that |X'| < +oo is the necessary and sufficient condition for the
learnability of OOD detection under risk in a separate space, when the hypothesis space is
generated by FCNN. Hence, |X| < +00 may be necessary in the space 2% .

Learnability under Risk. For simplicity, we first discuss the case that K = 1, i.e.,
the one-class novelty detection. We show the necessary and sufficient condition for the
learnability of OOD detection under risk in 2%, when |X| < 4o00.

Theorem 10 Let K =1 and |X| < +oo. Suppose that Assumption 1 holds and the constant
function k™ := 1 € H. Then OOD detection is learnable under risk in 95 for H if and
only if Han — {h°"} C H, where Hay is the hypothesis space consisting of all hypothesis
functions, and h°"* is a constant function that h°"* := 2, here 1 represents ID data and 2
represents OOD data.

The condition '™ € H presented in Theorem 10 is mild. Many practical hypothesis spaces
satisfy this condition, e.g., the FCNN-based hypothesis space (Proposition 3 in Appendix
N), score-based hypothesis space (Proposition 4 in Appendix N) and universal kernel-based
hypothesis space. Theorem 10 implies that if K = 1 and OOD detection is learnable
under risk in 2%, for H, then the hypothesis space H should contain almost all hypothesis

12
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functions, implying that if the OOD detection can be learnable under risk in the distribution-
agnostic case, then a large-capacity model is necessary.

Next, we extend Theorem 10 to a general case, i.e., K > 1. When K > 1, we will first use a
binary classifier h® to classify the ID and OOD data. Then, for the ID data identified by h?,
an ID hypothesis function 2™ will be used to classify them into corresponding ID classes.
We state this strategy as follows: given a hypothesis space H™ for ID distribution and a
binary classification hypothesis space H" introduced in Section 2, we use H™ and HP to
construct an OOD detection’s hypothesis space H, which consists of all hypothesis functions
h satisfying the following condition: there exist A" € H™ and hP € H such that Vx € X,

h(x) =i, if h"(x) =i and hP(x) =1; otherwise, h(x) = K + 1. (6)

We use H'™ @ HP to represent a hypothesis space consisting of all A defined in Eq. (6). In
addition, we also need an additional condition for the loss function ¢, shown as follows:

Condition 3 /(y2,y1) < (K + 1,y1), for any in-distribution labels y1 and y2 € ).

Theorem 11 Let |X| < +o0o and H = H™ e HP. If Hay — {h°"} C HP and Condition 3
holds, then OOD detection is learnable under risk in D%, for H, where Han and hout are
defined in Theorem 10.

Learnability under AUC. Then, we study the learnability of OOD detection under
AUC in the separate space. Here we require to introduce a basic assumption in learning
theory for AUC—AUC-based Realizability Assumption, i.e., for any Dxy € Pxy, there exists
r* € R such that AUC(r*; Dx,, Dx,) = 1 (see Appendix A.2). Based on this AUC-based
Realizability Assumption, we prove the following theorem.

Theorem 12 Given a separate ranking function space R, if |X| < +oo, then OOD detection
is learnable under AUC in the separate space Z%y for R if and only if AUC-based
Realizability Assumption holds.

Theorem 12 indicates the significance of AUC-based Realizability Assumption in OOD
detection under AUC, which also means that a large ranking function space is essential for
the success of OOD detection under AUC.

5.2 OOD Detection in the Finite-ID-Distribution Space

Since researchers can only collect finite ID datasets as the training data in the process of
algorithm design, it is worthy to study the learnability of OOD detection under risk in the
finite-ID-distribution space .@§Y. We first show two necessary concepts below.

Condition 6 (ID Consistency) Given a domain space Dxy, we say any two domains
Dxy € Pxy and D'y € Pxy are ID consistency, if Dx,y, = D/XIYI‘ We use ~ to represent
the ID consistency, i.e., Dxy ~ D' if and only if Dxy and Dy are ID consistency.

It is easy to check that the ID consistency ~ is an equivalence relation. Therefore, we define
the set [Dxy| :={D%y € Pxv : Dxy ~ D'y} as the equivalence class regarding Zxy .
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Condition 4 (Compatibility) For any equivalence class [D'yy/] with respect to Pxy and
any € > 0, there exists a hypothesis function he € H such that for any domain Dxy € [D'sy],

he € {h' € H: RY*(h') < }:n% RYE(h) + e} n{W € H: RB(W) < }in?f{ RB(h) + €}
S S

In Appendix C, Lemma 2 has implied that Condition 4 is a general version of Condition 1.
Next, Theorem 13 shows that Condition 4 is the necessary and sufficient condition in .@fgy.

Theorem 13 Suppose that X is bounded. OOD detection is learnable under risk in @?Y
for H if and only if the compatibility condition (i.e., Condition 4) holds. Furthermore,
the learning rate €cons(n) can attain O(1/vVn1=?), for any 6 € (0,1).

Theorem 13 shows that, in the process of algorithm design, OOD detection cannot be
successful without the compatibility condition if we use risk to evaluate the performance.
Theorem 13 also implies that Condition 4 is essential for the learnability of OOD detection
under risk. This motivates us to study whether OOD detection can be successful in more
general spaces (e.g., the density-based space), when the compatibility condition holds.

As for the learnability of OOD detection under AUC in the finite-ID-distribution space, since
Condition 2 only considers linearity between OOD distributions instead of OOD and ID
distributions as shown in Condition 1. To further reveal the learnability of OOD detection
under AUC in the finite-ID-distribution space, we might need to discover a new condition
for compatibility w.r.t. OOD and ID distributions to extend Condition 2.

5.3 OOD Detection in the Density-based Space

Learnability under Risk. To ensure that Condition 4 holds, we consider a basic assump-
tion in learning theory—Risk-based Realizability Assumption (see Appendix A.2), i.e., for any
Dxy € Pxy, there exists h* € H such that Rp(h*) = 0. We discover that in the density-
based space @5‘(’3, Risk-based Realizability Assumption can conclude the compatibility
condition (Condition 4). Based on this observation, we prove the following theorem:

Theorem 14 Given a density-based space .@é‘(’;, if p(X) < 400, the Risk-based Realizability
Assumption holds, then when H has finite Natarajan dimension (Shalev-Shwartz and Ben-
David, 2014), OOD detection is learnable in .@é‘(’s, for H. Furthermore, the learning rate

€cons(n) can attain O(1/vVni=?9), for any 6 € (0,1).

To further investigate the importance and necessary of Risk-based Realizability Assumption,
Theorem 18 has indicated that in some practical scenarios, Risk-based Realizability Assump-
tion is the necessary and sufficient condition for the learnability of OOD detection under
risk in the density-based space. Therefore, Risk-based Realizability Assumption may be
indispensable for the learnability of OOD detection under risk in some practical scenarios.

Learnability under AUC. To study the learnability of OOD detection under AUC in

the density-based space, we first need to introduce a constant-closure assumption for R.

Assumption 3 We say a ranking function space R is constant closure, if for any r € R,
the constant function space r(X) :={c:r(x) =¢c, ¥x € X,r € R} C R.
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Note that, the above assumption is weak and can be satisfied by some well-known ranking
function space (see Propositions 1 and 2). Based on this assumption, we give a sufficient
condition for learnability of OOD detection under AUC in the density-based space:

Theorem 15 Suppose that R is constant closure, separate, and p(X) < +oo. Given
a density-based space 9;’?,, if the AUC-based Realizability Assumption holds, then when
VC[p o R] < 400, OOD detection is learnable under AUC in @;’ff for R, where ¢ o R =
{1, x)>ra(x) 1 71,72 € R}. Furthermore, the learning rate econs(n) can attain O(1/vVnl=?%),
for any 0 € (0,1).

Based on Theorem 15, we find that the AUC-based Realizability Assumption is also important
for the learnability of OOD detection under AUC in the density-based space.

6. Connecting Theory to Practice

In Section 5, we have shown the successful scenarios where OOD detection problem can
be addressed in theory under risk or AUC metric. In this section, we will discuss how the
proposed theory is applied to two representative hypothesis spaces—neural-network-based
spaces and score-based spaces.

6.1 Key Concepts Regarding Fully-connected Neural Networks

Fully-connected Neural Networks. Given a sequence q = (I1, 12, ...,l5), where [; and g
are positive integers and g > 2, we use g to represent the depth of neural network and use
I; to represent the width of the i-th layer. After the activation function o is selected?, we
can obtain the architecture of FCNN according to the sequence q. Let fy, , be the function
generated by FCNN with weights w and bias b. An FCNN-based scoring function space is
defined as: Fg := {fwp : V weights w, V bias b}. In addition, for simplicity, given any two
sequences q = (I1,...,lg) and ' = (], ..., l’g,), we use the notation q < q’ to represent the
following equations and inequalities:

1) g Sglvll = lllalg :l;’;

2); <l;,Vi=1,..,9—1; and 3)l;_1 <}, Vi=g,..,¢' — L
Lemma 14 shows q < ' = Fq C Foq- We use < to compare the sizes of FCNNs.

FCNN-based Hypothesis Space. Let [, = K + 1. The FCNN-based scoring function
space FJ can induce an FCNN-based hypothesis space. For any fwp € Fg, the induced
hypothesis function is:

hwp = argmax fE o, where f¥ is the k-th coordinate of fwp-
ke{l,.. . K+1} ’

Then, the FCNN-based hypothesis space is defined as Hg := {hwp : V weights w, V bias b}.

3. We consider the rectified linear unit (ReLU) function as the default activation function o, which is defined
by o(x) = max{z,0}, V z € R. We will not repeatedly mention the definition of o in the rest of our paper.
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FCNN-based Ranking Function Space. Then, based on the definition of FCNN, we
show that, given a specific q, under some mild conditions, FJ is the separate and constant
closure ranking function space.

Proposition 1 Let X' be a bounded feature space. Given q = (l1,...,l4—1,1), then

o if some s withl <s<g,d=11 <ls <..<l,, andls; > 2d, Fg is the separate
ranking function space;

o .7-"3 is constant closure;
o {15 (x)<fo(x') : J1, f2 € FG} has finite VC dimension.

Score-based Hypothesis Space. Many OOD detection algorithms detect OOD data
by using a score-based strategy. That is, given a threshold )\, a scoring function space
Fi c {f: X = R} and a score function E : F; — R, then x is regarded as ID data if and
only if E(f(x)) > A. We introduce several representative score functions E as follows: for
any f= [fla ) fl]T € ]:la

e softmax-based function (Hendrycks and Gimpel, 2017): X € (%, 1) and T > 0,

exp (f*
max ——R\M ) S (7)

E(f) = I ’
ke{l..l} S exp (f€)

e temperature-scaled function (Liang et al., 2018): A € (},1) and T > 0,

E(f) = max exp (/1) (8)

kel lt YL exp (f¢/T)

e cnergy-based function (Liu et al., 2020): A € (0,400) and T' > 0,

!
E(f) = Tlog Y exp (f°/T). 9)
c=1
Using F, A and f € FJ, we have a classifier: hf;vE(x) = 1, if E(f(x)) > \; otherwise,
hé g(x) = 2, where 1 represents the ID data and 2 represents the OOD data. Hence, a
binary classification hypothesis space H?, which consists of all hf;, g is generated. We define

U’A P— . g
M = {h p : VE € FI).

Score-based Ranking Function Space. Similar to the FCNN-based ranking function
space, for several representative score functions E (e.g.,, Egs (7), (8), and (9)), the FCNN-
based score ranking function space E o F{ is separate, which is evidence that Assumption 2
is weak and can be easily satisfied.

Proposition 2 Given q = (l1,...,l5-1,1) and q' = (I1,...,l;—1,1), let R = E o FJ, then

o if Fg, s a separate ranking function space, R is the separate ranking function space;
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e R is constant closure;
e {1, (x)<ra(x), "1, 72 € R} has finite VC dimension,

where E is Eq. (7), (8) or (9).

According to the previous section, we find that FCNN-based ranking function space and
FCNN-based score ranking function space can satisfy almost all conditions in theorems.

6.2 Learnability of OOD Detection in Different Spaces

Next, we present applications of our theory regarding the above practical and important
hypothesis spaces and ranking function spaces.

Theorem 16 Suppose that Condition 3 holds and the hypothesis space H is FCNN-based or
score-based, i.e., H =Hg or H = H™ e HP, where H™ is an ID hypothesis space, H" = Hg%
and H = H™ o HP is introduced below Eq. (6), here E is Eq. (7), (8) or (9). Then

There is a sequence q = (li, ...,ly) such that OOD detection is learnable
under risk in the separate space D%y for H if and only if |X| < 4o0.

Furthermore, if |X| < +oo, then there exists a sequence q = (li,...,ly) such that for
any sequence q' satisfying that q < o', OOD detection is learnable under risk in D% for H.

If we consider the ranking function space, we can obtain a similar theoretical result.

Theorem 17 Suppose the ranking function space R is separate, and FCNN-based or score-
based, i.e., R = F§ or R = E o Fg, where E is Eq. (7), (8) or (9). Then

There is a sequence q = (li,...,lg) such that OOD detection is AUC
learnable in the separate space Py for R if and only if |X| < +oo.

Furthermore, if |X| < 400, then there is a sequence q = (l1,...,lg) such that for any
sequence ' satisfying that q < ', OOD detection is learnable under AUC in D% for R.

Theorems 16 and 17 state that 1) when the hypothesis space or ranking function space is
FCNN-based or score-based, the finite feature space is the necessary and sufficient condition
for the learnability of OOD detection (under risk or AUC) in the separate space; and 2) a
larger architecture of FCNN has a greater probability to achieve the learnability of OOD
detection in the separate space. Note that when we select Egs. (7), (8), or (9) as the score
function F, Theorems 16 and 17 also show that the selected score functions E can guarantee
the learnability of OOD detection (under risk or AUC), which is a theoretical support for
the representative works (Liang et al., 2018; Liu et al., 2020; Hendrycks and Gimpel, 2017).
Furthermore, Theorems 18 and 19 also offer theoretical supports for these works in the
density-based space.

Theorem 18 Suppose that each domain Dxy in 9%)/ is attainable, i.e., argmin,cq, Rp(h) #
0 (the finite discrete domains satisfy this). Let K = 1 and the hypothesis space H be score-
based (H = Hg”]\g, where E is in Eq. (7), (8), or (9)) or FCNN-based (H = Hg). If
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w(X) < 400, then the following four conditions are equivalent:

Learnability in @é‘(’g for H < Condition 1 <—
Risk-based Realizability Assumption <= Condition 4

Theorem 19 Suppose that the ranking function space R is separate and score-based (R =
E o Fg) or FOCNN-based (R = FJ), where E is Eq. (7), (8) or (9). If p(X) < +o0, then
the following three conditions satisfy:

AUC-based Realizability Assumption = Learnability in .@;’3 for R = Condition 2

Compared to Theorem 18, Theorem 19 cannot obtain the equivalence among Realizability
Assumption, Learnability in .@é”(’g‘/ and linear condition under AUC. The main reason is
that Condition 2 is a weaker necessary condition for learnability of OOD detection under
AUC than Condition 1 for learnability of OOD detection under risk. We need to discover a
strong necessary condition for learnability of OOD detection under AUC to obtain a similar
equivalence that appeared in Theorem 18%.

6.3 Overlap and Benefits of Multi-class Case

We investigate when the hypothesis space is FCNN-based or score-based, what will happen
if there exists an overlap between the ID and OOD distributions?

Theorem 20 Let K =1 and the hypothesis space H be score-based (H = HZ:)}‘E, where E is
in Eq. (7), (8), or (9)) or FCNN-based (H = Hg). Given a prior-unknown space Dxy , if
there exists a domain Dxy € Dxy, which has an overlap between ID and OOD distributions
(see Definition 5), then OOD detection is not learnable under risk in Pxy for H.

When K =1 and the hypothesis space is FCNN-based or score-based, Theorem 20 shows that
overlap between ID and OOD distributions is the sufficient condition for the unlearnability
of OOD detection under risk. Theorem 20 takes roots in the conditions infjeq; RB(h) = 0
and infpey RA®(h) = 0. However, when K > 1, we can ensure infpey R5(h) > 0 if ID
distribution Dx;y; has overlap between ID classes. By this observation, we conjecture that
when K > 1, OOD detection is learnable in some special cases where overlap exists, even if
the hypothesis space is FCNN-based or score-based. As for the ranking function space, we
can obtain a corresponding but weaker theoretical result shown below.

Theorem 21 Let the separate ranking function space R be FCNN-based or score-based
(where the score function E is Eq. (7), (8), or (9)). Suppose that Dxy, D'y, € Pxy are
discrete distributions with Dx,y; = Dxyy; and Dx,, = 0x, D' = 0x. If Dx, = 0x, D =
Ox’ have overlaps with Dxy; and Dx, # DS(O, then OOD detection is not learnable under
AUC in Dxy for R.

4. A stronger necessary condition normally means that this necessary condition is closer to the necessary
and sufficient condition.
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7. Discussion

Connections between Theorems under Risk and AUC. In our previous conference
paper (Fang et al., 2022a), we mainly focus on the learnability of OOD detection under risk.
However, in practice, AUC-related metrics are often used to evaluate the performance of
OOD detection algorithms (Lin et al., 2021; Huang et al., 2021; Fort et al., 2021b; Ming
et al., 2022; Yang et al., 2022). To fill this gap, we take a further step: investigating the
learnability of OOD detection under AUC. Figure 1 illustrates the connections between
the main theoretical results of learnability of OOD detection under risk and AUC. In the
most of domain spaces considered in this paper, we can obtain similar theoretical results
under AUC compared to theoretical results under risk. However, when considering the
finite-ID-distribution space, we cannot get a corresponding theorem for the learnability of
OOD detection under AUC. The main reason is that Condition 2 is a weaker necessary
condition for learnability of OOD detection under AUC than Condition 1 for learnability
of OOD detection under risk. Thus, additional information might be required to obtain a
stronger necessary condition for AUC learnability. The influence of Condition 2 also appears
in Theorem 19 where we cannot obtain a strong theoretical result like Theorem 18. To
conclude, since Condition 1 is stronger (i.e., it is closer to necessary and sufficient condition)
than Condition 2, the theoretical results under risk are stronger than those under AUC.
In the future, we need to discover a stronger necessary condition for learnability of OOD
detection under AUC.

Understanding Far-OOD Detection. Many existing works (Hendrycks and Gimpel,
2017; Yang et al., 2022) study the far-OOD detection issue. Existing benchmarks include 1)
MNIST (Deng, 2012) as ID dataset, and Texture (Kylberg, 2011), CIFAR-10 (Krizhevsky
and Hinton, 2009) or Place365 (Zhou et al., 2018) as OOD datasets; and 2) CIFAR-10
(Krizhevsky and Hinton, 2009) as ID dataset, and MNIST (Deng, 2012), or Fashion-MNIST
(Zhou et al., 2018) as OOD datasets. In far-OOD case, we find that the ID and OOD
datasets have different semantic labels and different styles. From the theoretical view, we
can define far-OOD detection tasks as follows: for 7 > 0, a domain space Zxy is 7-far-OOD,
if for any domain Dxy € Pxy,

dist(suppDx,,,suppDyx,) > T.

Theorems 11, 13 and 16 imply that under appropriate hypothesis space, 7-far-OOD detection
is learnable under risk. Theorem 17 implies that under appropriate hypothesis space, 7-
far-OOD detection is learnable under AUC. In Theorem 11, the condition |X| < 400 is
necessary for the separate space. However, one can prove that in the far-OOD case, when
H™ is agnostic PAC learnable for ID distribution, the results in Theorem 11 still holds, if
the condition |X'| < 400 is replaced by a weaker condition that X is compact. In addition,
it is notable that when H™ is agnostic PAC learnable for ID distribution and X is compact,
the KNN-based OOD detection algorithm (Sun et al., 2022) is consistent in the 7-far-OOD
case.

Understanding Near-OOD Detection. When the ID and OOD datasets have similar
semantics or styles, OOD detection tasks become more challenging. (Ren et al., 2021; Fort
et al., 2021a) consider this issue and name it near-OOD detection. Existing benchmarks
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Figure 1: Connections among main theoretical results in this paper. Compared to risk, AUC
has a more strict requirement for the classification. Perfect classification (i.e.,
accuracy is 100%) does not imply perfect AUC, which is the reason why theories
regarding risk and AUC are very different.

include 1) MNIST (Deng, 2012) as ID dataset, and Fashion-MNIST (Zhou et al., 2018) or
Not-MNIST (Bulatov, 2011) as OOD datasets; and 2) CIFAR-10 (Krizhevsky and Hinton,
2009) as ID dataset, and CIFAR-100 (Krizhevsky et al., 2009) as OOD dataset. From the
theoretical view, some near-OOD tasks may imply the overlap condition, i.e. Definition
5. Therefore, Lemma 4 and Theorem 20 imply that near-OOD detection may be not
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learnable under risk, and Lemma 7 and Theorem 21 imply that near-OOD detection may be
not learnable under AUC. Developing a theory to understand the feasibility of near-OOD
detection is an open question.

8. Related Work

OOD Detection Algorithms. We will briefly review many representative OOD detection
algorithms in three categories. 1) Classification-based methods use an ID classifier to detect
OOD data (Hendrycks and Gimpel, 2017)°. Representative works consider using the maxi-
mum softmax score (Hendrycks and Gimpel, 2017), temperature-scaled score (Ren et al.,
2019) and energy-based score (Liu et al., 2020; Wang et al., 2021) to identify OOD data. 2)
Density-based methods aim to estimate an ID distribution and identify the low-density area
as OOD data (Zong et al., 2018). 3) The recent development of generative models provides
promising ways to make them successful in OOD detection (Pidhorskyi et al., 2018; Nalisnick
et al., 2019; Ren et al., 2019; Kingma and Dhariwal, 2018; Xiao et al., 2020). Distance-based
methods are based on the assumption that OOD data should be relatively far away from
the centroids of ID classes (Lee et al., 2018), including Mahalanobis distance (Lee et al.,
2018; Ren et al., 2021), cosine similarity (Zaeemzadeh et al., 2021), and kernel similarity
(Amersfoort et al., 2020).

Early works consider using the maximum softmax score to express the ID-ness (Hendrycks
and Gimpel, 2017). Then, temperature scaling functions are used to amplify the sepa-
ration between the ID and OOD data (Ren et al., 2019). Recently, researchers propose
hyperparameter-free energy scores to improve the OOD uncertainty estimation (Liu et al.,
2020; Wang et al., 2021). Additionally, researchers also consider using the gradients to help
improve the performance of OOD detection (Huang et al., 2021).

Except for the above algorithms, researchers also study the situation, where auxiliary OOD
data can be obtained during the training process (Hendrycks et al., 2019; Dhamija et al.,
2018). These methods are called outlier exposure, and have much better performance than
the above methods due to the appearance of OOD data. However, the exposure of OOD
data is a strong assumption (Yang et al., 2021). Thus, researchers also consider generating
OOD data to help the separation of OOD and ID data (Vernekar et al., 2019). In this paper,
we do not make an assumption that OOD data are available during training, since this
assumption may not hold in real world.

OOD Detection Theory. Zhang et al. (2021) rejects the typical set hypothesis, the claim
that relevant OOD distributions can lie in high likelihood regions of data distribution, as
implausible. Zhang et al. (2021) argues that minimal density estimation errors can lead to
OOD detection failures without assuming an overlap between ID and OOD distributions.
Compared to Zhang et al. (2021), our theory focuses on the PAC learnable theory of OOD
detection. If detectors are generated by FCNN, our theory (Theorem 20) shows that the
overlap is the sufficient condition to the failure of learnability of OOD detection, which
is complementary to Zhang et al. (2021). In addition, we identify several necessary and

5. Note that, some methods assume that OOD data are available in advance (Hendrycks et al., 2019;
Dhamija et al., 2018). However, the exposure of OOD data is a strong assumption (Yang et al., 2021).
We do not consider this situation in our paper.
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sufficient conditions for the learnability of OOD detection, which opens a door to studying
OOD detection in theory. Beyond Zhang et al. (2021), Morteza and Li (2022) paves a new
avenue to designing provable OOD detection algorithms. Compared to Morteza and Li
(2022), our paper aims to characterize the learnability of OOD detection to answer the
question: is OOD detection PAC learnable?

Open-set Learning Theory. Liu et al. (2018) is the first to propose the agnostic PAC
guarantees for open-set detection. Unfortunately, the test data must be used during the
training process. Fang et al. (2020) considers the open-set domain adaptation (OSDA) (Luo
et al., 2020) and proposes the first learning bound for OSDA. Fang et al. (2020) mainly
depends on the positive-unlabeled learning techniques (Kiryo et al., 2017; Ishida et al., 2018;
Chen et al., 2021b). However, similar to Liu et al. (2018), the test data must be available
during training. To study open-set learning (OSL) without accessing the test data during
training, Fang et al. (2021) proposes and studies the almost PAC learnability for OSL, which
is motivated by transfer learning (Dong et al., 2020; Fang et al., 2022b). Recently, Wang
et al. (2022) proposes a novel AUC-based OOD detection objective named OpenAUC (Yang
et al., 2023; Jiang et al., 2023) as objective function to learn open-set predictors, and builds
a corresponding AUC-based open-set learning theory. In our paper, we study the PAC
learnability for OOD detection, which is an open problem proposed by Fang et al. (2021).

Learning Theory for Classification with Reject Option. Many works (Chow, 1970;
Franc et al., 2021) also investigate the classification with reject option (CwRO) problem,
which is similar to OOD detection in some cases. Cortes et al. (2016b,a); Ni et al. (2019);
Charoenphakdee et al. (2021); Bartlett and Wegkamp (2008) study the learning theory and
propose the agnostic PAC learning bounds for CwRO. However, compared to our work
regarding OOD detection, existing CwRO theories mainly focus on how the ID risk (i.e., the
risk that ID data is wrongly classified) is influenced by special rejection rules. Our theory
not only focuses on the ID risk, but also pays attention to the OOD risk.

Robust Statistics. In the field of robust statistics (Rousseeuw et al., 2011), researchers
aim to propose estimators and testers that can mitigate the negative effects of outliers
(similar to OOD data). The proposed estimators are supposed to be independent of the
potentially high dimensionality of the data (Ronchetti and Huber, 2009; Diakonikolas et al.,
2020, 2019). Existing works (Diakonikolas et al., 2021; Cheng et al., 2021; Diakonikolas
et al., 2022) in the field have identified and resolved the statistical limits of outlier robust
statistics by constructing estimators and proving impossibility results. In the future, it is
a promising and interesting research direction to study the robustness of OOD detection
based on robust statistics.

PQ Learning Theory. Under some conditions, PQ learning theory (Goldwasser et al.,
2020; Kalai and Kanade, 2021) can be regarded as the PAC theory for OOD detection in the
semi-supervised or transductive learning cases, i.e., test data are required during the training
process. Additionally, PQ learning theory in Goldwasser et al. (2020); Kalai and Kanade
(2021) aims to give the PAC estimation under Realizability Assumption (Shalev-Shwartz
and Ben-David, 2014). Our theory focuses on the PAC theory in different cases, which is
more difficult and more practical than PAC theory under Realizability Assumption.
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9. Conclusions and Future Works

OOD detection has become an important technique to increase the reliability of machine
learning. However, its theoretical foundation is merely investigated, which hinders real-world
applications of OOD detection algorithms. This paper is the first to provide the PAC theory
for OOD detection in terms of two commonly used metrics: risk and AUC. Our results imply
that a universally consistent algorithm might not exist for all scenarios in OOD detection.
Yet, we still discover some scenarios where OOD detection is learnable under risk or AUC
metrics. Our theory reveals many necessary and sufficient conditions for the learnability
of OOD detection under risk or AUC, hence paving a road to studying the learnability of
OOD detection. In the future, we will focus on studying the robustness of OOD detection
based on robust statistics (Diakonikolas et al., 2021; Diakonikolas and Kane, 2020).
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Table 1: Main notations and their descriptions.

Notation Description

e Spaces and Labels

d and X C R? the feature dimension of data point and feature space
y ID label space {1, ..., K'}

K+1 K + 1 represents the OOD labels

Yan YU{K +1}

e Distributions
XI: XO: 1/17 YO
Dxvis Dxoyo

ID feature, OOD feature, ID label, OOD label random variables
ID joint distribution and OOD joint distribution

D%y D%y = (1 = a)Dx;v; + aDxgy,, Va€[0,1]
out class-prior probability for OOD distribution
Dxy Dxy = (1 —7°"")Dx,;v; + 7" Dx vy, called domain

Dx;,Dxq,Dx

e Domain Spaces

marginal distributions for Dx;v;, Dxov, and Dxy, respec-
tively

Dxy domain space consisting of some domains

@j(uy total space

s

j)f)});y s.eperate:* sp.ace ‘

@iiy sm'gle-dlstr'lbu.tlon' space

Dx finite-ID-distribution space

95(’3, density-based space

e Loss Function, Function Spaces

£(-,+) loss: Van X Yan — R>0: £(y1,y2) = 0 if and only if y1 = y2

H hypothesis space -

Hin ID hypothesis space

HP hypothesis space in binary classification

Fi scoring function space consisting some [ dimensional vector-
valued functions

R ranking function space consisting some ranking functions

e Risks, Partial Risks and AUC

Rp(h) risk corresponding to Dxy

R;E);(th) partial r%sk correspond%ng to Dx;v;

RY*(h) partial risk corresponding to Dx v,

R% (h) a-risk corresponding to D%+

AUC(r; Dxy) AUC corresponding to Dxy

AUC(r; Dxy, Dx()
e Fully-Connected Neural Net-
works

AUC corresponding to Dx, Dxg

q a sequence (l1,...,1g) to represent the architecture of FCNN
o activation function. In this paper, we use ReLU function
Fq FCNN-based scoring function space

HG FCNN-based hypothesis space

fw,b FCNN-based scoring function, which is from Fg

hw.b FCNN-based hypothesis function, which is from Hg

e Score-based Hypothesis Space

E scoring function

A threshold

Hg’i{; score-based hypothesis space—a binary classification space
hf“ B score-based hypothesis function—a binary classifier

2

Appendix A. Notations
A.1 Main Notations and Their Descriptions

In this section, we summarize important notations in Table 1.
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Given f = [f',..., f]T, for any x € X,

argmax f*(x) := max{k € {1,...,1} : ff(x) > fi(x),Vi=1,...,1},
ke{l,...,l}

where f* is the k-th coordinate of f and f? is the i-th coordinate of f. The above definition
about arg max aims to overcome some special cases. For example, there exist k1, ko (k1 < k2)
such that f*(x) = f*(x) and f*(x) > fi(x), f*2(x) > fi(x), Vi € {1,...,1}—{k1,ko}.
Then, according to the above definition, k2 = argmaxycqy, . fE(x).

A.2 Realizability Assumptions

Assumption 4 (Risk-based Realizability Assumption) A domain space Pxy and hy-
pothesis space H satisfy the Risk-based Realizability Assumption, if for each domain Dxy €
Dxvy, there exists at least one hypothesis function h* € H such that Rp(h*) = 0.

Assumption 5 (AUC-based Realizability Assumption) A domain space Pxy and
ranking function space R satisfy the AUC-based Realizability Assumption under AUC, if
for each domain Dxy € Pxy, there exists at least one hypothesis function r* € R such that
AUC(h*; Dxy) = 1.

A.3 Learnability and PAC learnability

Here we give a proof to show that Learnability given in Definition 1 and PAC learnability
are equivalent.

First, we prove that Learnability concludes the PAC learnability.
According to Definition 1,

Es~py ,. BD(A(5)) < }%g{ Rp(h) + €cons(n),
which implies that

Es~py  [Rp(A(S)) = inf Rp(h)] < €cons(n)-

Note that Rp(A(S)) — infrey Rp(h) > 0. Therefore, by Markov’s inequality, we have

P(RD(A(S)) — inf RD(h) < 6) >1 —]ESNDBL(I

jnf Rp(A(S)) — inf Rp(h)]/e > 1 — €cons(n)/e.

YI[ heH

Because €¢ons(n) is monotonically decreasing, we can find a smallest m such that econs(m) > €
and €cons(m — 1) < €4, for § € (0,1). We define that m(e, §) = m. Therefore, for any € > 0
and ¢ € (0, 1), there exists a function m(e, d) such that when n > m(e, §), with the probability

at least 1 — 9, we have

Rp(A(S)) - inf Rp(h) <,

which is the definition of PAC learnability.

32



ON THE LEARNABILITY OF OUT-OF-DISTRIBUTION DETECTION

Second, we prove that the PAC learnability concludes Learnability.

PAC-learnability: for any € > 0 and 0 < 6 < 1, there exists a function m(e, d) > 0 such that
when the sample size n > m(e, d), we have that with the probability at least 1 —§ > 0,

Rp(A(9)) — gg’{RD(h) <e.

Note that the loss ¢ defined in Section 2 has upper bound (because YU{K +1} is a finite set).
We assume the upper bound of £ is M. Hence, according to the definition of PAC-learnability,
when the sample size n > m(e, J), we have that

Es[Rp(A(S)) — inf Rp(h)] < e(1 - 8) +2M3 < e+ 2M5.

If we set § = ¢, then when the sample size n > m(e, €), we have that

Es[Rp(A(S)) — inf Rp(h)] < (2M + 1),

this implies that

Jim Es[Rp(A(S)) — inf Rp(h)] =0,

which implies the Learnability in Definition 1. We have completed this proof.
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Appendix B. Proof of Theorem 1

Theorem 1 Given spaces Dxy and Py = {D%y : VDxy € Dxy,Ya € [0,1)}, then

1) D'y is a priori-unknown space and Dxy C D'y ;

2) if Dxvy is a priori-unknown space, then Definition 1 and Definition 2 are equivalent;
3) 00D detection is strongly learnable in Pxy under risk if and only if OOD detection is
learnable in D' under risk;

4) OOD detection is learnable in Pxy under AUC if and only if OOD detection is learnable
in D'y under AUC.

Proof [Proof of Theorem 1.]

Proof of the First Result.

To prove that 2’ is a priori-unknown space, we need to show that for any Dg‘(/y € Dy
then D%y € Z% for any a € [0,1).

According to the definition of 2%, for any D%Y € Py, we can find a domain Dyxy € Zxy,
which can be written as Dxy = (1 — 7°")Dx,y; + 7" Dx,y, (here 7°" € [0,1)) such that

D?(,Y =(1—-0a)Dxyy; + a,DXOYO'

Note that D%y = (1 — «)Dx,y; + @Dx,v,- Therefore, based on the definition of %Y., for
any a € [0,1), D%y € Z%y, which implies that 2% is a prior-known space. Additionally,
for any Dxy € Zxy, we can rewrite Dxy as D, thus Dyy = D& € Py, which
implies that Zxy C Py .

Proof of the Second Result.
First, we prove that Definition 1 concludes Definition 2, if Zxy is a prior-unknown space:

Pxy is a priori-unknown space, and OOD detection is learnable in Zxy for H.

I
OOD detection is strongly learnable in Zxy for H: there exist an algorithm A : U+§'i(2( X

n
V)" — H, and a monotonically decreasing sequence €(n), such that e(n) — 0, as n — 400

Es~py,,, [RB(A(S)) — inf RY ()] < e(n), Va € [0,1], VDxy € Ixy.

In the priori-unknown space, for any Dxy € Zxy, we have that for any a € [0,1),
D%y = (1 —a)Dxy; + aDxyy, € Dxy-

Then, according to the definition of learnability of OOD detection, we have an algorithm

A and a monotonically decreasing sequence €econs(n) — 0, as n — —+00, such that for any
a€[0,1),

IESNDSL(IYI Rpa(A(9)) < }116175 Rpe(h) 4 €cons(n), (by the property of priori-unknown space)
where

Rpe (A(S)) = /X | HAS)60.1)ADgy e ). Rie(h) = /X A9 p)ADRy )
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Since Rpa(A(S)) = R} (A(S)) and Rpe(h) = RY(h), we have that

ESND%YIR%(A(S)) < é]&f_{ RY(h) + €cons(n), Va €[0,1).
Next, we consider the case that « = 1. Note that

liminf inf R%(h) > liminf a inf RY*“(h) = inf RY*(h).
it 2, R 2 lipipto fof KB (1) = fof R5" (1)

Then, we assume that he € H satisfies that
R () — inf R (h) < e.

It is obvious that

R (h) 2 inf B ()

Let a — 1. Then, for any € > 0,
R (he) = lim1 R% (he) = limsup R} (he) > limsup inf RY(h),
a—

a—1 a—1 heH

which implies that

inf RA®(h) = lim R4 (k) > lim li inf R%(h) =i inf R%(h).
jnf Rp"(h) = lim Rp"(he) > lim i sup inf B(h) imsup inf b(h)

Combining Eq. (11) with Eq. (12), we have

inf RY"(h) =i inf Rp(h) = liminf inf R7 (A
i 0 (1) = Hoie [, R () =Byt i, o)

which implies that

inf RA"(h) = lim inf R%(h).
AP0 = iy RO ()

Note that

Es-py , RH(A(S)) = (1 - 0)Espy, | RE(A(S)) + aEs-pg  RB"(A(S)).

Hence, Lebesgue’s Dominated Convergence Theorem (Cohn, 2013) implies that
- _ t
lim Es~py . RH(A(S)) = Es~py , BB (A(S)).
Using Eq. (10), we have that

lim1 Eswpn .. RH(A(S)) < lim inf RY(h) + €cons(n).
a—r

X1Y1 a—1heH
Combining Eq. (14), Eq. (15) with Eq. (16), we obtain that

Eswpy,, BB (A(S)) < inf R () + ccons(n).

Since RE*(A(S)) = RL(A(S)) and R%*(h) = RL(h), we obtain that

Esnz,y, BD(A(S)) < inf Rp(h) + ccons(n)-
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Combining Eq. (10) and Eq. (17), we have proven that: if the domain space Zxy is a
priori-unknown space, then OOD detection is learnable in Zxy for H.

Y
OOD detection is strongly learnable in Zxy for H: there exist an algorithm A : Uj{i‘i()( X

V)" — H, and a monotonically decreasing sequence €(n), such that e(n) — 0, as n — +o0,

Es~pn . RH(A(S)) < ﬁlel?f_[ R%H(h) +€(n), Vael0,1], VDxy € Zxy.

X1Y1

Second, we prove that Definition 2 concludes Definition 1:

OOD detection is strongly learnable in Zxy for H: there exist an algorithm A : UZS(X X
V)" — H, and a monotonically decreasing sequence €(n), such that e(n) — 0, as n — +o0,

ESNDSL(IYI [R%(A(S)) — }iIEl’f-l R%(h)] < e(n), Ya € [0, 1], VDxy € Dxy.

U
OOD detection is learnable in Zxy for H.

If we set a = w°", then Es~py R%(A(S)) < infrey RY(h) + €(n) implies that

Es~py . Rp(A(S5)) < jof Rp(h) + €(n),

which means that OOD detection is learnable in Zxy for H. We have completed this proof.

Proof of the Third Result.
The third result is a simple conclusion of the second result. Hence, we omit it.

Proof of the Fourth Result.
The fourth result is a simple conclusion of the property of AUC metric. Hence, we omit it.
|

Appendix C. Proof of Theorem 2

Before introducing the proof of Theorem 2, we extend Condition 1 to a general version
(Condition 5). Then, Lemma 1 proves that Conditions 1 and 5 are the necessary conditions
for the learnability of OOD detection. First, we provide the details of Condition 5.

Let A = {(A1, ..., \) : Zé’:l Aj <land A\; >0,Vj =1,...,0}, where [ is a positive integer.
Next, we introduce an important definition as follows:

Condition 7 (OOD Convex Decomposition and Convex Domain) Given any domain
Dxy € xy, we say joint distributions Q1, ..., Qq, which are defined over X x {K + 1}, are
the OOD convex decomposition for Dxy, if

l

!
Dxy =(1=)_X)Dxyi + > \Qj,

J=1 J=1
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for some (A1,...,\)) € AY. We also say domain Dxy € Pxy is an OOD convex domain
corresponding to OOD convex decomposition Q1, ..., Qq, if for any (aq,...,0q) € A7,

l

l
(1= ) Dxyi + Y ajQj € Dxy-

j=1 j=1
We extend the linear condition (Condition 1) to a multi-linear scenario.

Condition 5 (Multi-linear Condition) For each OOD convexr domain Dxy € Dxy
corresponding to OOD convex decomposition Q1, ..., Q;, the following function

l l
fp@len o) i= inf (1= Zlaj>R33<h> - ZlajRQ]«h)), V(ai, ., ar) € A
Jj= Jj=

satisfies that
l

l
foqan, o) = (1= ) fp.g(0) + Y a;fpqlay),

Jj=1 Jj=1

where 0 is the 1 x | vector, whose elements are 0, and o is the 1 x | vector, whose j-th
element is 1 and other elements are 0.

This is a more general condition compared to Condition 1. When [ = 1 and the domain
space Yxy is a priori-unknown space, Condition 5 degenerates into Condition 1. Lemma 1
shows that Condition 5 is necessary for the learnability of OOD detection.

Lemma 1 Given a priori-unknown space Zxy and a hypothesis space H, if OOD detection
is learnable in Pxy for H, then Conditions 1 and 5 hold.

Proof [Proof of Lemma 1]
Since Condition 1 is a special case of Condition 5, we only need to prove that Condition 5
holds.

For any OOD convex domain Dxy € Zxy corresponding to OOD convex decomposition
Q1,...,Qq, and any (aq, ..., ) € A?, we set

!
1
Q% = =D Qs
i1 j=1
Then, we define

l

l
D%y = (1— Zai)DXIYI + (Z a;)Q%, which belongs to Zxy .
i=1 i=1

Let
RS (h) = /X 60, 9)aD%y (. 9).
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Since OOD detection is learnable in Zxy for H, there exist an algorithm A : U+°° (XX —
H, and a monotonically decreasing sequence €(n), such that e(n) — 0, as n — 400, and

0< ESND%YIR?‘)(A(S)) — inf R (h) < €e(n).

heH
Note that
l
Es~py RBH(A Z IE35~D" Rm )+ Z ajBs~py . Ro; (A(S)),
and
jnf RB(h) = fp.qlar,..an),
where

Ro, (A(S)) = /X oy (A0, 00Gs(x,0)

Therefore, we have that for any (a1, ...,a;) € A7,

l l
(1 - Z%)ES~D§(IYIR%‘(A(S)) +> a;jEs~py , Bo;(A(S)) = fpqlar,..;ar)| <

| < e(n)
j=1
(18)
Let
1
gn(ai, ..., 1—2()4] ESND” D(A(S))+ZajESND§(IYIRQj(A(S)).
j=1
Note that Eq. (18) implies that
lim gn(a1,....,q) = fpolar,...,aq), Y(aq,...,0q) € A7,
n—-+o0o (19)
Jim g.(0) = fp,g(0)-
Step 1. Since a; ¢ A7, we need to prove that
lim Es.py , Rq;(A(S)) = flay) ie., lim gn(a;)= fley), (20)

n—+oo n—+oo

where o is the 1 x [ vector, whose j-th element is 1 and other elements are 0.
Let Dxy = 0.5* Dx;y; + 0.5 x Q. The second result of Theorem 1 implies that

out out
e BB (A(9)) < }}&f{R (h) + €(n).

Es~pr
Since R%lt(A(S)) = Rg,;(A(S)) and R%lt(h) = Rq,(h),

Rq,(A(S)) < inf Rg,(h) + €(n).

Es~
S~D%v heH
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Note that infrey Rg,(h) < IESND;L(IYI Rq,(A(S)). We have

0 < By, R, (A(S)) — inf Ro,(h) < e(n). 1)
Eq. (21) implies that
Jim Fopy , Ro,(A(S)) = inf Ro,(h). (22)

We note that infneq; R, (h) = fp,q(ay). Therefore,

lim Esvpy , Rq,(A(S)) = fpeley), ie, lim gn(a;)= flay). (23)

n—+00 n—-+00
Step 2. It is easy to check that for any (a1, ...,q;) € A?,

! !
lim gn(ar,...,oq) = lim ((1-— Zaj)gn(O) + ) ajgn(ay))
j=1

n—+o00 n—+o0o —
C ! (24)
=(1- E:l aj) lim g,(0) + E:l aj lim gn(a;).
Jj= Jj=
According to Eq. (19) and Eq. (23), we have
. _ o
ngrfoogn(al, wwap) = fpolal,..,aq), Y(aq,..,0q) € A7,
Jim g.(0) = fp,o(0), (25)
Jm gn () = fley),
Combining Eq. (25) with Eq. (24), we complete the proof. [ |

Lemma 2
inf R}(h) = (1—a) inf RB(h inf RR*(h), Vo € [0,1
jof Rpp(h) = (1 - o) inf Rp(h) + o inf RE™(h), Va €[0,1),
if and only if for any € > 0,
(K € H: RB(I) < }in;’_[ RB(h) +2ey N {n € H: R (W) < ﬁn?f_[ RA(h) + 2¢} # 0.
€ €
Proof [Proof of Lemma 2] For the sake of convenience, we set fp(«) = infrey R (h), for

any « € [0,1].
First, we prove that fp(a) = (1 —«a)fp(0) + afp(l), Ya € [0,1) implies

{0 € H: RB(N) < jnf RIB(h) + 2} N {h € H : RY*(W) < jnf RYE(h) + 2¢} # 0.
€ €
For any e > 0 and 0 < a < 1, we can find hY € H satisfying that

Riy(h?) < inf Ry (h) +c.
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Note that

: a — . in out > . : in : out )
inf R (k) = inf ((1—a)RB(h) +aRE (1)) > (1—a) inf RB(h) +a inf R (h)

Therefore,

1 — «) inf RB(h inf RA(h) < inf R%(h) < R%(h®) < inf RY(h ) 26
( oa)gg% D()"'O‘}}QH D()—}ig}[ p(h) < D(e)_ggﬂ p(h) +e€ (26)

Note that fp(a) = (1 —a)fp(0) + afp(l), Vo € [0,1), i.e.,

inf R%(h) = (1 — «) inf RB(h inf ROY(h),V 0,1). 27
jnf D(h) = ( a)}}gH D()+ahlrelH D' (h),Ya € [0,1) (27)

Using Egs. (26) and (27), we have that for any 0 < o < 1,

> [R(H) — inf. R(h)] = (1 — ) (RB(HE) — int RB(N)) + (R (4) — inf R (1))

(28)
Since RA(he) — infpey RAE(h) > 0 and R (h®) — infyey RB(R) > 0, Eq. (28) implies that:
for any 0 < a < 1,

RB(2) < inf RB() + /(1 - a)

REU(A2) < inf R () + e/
Therefore,
he e {h €H: RE(N) < jnf RB(h)+e/(1—a)}n{h’ € H: REY(K) < jnf RY(h)+¢/a}.
If we set a = 0.5, we obtain that for any ¢ > 0,

{0 € H: RB(N) < jnf RIB(h) + 2} N {h € H : RY*(K) < jnf RY(h) + 2¢} £ 0.

Second, we prove that for any € > 0, if
{n' € #:RE(N) < inf RB(h) +2e} N {h € H: R (W) < inf RY(h) 4 2€} # 0,
€ €
then fp(a) = (1 —a)fp(0) + afp(l), for any « € [0,1).

Let he € {h' € H : RB(h') < infpey RB(h) +2e}N{h € H : REY (W) < infrey REE(h)+ 2¢}.
Then,

inf RY(h) < R (h) < (1 —a) inf RB(h inf RAY(h) + 2¢ < inf RY(h) + 2,
jnf D(h) < RpH(he) < ( a)}gg,ﬂ Dl )+a}}gH D (h) + €< inf D(h) + 2¢

which implies that |fp(a) — (1 — @) fp(0) — afp(1)] < 2e.
Ase =0, |fp(a) — (1 — ) fp(0) — afp(1)] < 0. We have completed the proof. [ |
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Theorem 2 Given a hypothesis space H and a domain Dxy, OOD detection is learnable
under risk in the single-distribution space @)%)ﬁy for H if and only if Condition 1 holds.

Proof [Proof of Theorem 2] Based on Lemma 1, we obtain that Condition 1 is the necessary
condition for the learnability of OOD detection in the single-distribution space .@Q{;Y. Next,
it suffices to prove that Condition 1 is the sufficient condition for the learnability of OOD
detection in the single-distribution space @)%)EY. We use Lemma 2 to prove the sufficient
condition.

Let % be the infinite sequence set that consists of all infinite sequences, whose coordi-
nates are hypothesis functions, i.e.,

F ={h=(h1,....,hpn,...) : Vhy, € H,n =1, ...., +00}.

For each h € Z, there is a corresponding algorithm Ap%: Ap(S) = h,, if |S| =n. F
generates an algorithm class & = {A}, : Vh € .Z}. We select a consistent algorithm from
the algorithm class /.

We construct a special infinite sequence h = (iLl, - iNzn, ...) € Z. For each positive in-
teger n, we select hy, from {h’' € H : RB(W) < infrey RB(h) +2/n} N {h € H : REY(N) <

infrey RO (h) 4+ 2/n} (the existence of h,, is based on Lemma 2). It is easy to check that
Es~py , RD(A(5)) < inf Rp(h) +2/n.
out : out
ESND?QYIRD (AE(S)) < }}SLRD (h) +2/n.
Since (1 — «)infrey RB(h) + ainfrey RE(h) < infhrey RY(R), we obtain that for any
a € [0,1],

Esvy,,, RH(AG(S)) < inf Rp(h) +2/n

We have completed this proof. [ |

Appendix D. Proof of Theorem 3

Theorem 3 Given a ranking function space R and a domain space Pxv, if OOD detection
is learnable under AUC for R in Pxy, then for any Dxy, DS(Y € Dxvy, the linear condition
under AUC (i.e., Condition 2) holds.

Proof [Proof of Theorem 3] According to Definition 3, we assume that A is the AUC
learnable algorithm: there exists learning rate €(n) such that for any Dxy € Zxy,

ESND}IYI [Sug AUC(r; Dxy) — AUC(A(S); ny)] < €(n). (29)
re

6. In this paper, we regard an algorithm as a mapping from U:i'j (X x V)" to H or R. So we can design an
algorithm like this.
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For any Dxy = Dxv; + (1 — 8)Dxove, Dy = B'Dxy; + (1 — B’)DS(OYO € 9xy, we set
D%, = aDxq + (1 =)D’ _. Then it is clear that for any § € (0,1],

AUC(A(S); BDxpy; + (1 — B)Dgcoyo)
=AUC(A(S); Dx,, Dk,,)

—aAUC(A(S); Dx,, Dx,) + (1 — a)AUC(A(S): Dx;, D, )
—aAUC(A(S): Dxy) + (1 — a)AUC(A(S): Dy ).

Therefore,

Es-pr, ,, [sup AUC(r :BDxyy; + (1= B)DSoy,) — AUC(A(S); BDxy; + (1= 5) Doy, )]

reR
<IESNDn [oz sup AUC(r; Dxy) + (1 — ) sup AUC(r; Dyy)
reR reR

— aAUC(A(S); Dxy) — (1 — a)AUC(A(S); D'xy )] < e(n),
which implies that

sup AUC(r; Dx;, Dk, ) = lim IESNDn AUC(A(S);DXI,Dg‘(O).

rer n—-+o0o
Note that
nll}g_l IESNDn AUC(A(S); Dx,, D%,)
_angrfooESNDn AUC(A(S), DXUDXO) + (1 — Oé) hm ES““D?(IYIAUC(A(S); DXU Don)
=asup AUC(r; Dx,, Dx,) + (1 — a) sup AUC(r; Dx,, DXO)
reR reR
Therefore,

sup AUC(r; Dx;, D%, ) = asup AUC(r; Dx;, Dx,) + (1 — ) sup AUC(r; Dy, D).
reR reR reR

Appendix E. Proofs of Theorem 4 and Theorem 5
E.1 Proof of Theorem 4

Lemma 22 Given a hypothesis space H and a prior-unknown space Dxvy, if there is Dxy €
Dxy, which has overlap between ID and OOD, and infrey RB(h) = 0, infrey REE(R) =0,
then Condition 1 does not hold. Therefore, OOD detection is not learnable under risk in
Dxy for H.

Proof [Proof of Theorem 4] We first explain how we get f; and fo in Definition 5. Since
Dy is absolutely continuous respect to u (Dx < p), then Dx, < p and Dx, < p. By
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Radon-Nikodym Theorem (Cohn, 2013), we know there exist two non-negative functions
defined over X: f1 and fo such that for any p-measurable set A C X,

D, (4) = /A fi(x)dp(x), Do (A) = /A fox)du(x).
>0

Second, we prove that for any « € (0,1), infyey R%(h)
We define A, = {x € X : fi(x) > L and fo(x) > L}. It is clear that

U;C’:OlAm ={x e X: fi(x) > 0and fo(x) > 0} = Aoverlap-

and
Am C Am+1-
Therefore,

lim M(Am) = ,U(onerlap) >0,

m—r—+00
which implies that there exists mg such that

1(Amg) > 0.

For any « € (0,1), we define ¢q = miny, ey, ((1 — &) ming,ey €(y1,y2) + ol(ys, K +1)). It
is clear that ¢, > 0 for a € (0,1). Then, for any h € H,

R} (h)

_ / ((h(x), y)dD%y (x, 9)
X X Val

=/ (1 —a)l(h(x),y)dDx,v; (%, y) +/ al(h(x),y)dDxqv, (X, y)

XxY Xx{K+1}

> / (1 — a)l(h(x),y)dDx,y; (%, ) +/ al(h(x),y)dDxqv, (X, y)
AmgxY Am0><{K+1}

— / ((1—a) / ((h(x), )dDy; x, (y]%))d D, (x)
Anmg y

+/ al(h(x), K +1)dDx, (x)
A

(1 — ) min 4(h(x), y2)dDx, (x) + /A al(h(x), K +1)dDx, (x)

/Amo y2€Y
I,

(1 - ) min £(h(x), g2) fi(x)du(x) + /A ab(h(x), K + 1) fo(x)du(x)

y2€Y

mo
> [ ) min ) du0 + o [t K+
mo Amg y2€Y mo Amg
1 Co
- 1 — ) min £(h(x), 0(h(x), K+ 1))du(x) > % 4(Amy) > 0.
e /Amo (( @) min £(h(x), y2) + al(h(x), K + ))dp(x) g P (Amo)
Therefore,
C
inf R%(h) > <% (A .
jof Bp(h) = i Amy) > 0
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Third, Condition 1 indicates that inf,ezy R (h) = (1— ) infrey RE(h)+ainfreqy RB(h) =
0 (here we have used conditions infjey; RB(h) = 0 and infpey RA®(h) = 0), which contra-
dicts with infpey RYH(h) > 0 (o € (0,1)). Therefore, Condition 1 does not hold. Using
Lemma 1, we obtain that OOD detection in Zxy is not learnable for H. [ ]

E.2 Proof of Theorem 5

Theorem 5 (Impossibility Theorem for Total Space under Risk) OOD detection is
not learnable under risk in the total space @)a(lly for H, if |poH| > 1, where ¢ maps ID labels
to 1 and maps OOD labels to 2.

Proof [Proof of Theorem 5] We need to prove that OOD detection is not learnable in the
total space .@)a(lly for H, if H is non-trivial, i.e., {x € X : Fhy, hy € H,s.t. h1(x) € Y, ho(x) =
K + 1} # (0. The main idea is to construct a domain Dxy satisfying that:

1) the ID and OOD distributions have overlap (Definition 5);
2) Rjj(h1) = 0, R (ha) = 0.

According to the condition that H is non-trivial, we know that there exist h1, ho € H such that
hl(X1) S 3/, hQ(Xl) = K-f-l, for some X1 € X. We set DXY = 0'5*5(x1,h1(xl))+0'5*5(x1,h2(x1))v
where § is the Dirac measure. It is easy to check that RiE(hy) = 0, R&(hy) = 0, which
implies that infpeqy RB(h) = 0 and infyeqy RAY(h) = 0. In addition, the ID distribution
O(x1,h1(x1)) and OOD distribution d(x, n,(x,)) have overlap x;. By using Theorem 4, we have
completed this proof. |

Appendix F. Proof of Theorem 6

Before proving Theorem 6, we need three important lemmas.

Lemma 3 Suppose that Dxy is a domain with OOD convezr decomposition Q1, ...,Q; (con-
vex decomposition is given by Definition 7 in Appendiz C), and Dxy is a finite discrete
distribution, then (the definition of fp g is given in Condition 5)

l l
fD,Q(Oéla ...,Ocl) = (1 — Zaj)fD’Q(()) + ZO&ij7Q(O£j), V(Oél, ...,Oél) S AO,
7j=1 7j=1
if and only if

!
argmin Rp(h) = ﬂ argmin Rq, (h) ﬂ arg min RS (h),
he

heM j=1 hen H
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where 0 is the 1 x | vector, whose elements are 0, and o is the 1 x | vector, whose j-th
element is 1 and other elements are 0, and

R, (h) = / ((h(x), 5)dQ; (%, y).
Xx{K+1}

Proof [Proof of Lemma 3] To better understand this proof, we recall the definition of
foolat,...,q):

l
.00, .. oy :}%f{< ( —Zaj YR (h )+ZajRQj(h)), V(@ ..., 1) € A?

First, we prove that if

z z
foqlan,r) = (1= ;) fp.o(0)+ Y a;fpqley), Y(au,...a) € Af,

=1
then,

argmin Rp(h m arg min RQ )m arg min Ril%(h)-
heH jo1 hem heH

Let Dxy = (1 — 22:1 Aj)Dxyv; + 22:1 A\jQj, for some (Aq,...,N\;) € AP, Since Dyy has
finite support set, we have

l l
ars;eﬁin Rp(h) = ar}g,er;in ((1 - Jzz:l N)Rp(h) + Z )\jRQj(h)> £ .

We can find that hy € arg ming o4, ((1 - Zé’:1 A\j)RIB(R) + 22:1 AjRg, (h)) Hence,

l l
13" \)RB(ho) +Z/\ Ra, (ho) = inf ( 1—2/\ YR (h )+Z)\jRQj(h)). (30)
j=1 Jj=1

j=1

Note that the condition fp g(ai,...,a;) = (1 — 22:1 a;)fp.(0)+ 22:1 a; fp,o(ay) implies

! l !
(1—;Aj inf R (h +Z/\ inf Ro,(h :%f{( (1- ZAJ )RIE(h )+;AjRQj<h)). (31)

Therefore, Eq. (30) and Eq. (31) imply that

! !
(1— Z)\j)ggyf{Rm + Z)\ 1nf RQ Z)\J )R (ho) +Z)\ Rq,(ho). (32)
7j=1 7j=1

j=1
Since RB(hg) > infpey RIB(R) and Rq,(ho) > infrey Rié‘j (h), for j =1, ...,1, then using Eq.
(32), we have that

RI(ho) = inf BB (h).
Rq, (ho) = ggqf{RQj (h), Vji=1,..,1,
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which implies that

ho € ﬂ argmin Rq, (h) ﬂ arg min R (h).

j=1 heH heH
Therefore,
arg min Rp(h ﬂ argmin Rg; (h) ﬂ arg min RiDn(h)'
heH jo1 hen heH

Additionally, using

l
fD7Q(O‘17 "'7al) = (1 - Zaj)fD7Q<0) + Zaij,Q(aj>v v(alv "'7al) € A7,
° =

we obtain that for any b’ € ﬂ;zl arg miny,c Rg, (h) (M arg miny,c4, RE5(h),

l l
inf Rp(h) = 1nf< ;AJ )R )+ZAjRQj(h))

1—2)\ 1nme +Z>\ inf R, (h

=(1- Z N RB(h) + Z AjRq,;(h') = Rp(R'),
,7 =i

which implies that

h' € argmin Rp(h).
heH

Therefore,
l

ﬂ argmin Rg,; (h ﬂ arg min R (h) C argmin Rp(h).
i1 hen heH heH

Combining Eq. (33) with Eq. (34), we obtain that

ﬂ arg min Rg, (h) ﬂ arg min R (h) = arg min Rp(h).
o1 hem heH heH

Second, we prove that if

l

argmin Rp(h m argmin Rg, (h m arg min RB(h),
heH jo1  heH heM

then,

l l
foqlar, o)) = (1= ) fpo0)+ > ajfpelay), V(.. o) €Ay,

Jj=1
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We set

ho € ﬂ argmin Rq, (h) ﬂ arg min R5(h),
i1 heH heH

then, for any (a1, ...,q;) € A?,
!

! ! l
Z ) inf RS(h) + Y a; inf Ro, () <]i1€1?f{( Z h)+zajRQj(h))
Jj=1 j=1 =1

l

<(1- Z a;)RB(ho) + Y a;jRq, (ho)
s =1

l l
— (1= Y ay) jnf R5(h) + > aj inf R, (h)
j=1 j=1

Therefore, for any (a1, ...,q0q) € Ay,

l

l l
(L= ay) inf R5(h) + Y a; inf Ro,(h) = inf (1Y a, W1+Z%%J)
j=1 i=1

Jj=1

which implies that: for any (a1, ...,q;) € A?,

l l
foqar, ) = (1= ;) fp,g(0) + Y a;fpqlay).
j=1

We have completed this proof. |
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Lemma 4 Suppose that Assumption 1 holds. If there is a finite discrete domain Dxy € D%y
such that infpeqy RO () > 0, then OOD detection is not learnable in D%y for H.

Proof [Proof of Lemma 4] Suppose that suppDx, = {x{", ..., x{"'}, then it is clear that
Dxy has OOD convex decomposition d, Xout s ooy Oy ot where dx is the dirac measure whose

support set is {x}.
Since H is the separate space for OOD (i.e., Assumption 1 holds), then Vj =1, ..., 1,

f R h)=0
}:QH §?ut() ’

where

Rs_ o (h) = / ((h(x), K + 1)d8you (x).
3 X
This implies that: 1fﬂ -, argming,cy Rs Out( ) # 0, then for Vh' € ﬂj jargming 4y Rs xout (h),

W) =K +1, Vi=1,..,1

Therefore, if ﬂézl arg ming ey R, (7)) arg min, ey R (h) # 0,
J
then for any h* € ﬂé-:l argming ey R ., (k) () arg ming, ¢y RB(h), we have that
J

R*(x") = K +1, Vi=1,..,1.

Proof by Contradiction: assume OOD detection is learnable in #%- for H, then Lemmas
1 and 3 imply that

l

ﬂ argmin R; Out ﬂarg min R (h) = argmin Rp(h) # 0.
i heH heM heM

Therefore, for any h* € arg miny 4, Rp(h), we have that
R (x9) = K + 1, Vi=1,...,1,
which implies that for any h* € arg min, 4 Rp(h), we have RA*(h*) = 0, which implies that

infrey RAY(h) = 0. It is clear that infrey RAY(h) = 0 is inconsistent with the condition
infrey RY(h) > 0. Therefore, OOD detection is not learnable in 2%, for H. [ |

Lemma 5 If Assumption 1 holds, VCdim(¢ o H) = v < 400 and suppey |[{x € X : h(x) €
YV} > m such that v < m, then OOD detection is not learnable in D%y for H, where ¢
maps ID’s labels to 1 and maps OOD’s labels to 2.
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Proof [Proof of Lemma 5] Due to suppcqy [{x € X : h(x) € Y}| > m, we can obtain a set
C - {le "‘7XTYL7Xm+l}7

which satisfies that there exists i € # such that h(x;) € Y for any i = 1,...,m,m + 1.
Let H = {(¢ 0 h(x1), ..., 0 h(xXpm), d 0 h(Xmi1) : b € H}. Tt is clear that

(1,1,..,1) = (B0 h(xX1), -y § © h(Xm), § 0 h(xm11)) € HE,

where (1,1, ...,1) means all elements are 1.

Let ’wal = {(¢poh(x1), ..., poh(Xm), poh(Xm+1) : his any hypothesis function from X to Van}.

Clearly, ’Hg C ’HﬁL 41 and |/Hf1 41| = 2™*1 Sauer-Shelah-Perles Lemma (Lemma 6.10 in
(Shalev-Shwartz and Ben-David, 2014)) implies that

HEl <D0 (.
=0

Since 3°¢_o ("F') < 2m*+! — 1 (because v < m), we obtain that \7—[%| < 2m+1 2. Therefore,
Hg U{(2,2...,2)} is a proper subset of wal, where (2,2, ...,2) means that all elements are
2. Note that (1,1...,1) (all elements are 1) also belongs to ’Hg. Hence, ’H?; u{(2,2...,2)} U

{(1,1...,1)} is a proper subset of Hfl 41, Which implies that we can obtain a hypothesis
function A’ satisfying that:

D)(¢ ol (X1), s ¢ 0 I (Xm), & 0 B (Xm11)) ¢ HE:
2) There exist x;,x, € C' such that ¢ o h'(x;) =2 and ¢ o h'(x,) = 1.

Let Ci=CN{xeX:¢goh(x)=1}and Co =CN{xe X:poh'(x) =2}

Then, we construct a special domain Dxy:

Dxy =05 Dx, * DYIIXI + 0.5 % Dx,, * DYoIXo’ where

1 L
Dx, = i Z 0x and Dy, x,(y|x) =1, if h(x) =y and x € Cf;
xeC
and
Dxo=—— 3 6 and Dy (K+1jx) =1, if x€C
Xo - ‘CO| - X YolXo - O-
xe€Co

Since Dyvy is a finite discrete distribution and (¢poh/(x1), ..., 0 h' (X)), po b/ (Xm+1))
it is clear that argminy,cy Rp(h) # 0 and infpey Rp(h) > 0. Additionally, RE(h
Therefore, infpey RIB(R) = 0.

¢ M,
) =0

Proof by Contradiction: suppose that OOD detection is learnable in 2%, for H, then
Lemma 1 implies that

. _ : in : out
ﬁg%RD(h) =0.5 % ég%RD(h) + 0.5 % égf{RD (h).
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Therefore, if OOD detection is learnable in 2%, for H, then infpeqy RA(h) > 0.

Until now, we have constructed a domain Dxy (defined over X' X V1) with finite support
and satisfying that infey R (h) > 0. Note that  is the separate space for OOD data
(Assumption 1 holds). Using Lemma 4, we know that OOD detection is not learnable in
D%y for H, which is inconsistent with our assumption that OOD detection is learnable in
D%y for H. Therefore, OOD detection is not learnable in 2% for H. We have completed
the proof. |

Theorem 6 (Impossibility Theorem for Separate Space under Risk) If Assumption
1 holds, VCdim(¢ o H) < +00 and sup,ey [{x € X : h(x) € Y}| = 400, OOD detection is
not learnable under risk in the separate space 9%y for H, where ¢ maps ID labels to 1 and
maps OOD labels to 2.

Proof [Proof of Theorem 6] Let VCdim(¢ o H) = v. Since supycy [{x € X : h(x) € Y}| =
+00, it is clear that sup,cqy [{x € X : h(x) € V}| > v. Using Lemma 5, we complete this
proof. |

Appendix G. Proofs of Lemma 7 and Theorem 8
G.1 Proof of Lemma 7

Condition 8 Given a ranking function space R, the corresponding hypothesis space G
consists of all g, satisfying that there exists a r € R such that

gr(x,x") = sign(r(x) — r(x)).

Condition 9 (Equivalence) Given measures i1, 2, we say two ranking functions r € R
and ' € R are AUC equivalent over i, us, i.e., f ~ f" w.r.t. uy,us, if and only if the
corresponding hypothesis functions gy = gp a.e. p1 X pio.

Lemma 6 Assume that Dx, = [ gx,dp and Dx, = [ gx,du, then
1
sup AUC(f; DXI7DXO) = 7EXNMEX’NH max{gXI (X)gXo (X/), 99X (X/)gXo (%)}

r€Ran 2

Proof Let D(X) = [ gdu, Dx, = [ gx,du and Dx, = [ gx,dp satisfying that gx, + gx, =
2g. Let P={x € X : g(x) >0}, Py, = {x € X : gx;(x) > 0} and Py, = {x € X :
gx,(x) > 0}. To any two points x and x’, we consider that

1
R(T, X, X/) = [1r(x)>r(x/) + §1r(x):r(x’)}gX1 (X)gXo (X/)

1
+ [Lrie)>ri0 + 5 reo=r() |93 (X) 90 (%)

We set 7*(x) = sigmoid(gx, (x)/gx, (X)), if gx,(x) > 0; otherwise, r*(x) = 1. It is clear
that we have that

R(T*’ X, X/) = Iél,’%X R(T’ X, X,) = maX{gXI (X)gXo (X/)v 99X (X/)gXo (X)}
T all
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Due to
2AUC(r Dy Do) = [ [ RO x)dp(x)dn(x),
pJp

then

2AUC(r*; Dx,, Dx,) = / max R(r,x,x’)du(x)du(x’)
pJpr€Ran

> max / / R(r,x,x")dp(x)dp(x’) = max 2AUC(r; Dx,, Dx,)-
r€Rn PJP reRan

Therefore, r* is the optimal solution, and

1

AUC(r"; Dxy, Dxo) = 5 ExnpBany max{gx; (x)9:xo (%), 9x; (") gx0 (%) }.

We have completed this proof. |

Lemma 7 Given a ranking function space R C Ran, Dx, = ngId,u, Dx, = ngOd,u and
DY = [ g du, if

sup AUC(r; Dx,, Dx,) = sup AUC(r;Dx,,Dx,),

re€R r€Ran
sup AUC(r; Dx;, D' ) = sup AUC(r; Dx;, D),
reER r€Ran

and there exists o € (0,1) such that

asup AUC(r; Dx,, Dx,) + (1 — a) sup AUC(r; Dx;, D'XO) = sup AUC(r; Dx;, D%, ),
reR reR reR

where D% = aDx, + (1 —a)D . Then

9Xx; 9X;
~ w.r.t. DX P. —P 7l)X Py —
9xi T 9x0  9x + g, Py =Pror Pxilegg

Pl
Xo

where Px, = {X : gx,(x) > 0} and Py = {x: g (x) > 0}

9Xx1 9Xq
9x;+H9x4 9x;+9x
Lemma 6 implies that to each ¢ =1, 2,

Proof Let 7y, = and 77/X1 = . It is easy to check that the proof process of

nfxl € argmax AUC(f; Dx,, D&O).

reRan
Additionally,

sup AUC(r; Dx;, D%, ) =asup AUC(r; Dx;, Dx,) + (1 — ) sup AUC(r; Dy, D))
reR reR reR

=a sup AUC(r; Dx;, Dx,) + (1 — @) sup AUC(r; Dx;, DY)

rE€ERaN r€Ran
> sup AUC(r; Dx,, D%, ) = sup AUC(r; Dy, D%, )-
re€Ran reR
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Therefore, under the condition that

sup AUC(r; Dx,, Dx,) = sup AUC(r;Dx,,Dx,),

rerR r€Ran
sup AUC(r; Dx;, D'y,) = sup AUC(r; Dx;, DY,),
reR r€Ral

we obtain that

sup AUC(r; Dx;, D%, ) = @ sup AUC(r; Dx;, Dx,) + (1 — ) sup AUC(r; Dx;, D, ).
re€Ran r€Ran r€RAN

Because sup,¢r_, AUC(r; Dx;, Dx,) and sup,cg, AUC(r; Dx;, Dx,) are attainable (the
proof process of Lemma 6 implies this), it is easy to check (similar the proof of Lemma 3)
that

arg max AUC(r; Dx,, Dx,) Narg max AUC(r; Dx;, D’y ) # 0.
r€Ran r€Ral

Combining with Lemma 6, above equality implies there exists r* such that
e~ nx;, Ww.r.t. DXIaDXO, o~ TI/XI, w.r.t. DXI’DfX'O

Therefore,
/
Nx; ~ Nx, W.I.t. DX1|P)I(O_PX0’DXI’PXO_P3(O

We have completed the proof. [ |

Lemma 23 Given a ranking function space R, a domain space Pxy and Dxy = BDx,y; +
(1= B)Dxovo, Dy = B'Dxyvi + (1 = B) DYy, € Zxv, let P be the overlap set between
Dx, and Dx, and P’ be the overlap set between Dx, and D’ based on the Definition 5. If

sup AUC(r; Dx,, Dx,) = sup AUC(r;Dx,,Dx,)

reER r€Ran
sup AUC(r; Dx;, D'y,) = sup AUC(r; Dx;, DY,),
reR r€Ran

and Dx, (PN P’") < min{Dx,(P), Dx,(P’)}, then Condition 2 does not hold, where Ray is a
ranking function space consisting of all ranking functions from X to R. Therefore, OOD
detection is not learnable under AUC in Dxy for R.

Proof [Proof of Lemma 7] By the condition that Dx, (P; N Py) < min{Dx,(P1), Dx,(P2)},
we can ensure that

DXI(Pl—PQ) >0, DXI(PQ—P1)>O.
By this, one can easily check that

9Xy ~ 9% w.r.t. Dx,|p,—p,, Dx;|P,—p, does not hold.

9xi t9x0  9x1 + 9,

Therefore, Lemma 7 implies that Condition 2 does not hold. |
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G.2 Proof of Theorem 8

Theorem 8 (Impossibility Theorem for Total Space under AUC) Given ranking func-
tion space R, if there exist x,x' € X and r,r’" € R such that

r(x) > r(x') and ' (x') > r'(x),
then the learnability of OOD detection under AUC is not distribution-free for R.

Proof [Proof of Theorem 8] Let Dx, = %5,( + %5}(/, Dx, = 0x and DX6 = 0y, where 0
is the Dirac measure. Then the condition in Lemma 7 holds, which implies the result of
Theorem 8. u

Appendix H. Proof of Theorem 9

Lemma 8 Given a separate ranking function space R, if there exists finite discrete Dxy C
D%y such that

sup AUC(r; Dxy) < 1,
reR

then OOD detection is not learnable under AUC in D%y for R.

Proof [Proof of Lemma 8] Assume that if OOD detection is learnable under AUC in Zxy
for R, then Condition 2 implies that: let Dx, = > /" N\idx, (Ot = 1),

m
sup AUC(r; Dxy) = Z Aisup AUC(r; Dx;,, 0x; )-
reER i=1 reR
Because R is the separate ranking function space, we know that
m
sup AUC(r; Dxy) = Z Aisup AUC(r; Dx,, 0x,) = 1,

reR i=1 reER

which is conflict with the condition that sup,cr AUC(r; Dxy) < 1. We have completed this
proof. |

Theorem 9 (Impossibility Theorem for Separate Space under AUC) Given a sep-
arate ranking function space R, if VC[poR| = d < +00 and |X| > (28d+14) log(14d+T7), then
OO0D detection is not learnable under AUC in D% for R, where poR = {1r(x)>r(x/) ;T € R}.

Proof [Proof of Theorem 9] Given disjoint samples X = {X1, ..., X;, }. Consider the following
matrix and set

BT[X] - [lr(xi)>r(Xj)]7 BR[X] - {BT[X] ire R}
Let Dx, x,[X] be the set consisting of all (Dy,, Dx,,) which satisfies the following conditions:

e Dx,,Dx, are from the separate space;
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e Dx,, Dx, are uniform distributions;
e suppDx, UsuppDx, = X.
Additionally, let
Dr[X] ={(Dx,,Dx,) € Dx;,x,[X] : 3r € R,AUC(r; Dx,, Dx,) = 1}.

It is clear that

d d
& (&
IBr[X]| < Em%; IDr[X]| < (m —1)|Br[X]| < ﬁmw"'l; IDx, xo[X]| = 2™ — 2.

When m is large enough (m > (28d + 14) log(14d + 7)), we have that
IDrIX]| < Px;,x0[X]]-
Therefore, we can find

(DXI,DXO) € DXLXO [X] such that sup AUC(T;DXI,DXO) < 1.
reR

By Lemma 8, we have completed this proof. |

Appendix I. Proofs of Theorem 10 and Theorem 11
I.1 Proof of Theorem 10

Firstly, we need two lemmas, which are motivated by Lemma 19.2 and Lemma 19.3 in
(Shalev-Shwartz and Ben-David, 2014).

Lemma 9 Let Ci,...,C, be a cover of space X, i.e., >, Ci=X. Let Sx = {x!, ..., x"}
be a sequence of n data drawn from Dx,, i.i.d. Then
r
ESX~D§(1< Z DXI(Ci>> < poog
1:C;NSx =0
Proof [Proof of Lemma 9]

r

ESXND}I( Z D)g(@‘)) = Z (DXI(Ci) ‘Esy~py, (1c,~mSX=@)>,

:C;NSx =0 =1

where 1 is the characteristic function.
For each 1,

Esx~py, (1cinsx=0) / 1o,nsx=0d D, (Sx)

(/ 1o,nixp=0dDx, (x))"

( — Dy, (C ) < e "Dx; (C)
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Therefore,

ESXNDSL(I< Z DXI (Cz)> < ZDXI (Ci)eanXI(Ci)
:C;NS=0 i=1
<7r max DXI(CZ‘)(Z*”DXI(CZ') < r

ie{l,..r} ne’

here we have used inequality: max;c(y, . ;3 a;ie” " < 1/(ne). The proof has been completed.
|

Lemma 10 Let K = 1. When X C R is a bounded set, there exists a monotonically
decreasing sequence €cons(m) satisfying that €cons(m) — 0, as m — 0, such that

]EXNDXVSNDSL(IYI diSt(X, 7'1'1()(7 S)) < Gcons(n)y

where dist is the Euclidean distance, m(x,S) = arg ming g dist(x,x), here Sx is the feature
pafrt Of S7 i'e'7 SX = {X17 "'7Xn}7 /LfS = {(X1’y1)7 R (Xn7yn)}'

Proof [Proof of Lemma 10] Since & is bounded, without loss of generality, we set X C [0,1).
Fix e = 1/T, for some integer T'. Let r = T and C4,Cs, ..., C, be a cover of X: for every
(a1, ...,ar) € [T)% := [1,...,T)%, there exists a C; = {x = (z1,...,2q4) : Vj € {1,...,d},z; €

[(aj —1)/T,a;/T)}.

If x,x’ belong to some Cj, then dist(x,x’) < V/de; otherwise, dist(x,x’) < v/d. There-
fore,

EXNDXI’SND?(IYI diSt(X, T (X, S))

SESND?{IYI (\/gG Z DXI(Ci) + \/g Z DXI(CZ))

:C;NSx #0 :C;NSx =0
<Esx~py, (\/gﬁ Z Dx,(Ci) + Vd Z DXI(Cz‘))-
Z':CiﬂSX;ﬁ@ i:C;NSx =0

Note that C1, ..., C, are disjoint. Therefore, Zizcmsxﬂ Dx (C;) < DXI(Zz‘:CmSny@ C;) < 1.
Using Lemma 9, we obtain

. rvd Vd
Ex~Dx;,$~D% dist(x, 71 (x, 5)) < Ve + = Vide + o

If we set € = 2n~1/(@+D)  then

. 2v/d Vd
EXNDXVSNDE?IYIdISt(X’7T1(X7 5)) < /(1) T 9depl/(d+1)

If we set €cons(n) = niﬁl) + Zdenﬁd+1>’ we complete this proof. |
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Theorem 10 Let K =1 and |X| < +o0. Suppose that Assumption 1 holds and the constant
function k™ := 1 € H. Then OOD detection is learnable under risk in D5 for H if and
only if Hay — {h°"} C H, where Hay is the hypothesis space consisting of all hypothesis
functions, and h°" is a constant function that h°" := 2, here 1 represents ID data and 2
represents OOD data.

Proof [Proof of Theorem 10] First, we prove that if the hypothesis space H is a separate
space for OOD (i.e., Assumption 1 holds), the constant function '™ := 1 € H, then that
OOD detection is learnable in 7%, for H implies Hay — {h°"} C H.

Proof by Contradiction: suppose that there exists h’ € H,y such that A’ # h°" and
¢ H.

Let X = {x1,....,Xm}, Cr={x € X :M/(x) € YV} and Co = {x € X : /(x) = K + 1}.
Because h' # h°", we know that Cf # 0.

We construct a special domain Dxy € Z%y: if Co =0, then Dyy = Dy, * Dy, |x,; otherwise,

Dxy = 0.5 % Dx; * Dy x; + 0.5 % Dx,, * Dy,|x,, where

Dy, = |CI| Z ox and Dy, x, (ylx) =1, if K'(x) =y and x € C,
xeCr
and
Dx, = ol O‘ Z dx and Dy, x, (K +1[x) =1, ifx € Co.
xeCo

Since b’ ¢ H and |X| < +o0, then argminyy Rp(h) # 0, and infeyy Rp(h) > 0. Addition-
ally, RIB(hi") = 0 (here h'™ = 1), hence, inf,cy RB(h) = 0.
Since OOD detection is learnable in 2% for H, Lemma 1 implies that

inf Rp(h) = (1= ") inf R(h) + 7" inf RE" (1),
where 7" = Dy (Y = K + 1) = 1 or 0.5. Since infpey RE(R) = 0 and infreqy Rp(h) > 0,
we obtain that infpeqy RY(h) > 0.
Until now, we have constructed a special domain Dxy € 2%, satisfying that infyeq R (h) >
0. Using Lemma 4, we know that OOD detection in 2%, is not learnable for H, which is
inconsistent with the condition that OOD detection is learnable in Z%.- for H. Therefore,
the assumption (there exists h’ € Hay such that A’ # h°" and h ¢ H) doesn’t hold, which
implies that Hay — {h°*'} C H.

Second, we prove that if Hay — {h°*} C H, then OOD detection is learnable in 2%
for H.

To prove this result, we need to design a special algorithm. Let dy = miny y/ex and x#x’ dist(x, x’),
where dist is the Euclidean distance. It is clear that dy > 0. Let
1, if dist(x,m1(x,5)) < 0.5 * dp;
A(S)(x) = e
2, if dist(x,m(x,95)) > 0.5 * do,
where m(x,5) = arg mlnxes dlst( X), here Sx is the feature part of S, i.e., Sx =

(xL o x), A S = {(xL gL, o (x7 n’)}
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For any x € suppDxy, it is easy to check that for almost all S ~ D% v
dist(x, m1(x,S)) > 0.5 * dp,

which implies that
A(S)(x) =2,

hence,
Espy,,, BB (A(S)) =0. (35)

Using Lemma 10, for any x € suppDyx,, we have
EXNDXVSND?(IYI diSt(X, T (X, S)) < econs(n),

where €cons(n) — 0, as n — 0 and econs(n) is a monotonically decreasing sequence.

Hence, we have that
Dy, x Dy, ({(x,5) : dist(x, m1(x,5)) > 0.5 % do}) < 2¢cons(n)/do,
where Dy, x D% y. is the product measure of Dx; and D% y. (Cohn, 2013). Therefore,
D, x Dy ({(%.9) : A(S)(3) = 1)) > 1 — 2econs(n) /o,

which implies that .
]ESND;L(IYI REI(A(S)) < 2Becons(n)/d0a (36)

where B = max{/(1,2),4(2,1)}. Using Eq. (35) and Eq. (36), we have proved that

ESND?(IYI RD(A(S>) <0+ QBECOHS<m)/d0 < }:275 RD<h) + 2B600n5<m)/d0. (37)

It is easy to check that A(S) € Han — {h°"}. Therefore, we have constructed a consistent
algorithm A for H. We have completed this proof. |

1.2 Proof of Theorem 11

Theorem 11 Let |X| < +00 and H = H™ e HP. If Hay — {h°*} C HP and Condition 3
holds, then OOD detection is learnable under risk in D5 for H, where Hay and h°" are
defined in Theorem 10.

Proof [Proof of Theorem 11] Since |X| < 400, we know that |H| < +oo, which implies
that H™ is agnostic PAC learnable for supervised learning in classification. Therefore, there
exist an algorithm A™™ : U:i‘j(?( x V)" — H™ and a monotonically decreasing sequence
€(n), such that e(n) — 0, as n — 400, and for any Dxy € Z%y,
n in in < i in .
Es~py , RH(A™(S)) < hlelgin Rp(h) + €(n)
Since |X| < 400 and HP almost contains all binary classifiers, then using Theorem 10 and
Theorem 1, we obtain that there exist an algorithm AP : U2 (X x {1,2})" — HP and a
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monotonically decreasing sequence €'(n), such that ¢/ (n) — 0, as n — +o0, and for any
Dxy € D%y,

Es~py oy (AP(6(S5))) < inf RE 1 () +€(n),

T heHb
By, R3ih) (A(6(8))) < inf B3t () +¢'(n),

where ¢ maps ID’s labels to 1 and OOD’s label to 2,

Ry (°0(5)) = [ | HAO(8)) 60, 6D (x.1), (38)
Ry () = | A, 6(0))aDxoy ), (39)
Ry (AY(0(5) = | ey AT 60D, 5,0), (40)
and
Rty ) = | oy 604D o7, (), (41)

here ¢(S) = {(x!, 6(y1)), -, (<, G(y™)}, if § = {1, 51, s (X7, 5™)}.

Note that H® almost contains all classifiers, and D%y is the separate space. Hence,
Espy . Rl (AP(6(5)) < €(n), Espy | Rolb) (A"(6(5))) < €(n).

Next, we construct an algorithm A using A™ and A°ut,

K+1, if AP(6(5))(x)=2;
A(S)(x) :{ n b
A"(S)(x), if AP(9(9))(x) = 1.
Since infpey Ri;(D)(qb oh) =0, infreyy RY®(h) = 0, then by Condition 3, it is easy to check
that
inf RB(h) = inf RB(R).
b Rp(h) = inf Rp(h)
Additionally, the risk RIB(A(S)) is from two parts: 1) ID data are detected as OOD data; 2)
ID data are detected as ID data, but are classified as incorrect ID classes. Therefore, we
have the inequality:

Es.pn . RB(A(S)) < DEN RB(AM(S)) + Es~py Ry 5y (AP(8(5)))

X1Y1

: . 42

< inf RJ(h) +e(n) + ce'(n) = inf R5(h) + e(n) + c€'(n), (42)
heHn heH

where ¢ = maxy, y,ey £(y1,y2)/ min{f(1,2),€(2,1)}.
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Note that the risk R (A(S)) is from the case that OOD data are detected as ID data.
Therefore,

RPY(A(S)) < cEswpy  Rolh (A(4(9)))

XY - XlrmI¥1

< / <~fR0uth / )
< ce(n) < inf Rp®(h) +ce'(n)

Es~pn
(43)

Note that (1 — «)infrey RB(h) + ainfreyy REY(h) < infrey R%(h). Then, using Eq. (42)
and Eq. (43), we obtain that for any « € [0, 1],

ESNDn RD(A(S)) < hlgf_,5 R%(h) + €(n) + cé'(n).

According to Theorem 1 (the second result), we complete the proof. [ |

Appendix J. Proof of Theorem 12

Lemma 11 Suppose that |X| < +o00. If AUC-based Realizability Assumption holds for AUC
metric, then OOD detection is learnable under AUC in separate space for R.

Proof [Proof of Lemma 11] Without loss of generality, we assume that K = 1, and any
r € R satisfies that 0 < r < 1 (one can achieve this by using sigmoid function). Given m

data points S, = {x],...,x],,} € X™. We consider the following learning rule
max 1, 1,/¢g, subject to — 1, = 0.
reR,7€(0,1) Z DT IxES ] ]z; (%)<

We denote the algorithm, which solves the above rule, as Ag, (Ag, outputs r and a
corresponding 7). For different data points S,,, we have different algorithm Ag . Let S be
the set that consists of all data points, i.e.,

S :={Sm : Sy, are any m data points, m = 1,...,+00}. (44)
Using S, we construct an algorithm space as follows:
o = {AS/ v S e S}

We will find an algorithm A from <7, which is learnable. Let S’ = X. We will show that
A x can guarantee the learnability. Suppose that rg and 7g is the output of A x(5), then
the realizability assumption implies that there exists learning rate e(n) such that

Es~py ExwDy Lrg<rs < €(n)- (45)

Additionally, due to supp(Dx,) C X — S, the AUC-based Realizability Assumption implies
that

EsNDEL(IEXNDXo 17”S(X)§TS =1. (46)
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Then,
Es~py AUC(fs; Dx;; Dxo)
ZEs Dy ExnDyx o Bx/nDx Lrg(x)<rs(x)
ZESND;;I Ex~Dxo ExinDy, Lrg(x)<rg Lrg(x)>7s
>1 — €(n).
Then the ranking function part rg of Ay € & is the universally consistent algorithm, i.e.,

IESND;L{IAUC(TS; Dx,,Dx,) > 1—€(n).

Theorem 12 Given a separate ranking function space R, if |X| < 400, then OOD detection
is learnable under AUC in the separate space Z%y for R if and only if AUC-based
Realizability Assumption holds.

Proof [Proof of Theorem 12] Lemmas 8 and 11 imply this result. u

Appendix K. Proofs of Theorems 13 and 14
K.1 Proof of Theorem 13

Lemma 12 Given a prior-unknown space Pxy and a hypothesis space H, if Condition 4
holds, then for any equivalence class [D'yy| with respect to Pxy, OOD detection is learnable
in the equivalence class [D'yy/| for H. Furthermore, the learning rate can attain O(1/n).

Proof Let .% be a set consisting of all infinite sequences, whose coordinates are hypothesis
functions, i.e.,

F ={h=(hi,.... hp,...) : Yhy, € H,n =1, ..., +00}.

For each h € .7, there is a corresponding algorithm Ap: Ap(S) = hy, if |S| =n. F
generates an algorithm class & = {Ap : Vh € #}. We select a consistent algorithm from
the algorithm class <.

We construct a special infinite sequence h = (ill, . fzn, ...) € Z. For each positive in-
teger n, we select h,, from

(| {WeH:Ry(N)< jnf Ry (h)+2/n} ({W € H: RB(H) < jnf RB(h)+2/n}.
VDxy€[Dlyy] € €

The existence of h,, is based on Condition 4. It is easy to check that for any Dyy € Dyl
ESND}IYIRIB(AH(S)) < Iilel?f:t R (h) 4+ 2/n.

IESND?{I Y1

RP(A;(9)) < jnf RY(h) +2/n.
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Since (1 — ) infpey RB(R) + ainfrey REY(h) < infrey RY (), we obtain that for any
a € [0,1],

Espy, , RH(A4(S)) < inf Rj(h) +2/n.

Using Theorem 1 (the second result), we have completed this proof. |

Theorem 13 Suppose that X is bounded. OOD detection is learnable under risk in Q)I;Y
for H if and only if the compatibility condition (i.e., Condition 4) holds. Furthermore,
the learning rate €cons(n) can attain O(1/vVn1=?), for any 6 € (0,1).

Proof [Proof of Theorem 13] First, we prove that if OOD detection is learnable in 2%,
for H, then Condition 4 holds.

Since @§Y is the prior-unknown space, by Theorem 1, there exist an algorithm A :
U:{i’j (X xY)"™ — H and a monotonically decreasing sequence €cons(n), such that eqons(n) — 0,
as n — +o0, and for any Dyy € 2%,

B3, IRB(A(S) = faf RE(] < o)

Egpy,, [RE(A(S)) — inf RE'()] < ccons().

Then, for any € > 0, we can find n. such that € > €e.ons(n¢), therefore, if n = n., we have
e in s in <
Es~pre, [RH(A(9)) jof Rp(h)] <e,

Esoy, [RBU(A(S)) — inf RE"(W)] < e,

which implies that there exists S, ~ D?(EIYI such that
RB(A(S:)) = jnf RB(R) < e,
RE(A(S) ~ inf RE'(h) < e
€

Therefore, for any equivalence class [D'y-] with respect to @f‘;y and any € > 0, there exists
a hypothesis function A(S¢) € H such that for any domain Dxy € [D'yy],

A(S) € {W € H:RH (W) < jnf RYE(h) + ey n{h € H: RE(K) < jnf RB(h) + €},
€ €
which implies that Condition 4 holds.

Second, we prove Condition 4 implies the learnability of OOD detection in _@)Igy for
H. For convenience, we assume that all equivalence classes are [D/], ..., [D%]. By Lemma
12, for every equivalence class [Dg(y], we can find a corresponding algorithm A p: such that
OOD detection is learnable in [D'] for H. Additionally, we also set the learning rate for
A i is €(n). By Lemma 12, we know that € (n) can attain O(1/n).
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Let Z be X x Y. Then, we consider a bounded universal kernel K (-,-) defined over
Z x Z. Consider the mazimum mean discrepancy (MMD) (Gretton et al., 2012), which
is a metric between distributions: for any distributions P and () defined over Z, we use
MMDg (Q, P) to represent the distance.

Let % be a set consisting of all finite sequences, whose coordinates are labeled data, i.e.,

F ={S =(51,..,5,...,8n) : Vi=1,...,m and V labeled data S;}.
Then, we define an algorithm space as follows:

%:{As7:VS€g},

where
Ag(S) = Api(9), if i = argmin MMDg (Ps,, Ps),
1e{l,..m}
here 1
Pg = — ==
S Z Oxy)r Psi = Z > O(x,y)
(x,y)€S (x,9)€S;

and d(y ,) is the Dirac measure. Next, we prove that we can find an algorithm A from the
algorithm space & such that A is the consistent algorithm.

Since the number of different equivalence classes is finite, we know that there exists a
constant ¢ > 0 such that for any different equivalence classes [D'/| and [D%/] (i # 7),

MMDg (Dly,y;, DX y) > ¢

Additionally, according to (Gretton et al., 2012) and the property of .@)IEY (the number of
different equivalence classes is finite), there exists a monotonically decreasing e(n) — 0, as
n — +oo such that for any Dxy € 2,

1
Vnl—0

Therefore, for every equivalence class [Dg(y], we can find data points Sp: such that

ESND}IYI MMDK(DXIYU PS) § E(TL), Where e(n) = O( ) (47)

c

MMD i (Di,y;. Ps,) < 15

Let S’ = {Sp1, ..., Spi, ..., Spm }. Then, we prove that Ag is a consistent algorithm. By Eq.
(47), it is easy to check that for any i € {1,...,m} and any 0 < 0 < 1,

e(n)

P iy [MMDg (DY y., Ps) < 5 | >1-4,
which implies that
c(n) |
PSND&IYI [MMDg(Ps_;, Ps) < 5 100] >1-—6.

7. In this paper, we regard an algorithm as a mapping from U io (X x V)" to H or R. So we can design an
algorithm like this.

62



ON THE LEARNABILITY OF OUT-OF-DISTRIBUTION DETECTION

Therefore, (here we set § = 200¢(n)/c)

Py pin [As(S) # Api(S)] < 200¢(n)

X1Y] c
Because A is a consistent algorithm for [D%], we conclude that for all a € [0,1],

S~DL™ [R%(AS/(S)) — inf R%(h)} < Ez(n) + M’

X1Y7 heH c

E

where €/(n) = O(1/n) is the learning rate of Ap: and B is the upper bound of the loss .
Let €m%%(n) = max{e!(n), ...,e™(n)} + Mﬁ().
Then, we obtain that for any DXY € @XY and all « € [0, 1],

1
Vo=l

According to Theorem 1 (the second result), Ags is the consistent algorithm. This proof is
completed. |

Es~py,, [RD(As(5)) — inf Rp(h)] < €™ (n) = O

K.2 Proof of Theorem 14

Theorem 14 Given a density-based space _@;’;, if p(X) < 400, the Risk-based Realizability
Assumption holds, then when H has finite Natarajan dimension (Shalev-Shwartz and Ben-
David, 2014), OOD detection is learnable in .@é‘(’s, for H. Furthermore, the learning rate

€cons(n) can attain O(1/vVn1=?9), for any 6 € (0,1).

Proof [Proof of Theorem 14] First, we consider the case that the loss ¢ is the zero-one loss.
Since p(X) < 400, without loss of generality, we assume that u(X') = 1. We also assume
that fi is Dx,’s density function and fo is Dx,’s density function. Let f be the density
function for 0.5 x Dx, + 0.5 * Dx,. It is easy to check that f = 0.5 % f; + 0.5 * fo.
Additionally, due to Risk-based Realizability Assumption, it is obvious that for any samples
S ={(x1,91); -, (Xnsyn) } ~ DY, y;, i.i.d., we have that there exists h* € H such that

% Zﬁ(h*(xz’): yi) = 0.
i=1

Given m data points S,, = {x],...,x],} C X™. We consider the following learning rule:

— (R +1 bject to — l(h i) = 0.
gg_llmz + 1), subject to Z i),yi) =0

We denote the algorithm, which solves the above rule, as A, 8. For different data points
Sm, we have different algorithm Ag . Let S be the infinite sequence set that consists of all
infinite sequences, whose coordinates are data points, i.e.,

S :={S:=(51,52,..., 5m, ...) : S, are any m data points, m = 1, ..., +oo}. (48)

8. In this paper, we regard an algorithm as a mapping from U+°° (X x V)" to H or R. So we can design an
algorithm like this.
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Using S, we construct an algorithm space as follows:
o :={Ag:V S € S}, where Ag(S) = Ag, (9), if |S| =n.

Next, we prove that there exists an algorithm Ag € &, which is a consistent algorithm.
Given data points S,, ~ ", i.i.d., using the Natarajan dimension theory and Empirical risk
minimization principle (Shalev-Shwartz and Ben-David, 2014), it is easy to obtain that there
exists a uniform constant Cp such that (we mainly use the uniform bounds to obtain the
following bounds)

in . in CG
ESND;L(IYI hsel};-lé)s RD(h) < }12;—[ RD(h) + m,

and because of Hg C H,

Es,~ur  sup [Ru(As,(S),K+1)— inf R,(h, K +1)] < , (49)
Se(XxY)n heHs 10
where
Hs={heM:> Lh(x;),y) =0}, here S = {(x1,41), .., (Xn, ¥n)},
i=1
and

Ry(hy K +1) = Exof(h(x), K + 1) = / ((h(x), K + 1)du(x).
X
We set 21 = {Dx,y; : there exists Dx,y,such that (1 — a)Dx,y; + aDx,y, € @ﬁé’f,}. Then
by Eq. (49), we have

Cy
10

Eg,~u» sup Es.pn (50)

X1Y]
Dxvi€2 1

[Ru(As, (S), K + 1) — inf Ru(h,K +1)] <
heHs

Due to Risk-based Realizability Assumption, we obtain that infnecs RS (h) = 0. Therefore,

Ch

in
n <
ESNDXIYI hseu}jg)s RD(h) S TLI—Q’

(51)

which implies that (in following inequalities, g is the groundtruth labeling function, i.e.,

Rp(g) =0)

Chy
—= = Bs~py

- sup BN =Espg,, sup | (1), 060 il au0

T hetg T hetg

>2Bs g, sup / o, (r(),900)dn ).

T petts

This implies that (here we have used the property of zero-one loss)

: Cyb
]ESND}IYI hlel%-{zs /9<K+1 l(h(x), K+ 1)du(x) > pxe X :g(x) < K+1)— e
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Therefore,
E f Ry(h,K+1)> Xog) < K+1)— 200 (52)
SND”IYIhlen WK +1)>pxeX:gx) < K+ Wt

Additionally, R, (g, K +1) = pu(x € X : g(x) < K+ 1) and g € Hg, which implies that

hir% Ry(h,K+1)<pxeX:g(x)<K+1). (53)
€rts

Combining inequalities (52) and (53), we obtain that
Cpb

Es~pn f R,(h,K+1)— eX: <K+1 54
‘SD”hIEHS ( +1) — p(x g(x) +)| e (54)
Using inequalities (50) and (54), we obtain that
Co(b+1
Es,~un  sup  [Esupn  Ru(Ag,(8),K+1)—pu(xe X :g(x) < K+1)] < ( - 9)
DXIYIG—OJI L n-—
(55)
Using inequality (51), we have
in 09
B~y sup  Esopy | Rp(As,(5)) < —==, (56)
DXIYIGJI n-—
which implies that (here we use the property of zero-one loss)
Bse s By, [= [ f(As (860K + 1)du()
DXIYIEJI I g<K+1 (57)
2bCy
+uxeX: gx)<K+1)] < —-
=

Combining inequalities (55) and (57), we have

2bCy Co(b+1)
Vnl=0 Vnl=0

Ese sup Espy / ((As, (S)(x), K + D)dpu(x) <
DXIYIE-JI I g=K+1

Therefore, there exist data points S/, such that

sup  Egopy , Bp'(As,)

Dxvi€%
= sup Ego / l(Ag (9)(x), K +1)fo(x)du(x
Dx;v; €% Pl g=K+1 (A5, (5)(x) Jfolx)du(x) (58)
4b209 Cy(b? + b)
<2b sup Eg. / U(Ag (9)(x), K+ 1)du(x) < .
po, Bseng, [ (s (960 K+ au0 < T+ IR

Combining inequalities (51) and (58), we obtain that for any n, there exists data points S/,

such that
4b%Cy 209(b2 +0b) Cy

WJF Vnl=0 ’\/nlfe}'
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We set data point sequences S’ = (S7,5%,...,5),...). Then, Ag € &/ is the universally
consistent algorithm, i.e., for any « € [0, 1]

4b%Cy 209(1)2 +b) Gy
Vnl—0 + Vnl-0 ,/nlfe}'

We have completed this proof when £ is the zero-one loss.

ESND?(IYI R}(Ag/) < max {

Second, we prove the case that £ is not the zero-one loss. We use the notation £y_1 as the
zero-one loss. According the definition of loss introduced in Section 2, we know that there
exists a constant M > 0 such that for any y1,y2 € Van,

1
M€0—1(y17y2) < l(y1,y2) < Mlo_1(y1,y2)-

Hence,
L posto-vpy < RoLn) < MRS (1
o (h) < Ry (h) < o (h),

where R%’ZO’I is the a-risk with zero-one loss, and R%’Z is the a-risk for loss 4.

Above inequality tells us that Risk-based Realizability Assumption holds with zero-one loss
if and only if Risk-based Realizability Assumption holds with the loss ¢. Therefore, we use
the result proven in first step. We can find a consistent algorithm A such that for any
a € [0,1],

o 1
Es~pr . RSO (A) < O ),

X1Y1 nl—
which implies that for any « € [0, 1],
1

—Ecopn
M S DXIYI

-3

R3'(A) < O(

).

We have completed this proof. |

;

nt—

Appendix L. Proof of Theorem 15

Theorem 15 Suppose that R is constant closure, separate, and p(X) < +oo. Given
a density-based space 9;’?,, if the AUC-based Realizability Assumption holds, then when
VC[p o R] < 400, OOD detection is learnable under AUC in @;’i’, for R, where ¢ o R =
{1, x)>ra(x) 1 71,72 € R}. Furthermore, the learning rate econs(n) can attain O(1/vVn'=?%),
for any 0 € (0,1).

Proof [Proof of Theorem 15] Without loss of generality, we assume that K = 1, and any
r € R satisfies that 0 < r < 1 (one can achieve this by using sigmoid function). Then it is
clear that R 1) = {1,x)<r : V7 € R, V7 € (0,1)} has finite VC-dimension by the condition
constant closure and VC[¢ o F] < 4o00. Given m data points Sy, = {x},....,x),} C X™. We
consider the following learning rule:

1 & 1<
max — 1,.\<-, subject to — 1, (x. =0.
1 2z it 0 LY L
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We denote the algorithm, which solves the above rule, as Ag, . For different data points
Sm, we have different algorithm Ag, . Let S be the infinite sequence set that consists of all
infinite sequences, whose coordinates are data points, i.e.,

S :={S:=(51,52,...,5m,...) : Sy, are any m data points, m =1, ..., +00}. (59)
Using &, we construct an algorithm space as follows:
o/ :={Ag :V S € S}, where Ag(S) = Ag, (5), if |S| =n.

Then we can check that

IN
=)
=
=
%
14
-
2
—
0
A
3
+

Es D% sup Ex.py 1
~ ~Dx;+r(x)<T
X 1,.,€05 ! 1,<r€R(0,1)

and because of Gg C R(g,1),

C
Es,~un sup [ sup  Ru(ly<;) — Ru(Ag, (9))] < ——2

. < —, (60)
SeXn 1,<,€0s = : N

where .
S = {]—r(x)§7- S R(O,l) : Z lr(x]-)ST =0< 0}, here S = {Xl, ...,Xn},
=1
and
RM(]'?"ST) = EXNer(x)g‘r‘

Let Dy be the set consisting of all ID distribution in the density-based space. Then we have

Cy
Es,~y» sup Eg.pn [ sup R,(lr<;) — R,(Ag,(9))] < , 61
o 5B Bsnoy | sup, Rullecs) = RylAs, (8)) € 25 (61)

Due to AUC-based Realizability Assumption, we obtain that infq <r€R 01y Ex~ Dy, Lrx)<r =
0, therefore,
Cy

nl

Eswpy  sup  Exupy lrpg<r < (62)

r<7—€gS -

]_

Let 7* € R be the optimal ranking function satisfying that
AUC(r*; Dx,, Dx,) =1,
which implies that there exists 7* satisfying that for any € > 0
Dx,(x:r"(x) <7"—€) =0, Dx(x:7r"(x)<7"+¢€)>0.

Then we consider set Qy, := {x € X : 7*(x) > 7*}, if Dx,(x : r*(x) = 7%) = 0; otherwise,
Qx, :={x e X :r*(x) > 7}. Qx, =X — Qx,. Then we have that

Cy 2
> Egwprn sup Ex.py 1,x)< *ES~D" sup / 1, (x)<rdp(x),
\/nl-0 X1 1,<,€Gs x~Dxp +r(x)<T b 1,2, €Gs Ox, r(x)<T
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which implies that

. bCy
Es~py 17-;?£Qs /QXI 1, (x)>rdp(x) + v > pu(Qx,)
Therefore,
. bCy
ESND}I lv-gl?ggs /X 1- 17’(x)§7d:u'(x) + o/ 10 > M(QXl)v
which implies that
bCy
w(Q2x,) + W > ESND}I lrilggs Ru(lr(x)gr)-

Additionally, due to 1,«(x)<;—e € Gg, it is clear that

sup Ru(lrg'r) > N(QXO)'
1r§-r€gs

Combining Eq. (63) with Eq. (64), we have

bCy
Eg.pr sup R, (1l,<;)— u(Q2 <
| Dhyy S p(lrsr) = 1 Qx0)l < o=
By using Eq. (61) and Eq. (64), we have
Cy bCy

Eg,~un sup  Esopn [1(Qxs) — Ru(As,(5))] <
DXIGD[ I

Using inequality (62), we have

C
Eg,~un sup Eg.py EXNDXIASn(S)(X) < 199’
Dx, €Dy ! e
which implies that
bCy

Es,~y» sup Egpn Ag, (9)(x)du(x) < .
oy, sy, [ As(S)0dn0) <

Then inequalities (65) and (67) imply that

1+ b)C
Eg,~un sup Eg.pz / L= As, (9)(x)dp(x) < ( 1)90
DXIEDI ! QXO e
Therefore,
2b(1 4+ b)C
Eg,~un sup Es.pr / 1—Ag, (5)(x)dDx,(x) < (7;9
DXIGDI ! X nl_

We assume that Ag, (S) = 1,4 ¢<rg, s Then above inequality implies that

. 2b(1 + b) Cy
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Inequality (66) implies that

Cy
Eg ~un inf Eg.pn ]E ~Dy. 1 >1—-—=
Sn 17 DXIGD[ S D X DXI Tsnys(x)>7'sn75' - /rl_e?

which shows that there exists S), ~ u™ and C’ such that
inf ESND” AUC(fS/ S DXI, DXO)
Dx, €Dy

>
= D):?GfDI IES’ND” EXNDXO Ex’NDXI 1TS§L,S(X)<T5‘;1,S(X,)

>
el D;?EfDI ESND” IE:XNDXO IE‘X/’\/DXI 1TS%,S(X)STS,/,I,S 1TSA,S(XI)>TSQ,S

max{Cp,C'}  2b(1+b)Cy
Vni=t gl

We set data point sequences 8’ = (57,55, ...,5),...). Then, the function part rg g of
Ag € o7 is the universally consistent algorithm, i.e.,

>1 -

max{Cp,C'}  2b(1+ b)Cy
inf  Es.pn AUC(TS/ $;Dx;, Dxy) >1— e — e

DXI €Dy

We have completed this proof.

Appendix M. Proofs of Proposition 1 and Proposition 2

Proposition 1 Let X be a bounded feature space. Given q = (l1,...,lg—1,1), then

o if some s withl <s<g,d=11 <ls <..<l,, andls; > 2d, fg is the separate

ranking function space;
o Fq is constant closure;

o {15 (x)<fo(x') : J1, f2 € FG} has finite VC dimension.

Proof [Proof of Proposition 1 | Firstly, we prove that if some s with 1 < s < g,
d=11 <lp<..<l;,and l; > 2d, Fg is the separate ranking function space.

First, we show that if ¥ C R!, and q = (1,2,1), then JFq 1s the separate ranking space.

For any z € X,
—x

fz(x’):[l,l]o([ _11 }x'%— { . ])+0.
It is easy to check that for any x’ # x,
fo(x) < fu(2').
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Next, we prove that if X ¢ R?, and q = (d, 2d, 1), then JFq 1s the separate ranking space.
Let v; € R?¢¥1 ig a vector whose 2i-th and 2i + 1-th coordinates are —1; otherwise, other
coordinates are 0. For any x = [21,...,z4]" € X,

fX(X/) = [1, 1..., 1]1><(2d) O'([Vl,VQ, ...,Vd] X/ + Md+1) + 0,

where My 1 € R2%*1 is a vector whose 2i-th coordinate is —z; and (2i + 1)-th coordinate is
x;. It is easy to check that for any x’ # x,

Fx(x) < fx(x).

Thirdly, we prove that if d =13 =l = ... = l,—1 and [, = 2d, then FJ is the separate ranking
space. Due to X is bounded, we can find b such that any x = [z, ..., gvd]T € X satisfies that
z; +b > 0. Then, we set wa, W3, ..., w,._1 are identity matrices, by is the matrix whose all
coordinates are b, and bg,...,b,_1 are 0. Then the result in second step implies the result.
Finally, using the result that q < q' = Fg C Fa (Lemma 14) implies the final result.

Secondly, it is clear that FJ is constant closure. We omit the proof.
Thirdly, by Theorems 5 and 8 in (Bartlett and Maass, 2003), we can obtain the third result.
|

Proposition 2 Given q = (l1,...,l4-1,1) and @' = (I1,...,l;-1,1), let R = E o FJ, then
o if .Fg/ s a separate ranking function space, R is the separate ranking function space;
e R is constant closure;
e {1, (x)<ra(x/),T1, T2 € R} has finite VC dimension,

where E is Eq. (7), (8) or (9).

Proof [Proof of Proposition 2 | Firstly, we prove that if ]-"g, is a separate ranking function

space, R is the separate ranking function space.

For the softmax-based function:
k
E(f) = max %.
kellont) S exp (f°)

Note that Fg, is separate ranking space. Then for any x € X, there exists fx € Fg, such
that 0 = fx(x) < fx(x), for any x’ € X and x" # x. Then fx = [fx, —fx, .., —fx] € Fq can
ensure that for any x’ € X and x’ # x,

E(fe(x)) < B(fe(x')).

Using the same strategy, we can prove that the temperature-scaled function is the separate
ranking space. For the energy-based function:

l
E(f) =Tlog» exp (f/T).

c=1
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Note that Fg, is separate ranking space. Then for any x € X, there exists fx € Fg such
that 0 = fx(x) < fx(X), for any X’ € & and x’ # x. Then fx = [fx, fx, .., fx] € Fq can
ensure that for any x’ € X and x’ # x,

E(fx(x)) < E(fx(x)).

Secondly, it is easy to show that R is constant closure. We omit it.
Thirdly, by Theorems 5 and 8 in (Bartlett and Maass, 2003), we can obtain the third result.
|

Appendix N. Proofs of Proposition 3 and Proposition 4

To better understand the contents in Appendices N-Q, we introduce the important notations
for FCNN-based hypothesis space and score-based hypothesis space detaily.

FCNN-based Hypothesis Space. Given a sequence q = (I1,ls,...,1;), where [; and ¢
are positive integers and g > 2, we use g to represent the depth of neural network and
use l; to represent the width of the i-th layer. After the activation function o is selected,
we can obtain the architecture of FCNN according to the sequence q. Given any weights
w; € Rlixli-1 and bias b; € REX1, the output of the i-layer can be written as follows: for
any x € R,

fZ(X) = O’(Wz‘fi_1<X) + bz), Vi = 2, g —1,
where f;_;(x) is the i-th layer output and fj(x) = x. Then, the output of FCNN is
fwb(x) = wyfy_1(x) + by, where w = {wy,...,wy} and b = {bo, ..., b, }.
An FCNN-based scoring function space is defined as:

FZ = {fwp : Vw; € R wb, e REXD =2, g}

Additionally, given two sequences q = (l1,...,lg) and @' = (I}, ..., l’g,), we use the notation
q < q' to represent the following equations and inequalities:
9<d, h=1l, lg=1,
L<l, Vi=1,.,9-1,
lg—1 <1li, Vi=g,...¢ —1.
Given a sequence q = (ly,...ly) satisfying that iy = d and [; = K + 1, the FCNN-based
scoring function space Fq can induce an FCNN-based hypothesis space. Before defining

the FCNN-based hypothesis space, we define the induced hypothesis function. For any
fw,b € Fq, the induced hypothesis function is:

hwb(x) = argmax fr, (x), ¥x€ X,
ke{l,.,K+1}

where f¥ | (x) is the k-th coordinate of fy p,(x). Then, we define the FCNN-based hypothesis
space as follows:

HY = {hwp : Vw; € REXli-1 Vb, e R =2, g}
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Score-based Hypothesis Space. Many OOD algorithms detect OOD data using a score-
based strategy. That is, given a threshold ), a scoring function space F; C {f : X — R!}
and a scoring function E : F; — R, then x is regarded as ID, if E(f(x)) > A; otherwise, x is
regarded as OOD.

Using E, A and f € Fg, we can generate a binary classifier hg\ B

1 B(E(x) > A
hf)‘\,E( ) _{ 2, if E(f(x)) < A,

where 1 represents ID data, and 2 represents OOD data. Hence, a binary classification

hypothesis space H?, which consists of all h?‘ > is generated. We define the score-based
3 7)‘ o )\ .

hypothesis space HZLE = {h¢ p : Vf € FJ}

Next, we introduce two important propositions.

Proposition 3 Given a sequence q = (11, ...ly) satisfying that ly =d and l; = K + 1 (note
that d is the dimension of input data and K + 1 is the dimension of output), then the
constant functions hi, ha,....,hk 1 belong to Hg, where hi(x) =i, for any x € X. Therefore,
Assumption 1 holds for H.

Proof [Proof of Proposition 3] Note that the output of FCNN can be written as
fw,b(X) = ngg_l(x) + bg,

where w, € REFDXls—1 b ¢ RIKFDXL and £, ;(x) is the output of the I, i-th layer.
If we set wy, = 0, and set b, = y;, where y; is the one-hot vector corresponding to la-
bel i. Then f p(x) = y;, for any x € X'. Therefore, h;(x) € Hg, foranyi=1,... K, K+1. W

Note that in some works (Safran and Shamir, 2017), by is fixed to 0. In fact, it is easy to
check that when g > 2 and activation function ¢ is not a constant, Proposition 1 still holds,
even if b, = 0.

Proposition 4 For any sequence q = (1, ..., ly) satisfying that Iy = d and l; =1 (note that d
is the dimension of input data and | is the dimension of output), if {v € Rl : E(v) > A} # 0
and {v € Rl : E(v) < A} # 0, then the functions hy and hy belong to Hg’)]‘ﬂ, where hy(x) =1
and ha(x) = 2, for any x € X, where 1 represents the ID labels, and 2 fepresents the OOD
labels. Therefore, Assumption 1 holds.

Proof [Proof of Proposition 4] Since {v € R': E(v) > A} # 0 and {v € R': E(v) < \} # 0,
we can find vi € {v € R : E(v) > A\} and v € {v € Rl : E(v) < A}
For any fy 1, € ]:g, we have

fp(x) = wWofy—1(x) + by,

where w, € R>lo=1 b, € R*! and f;_1(x) is the output of the [,_1-th layer.
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If we set wy = 0px,_, and b, = vy, then fy ,(x) = vi for any x € &, where 0y, _,

is [ X lg—1 zero matrix. Hence, hq can be induced by fy . Therefore, h1 € Hg’};

Similarly, if we set wy = 0;x;, , and by, = v, then fy ,(x) = va for any x € &', where

Orx1,_, is I x lg—1 zero matrix. Hence, ha can be induced by fw . Therefore, hy € Hg% [ |

It is easy to check that when g > 2 and activation function ¢ is not a constant, Proposition
4 still holds, even if by = 0.

Appendix O. Proof of Theorem 16

Before proving Theorem 16, we need several lemmas.

Lemma 13 Let o be ReLU function: max{xz,0}. Given q = (l1,...,ly) and q' = (I}, ..., 13)
such that ly =13 and Iy =1y, and l; <1Ii (i =1,...,9 — 1), then F§ C Fo and Hg CH,.

Proof [Proof of Lemma 13] Given any weights w; € R%*!~1 and bias b; € R4*1, the i-layer
output of FCNN with architecture q can be written as

fi(x) = o(wifi_1(x) + b;), Vx e R Vi=2 . ,9—1,
where f;_1(x) is the i-th layer output and f;(x) = x. Then, the output of last layer is
fw,b (X) = ngg_l(X) + bg.

We will show that fw, € Fg. We construct fy 1 as follows: for every w; € RExtioa | if
Il—1;>0and l}_; —1l;_1 > 0, we set

/ Wi OliX(lé,l—liq) ’ b;
w,; = 0 0 s bi = 0,
(U~ %1} (i) >ty ~Li=1) (l=li)x1

i—1

where 0, means the p x ¢ zero matrix. If I, —[; =0 and I[_; —;_1 > 0, we set
W; = |: Wi OliX(lgilfli71)j| ) b; = b’L

Ifll { —li—1=0andl—1; >0, we set

e[S oot
O —1yxi_, 0@—1,)x1

Ifl , —li-1=0and—1; =0, we set

7

It is easy to check that if I[ —1; > 0

f/ = [ ki ] .
‘ 0r—1)x1
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If 1, —1; =0,
£ =,

(3

. I .
Since l; — 1, =0,
/ .
f, =1y, i.e., b =fwp.

Therefore, fwn € Fg/, which implies that Fg C Fg,. Therefore, Hg C Hg,. |

Lemma 14 Let o be the ReLU function: o(x) = max{x,0}. Then, q < q' implies that
Fq CFgs Hq CHy, where g = (l1, ..., 1g) and g = (I3, ... 1;,).

"

Proof [Proof of Lemma 14] Given I” = (If,...,lj,) satisfying that g < ¢", I = I; for
i=1,.,g—1,1' =1, 1 fori=g,..,g"—1, and l’g’,, = lg, we first prove that 7§ C Fg, and
HG C H,.

Given any weights w; € Rl*li-1 and bias b; € RY*! the i-th layer output of FCNN
with architecture q can be written as

f(x) = o(wifi_1(x) +b;), Vx e R Vi=2 . g1,
where f;_1(x) is the i-th layer output and f;(x) = x. Then, the output of the last layer is
fw.b(x) = wyfy,_1(x) + by.

We will show that fy, 1, € ]-"g,,. We construct fy»~ v as follows: if i = 2,...,g — 1, then
w{ =w and bj = b;; if i = g,...,¢" — 1, then w} =TI;,_,;,_, and b = 0;,_, 1, where
L, xi,_, is the l;_1 x [, identity matrix, and 0;,_, 1 is the [;_1 X 1 zero matrix; and if
i1 =¢", then w’g’,, = wy, b’g’,, = by. Then it is easy to check that the output of the i-th layer
is

£ =f,_1,Vi=g—1,9,....9" — L.

)

Therefore, f/ pr = fw b, which implies that FJ C fg/,. Hence, Hg C Hg,,.
When ¢” = ¢/, we use Lemma 13 (q” and q satisfy the condition in Lemma 13), which
imp]ies that Fg// C fg/, Hg// C Hg/ Therefore, qu C Fg/, Hg C Hg/ |

Lemma 15 (Pinkus, 1999) If the activation function o is not a polynomial, then for any
continuous function f defined in R?, and any compact set C C R?, there exists a fully-
connected neural network with architecture q (Ii = d,ly = 1) such that

inf ma x) — f(x)| <e.
nk | () f60)] < o

Proof [Proof of Lemma 15] The proof of Lemma 15 can be found in Theorem 3.1 in (Pinkus,
1999). [ ]
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Lemma 16 If the activation function o is the ReLU function, then for any continuous
vector-valued function £ € C(R%:RY), and any compact set C C R, there exists a fully-
connected neural network with architecture q (Iy = d,ly = 1) such that
inf ax || f —f < e,
g 0, max [fwb(x) = £(x)[l2 <€
where || - ||2 is the €y norm. (Note that we can also prove the same result, if o is not a
polynomial.)

Proof [Proof of Lemma 16] Let f = [fi, ..., fi] |, where f; is the i-th coordinate of f. Based
on Lemma 15, we obtain [ sequences q', q2,...,q such that

inf maé(|gl(x) - Ax)| < e/VI,

g1 6]—';'1 PSS

inf max |ga(x) — fo(x)| < €/V1,

926}'22 xeC

infmax |gi(x) — fi(x)| < e/ V.

g1 E.F:l xeC

It is easy to find a sequence q = (I1,...,14) (I; = 1) such that q° < q, for all i = 1,...,1.
Using Lemma 14, we obtain that ]-'gi C Fq- Therefore,

inf max |g(x) — f1(x)] < ¢/V1,

geFg xeC

inf max |g(x) — fo(x)| < ¢/V1,

ge]:g xeC

inf max|g(x) — fi(x)| < e/V1.

gefg xeC

Therefore, for each i, we can find gy v, from Fg such that
max gy i (%) = fi(x)| < ¢/ VI,
xeC

where w' represents weights and b’ represents bias.

We construct a larger FCNN with q' = (1,1, ..., [§) satisfying that I} = d, I} = [ x;, for
i =2,...,9. We can regard this larger FCNN as a combinations of [ FCNNs with architecture
q, that is: there are m disjoint sub-FCNNs with architecture q in the larger FCNN with
architecture q’. For i-th sub-FCNN, we use weights w’ and bias b’. For weights and bias
which connect different sub-FCNNs, we set these weights and bias to 0. Finally, we can

obtain that gw b = [gw! bls w2 b2, ...,ng’bl]—r € Fg» which implies that

max gw,b(x) — f(x)[2 <
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We have completed this proof. |

Given a sequence q = (l1, ..., ly), we are interested in following function space .7-"(‘;7M:
Fam ={M-(cof):Vfec F},

where o means the composition of two functions, - means the product of two matrices, and

M:[ Lix(,-1) 0]7
O1x,-1) 1

here 1y,(;,—1) is the 1 x (l; — 1) matrix whose all elements are 1, and 01,(,_1) is the
1 x (lg — 1) zero matrix. Using Fam: We can construct a binary classification space Hg yr,
which consists of all classifiers satisfying the following condition:

h(x) = arg min f;(x),
k={1,2}

where f;(x) is the k-th coordinate of M - (o o f).

Lemma 17 Suppose that o is the ReLU function: max{xz,0}. Given a sequence q =
(I1,...,1y) satisfying that Iy = d and l; = K + 1, then the space HZ m contains ¢ o HY, and
Hom has finite VC' dimension ( Vapnik—Chervonenkis dimension), where ¢ maps ID data
to 1 and OOD data to 2. Furthermore, if given q' = (I}, ...,l;) satisfying that I, = K and
I =1i, fori=1,...,9 —1, then Hg C Hor @ Ham-

Proof [Proof of Lemma 17] For any hw p € Hg, then there exists fy, p € Fg such that hywp

is induced by fy . We can write fy p, as follows:
fwb(x) = wWofy—_1(x) + by,

where w, € REFDXl-1 1 ¢ REFDXL and f,_(x) is the output of the I,_;-th layer.
Suppose that

Vi b1
Vo bQ
Wy = , by = ,
VK br
VK41 bi 11

where v; € R1ls—1 and b; € R.

We set
fwl,b/(x) = W;fgfl(x) + b;,
where
V1 b1
!/ _ V2 I bQ
Wg o . ’ bg o ’
VK b[(
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It is obvious that fy/ 1 € Fq - Using fw b € Fq» we construct a classifier hy b € H:

hw' 1y = arg max f£/7b,,
ke{l,...,.K}

where f‘]f,, b is the k-th coordinate of fy 1.

Additionally, we consider
fw,b,B =M- J(B . fw,b) € .F&M,

where
B= | Te-vx@-1 —le-nxi
015 (1,—1) 0

)

here I(;, _1)x(,—1) is the (Ig — 1) x (I; — 1) identity matrix, Oy, ,—1) is the 1 x (I; — 1) zero
matrix, and 1(, 1) is the ([; — 1) x 1 matrix, whose all elements are 1.
Then, we define that for any x € X,

hwbB(X) := arg max fvlf,b,B(x),
ke{1,2}

where ffv b.p(X) is the k-th coordinate of fw b,B(x). Furthermore, we can check that hy b B
can be written as follows: for any x € X,

L if faps(x)>0;
2, if faps(x) <0

hw,b,B (X) = {

It is easy to check that
hwpbB = ¢ 0 hwp,

where ¢ maps ID labels to 1 and OOD labels to 2.

Therefore, hywp(x) = K + 1 if and only if hwpB = 2; and hwp(x) = k (K # K + 1)
if and only if hwpp = 1 and hy/p(x) = k. This implies that Hg C Hy ® Howm and
o HE C Hom-

Let q be (li,...,13,2). Then Fam C Fg. Hence, Hgyy C HZ. According to the VC
dimension theory (Bartlett et al., 2019) for feed-forward neural networks, Hg has finite VC
dimension. Hence, Hg s has finite VC-dimension. We have completed the proof. |

Lemma 18 Let |X| < +00 and o be the ReLU function: max{x,0}. Given r hypothesis
functions hy, hy,...,h, € {h: X — {1,...,1}}, then there exists a sequence q = (li,...,1;) with
lh=d andl; =1, such that ha,...,h, € HY.

Proof [Proof of Lemma 18] For each h; (i = 1,...,7), we introduce a corresponding f; (defined
over X) satisfying that for any x € X, f;(x) = y}, if and only if h;(x) = k, where y; € R! is
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the one-hot vector corresponding to the label k. Clearly, f; is a continuous function in X,
because X is a discrete set. Tietze Extension Theorem implies that f; can be extended to a
continuous function in R

Since X is a compact set, then Lemma 16 implies that there exist a sequence q* = (¢, ..., l;,-)
(I{ =d and lgi =1)and fwy, € ng such that

1
f —f; < —
I}Elea}(( H Wab(x) ’L(X)H(Q 10 - l’
where || - ||¢, is the 5 norm in R!. Therefore, for any x € X, it easy to check that

arg max f& 1, (x) = hi(x),
ke{l,...,l}

where ffv7b(x) is the k-th coordinate of fy, p(x). Therefore, h;(x) € Hei

Let q be (I1,...,l) (I = d and l; = 1) satisfying that q° < q. Using Lemma 14, we
obtain that Hgi C Hg, for each i = 1,...,r. Therefore, hy, ..., h, € H. [ ]

Lemma 19 Let the activation function o be the ReLU function. Suppose that |X| < 4o0.
If{v e R : E(v) > A} and {v € Rl : E(v) < A} both contain nonempty open sets of R!
(here, open set is a topological terminology). There exists a sequence q = (l1,...,1y) (li =d
and ly = 1) such that Hgl)}ﬂ consists of all binary classifiers.

Proof [Proof of Lemma 19] Since {v € R' : E(v) > A}, {v € Rl : E(v) < A} both contain
nonempty open sets, we can find vi € {v € Rl : E(v) > A}, vo € {v e R : B(v) < A} and a
constant 7 > 0 such that B.(v1) C {v € Rl : E(v) > A} and B,(v2) C {ve R : E(v) < A},
where By (vy) ={v:|v—=vi|ls, <7} and B,(va) = {v:|v—va|e, <7}, here | - ||¢, is the
{9 norm.

For any binary classifier h over X, we can induce a vector-valued function as follows:

for any x € X,
vy, if h(x) =1;
LT
vo, if h(x)=2.
Since X is a finite set, then Tietze Extension Theorem implies that f can be extended to a

continuous function in R?. Since X is a compact set, Lemma 16 implies that there exists a
sequence q" = (I%, ..., lgh) (1" = d and lgh =1) and fyp € .th such that

r

f. —f —
mage (%) — £G)], <

where | - ||s, is the f5 norm in R!. Therefore, for any x € X, it is easy to check that
E(fwp(x)) > X if and only if h(x) =1, and E(fy p(x)) < A if and only if h(x) = 2.

For each h, we have found a sequence q" such that h is induced by fop € .th, FE and
A. Since |X| < 400, only finite binary classifiers are defined over X. Using Lemma 18,
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we can find a sequence q such that ’ng = "Hg’%, where HZH consists of all binary classifiers. B

Lemma 20 Suppose the hypothesis space is score-based. Let |X| < +oo. If{v € R -
E(v) > A} and {v € R : E(v) < A} both contain nonempty open sets, and Condition 3
holds, then there exists a sequence q = (l1,...,ly) (lh = d and ly = 1) such that for any
sequence o satisfying q < ' and any ID hypothesis space H™, OOD detection is learnable
in the separate space Px for H™ o HP, where HP = Hgif‘E and H™ e HP is defined below
Eq. (6).

Proof [Proof of Lemma 20] Note that we use the ReLU function as the activation function
in this lemma. Using Lemma 14, Lemma 19 and Theorem 11, we can prove this result. W

Theorem 16 Suppose that Condition 3 holds and the hypothesis space H is FCNN-based or
score-based, i.e., H = Hg or H = H™ o HP, where H™ is an ID hypothesis space, HP = Hg%
and H = H™ o HP is introduced below Eq. (6), here E is Eq. (7), (8) or (9). Then

There is a sequence q = (l1,...,1lg) such that OOD detection is learnable
under risk in the separate space Py for H if and only if |X| < +oo.

Furthermore, if |X| < 400, then there exists a sequence q = (li,...,ly) such that for
any sequence q' satisfying that q < o', OOD detection is learnable under risk in D% for H.

Proof [Proof of Theorem 16] Note that we use the ReLU function as the activation function
in this theorem.

e The Case that H is FCINN-based.

First, we prove that if |X'| = +oo, then OOD detection is not learnable in 25y for Hg, for
any sequence q = (l1,...,ly) (h =d and [, = K +1).

By Lemma 17, Theorems 5 and 8 in (Bartlett and Maass, 2003), we know that VCdim(¢ o
Hg) < +oo, where ¢ maps ID data to 1 and maps OOD data to 2. Additionally, Propo-
sition 3 implies that Assumption 1 holds and supjcye {x € X : h(x) € Y}| = +o0, when
|X| = +00. Therefore, Theorem 6 implies that OOD detection is not learnable in 2% for
H, when [X]| = +o0.

Second, we prove that if |X| < +oo, there exists a sequence q = (I1,...,l;) (h = d
and Iy = K + 1) such that OOD detection is learnable in 2% for H.

Since |X| < 400, it is clear that |Han| < 400, where H,y1 consists of all hypothesis functions
from &X' to Van. According to Lemma 18, there exists a sequence q such that Hay C Hg.
Additionally, Lemma 17 implies that there exist H™ and " such that He C H'™ e HP. Since
Han consists all hypothesis space, Hay = Hg = H™ o HP. Therefore, HP contains all binary
classifiers from X to {1,2}. Theorem 11 implies that OOD detection is learnable in 2%
for Hg.

Third, we prove that if |X'| < +o0o, then there exists a sequence q = (I1,...,1;) (Il =d

and l; = K + 1) such that for any sequence q' = (], ..., l;,) satisfying that q < q/, OOD
detection is learnable in 7% for My
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We can use the sequence q constructed in the second step of the proof. Therefore, Hg = Han.
Lemma 14 implies that HZ C Hg,. Therefore, Hg, = Han = Hg. The proving process
(second step of the proof) has shown that if |X| < 400, Condition 3 holds and hypothesis
space H consists of all hypothesis functions, then OOD detection is learnable in % for H.
Therefore, OOD detection is learnable in %%, for ”H‘(’l,. We complete the proof when the
hypothesis space ‘H is FCNN-based.

e The Case that H is score-based

Fourth, we prove that if |X| = +o00, then OOD detection is not learnable in 2%, for
H'™ o HP, where HP = HZ’}E for any sequence q = (1, ...,ly) (l1 =d, l; =1), where E is in
Eq. (7), (8), or (9).

By Theorems 5 and 8 in (Bartlett and Maass, 2003), we know that VCdim(Hgi)};) < +00.
Additionally, Proposition 4 implies that Assumption 1 holds and supj,eyqs [{x € X' : h(x) €
YV} = 400, when |X| = +00. Hence, Theorem 6 implies that OOD detection is not learnable
in D%y for HY, when [X| = +o0.

Fifth, we prove that if |X| < +oo, there exists a sequence q = (l1,...,14) (li = d and
l; = 1) such that OOD detection is learnable in % for for H'" @ HP, where H" = Hg)}ﬂ for
any sequence q = (l1,...,ly) (I1 =d, Iy =), where F is in Eq. (7), (8), or Eq. (9).

Based on Lemma 20, we only need to show that {v € R' : E(v) > A} and {v € R': E(v) < \}
both contain nonempty open sets for different score functions F.

. X 'Uk X 'Uk C
Since maxye(i,..;y %, maxpe(1,..1} % and T log Zlczl exp (v°/T) are

continuous functions, whose ranges contain (1, 1), (7,1), (0,+00) and (0, 4+00), respectively.
Based on the property of continuous function (E~!(A) is an open set, if A is an open set),
we obtain that {v € R': E(v) > A} and {v € R': E(v) < A} both contain nonempty open
sets. Using Lemma 20, we complete the fifth step.

Sixth, we prove that if |X'| < 400, then there exists a sequence q = (1, ...,l4) (I1 = d and
ly = 1) such that for any sequence q' = (I}, ..., l’g,) satisfying that q < q’, OOD detection is
learnable in 75y for H'" @ HP, where HP = Hg}f‘E, where E is in Eq. (7), (8), or Eq. (9).

In the fifth step, we have proven that Eqgs. (7), (8), and (9) meet the condition in Lemma
20. Therefore, Lemma 20 implies this result. We complete the proof when the hypothesis
space H is score-based. |

Appendix P. Proof of Theorem 17

Theorem 17 Suppose the ranking function space R is separate, and FCNN-based or score-
based, i.e., R = Fg or R = Eo Fg, where E is Eq. (7), (8) or (9). Then

There is a sequence q = (li,...,lg) such that OOD detection is AUC
learnable in the separate space D%y for R if and only if |X| < +oc.

Furthermore, if |X| < 400, then there is a sequence q = (l1,...,lg) such that for any
sequence ' satisfying that q < ', OOD detection is learnable under AUC in D% for R.
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Proof [Proof of Theorem 17] Using a similar strategy of Theorem 16, we can prove this
theorem by Theorem 9 and Lemma 11. |

Appendix Q. Proof of Theorem 18

Theorem 18 Suppose that each domain Dxy in @%’/ is attainable, i.e., argmin, 4, Rp(h) #
0 (the finite discrete domains satisfy this). Let K = 1 and the hypothesis space H be score-
based (H = 'Hg”)}}, where E is in Eq. (7), (8), or (9)) or FCNN-based (H = Hg). If
w(X) < +oo, then the following four conditions are equivalent:

Learnability in 9;’?, for H < Condition 1 <—
Risk-based Realizability Assumption <= Condition 4

Proof [Proof of Theorem 18]
1) By Lemma 1, we conclude that Learnability in 95?3 for H = Condition 1.
2) By Proposition 3 and Proposition 4, we know that when K = 1, there exist hy, hy € H,
where hy = 1 and ho = 2, here 1 represents ID, and 2 represent OOD. Therefore, we know
that when K = 1, infpeyy RB(h) = 0 and infrey REY(h) = 0, for any Dxy € @;’f/.
By Condition 1, we obtain that infpcy Rp(h) = 0, for any Dxy € @;’f,. Because each
domain Dxy in @f(’f, is attainable, we conclude that Risk-based Realizability Assumption
holds.
We have proven that Condition 1= Risk-based Realizability Assumption.
3) By Theorems 5 and 8 in (Bartlett and Maass, 2003), we know that VCdim(¢ o H) <
-+o00o and VCdim(Hg’,)}J) < +4o00. Then, using Theorem 14, we conclude that Risk-based
Realizability Assumption=- Learnability in 9;’;’, for H.
4) According to the results in 1), 2) and 3), we have proven that

Learnability in 9;’?, for H <Condition 1< Risk-based Realizability
Assumption.
5) By Lemma 2, we conclude that Condition 4=Condition 1.
6) Here we prove that Learnability in 24 for # =Condition 4. Since 2% is the
prior-unknown space, by Theorem 1, there exist an algorithm A : U2 (X x Y)" — H and
a monotonically decreasing sequence €cons(n), such that e.ons(n) — 0, as n — +o0, and for
any Dxy € .@é&b/,

Espy,, [RB(A(S)) — inf RB(R)] < ccons(n),

Es~pr .. [R‘but(A(S)) — inf ROD“t(h)] < €cons(n).
Y1 heH
Then, for any € > 0, we can find n. such that € > €cons(n¢), therefore, if n = ne, we have

Es.pye, [RB(A(S)) - jnf Rp(h)] <e,

Es.oy, [RBU(A(S)) — inf RE'(W)] < e,
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which implies that there exists Se ~ D'y, such that

RB(A(S)) — jinf Rp(h) <e,
RB'(A(S0)) = inf Rp"(h) <e.

Therefore, for any equivalence class [D'y,-] with respect to @;’ff and any e > 0, there exists
a hypothesis function A(Sc) € H such that for any domain Dxy € [D'yy],

A(S) € {W € H:RH (W) < jnf RO (h) + ey n{h € H: RE(K) < jnf RB(h) + €},
€ €

which implies that Condition 4 holds. Therefore, Learnability in _@f(’f/ for H =Condition 4.
7) Note that in 4), 5) and 6), we have proven that
Learnability in .@;’f/ for H =Condition 4=Condition 1, and Learnability in 9;’;’, for

‘H <Condition 1, thus, we conclude that Learnability in 9}?3 for H <Condition 4<-Condition
1.

8) Combining 4) and 7), we have completed the proof.

Appendix R. Proof of Theorem 19

Theorem 19 Suppose that the ranking function space R is separate and score-based (R =
Eo Fg) or FONN-based (R = Fg), where E is Eq. (7), (8) or (9). If u(X) < +oo, then
the following three conditions satisfy:

AUC-based Realizability Assumption = Learnability in 9}?3 for R = Condition 2

Proof [Proof of Theorem 19] The result can be obtained by Theorems 15 and 3. u

Appendix S. Proof of Theorem 20

Theorem 20 Let K =1 and the hypothesis space H be score-based (H = HZ’}J, where E is
in Eq. (7), (8), or (9)) or FCNN-based (H = Hg). Given a prior-unknown space Dxy , if
there exists a domain Dxy € Pxvy, which has an overlap between ID and OOD distributions
(see Definition 5), then OOD detection is not learnable under risk in Pxy for H.

Proof [Proof of Theorem 20| Using Proposition 3 and Proposition 4, we obtain that
infpey RIB(R) = 0 and infyey RAE(h) = 0. Then, Theorem 4 implies this result. [ ]

Note that if we replace the activation function o (ReLU function) in Theorem 20 with any
other activation functions, Theorem 20 still hold.
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Appendix T. Proof of Theorem 21

Theorem 21 Let the separate ranking function space R be FCNN-based or score-based
(where the score function E is Eq. (7), (8), or (9)). Suppose that Dxy, D', € Pxy are
discrete distributions with DXIYI = DXIYI and DXO = (5,(, D/XO = 5x’- If DXO = 5,(, DIXO =
dx' have overlaps with Dxy; and Dx, # D', then OOD detection is not learnable under
AUC in Dxy for R.

Proof [Proof of Theorem 21] This is a conclusion of Lemma 7. [ |
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