
Octopus: In-Network Content Adaptation to Control
Congestion on 5G Links

Yongzhou Chen
University of Illinois

Urbana-Champaign, IL, USA
yc28@illinois.edu

Ammar Tahir
University of Illinois

Urbana-Champaign, IL, USA
ammart2@illinois.edu

Francis Y. Yan
Microsoft Research

WA, USA
francisy@microsoft.com

Radhika Mittal
University of Illinois

Urbana-Champaign, IL, USA
radhikam@illinois.edu

ABSTRACT
It is challenging to meet the bandwidth and latency requirements
of interactive real-time applications (e.g., virtual reality, cloud gam-
ing, etc.) on time-varying 5G cellular links. Today’s feedback-based
congestion controllers try to match the sending rate at the endhost
with the estimated network capacity. However, such controllers can-
not precisely estimate the cellular link capacity that changes at
timescales smaller than the feedback delay. We instead propose a
different approach for controlling congestion on 5G links. We send
real-time data streams using an imprecise controller (that errs on
the side of overestimating network capacity) to ensure high through-
put, and then adapt the transmitted content by dropping appropriate
packets in the cellular base stations to match the actual capacity and
minimize delay. We build a system called Octopus to realize this ap-
proach. Octopus provides parameterized primitives that applications
at the endhost can configure differently to express different content
adaptation policies. Octopus transport encodes the corresponding
app-specified parameters in packet header fields, which the base-
station logic can parse to execute the desired dropping behavior. Our
evaluation shows how real-time applications involving standard and
volumetric videos can be designed to exploit Octopus, and achieve
1.5–18× better performance than state-of-the-art schemes.

KEYWORDS
Video Conferencing, 5G Networks, Edge Computing, Congestion
Control, In-Network Computation

ACM Reference Format:
Yongzhou Chen, Ammar Tahir, Francis Y. Yan, and Radhika Mittal. 2023.
Octopus: In-Network Content Adaptation to Control Congestion on 5G
Links. In The Eighth ACM/IEEE Symposium on Edge Computing (SEC ’23),
December 6–9, 2023, Wilmington, DE, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3583740.3628438

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEC ’23, December 6–9, 2023, Wilmington, DE, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0123-8/23/12. . . $15.00
https://doi.org/10.1145/3583740.3628438

1 INTRODUCTION
A combination of two factors makes data transfer over 5G cellular
networks extremely challenging: (i) Stringent performance require-
ments of interactive 5G applications: Interactive real-time appli-
cations, such as video conferencing, augmented and virtual reality
(AR/VR), tele-robotics, cloud gaming, etc., are increasingly relying
on cellular connectivity [9]. These applications typically transmit
standard or volumetric real-time videos, which require both high
throughput (e.g., for high video resolution and quality) and low la-
tency (e.g., to ensure high responsiveness for cloud gaming and low
motion-to-photon latency for AR/VR). (ii) Dynamic link conditions:
The above requirements must be met on wireless links with time-
varying capacities [23, 35, 54, 55, 60, 74]. These capacity variations
are caused by varying signal strength between the base station and
user devices (e.g., due to dynamic obstacles or changing distance and
directionality). The higher directionality required by mmWave [40]
makes 5G even more susceptible to such effects [54, 76].

Real-time data transfer over 5G continues to rely on feedback-
based congestion controllers, where the endhost selects a sending
rate to match the network capacity estimated using network feed-
back. The feedback could be implicit (e.g., packet loss [37, 41]
or delay [19, 21, 74, 78]) or may involve more active engagement
from the routers (e.g., early congestion notifications [31, 35], early
drops [32, 57], or explicit rate signalling [48, 70]). It is important for
a feedback-based controller to precisely match the sending rate with
network capacity in order to meet the performance requirements for
5G applications—sending too little leads to low throughput (and
thus low content quality), whereas sending too much leads to high
queuing delays and packet drops (resulting in lags in video frame
delivery).1 However, as we show in §2, feedback-based controllers
are fundamentally limited in their applicability to 5G networks—it is
not possible for them to precisely estimate the link capacity when it
changes at timescales that are smaller than the time taken to receive
feedback from the network (as is the case in dynamic cellular links).

In this paper, we explore an alternative approach for transmit-
ting real-time data streams over cellular links that circumvents the
need for a precise feedback-based controller: We allow the sender
to transmit excessive data to guarantee high throughput, and sub-
sequently adapt the transmitted content in the 5G base station by

1Inter-flow scheduling schemes (e.g., fair queuing or flow prioritization [12, 25, 58, 62,
65, 66]) can provide isolation across flows, but minimizing the self-inflicted queuing
delay for a given flow still requires precise congestion control.

199

2023 IEEE/ACM Symposium on Edge Computing (SEC)

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

strategically dropping packets (as specified by the application) to
match the available capacity and minimize delay.

Our approach is motivated by two observations: (i) 5G applica-
tions, transmitting real-time (standard or volumetric) video streams,
can typically adapt their content (e.g., frame rate or quality) based
on available network capacity to achieve low message latency. The
state-of-the-art real-time video transmission schemes (e.g., [22, 33,
43, 79, 80]) require the sender to first use a feedback-based controller
to estimate network bandwidth, with the sender-side application then
adapting its content based on this estimate. Our approach, in con-
trast, enables such content adaptation to take place directly inside the
network. (ii) The ongoing evolution of the 5G infrastructure [8, 59]
provides an opportune time to study how smarter mechanisms im-
plemented at the network edge (base stations) can help tackle the
extreme challenges of high-performance data transfer over time-
varying 5G links.

So how do we go about enabling in-network content adaptation
for 5G applications? First of all, it requires the application (app)
to encode its real-time data stream, comprising a series of multi-
packet messages (e.g., video frames), in a way that supports content
adaptation via packet drops. As detailed in our case studies (§6),
existing stream encoding techniques (e.g., scalable video codec [5,
64, 72] and point clouds for volumetric videos [39, 51]) already
provide such adaptability. The in-network packet dropping logic
would then depend on the app’s requirements and how it encodes the
stream. For instance, some apps may support reducing the spatial
resolution (e.g., by dropping packets corresponding to higher quality
layers in a layered video stream [5, 64], or to higher density levels
in a point cloud [39]), whereas others may solely allow reducing
temporal resolution (e.g., by dropping certain frames).

This leads us to the following question: how do we support dif-
ferent packet dropping policies that may vary across applications?
Since it might not be practical and scalable for 5G base stations to
implement customized dropping logic specific to each app, we look
for generalized dropping primitives that can be configured differ-
ently by different apps to express their requirements. The mode of
configuration we adopt involves parameters that can be specified in
packet header fields.

We first considered using well-known queue management tech-
niques that seemingly provide such configurability. One option is to
use priority dropping [4, 18], where the app marks different packets
with different priorities, and the router drops lower priority packets
when the buffer is full. Another option is to tag different packets with
deadlines, and the router drops the packets that exceed their dead-
lines [73]. However, it is not immediately obvious how an app could
use these schemes to express its content adaptation policies which
often involve complex dependencies across frames. For instance, if
the app requires minimizing the latency of the latest message, how
do we tune the buffer threshold for priority dropping or the packet
deadlines, the optimal value of which would vary with message sizes
and network bandwidth.

Instead, we design parameterized dropping primitives to more
directly capture the requirements of real-time apps. Our primitives
drop packets at the granularity of multi-packet messages, where the
app specifies the message boundaries and expresses its dropping pol-
icy as per message parameters. Our primitives trigger message drops
based on two natural conditions: (i) the arrival of a new message,

where the app can specify which messages trigger a drop in which
subset of older queued-up messages using priority levels, and (ii)
when the link capacity falls below specified bitrate thresholds, where
the app can configure different thresholds for different messages
based on the (known) bitrate of the generated content. Apps can
configure these primitives by setting message parameters to express
different content adaptation policies, in a manner that is agnostic of
underlying network characteristics.

We build a system, Octopus (§4), that is centered around the
above primitives and comprises: (i) an interface for applications
to specify their message boundaries and per-message parameters
to configure the dropping primitives; (ii) a transport protocol that
encodes the app-specified message parameters into packet headers,
performs (imperfect) congestion control that errs on the side of over-
estimating the network capacity, and implements the parameterized
dropping primitives for content adaptation in the transport buffer;
(iii) an in-network buffer management scheme that implements the
dropping primitives and parses the parameters in packet header fields
to enforce app-specified content adaptation policies.

We prototype our system (§5) using UDT [36] (a user-space
transport framework) for the endhost logic, and srsRAN [34] (an
open-source cellular platform) for the in-network logic. We evaluate
our prototype using three different case studies involving real-time
standard and volumetric videos (§6), and across a variety of sce-
narios (§7), to show that our approach results in 1.5–18× better
performance than state-of-the-art schemes (including WebRTC [7],
AWStream [79], Salsify [33], and ViVo [39]).

We acknowledge that our system cannot be immediately deployed
as it requires changes at both the endpoints and the cellular base sta-
tions. However, we believe that our approach presents an interesting
design point that is worth exploring, given the increasing volume and
significance of real-time streaming [9, 10, 38] over 5G that is well-
suited to in-network content adaptation, the increasing flexibility
of modern cellular infrastructure [77], and the scope for significant
improvement in performance (as promised by our evaluation).

2 MOTIVATION
The cellular link from the base station to the user device is often
the bottleneck for data transmission [14, 74, 82]. These links are
prone to bandwidth (capacity) variation [23, 35, 74, 78], triggered
by factors such as dynamic obstacles, and changing directionality
or distance as a device moves. More specifically, such factors lead
to variations in wireless signal quality between the base-station and
user device, which then translate to variations in available network
capacity. The higher directionality required by higher frequency
bands (e.g. mmWave) makes 5G even more susceptible to such
effects [54, 76].

We conduct a series of experiments to evaluate how the fluctua-
tions in cellular link capacity impact the performance of feedback-
based congestion controllers. We used Mahimahi to emulate a
cellular link with time-varying bandwidth drawn from a Verizon
trace [56]. We fixed the round-trip time (RTT) to 60ms, and the
buffer size to 375 KB. A sender attached to the emulated link sends
backlogged data to a receiver, using different congestion controllers.

Prior works fail to achieve both high link utilization and low
queuing delay. Figure 1(a) shows that TCP BBR [21] (designed

200

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

100 110 120 130 140 150 160 170
0

10

20

30

40

50

100 110 120 130 140 150 160 1700

100

200

300

400

500

Time (s)

Q
ue

ui
ng

 D
el

ay
 (m

s)
Th

ro
ug

hp
ut

 (M
bp

s) Link Capacity
BBR

(a) TCP BBR

100 110 120 130 140 150 160 170
0

10

20

30

40

50

100 110 120 130 140 150 160 1700

100

200

300

400

500

Q
ue

ui
ng

 D
el

ay
 (m

s)
Th

ro
ug

hp
ut

 (M
bp

s) Link Capacity
Sprout

Time (s)

(b) Sprout

100 110 120 130 140 150 160 170
0

10

20

30

40

50

100 110 120 130 140 150 160 1700

100

200

300

400

500

Link Capacity
Cubic+Codel

Time (s)

Q
ue

ui
ng

 D
el

ay
 (m

s)
Th

ro
ug

hp
ut

 (M
bp

s)

(c) TCP Cubic+Codel

100 110 120 130 140 150 160 170
0

10

20

30

40

50

100 110 120 130 140 150 160 1700

100

200

300

400

500

Time (s)

Q
ue

ui
ng

 D
el

ay
 (m

s)
Th

ro
ug

hp
ut

 (M
bp

s) Link Capacity
ABC

(d) ABC

Figure 1: Throughput (top) and queuing delay (bottom) for different protocols on a link emulating the Verizon download trace with an
RTT of 60 ms.

100 120 140 160
0

10

20

30

40

50

100 120 140 1600

100

200

300

400

500
Oracle Stale
Oracle

Time (s) Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

Q
ue

ui
ng

 D
el

ay
 (m

s)

Figure 2: Throughput and queuing delay for Oracle on a link
emulating the Verizon download trace with an RTT of 60 ms.
Queuing delay spikes when the sending rate is based on Oracle
knowledge of link capacity that is stale by 5ms.

for WAN) achieves high link utilization, but also results in queu-
ing delays as high as 500 ms. We observe similar results with TCP
Cubic (not shown for brevity). This led to the development of con-
gestion controllers for cellular networks that react faster to changing
network bandwidth [35, 74, 78]. Our experiment with Sprout [74]
revealed that it can be too cautious, which results in under-utilization
of the link. Even so, it cannot avoid spikes in delay when the band-
width suddenly plunges (Figure 1(b)). Leveraging active queue man-
agement (AQM) for congestion control, such as Cubic+Codel and
ABC [35], exhibit similar issues of link under-utilization and delay
spikes (Figure 1(c,d)).

We cannot practically design a perfect congestion controller. The
above are only a few samples from the vast repertoire of congestion
control algorithms designed for wide-area and cellular networks [21,
27, 28, 35, 37, 52, 74, 75, 78]. This raises the natural question
of whether a different controller would have perfectly achieved
high link utilization and consistently low queuing delay. Rather
than taking up the insurmountable task of experimenting with all
proposed congestion controllers, we instead exploited our emulation
environment for a simple exercise. We implemented an “Oracle” that
used the knowledge of the emulated bandwidth trace to compute the
number of packets that the link can serve over each period of 5 ms,

and sent precisely that many packets during the corresponding time
period. We observed that this indeed resulted in perfect behavior –
maximum link utilization with consistently low queuing delay below
30 ms (as shown by the blue line in Figure 2).

We then added a small offset, making the sending rate stale by
5 ms relative to the link capacity. This staleness models real-world
scenarios where an endhost can only receive network feedback after
certain inevitable delay.

The green line in Figure 2 shows the resulting performance with
such a “stale Oracle”. We find that even with an offset as small as
5 ms, our Oracle was unable to avoid spikes in queuing. The queue
keeps accumulating packets that arrive 5 ms late during a bandwidth
reduction (thus missing their chance to be transmitted), until the next
increase in bandwidth allows transmitting them.

These results show that spikes in queuing delay cannot be avoided
without knowledge of (i) precisely how long a packet would take
to reach the base station, and (ii) the available bandwidth at that
(future) time, which may change due to external factors such as
sudden obstacles and mobility. Since it is not possible to obtain
such information in practice, we do not expect any feedback-based
congestion controller to behave perfectly.

Our approach. Given the pessimistic results above, how can we
meet the stringent throughput and latency requirements of networked
real-time applications? Our system, Octopus, side-steps the problem
of designing a perfect feedback-based congestion controller by using
a reactive approach that exploits the content adaptability of real-time
streams. Octopus sends data using the BBR congestion control to
achieve high link utilization, and then drops appropriate packets in
the cellular network buffers to match the actual available link capac-
ity and minimize queuing delay. We design parameterized primitives
for implementing the dropping logic, that the applications at the
endhost can configure differently to express different content adap-
tation policies. Octopus transport encodes the application-specified
parameters in packet headers, which the routers can parse to execute
the desired dropping behavior. We provide a detailed description of
Octopus’ design in §4.

201

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

3 RELATED WORK

Video adaptation at endhosts. State-of-the-art schemes for real-
time video streaming adapt quality or frame rate at the endhosts,
relying on a feedback-based controller to estimate network capac-
ity [22, 33, 43, 45, 50, 79]. For example, WebRTC [7] configures
the video bitrate based on the network capacity estimated by GCC
(Google Congestion Control) [22]. Salsify [33] (that outperforms
WebRTC, Skype, Hangouts, and FaceTime) relies on bandwidth
estimated by Sprout [74] (a feedback-based controller for cellular
networks) to adjust the size of the transmitted frame. AWStream [79]
adapts streamed content (e.g., video frame rate and/or resolution)
based on the bandwidth estimated by the underlying TCP controller
(Cubic or BBR). Some of the recent proposals for real-time video
transmission (OnRL [81], Loki [80], and Concerto [83]) use data-
driven techniques to configure the real-time video bitrate at the
endhost based on network feedback. There are also schemes that use
SVC [63, 72] and drop higher quality layers at the endhost based on
the bandwidth estimated by a feedback-based controller. As we show
in §2, inaccuracies in bandwidth estimation at the endhost often re-
sult in sub-optimal throughput or higher latencies. Octopus adopts
an alternative approach of adapting the transmitted real-time content
in cellular router buffers, rather than relying on precise bandwidth
estimation at the endhosts.

Packet scheduling. Scheduling packets across different flows (e.g.,
to achieve fairness or small flow completion time) [12, 25, 62, 65,
66, 69] is orthogonal and complementary to our goals of ensuring
optimal throughput and latency for a given real-time flow. In the
context of intra-flow scheduling, recent work [16, 47] analyzes the
benefits of using LCFS (last-come-first-serve) for maximizing fresh-
ness at per-packet granularity. Since a real-time message is typically
consumed by the receiver as soon as it is received, there is little value
of delivering an older message out-of-order, after a later message
in the stream has been delivered. Therefore, rather than determin-
ing the packet scheduling order, the key question we consider is
whether a message in a given real-time stream should be transmitted
by the router or dropped altogether. We enforce our (more general)
dropping primitives at the granularity of multi-packet messages.

In-network dropping policies. CoDel [57] and RED [32] proac-
tively drop packets on the onset of congestion to send early signals
to endhost congestion controllers (§2 shows how this can lead to
link under-utilization). Octopus, instead, drops packets to directly
adapt the transmitted content based on the network conditions and
app-specified requirements.

Bhattacharjee et al. proposed intelligent packet discard for MPEG
transfers [17, 18] as a use case of active networking, where lower pri-
ority video frames are discarded when the buffer overflows. Octopus,
in contrast, minimizes latency by proactively discarding messages
(before the buffer fills up) using more direct triggers in the form of
new message arrivals and instantaneous link capacity. We evaluate
the significance of doing so in §7. Bhattacharjee et al.’s proposal fur-
ther required the routers to maintain app-specific logic. In contrast,
Octopus routers are app-agnostic, and implement parameterized
primitives to enforce app-specified policies.

Figure 3: Overview of Octopus

4 OCTOPUS DESIGN
As depicted in Figure 3, Octopus is a cross-layer system consisting
of the following elements.
Octopus-aware Application. An app specifies its desired dropping
policy (as per its requirements and stream encoding format) to the
underlying Octopus transport in the form of parameters for Octopus’
dropping primitives (detailed in §4.1). The app specifies these pa-
rameters for individual messages (where a message may contain one
or more packets, and is the unit of packet drops in Octopus).

In order to fully exploit Octopus, a real-time stream must be able
to tolerate in-network packet drops. For instance, in a single-layered
video codec that uses every single frame as a reference to encode
the next frame (as in H.265 [67] and VP9 [2]), a drop in one frame
will disable decoding all subsequent frames. We show how existing
multi-layer extensions of such codecs (e.g., SVC [3, 64]) can be
effectively used with Octopus in §6.
Octopus Transport. The underlying transport (detailed in §4.2)
encodes the dropping policies (that the app specifies in the form
of per-message parameters) in individual packet headers. It paces
out the data packets sent into the network using BBR’s congestion
control logic. This ensures that the data transfer rate is limited to
the peak capacity of the bottleneck cellular link, and that the Oc-
topus traffic competes fairly with the rest of the wide-area traffic.
If the pacing rate is slower than the rate at which an app generates
data, messages get queued up in the transport buffer. Octopus im-
plements its message-dropping primitives at the transport buffer (as
per the app-specified parameters). This direct and timely content
adaptation in the transport buffer mitigates the need for additional
app-layer content adaptation strategies that are based on feedback
from the transport.2 It acts as a first-level of content adaption at the
endpoint itself, and is sufficient if the network bandwidth is stable
and matches the pacing rate. It also extends the utility of Octopus to
scenarios where the bottleneck is the uplink from the device to the
base station. 3

Octopus logic at the base station. Given the inherent inaccuracy
in estimating volatile link bandwidth and the relatively aggressive
congestion controller (BBR) used by Octopus, the pacing rate at an

2We provide a direct comparison of Octopus’ endpoint content adaptation (without the
in-network logic) with other endpoint-based solutions in §7.1.
3To handle uplink bottlenecks with Octopus, the endhost can use a back-pressure
based mechanism (similar to TCP small queues [30]) to restrict the transport from
sending more data when the (small) NIC buffer is full. The Octopus logic implemented
at the transport buffer will then appropriately drop messages. We leave a detailed
implementation of this to future work, and limit the scope of our implementation and
evaluation to scenarios where the bottleneck is at the downlink from the base station to
the users.

202

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

(a) drop-by-msg (b) drop-by-bitrate

Figure 4: Two dropping conditions in Octopus

endpoint might be higher than what the cellular link can support.
Octopus’s base-station logic (§4.3) kicks in to adapt stream content
and minimize in-network delays in such cases. It implements the
Octopus dropping primitives, parses the packet headers to read app-
specified parameters, and enforces the desired dropping behavior.

4.1 Dropping Primitives
A real-time data stream consists of a series of temporal data units,
each corresponding to a point in time. Generalizing the terminology
used for video streams, we refer to each such temporal unit as a
frame. Each frame has a base layer at a specific quality level, and
may optionally have additional quality-enhancing layers. If the link
bandwidth is larger than the incoming rate of the stream, the link
can sustain the stream and no frames get queued up. If not, multiple
frames get queued up at the link buffer, and we need to adapt the
buffered content by dropping packets in order to sustain the stream.
There are two ways in which the content of real-time streams can
be adapted: (i) reducing the temporal resolution (or the frame rate)
by dropping entire frames, and, (ii) reducing the spatial resolution
(or data quality) by dropping one or more quality enhancing layers
within a frame. Such content adaptation must further take the stream
encoding (or the frame dependency structure) into account—if a
“reference” frame/layer is dropped, subsequent frames/layers that
semantically depend on it cannot get decoded.

We define a message as the atomic granularity at which Octopus
drops data packets in a stream. A message would correspond to an
entire frame if the content is adapted solely via reducing the temporal
resolution. In streams that also support adapting spatial resolution, a
message would correspond to a quality layer in each frame. An app
identifies its message boundaries, and specifies its dropping policies
(as per its requirements and stream encoding format) in terms of
per-message parameters supported by Octopus’ dropping primitives.
We now detail these primitives.

Dropping Condition 1: Newer Message Arrival. In our first prim-
itive, the arrival of a newer (more important) message triggers drop-
ping (a subset of) staler queued-up messages. Octopus tags each
message with app-specified (i) priority value (msg_priority), where
a higher value implies lower priority, and (ii) a drop_flag with an as-
sociated priority_threshold value. When a new message is enqueued
at the buffer, if its drop_flag is set, it triggers dropping all previously
queued up messages in the same stream which have msg_priority
≥ priority_threshold. We refer to the messages with the drop_flag
set as dropper messages, and refer to this primitive as drop-by-msg
primitive.

An app can configure the message boundaries and the primitive’s
parameters to specify which messages’ arrival will result in the drop
of which subset of queued messages. For streams with independent
frames (e.g., a stream of images), simply setting the drop_flag in
each message (frame) will maximize freshness. If a stream requires
fixed temporal resolution but allows tuning spatial resolution, the
app can configure the message boundaries and parameters to only
drop queued-up quality-enhancement layers when a new frame ar-
rives. Alternatively, depending on the stream encoding, an app can
configure the parameters to avoid dropping a reference frame upon
the arrival of a new frame that depends on it.

In general, a queue build-up of two or more frames is a good
indicator of the inability of the link to sustain the incoming stream.
The drop-by-msg primitive is designed to immediately react to such
queues in order to minimize queuing delay. However, small transient
queues of multiple frames may build up when there is a mismatch be-
tween the average and the instantaneous rate of the incoming stream
due to differences in frame sizes. Our second primitive is designed
to provide increased tolerance towards such transient queues.

Dropping Condition 2: Bandwidth Lower than Data Bitrate. In
certain stream encodings, the frame sizes may differ significantly.
For example, in a layered video codec, the size of the initial reference
frame within each “group of pictures” (on which subsequent frames
in the group depend) can be 4× larger than the non-reference frames.
Even if the link bandwidth is sufficient to sustain the average bitrate
across several frames, a transient queue may accumulate while serv-
ing the larger (reference) frames. If the dropper messages in drop-
by-msg primitive are spaced very closely, the quality-enhancement
layers in the reference frame might be dropped in the transient queue,
leading to subsequent dependent frames being decoded at the lowest
quality level (even though the link bandwidth is sufficient to sus-
tain the average bitrate of high-quality layers). On the other hand,
if the dropper messages are spaced too far apart (or configured to
avoid dropping reference layers), and the link bandwidth is indeed
lower than the average bitrate of higher-quality layers, there is a
chance that, by the time a suitable dropper message arrives, the
higher-quality layers (that should have been dropped) have already
exited the queue after having contributed to a significant queuing
delay for the remaining frames.

To handle such scenarios, we additionally need a dropping con-
dition that is directly based on the available link bandwidth, and
does not rely on subsequent dropper messages. Our second primitive
provides this.

An app can tag each message with a bitrate_threshold (using
its knowledge of the stream encoding and the data rate that the
app explicitly configures) Octopus drops a message if the stream
is currently being served at a bandwidth !" that is less than its
bitrate_threshold. We refer to this primitive as drop-by-bitrate primi-
tive. It allows an app to specify different bitrate_thresholds for dif-
ferent spatial layers in the stream, thus enabling the Octopus buffer
to directly determine whether a spatial layer should be dropped or
transmitted based on the available link capacity.

Summary. Octopus supports two conditions to drop messages. The
combination of the two primitives provides an expressive mechanism
for real-time apps to specify different content adaptation policies.
We exemplify their usage in §6.

203

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

4.2 Transport Design

API. An app conveys its dropping policies via Octopus’ trans-
port interface. In particular, the app conveys its atomic message
boundaries to the transport, and for each message, specifies its
stream_id (which explicitly identifies the stream that the message
belongs to), msg_priority, and the dropping parameters (that in-
clude the drop_flag, the associated priority_threshold, and the bi-
trate_threshold).

By default, Octopus transport sets all dropping parameters in a
message to zero, if not explicitly configured by the app, that disables
any content adaptation.

Encoding dropping policies. Octopus transport tracks per-stream
message sequence space. Upon receiving a new message from the
application, it increments the corresponding msg_id counter, packe-
tizes the data, and encodes the msg_id, priority, and parameters in
designated packet header fields. The header fields additionally carry
information about whether the packet is the first, last, or only packet
of the message.

Transport buffer management. Similar to TCP, Octopus transport
enqueues the packets in a send buffer, until they can be sent out to
the lower layers. As mentioned earlier, it enforces the same message-
dropping policies in this transport buffer as the one enforced by
the base station (described in more detail in §4.3). It uses the band-
width estimated by the congestion control algorithm as the currently
available bandwidth for the drop-by-bitrate primitive.

Loss handling and message delivery. Octopus transport is unre-
liable, in line with the requirements of real-time apps (future ex-
tensions can support partial reliability). The receiver acknowledges
received data (required for congestion control), although no packets
are retransmitted. As soon as a message is completely received, the
Octopus receive-side transport delivers it to the application, irrespec-
tive of whether prior messages have been delivered.

Congestion control. Octopus requires congestion control to ensure
that the data transfer rate is limited to the peak capacity of the bot-
tleneck cellular link, so as to not overwhelm the rest of the network.
Moreover, there might be scenarios where the bottleneck lies else-
where in the network (e.g., at a legacy switch that does not support
Octopus), requiring Octopus to compete fairly with the cross-traffic.
We incorporate BBR’s congestion control logic in Octopus transport.
BBR, by design, tracks the maximum packet bandwidth and the
minimum RTT over a configurable period of time, and uses this to
compute the delivery rate and the congestion window. This enables
BBR to continue sending at the peak cellular capacity, without get-
ting perturbed by transient dips in available bandwidth. As shown
in §2, this does come at the cost of high queuing delays which we
handle through our in-network dropping policies.

4.3 Base-station Logic
Octopus logic at the cellular base station enforces the dropping
primitives, as per app-specified policies encoded in packet headers.
Cellular base stations already maintain separate queues for individual
users [20, 34, 74]. We further assume that a user’s real-time traffic
is isolated from their non-real-time traffic (standard mechanisms for
doing so already exist in cellular networks [11, 20]).

Algorithm 1 Octopus’ packet dropping logic

1: variable dropper_msgs_, msg_in_drop_
2: procedure ENQUEUE(packet)
3: sid ← packet.streamID()
4: if packet.hasDropFlag() and packet.isTail() then
5: threshold ← packet.priorityThreshold()
6: dropper_msgs_[sid][threshold] ← packet.msgID()
7: end if
8: buffer_.push(packet)
9: end procedure

10: procedure DEQUEUE(void)
11: packet ← buffer_.pop()
12: msgid ← packet.msgID()
13: sid ← packet.streamID()
14: if packet.isHead() then
15: prio ← packet.priority()
16: latest_dropper ← max(dropper_msgs_[sid][0],
17: ..., dropper_msgs_[sid][prio])
18: isdrop ← msgid < latest_dropper
19: or packet.bitrateThreshold() > BW[sid]
20: if isdrop then
21: msg_in_drop_[sid] ← msgid
22: end if
23: end if
24: if msg_in_drop_[sid] = msgid then
25: return Drop(packet)
26: end if
27: return packet
28: end procedure

Octopus requires the base station to track the available bandwidth
!" for each (per-user) queue. This is often directly available in
cellular links [1, 35]. It can also be measured at the router by tracking
the rate at which packets are dequeued and transmitted, as we do in
our experiments (§5). If a given user downloads multiple real-time
streams, the router computes the max-min fair rate !"! for each
stream # from the observed per-stream arrival rate and the overall
rate !" at which the user’s queue is served.

Algorithm 1 shows the pseudocode for the packet-dropping logic.
For each stream, the Octopus base station logic maintains a table
indexed by the priority_threshold that records the msg_id of the latest
dropper message corresponding to that threshold. It updates this
table when enqueuing the tail packet of a dropper message. When
the head packet of a message from stream # is dequeued, the Octopus
logic marks this message to be dropped if: (i) its bitrate_threshold is
higher than !"! , or (ii) its msg_priority is greater than or equal to the
priority_threshold of all dropper messages in the queue that belong to
the same stream. If a message is marked for drop, all the following
packets belonging to it are dropped during dequeuing. To avoid
starvation, Octopus does not drop a message that is in transmission
(i.e., one or more of whose packets have been transmitted).

Notice that Octopus requires maintaining a very modest amount
of per-stream state at the base station, which remains constant with
the number of packets or messages. It only grows with the number
of priority threshold levels in a stream; we expect this number to

204

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

Figure 5: Base-station (eNB/gNB) protocol stack with Octopus

be small for most use cases (§6), and it is restricted to 8 in our
prototype.

5 PROTOTYPE IMPLEMENTATION

Octopus Transport. We implement Octopus transport in 3000 LoC
by extending the UDT framework, a user-space transport protocol
over UDP [36]. This includes implementing BBR’s congestion con-
trol logic. Our prototype uses UDT’s app-layer header to encode
message properties and dropping policies, which take 12 bytes. An
actual deployment can instead make use of IPv4 options or IPv6
extension fields to encode Octopus parameters.

Octopus Logic at Base-station. We implement Octopus’ in-
network logic in srsRAN [34, 68], an open-source software cellular
platform for 5G and LTE radio access networks (RAN). Our changes
to srsRAN fit within 420 LoC. We deploy the srsRAN platform on a
server with eight Intel Xeon E5 cores.

The network protocol stack of the 5G/LTE base station in srsRAN
is shown in Figure 5. Specifically, the RLC (radio link control) layer
instantiates an entity to manage an isolated logical queue for each
connected user. We implement Octopus’ dropping primitives and
maintain runtime data in the RLC entity. In the ingress stage, the
RLC entity parses the app-layer headers of incoming packets, and
accordingly updates the table of the latest dropper messages. In the
egress stage, Octopus determines whether the current message is
to be dropped based on the dropping conditions, and drops packets
belonging to it in that case. For the drop-by-bitrate primitive, our
implementation tracks the bandwidth availability by computing the
dequeuing rate over a sliding time window of 50 ms (discounting
the idle periods when the queue is empty).

Octopus’ in-network logic is light-weight and introduces negligi-
ble latency overhead. To quantify the processing delay in srsRAN,
we sent video packets (with headers carrying Octopus’ parameters)
over an emulated network link at a small rate of one packet per
second, and measured the round-trip time (after discounting the
propagation delays) with and without Octopus’ in-network logic.
Without Octopus’ in-network logic, the average processing delay
was 3.53ms. Enabling Octopus’ in-network logic increased the aver-
age processing delay to 3.59ms, thereby resulting in an overhead of
1.7%.

6 CASE STUDIES
We evaluate Octopus using three case studies involving real-time
video streaming with frame rate adaptation (§6.1) and quality adap-
tion (§6.2), and live volumetric video streaming (§6.3). We focus
on real-time 2D/3D video streaming in our case studies due to
their relative popularity across apps (in conferencing, gaming, VR,
surveillance, robotics, etc.) and due to the existence of comparative
baselines. One can design similar policies to exploit Octopus for
other forms of real-time streams. We start with presenting our basic
comparative results in this section, followed by a more in-depth
evaluation in §7.
Experiment Testbed. Our testbed involves a sender and a receiver
node (both running Octopus transport on UDT) communicating via
the srsRAN platform. We emulate cellular link bandwidth and delay
on the downlink from the base station to the receiver.4 We set the
RTT to 60ms (we also present results with 120ms RTT in §7). For
the first two case studies, we experiment with bandwidth traces
from three different LTE cellular providers (Verizon, T-Mobile, and
AT&T) [74]. The video sources are five different videos taken from
MOT16 and MOT20 datasets [26, 53].

For the third case study involving volumetric videos, we experi-
ment with two different 5G cellular download traces [60]. To sup-
port higher 5G data rates in this case study, we replace our srsRAN
platform with Mahimahi network emulator [56], and implement Oc-
topus’ router logic in Mahimahi. 5 The volumetric video sources
are three videos in point cloud format taken from CMU panoptic
dataset [46].

6.1 Real-time Video with Frame Rate Adaptation
Our first case study considers the requirement where the freshest
video frame must be delivered at fixed quality (e.g., a gaming app
that requires high responsiveness without compromising on quality,
or apps that process the received video using an ML algorithm).
Video Encoding. Commonly used video codecs (e.g., VP8 [15] and
VP9 [2]) encode video frames in chunks called “group of pictures”
(GoP). As shown in Figure 7 (top), the first frame in each GoP (the
I-frame) is intra-coded and can be decoded independently. Each sub-
sequent P-frame only encodes the delta from the previous frame. The
successful decoding of a P-frame at the receiver therefore requires
the successful delivery of all previous frames in the GoP. This limits
the tolerance to in-network packet drops.

To better exploit Octopus, we make use of multiple temporal
layers supported by scalable video codec (SVC) [3, 5, 64]. We apply
VP8-SVC with three temporal layers. Figure 7 (bottom) shows the
dependency structure between frames. Frames marked with prior-
ity value # serve as reference only for frames with priority value
$ > #, and can be dropped upon the arrival of a new frame with
priority_threshold % ≤ #, without affecting any subsequent frames.
The usage of VP8-SVC introduces slight overhead—the average
frame size is 15%–18% larger than that encoded in default VP8. Our
results show how Octopus improves overall performance in spite of
these overheads, in comparison with baselines that use the default
codec.
4For this, we use the cellular downlink traces [74] as input to set the maximum MAC
frame size in srsRAN every TTI.
5srsRAN platform can support a data rate of up to 75 Mbps.

205

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

(a) AT&T (b) T-Mobile (c) Verizon

Figure 6: Median and 99%ile AoI in different LTE download network traces with an RTT of 60 ms (averaged over 5 videos, with error
bars showing the standard deviation).

Figure 7: Single-layered video codec (top) and SVC with three
temporal layers (bottom).

Dropping Policy. Using the video codec described above, we treat
each frame as a single message and only make use of the drop-
by-msg primitive. We set the drop_flag in every message. Figure 7
shows the msg_priority, and priority_threshold that we set for each
message. The bitrate_threshold is set to the default value of zero to
disable the drop-by-bitrate primitive.
Baselines. We compare Octopus against two state-of-the-art base-
lines for real-time video streaming: (i) AWStream [79], configured
to adapt frame rate based on the bandwidth estimated by the under-
lying transport (TCP BBR). We use the default VP8 encoding for
the video. (ii) Salsify [33], modified to solely tune the frame rate
keeping the frame quality fixed (we refer to this as Salsify∗). As in
the original Salsify design, it uses a functional codec based on VP8
encoding. We encode the videos for each baseline and Octopus with
a fixed quantization level of 17.
Metric. We use “age of information” (AoI) [49] to capture freshness
as the time elapsed since the latest frame delivered at the receiver
application was sent out by the sender application (lower AoI implies
higher freshness). To capture the worst-case freshness, we measure
the AoI just before a frame is received, and compute the 99%ile and
median values across all frames in a video. AoI helps to capture
both frame rate and latency—the AoI value can be high either due
to high queuing delays or low frame rate (or both). We also report
the median and tail per-frame latency in the Appendix.
Results. As shown in Figure 6, Octopus outperforms AWStream
and Salsify∗, in spite of using a less efficient encoding strategy. The
tail AoI with Octopus is 1.6–18× lower than that of AWStream. We
found that AWStream (designed for more stable WAN bandwidth)
is overly conservative in increasing its sending rate (upgrading to

Q0

Q1

Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q0

Q1

Q2

Q0

Q1

Q2

...

D = 1 D = 1

Bitrate
Threshold

B2 > B1

B1

0

GoP

Figure 8: SVC encoding with three quality layers, and the drop-
ping primitive parameters.

a higher throughput configuration only after its application buffer
has been empty for 2 seconds). The tail AoI with Octopus is 1.5–2×
lower than Salsify∗: Salsify∗ suffers from higher tail latencies and
lower link utilization due to a slower reaction to changing network
capacity as compared to Octopus.

6.2 Real-time Video with Quality Adaptation
Many real-time video apps (e.g., video conferencing and live stream-
ing) allow tuning the quality of the video content to sustain a stable
frame rate with low latency. Our second case study considers this
requirement.
Video Encoding. We exploit support for multiple spatial (quality)
layers in SVC for quality adaptation with Octopus.6 Figure 8 shows
how frames are encoded in SVC with 3 spatial layers (depicted as&0,
&1, and &2 from lowest to highest). The decoding of a higher-layer
frame depends on the successful decoding of all lower layers and
the corresponding layer of the previous frame.

In our SVC-based Octopus application, we fix the number of
quality levels to 3, and use the bandwidth estimation (!) provided by
the underlying Octopus transport to dynamically adjust the encoding
quality levels for each GoP. Specifically, quality &2 is configured
such that its cumulative target bitrate is !2 ≈ !, &1 is configured to
a cumulative bitrate of !1 ≈ 0.5!, and &0 is configured to a bitrate
!0 ≈ 0.2!. We reduce the GoP size to 10 frames, which has a slightly

6Future work can explore using other layered codecs, e.g., neural video codec [24].

206

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

higher bandwidth overhead but allows faster switching across quality
levels.

We use a publicly available single-threaded software encoder
(libvpx [3]), which has a high latency overhead. We therefore pre-
encode each video for our experiments (as discussed in §8, we
expect real-time encoding overhead to be lower in practice, with
more sophisticated multi-threaded or hardware-based codecs). We
use the three-layered SVC to pre-encode the videos with 9 different
base quality levels. At runtime, we dynamically switch between these
levels, such that the highest layer of the chosen level best matches
the bandwidth estimated by the underlying Octopus transport.

Dropping Policy. We use the drop-by-bitrate primitive, treating each
layer of each frame as an individual message. We mark the messages
corresponding to quality &0, &1, and &2 with bitrate_thresholds of
zero, !1 and, !2 respectively.

Overall, this policy achieves the desired trade-off in quality,
throughput, and message latency. However, it has a few caveats:
(i) It may result in high queuing when the bandwidth is lower than
!0 (the required bitrate for the lowest-quality frames). We handle
this by using our drop-by-msg primitive and setting the drop_flag
in the first &0 message in each GoP. With a priority_threshold of
zero, this triggers a drop in all queued-up frames of the previous
GoP. (ii) There might be scenarios where the bandwidth increases
after some of the &2 or &1 messages towards the beginning of a GoP
have been dropped. Transmission of&2 messages in the GoP that are
then enqueued is wasteful as they cannot be decoded at the receiver.
Nonetheless, we observe that if the bandwidth is high enough to
sustain their bitrate, transmission of these messages does not gen-
erally block transmission of newer frames in the stream. Moreover,
by limiting the GoP to 10 frames, we limit the scope of such wasted
frame transmissions.

Baselines. We compare Octopus for this use case with: (i) We-
bRTC [7], which uses GCC [22] as the underlying congestion con-
troller, (ii) Unmodified Salsify.

Metric. We measure the video quality using SQI-SSIM [29, 61]—it
computes the quality of each decoded frame using structural similar-
ity (SSIM) [42, 84], and the quality of each undecoded (or dropped)
frame as the product of the SSIM of the last available frame and an
exponential decay function. The resulting video QoE score is the
average quality across each (decoded and undecoded) frame that was
sent by the sender app. We also record the latency of each delivered
frame. It is desirable to achieve high SQI-SSIM and low latency.

Results. As shown in Figure 9, Octopus achieves higher average
SQI-SSIM with lower tail latency than the baselines, while the me-
dian latency is similar across different schemes. Octopus achieves
41–57% higher SQI-SSIM than WebRTC, with 2-10× lower tail
latency. The difference in SQI-SSIM stems from WebRTC’s conser-
vative behavior when upgrading to a higher throughput configuration.
WebRTC’s tail latency is relatively high due to poor reaction when
link capacity suddenly drops to very low values. Octopus achieves
16% higher SQI-SSIM than Salsify, with 1.6–16× lower tail latency.
The difference in SQI-SSIM largely stems from the inefficiency
of the functional VP8 codec used in Salsify. The difference in tail
latency stems from Octopus’ faster in-network adaptation to sudden
bandwidth drops.

6.3 Real-time Volumetric Video Streaming
Real-time volumetric streaming enables viewers to watch videos
in six degrees of freedom (6DoF), and is becoming popular in ed-
ucation, entertainment, and healthcare. We look at how Octopus
can adapt the quality of bandwidth-intensive volumetric streams to
minimize delay while trying to sustain a stable frame rate.

Video Encoding. Uncompressed volumetric video frames are rep-
resented as point clouds that record attributes such as coordinates
and colors of every point. A frame is spatially segmented into mul-
tiple cells, and each cell can be independently encoded and de-
coded [39, 51]. This segmentation enables the server to stream a
subset of cells or adapt the point density level (PDL) of cells based
on the viewer’s current viewport to significantly reduce network
bandwidth requirements.

Figure 10 shows how we encode a volumetric frame. In our ex-
periments, every video frame is segmented into four cells. Instead
of encoding every cell with a specific PDL, we further divide the
origin cell into five layers, each comprising 20% points, and encode
every layer independently so that Octopus can safely drop specific
layers in a cell to adapt its PDL. This results in 10%–12% overhead
in bandwidth usage which, as our results show, is more than com-
pensated by Octopus’ fast reaction to bandwidth changes compared
to the baseline.

Dropping Policy. Based on the Occlusion Visibility (OV) and Dis-
tance Visibility (DV) adaptive streaming approaches from ViVo [39],
we first drop layers of occluded cells, and then drop higher den-
sity layers of non-occluded cells, as queues start building up. For
simplicity, we assume the viewport is fixed, where cell 0 and cell 1
serve as front cells, while cell 2 and cell 3 are occluded cells (we
can dynamically update the cell’s priority for the changing viewport
using the viewport movement and prediction model from ViVo).

We apply drop-by-msg primitive, and treat each layer inside a
cell as an individual message. The message priority for each such
layer is indicated in Figure 10. We set the drop_flag in the first layer
of the non-occluded cell 0 in every frame. The drop_thresholds in
these dropper messages are set to a repeating pattern of 3, 2, 1, and
0, which enables the smooth adaptation of cell PDLs in the buffer.

Baselines. We compare Octopus with ViVo in this use case. Since
the source code of ViVo is unavailable, we implemented a version
to our best knowledge. Here, the ViVo client uses a throughput-
based rate adaptation algorithm [44] to estimate the link capacity
and determine the PDL of occluded cells and front cells to fetch.
We use an open-sourced software encoder (Google Draco[13]) to
pre-encode the volumetric video frames both for ViVo (at different
PDL values) and for Octopus (with the encoding strategy modified
to incorporate PDL layers, as described above).

Metric. Similar to §6.2, we use SQI-SSIM to compute the quality
of received volumetric video frames, and 99% frame delivery tail
latency to capture the freshness of frames. To calculate the SSIM, we
use the mapping developed by ViVo that maps cell PDLs to SSIM
for a given distance between the viewer and the display (set to 2.5m
in our experiments).

Results. From Figure 11, Octopus achieves 9% percent higher av-
erage SQI-SSIM and 83% lower tail latency than ViVo. ViVo has
lower frame quality due to its conservative rate adaptation algorithm,

207

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

!"##"$

!"##"$

(a) AT&T

!"##"$

!"##"$

(b) T-Mobile

!"##"$

!"##"$

(c) Verizon

Figure 9: The 99%ile tail and median latency vs. video quality of Octopus and other baselines in different LTE download traces with
an RTT of 60 ms. The axes of the ellipse reflect the standard deviation in SQI-SSIM and tail latency.

cell 2,3 0 1 1 1 1

cell 0,1 0 1 1 1 1

2 3 3 3 3

0 1 1 1 1

Priority Threshold 3
D D D D

2 1 0

Cumulative PDL

80%
60%
40%
20%

100%

Figure 10: The upper graph shows a volumetric video frame
with four cells, where each cell has five layers. The lower graph
shows dropper messages and their priority thresholds.

which uses the harmonic mean of the download rate of the previous
20 video frames as the capacity estimate for the next frame. ViVo’s
tail latency is relatively high because TCP reliably delivers all pack-
ets even when the real network bandwidth suddenly drops below the
estimate.

7 DETAILED EVALUATION
We use our case study in §6.1 and §6.2 for a more in-depth evaluation
of Octopus. For brevity, we only present results on the Verizon down-
load trace at 120 ms RTT (we see similar trends with other traces).
We use our srsRAN testbed for the results in §7.1, and Mahimahi

!"" #"" $"" %"" &""" &!"" &#""
''()*+,-./+012,3456

"78"

"789

"7%"

"7%9

"7'"

"7'9

&7""

:;
+<
.=

+,
>?

@A>
>@
B

C)CD
E1/DFG5

!"##"$

(a) 5G trace 1

!"# "## $"# %### %!"# %"##
&&'()*+,-.*/01+2345

#6$#

#6$"

#67#

#67"

#6&#

#6&"

%6##

89
*:
-;

*+
<=

>?<
<>
@

A(AB
C0.BDE4

!"##"$

(b) 5G trace 2

Figure 11: The 99%ile tail latency vs. volumetric video quality
of Octopus and ViVo over two 5G traces with a 60 ms RTT.

emulator (that allows for greater configurability in experimental
scenarios and baselines) for the remaining experiments.

7.1 Decoupling Impact of Octopus Endpoint Logic
We evaluate the performance impact of the Octopus endpoint’s logic
in isolation. For this, we use the Octopus transport protocol as it is,
but disable the Octopus base-station logic. This effectively models
BBR using Octopus logic for transport buffer management and app
content adaptation. We refer to this scheme as OctoBBR. Figure 12
compares OctoBBR with Octopus, along with other baselines from
§6. There are two key takeaways from these results:

208

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

(a) Video w/ frame rate adaptation

0 250 500 750 1000 1250 1500
99%ile Latency (ms)

10

12

14

16

18

20

Av
er

ag
e

SQ
I-S

SI
M

(d
B)

WebRTC
Salsify
OctoBBR
Octopus

(b) Video w/ quality adaptation

Figure 12: Comparing OctoBBR (Octopus without in-network
support) with Octopus and other baselines.

(a) Video w/ frame rate adaptation

0 250 500 750 1000 1250 1500
99%ile latency (ms)

12

13

14

15

16

17

18

19

Av
er

ag
e

SQ
I-S

SI
M

(d
B)

Octopus
PDrop-Buf50KB
PDrop-Buf150KB
PDrop-Buf300KB
PDrop-Buf450KB

(b) Video w/ quality adaptation

Figure 13: Comparing Octopus and priority-based dropping
approaches with different buffer sizes.

(i) Octopus performs better than OctoBBR. For our first case study,
Octopus has 49% lower tail AoI than OctoBBR (Figure 12(a)). Sim-
ilarly, for our second case study, Octopus achieves a more desirable
trade-off than OctoBBR for the specified policy with 61% lower tail
latency and only 4% lower SQI-SSIM (Figure 12(b)). This shows
that in-network content adaptation (based on timely and accurate
knowledge of link capacity and queue build-up) is useful.
(ii) In general, OctoBBR performs no worse (and often better) than
the state-of-the-art endpoint-based solutions (Salsify, WebRTC, and
AWStream). This highlights the benefits of direct content adaptation
at the endpoint’s transport buffer by dropping messages using Oc-
topus’ primitives, which quickly reacts to a mismatch between the
application sending rate and the pacing rate of the transport protocol.

7.2 Comparison with Priority Dropping
We next compare Octopus’ in-network message-dropping logic with
a simpler priority-based message-dropping mechanism (inspired
by [17, 18]). With this mechanism, when the router buffer is full,
and a new message with priority ' arrives, instead of dropping the
incoming message, the router drops all queued-up messages with
lower priority (i.e., having priority value > '). We refer to this
scheme as PDrop.

Figure 13 compares Octopus with PDrop. We fix the buffer size
to 375 KB for Octopus, and use varying buffer sizes for PDrop. For
video with frame rate adaptation using temporal layers (Figure 13(a)),
we set the message priority for the PDrop to be the same as that for
Octopus (described in §6.1). For video with quality adaptation using

spatial layers (Figure 13(b)), we set the highest priority 0 for the
base (&0) layer, followed by priority 1 for &1, and then priority 2
for &2. We find that PDrop is sensitive to buffer sizes. Larger buffer
size results in fewer message drops, and larger latency. A small
buffer size, on the other hand, results in significantly lower video
quality. Packet delay thresholds or deadlines would be similarly
difficult to tune. Octopus primitives are able to react faster and more
appropriately by triggering drops directly based on message arrival
and link capacity, instead of relying on a buffer threshold. This
allows Octopus to achieve a more desirable trade-off.

7.3 Bottleneck at a Legacy Switch
Our experiments so far explored scenarios with a single bottleneck,
always at an Octopus-enabled base station. We now evaluate the
policy from §6.2 in scenarios with non-Octopus bottlenecks.
Competing backlogged flow at a legacy (non-Octopus) switch. Our
first scenario emulates a legacy (non-Octopus) switch with a static
link bandwidth of 12 Mbps. In addition to the real-time stream, we
generate a competing backlogged TCP (BBR) flow that shares the
switch buffer. Figure 14a presents the results of Octopus and com-
parative baselines in this scenario. With the Octopus base-station
logic disabled for the legacy switch, only the Octopus endpoint
logic kicks in (which, in line with §7.1 is represented as OctoBBR).
Overall, we find that OctoBBR achieves the most desirable trade-off
between SQI-SSIM and latency. We find that Salsify (using Sprout
as the underlying transport) competes poorly with the backlogged
TCP flow, utilizing less than its fair share of the link capacity, which
in turn reduces the video quality. OctoBBR competes fairly with the
backlogged flow, allowing it to achieve 40% higher SQI-SSIM than
Salsify. OctoBBR also achieves higher SQI-SSIM than WebRTC
with lower tail latency.
Multiple Bottlenecks. Figure 14b evaluates a scenario with multiple
bottlenecks – the first at a legacy (non-Octopus) switch with a 12
Mbps bandwidth, and the second at a cellular (Octopus) link with
bandwidth drawn from the Verizon downlink trace. We see similar
performance trends as in §6.2.

7.4 Competing Real-time Streams
We next evaluate a scenario with two real-time video streams sharing
the same router queue. For the drop-by-bitrate condition, the router
computes the max-min fair rate !"! for each stream # from the
observed per-stream enqueuing rate and the overall rate at which
the queue is served. We use the policy from §6.2 for both streams.
Figure 14c compares Octopus with Salsify and WebRTC (the result
for each video stream is denoted using two different markers). We
find that Octopus achieves higher SQI-SSIM and lower tail latency
for both video streams, as compared to Salsify and WebRTC. This
shows that Octopus can appropriately handle multiple real-time
streams when the dropping parameters in each stream are configured
to minimize the self-inflicted delay.

8 SCOPE AND LIMITATIONS
The goal of our work was to present a new design point for con-
trolling congestion that is based on in-network content adaptation,
and show the promise of this approach. We acknowledge that our
approach requires changes at both the endpoints and the cellular

209

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

0 100 200 300 400 500
99%ile latency (ms)

8

10

12

14

16

18

20
Av

er
ag

e
SQ

I-S
SI

M
(d

B)

WebRTC
Salsify
OctoBBR

(a) When competing with a backlogged flow on a
legacy switch.

0 500 1000 1500 2000
99%ile latency (ms)

10

12

14

16

18

20

Av
er

ag
e

SQ
I-S

SI
M

(d
B)

WebRTC
Salsify
Octopus

(b) When there are multiple bottleneck network
links.

0 500 1000 1500 2000
99%ile latency (ms)

8

10

12

14

16

18

Av
er

ag
e

SQ
I-S

SI
M

(d
B)

WebRTC

Salsify

Octopus

(c) Two competing video streams (indicated by
different markers).

Figure 14: The 99%ile tail latency vs. video quality of Octopus and other baselines for real-time video under different scenarios on the
Verizon trace with a 120 ms RTT.
routers, making it difficult to deploy immediately. We list a few
other limitations of our work below:

Applicability. Our approach does not entirely replace the need
for feedback-based controllers; it is well-suited only for those apps
that can support in-network content adaptation. We believe that
interactive 5G apps, that most need the fast reaction enabled by
Octopus, can indeed be designed to exploit Octopus.

Application development effort. Enabling new apps to exploit
Octopus can be non-trivial – specifying dropping parameters re-
quires understanding how the data stream is encoded and the depen-
dency structure between frames, along with semantic insights on
the relative importance of different frames. Nonetheless, app-layer
frameworks that support mechanisms to encode real-time streams
and adapt their content based on estimated bandwidth already exist
(e.g., WebRTC for real-time videos [7]). We envision that rather than
changing individual apps, one would extend such frameworks to
support Octopus, which can enable apps using such frameworks to
exploit Octopus without additional efforts.

Encoding overhead. We used an open-sourced single threaded
software codec (libvpx[3]) for our experiments, and found the per-
frame decoding latency to be small (4-5ms), but the encoding latency
to be prohibitively high (90ms for SVC with three quality layers).
While we pre-encoded the videos for our experiments, we expect the
encoding latency to much lower in practice with more sophisticated
multi-threaded or hardware-based encoders. In particular, the broader
interest in using SVC for multi-party conferencing (e.g. [6, 71]) has
led to the design of new hardware accelerators to support it [6]. We
expect such efforts will lower the barrier of using scalable codecs for
real-time video streaming. Developing efficient real-time codecs for
volumetric videos also remains an open challenge that goes beyond
the scope of this work.

On the generality of our primitives. While our primitives can
seemingly capture a range of requirements for real-time apps, we
are yet to formally analyze their expressiveness.

Coordination via packet headers. Octopus needs 12 bytes of
header space to convey the per-message dropping parameters. While
our prototype uses application-layer headers, an actual deployment

may need to use other alternatives (e.g., IP options/extensions). Div-
ing into the feasibility of these alternatives is beyond the scope of
our work.
Competition with buffer-filling cross-traffic. We assume that a
user’s real-time traffic is isolated from their non-real-time traffic
using standard mechanisms [11, 20]. We find that in the absence
of such isolation, Octopus’ dropping logic competes poorly with
flows that aggressively fill up the network buffer. Such a fate is
fundamental to any scheme that is designed to react fast to bandwidth
variations, and isolation from buffer-filling cross-traffic is therefore
a common assumption that is also made by prior works [33, 35, 74].
Hand-overs. Octopus optimizes data transfers while the user device
(UE) is connected to a specific base station. Hand-over to another
base station would incur high latency due to user state migration.
Minimizing the overhead due to that is an orthogonal problem be-
yond the scope of this work.

9 CONCLUSION
This paper presented Octopus, a system designed to achieve high
throughput and low latency for real-time transmissions over cellular
networks. Typical real-time apps adapt their content (data quality and
frame rate) based on the network bandwidth estimated by the end-
point transport. Octopus allows these apps to send data aggressively
and instead specify how content can be adapted by the transport
and in-network base stations using per-message parameters. This
allows Octopus to react in a timely manner and perform significantly
better than the state-of-the-art. Our work leaves several interesting
directions open for future research. For example, can we design new
techniques for encoding sensor streams to better exploit in-network
content adaptation enabled by Octopus? Can Octopus’ approach be
applied to other contexts beyond cellular networks?

10 ACKNOWLEDGEMENT
We would like to thank our anonymous reviewers and shepherd for
their helpful comments. We would also like to thank Brighten God-
frey, Haitham Al-Hassanieh, and Aurojit Panda for their feedback
on earlier versions of the paper. This work was supported in parts
by Intel, Facebook, AG NIFA grant 2021-67021-34418, NSF grant
2217144, and UIUC’s Smart Transport Infrastructure Initiative.

210

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] 2010. 3GPP technical specification for lte. https://www.etsi.org/deliver/etsi_ts/

132400_132499/132450/09.01.00_60/ts_132450v090100p.pdf.
[2] 2017. VP9 Video Codec. https://www.webmproject.org/vp9/.
[3] 2020. vp9_spatial_svc_encoder. https://chromium.googlesource.com/webm/

libvpx/+/master/examples/vp9_spatial_svc_encoder.c.
[4] 2021. Understanding Packet Loss Priorities. https://www.juniper.net/

documentation/en_US/junos/topics/concept/cos-packet-loss-priority-
understanding-security.html.

[5] 2022. Scalable Video Coding (SVC) Extension for WebRTC
https://www.w3.org/TR/webrtc-svc/. https://www.w3.org/TR/webrtc-svc/

[6] 2022. Support VA-API VP9 K-SVC Encoding on ChromeOS for Intel® Archi-
tecture. https://www.intel.com/content/www/us/en/developer/articles/technical/
support-va-api-vp9-k-svc-encoding-on-chromeos.html.

[7] 2022. WebRTC: Real-time communication for the web https://webrtc.org/. https:
//webrtc.org/

[8] 2023. Open RAN explained: Openness, innovation and flexibility. https:
//www.ericsson.com/en/openness-innovation/open-ran-explained.

[9] 2023. Top Use Cases for 5G Technology. https://www.intel.com/content/www/
us/en/wireless-network/5g-use-cases-applications.html.

[10] Admin. 2021. 20 Astonishing Video Conferencing Statistics for 2021. https:
//digitalintheround.com/video-conferencing-statistics/.

[11] Mehdi Alasti, Behnam Neekzad, Jie Hui, and Rath Vannithamby. 2010. Quality
of service in WiMAX and LTE networks [Topics in Wireless Communications].
IEEE Communications Magazine 48, 5 (2010), 104–111. https://doi.org/10.1109/
MCOM.2010.5458370

[12] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKe-
own, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal Near-optimal
Datacenter Transport. In Proc. ACM SIGCOMM.

[13] The Draco authors. 2023. Draco: 3D Data Compression. https://google.github.io/
draco/.

[14] Arjun Balasingam, Manu Bansal, Rakesh Misra, Kanthi Nagaraj, Rahul Tandra,
Sachin Katti, and Aaron Schulman. 2019. Detecting If LTE is the Bottleneck with
BurstTracker. In The 25th Annual International Conference on Mobile Computing
and Networking (Los Cabos, Mexico) (MobiCom ’19). New York, NY, USA.
https://doi.org/10.1145/3300061.3300140

[15] James Bankoski, John Koleszar, Lou Quillio, Janne Salonen, Paul Wilkins, and
Yaowu Xu. 2011. VP8 Data Format and Decoding Guide. https://www.rfc-
editor.org/rfc/rfc6386.

[16] A. M. Bedewy, Y. Sun, and N. B. Shroff. 2019. Minimizing the Age of Information
Through Queues. IEEE Transactions on Information Theory 65, 8 (2019), 5215–
5232. https://doi.org/10.1109/TIT.2019.2912159

[17] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura. 1997. An Archi-
tecture for Active Networking. In Proceedings of the IFIP TC6 Seventh Interna-
tional Conference on High Performance Netwoking VII (White Plains, New York,
USA) (HPN ’97). Chapman & Hall, Ltd., GBR, 265–279.

[18] Samrat Bhattacharjee, Kenneth L Calvert, and Ellen W Zegura. 1998. Network
support for multicast video distribution. Technical Report. Georgia Institute of
Technology.

[19] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. 1994. TCP
Vegas: New Techniques for Congestion Detection and Avoidance. In Proceedings
of the Conference on Communications Architectures, Protocols and Applications
(London, United Kingdom). Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/190314.190317

[20] F. Capozzi, G. Piro, L.A. Grieco, G. Boggia, and P. Camarda. 2013. Downlink
Packet Scheduling in LTE Cellular Networks: Key Design Issues and a Sur-
vey. IEEE Communications Surveys Tutorials (2013). https://doi.org/10.1109/
SURV.2012.060912.00100

[21] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. ACM Queue
(2016).

[22] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2016.
Analysis and Design of the Google Congestion Control for Web Real-Time
Communication (WebRTC). In Proceedings of the 7th International Confer-
ence on Multimedia Systems (Klagenfurt, Austria) (MMSys ’16). Association
for Computing Machinery, New York, NY, USA, Article 13, 12 pages. https:
//doi.org/10.1145/2910017.2910605

[23] Yongzhou Chen, Ruihao Yao, Haitham Hassanieh, and Radhika Mittal. 2023.
Channel-Aware 5G RAN Slicing with Customizable Schedulers. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23).
USENIX Association, Boston, MA, 1767–1782.

[24] Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das, Aruna Balasubramanian,
and Dimitris Samaras. 2022. Swift: Adaptive Video Streaming with Layered
Neural Codecs. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, Renton, WA, 103–118. https:
//www.usenix.org/conference/nsdi22/presentation/dasari

[25] A. Demers, S. Keshav, and S. Shenker. 1989. Analysis and Simulation of a Fair
Queueing Algorithm. ACM SIGCOMM Computer Communication Review (1989).

[26] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth,
K. Schindler, and L. Leal-Taixé. 2020. MOT20: A benchmark for multi object
tracking in crowded scenes. arXiv:2003.09003[cs] (March 2020). http://arxiv.org/
abs/1906.04567 arXiv: 2003.09003.

[27] Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael Schapira.
2015. PCC: Re-architecting Congestion Control for Consistent High Perfor-
mance. In 12th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 15). USENIX Association, Oakland, CA, 395–408. https:
//www.usenix.org/conference/nsdi15/technical-sessions/presentation/dong

[28] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten
Godfrey, and Michael Schapira. 2018. PCC Vivace: Online-Learning Con-
gestion Control. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). USENIX Association, Renton, WA, 343–356.
https://www.usenix.org/conference/nsdi18/presentation/dong

[29] Zhengfang Duanmu, Zeng Kai, Kede Ma, Abdul Rehman, and Zhou Wang. 2016.
A Quality-of-Experience Index for Streaming Video. IEEE Journal of Selected
Topics in Signal Processing (Feb. 2016).

[30] Eric Dumazet. 2012. TCP small queues. https://lwn.net/Articles/506237/.
[31] Sally Floyd. 1994. TCP and Explicit Congestion Notification. SIGCOMM Comput.

Commun. Rev. (1994). https://doi.org/10.1145/205511.205512
[32] Sally Floyd and Van Jacobson. 1993. Random Early Detection Gateways for

Congestion Avoidance. IEEE/ACM Trans. Netw. (1993).
[33] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and

Keith Winstein. 2018. Salsify: Low-Latency Network Video through Tighter Inte-
gration between a Video Codec and a Transport Protocol. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18). USENIX
Association, Renton, WA, 267–282. https://www.usenix.org/conference/nsdi18/
presentation/fouladi

[34] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D. Sutton, Pablo Ser-
rano, Cristina Cano, and Doug J. Leith. 2016. SrsLTE: An Open-Source Plat-
form for LTE Evolution and Experimentation. In Proceedings of the Tenth ACM
International Workshop on Wireless Network Testbeds, Experimental Evalua-
tion, and Characterization (New York City, New York) (WiNTECH ’16). As-
sociation for Computing Machinery, New York, NY, USA, 25–32. https:
//doi.org/10.1145/2980159.2980163

[35] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari
Balakrishnan. 2020. ABC: A Simple Explicit Congestion Controller for Wire-
less Networks. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 353–372.
https://www.usenix.org/conference/nsdi20/presentation/goyal

[36] Yunhong Gu and Robert L. Grossman. 2007. UDT: UDP-Based Data Transfer for
High-Speed Wide Area Networks. Comput. Netw. (2007).

[37] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a New TCP-friendly
High-Speed TCP Variant. ACM SIGOPS Operating System Review (2008).

[38] Cathy Hackl. 2021. The Future Of Live Events Begins In The Meta-
verse. https://www.forbes.com/sites/cathyhackl/2021/07/20/the-future-of-live-
events-begins-in-the-metaverse/?sh=57044a2d7ac9.

[39] Bo Han, Yu Liu, and Feng Qian. 2020. ViVo: Visibility-Aware Mobile Volumetric
Video Streaming. In Proceedings of the 26th Annual International Conference on
Mobile Computing and Networking (London, United Kingdom) (MobiCom ’20).
Association for Computing Machinery, New York, NY, USA, Article 11, 13 pages.
https://doi.org/10.1145/3372224.3380888

[40] Haitham Hassanieh, Omid Abari, Michael Rodriguez, Mohammed Abdelghany,
Dina Katabi, and Piotr Indyk. 2018. Fast Millimeter Wave Beam Alignment. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’18).

[41] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. 2012. The NewReno Modifi-
cation to TCP’s Fast Recovery Algorithm. https://datatracker.ietf.org/doc/html/
rfc6582.

[42] A. Horé and D. Ziou. 2010. Image Quality Metrics: PSNR vs. SSIM. In 2010 20th
International Conference on Pattern Recognition. 2366–2369. https://doi.org/
10.1109/ICPR.2010.579

[43] Tianchi Huang, Rui-Xiao Zhang, Chao Zhou, and Lifeng Sun. 2018. QARC:
Video Quality Aware Rate Control for Real-Time Video Streaming Based on
Deep Reinforcement Learning. In Proceedings of the 26th ACM International
Conference on Multimedia (Seoul, Republic of Korea) (MM ’18). Association
for Computing Machinery, New York, NY, USA, 1208–1216. https://doi.org/
10.1145/3240508.3240545

[44] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness, Effi-
ciency, and Stability in HTTP-Based Adaptive Video Streaming with FESTIVE.
In Proceedings of the 8th International Conference on Emerging Networking Ex-
periments and Technologies (Nice, France). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/2413176.2413189

[45] Jing Zhu, R. Vannithamby, C. Rödbro, Mingyu Chen, and S. Vang Andersen.
2012. Improving QoE for Skype video call in Mobile Broadband Network.
In 2012 IEEE Global Communications Conference (GLOBECOM). 1938–1943.

211

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1109/GLOCOM.2012.6503399
[46] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain Matthews, Takeo

Kanade, Shohei Nobuhara, and Yaser Sheikh. 2015. Panoptic Studio: A Mas-
sively Multiview System for Social Motion Capture. In 2015 IEEE International
Conference on Computer Vision (ICCV). https://doi.org/10.1109/ICCV.2015.381

[47] I. Kadota and E. Modiano. 2019. Minimizing the Age of Information in Wireless
Networks with Stochastic Arrivals. IEEE Transactions on Mobile Computing
(2019), 1–1. https://doi.org/10.1109/TMC.2019.2959774

[48] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion Control for
High Bandwidth-Delay Product Networks. In Proceedings of the 2002 Con-
ference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (Pittsburgh, Pennsylvania, USA) (SIGCOMM ’02). As-
sociation for Computing Machinery, New York, NY, USA, 89–102. https:
//doi.org/10.1145/633025.633035

[49] Sanjit Kaul, Marco Gruteser, Vinuth Rai, and John Kenney. 2011. Minimizing
age of information in vehicular networks. In Proc. IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks.

[50] Eymen Kurdoglu, Yong Liu, Yao Wang, Yongfang Shi, ChenChen Gu, and Jing
Lyu. 2016. Real-time bandwidth prediction and rate adaptation for video calls
over cellular networks. In Proceedings of the 7th International Conference on
Multimedia Systems. 1–11.

[51] Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim.
2020. GROOT: A Real-Time Streaming System of High-Fidelity Volumetric Videos.
Association for Computing Machinery, New York, NY, USA.

[52] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqiang Harry
Liu, and Mingwei Xu. 2022. Achieving Consistent Low Latency for Wireless
Real-Time Communications with the Shortest Control Loop. In Proceedings of
the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands) (SIGCOMM

’22). Association for Computing Machinery, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3544216.3544225

[53] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler. 2016. MOT16: A
Benchmark for Multi-Object Tracking. arXiv:1603.00831 [cs] (March 2016).
http://arxiv.org/abs/1603.00831 arXiv: 1603.00831.

[54] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng
Qian, and Zhi-Li Zhang. 2020. A First Look at Commercial 5G Performance on
Smartphones. In Proceedings of The Web Conference 2020 (Taipei, Taiwan) (WWW

’20). Association for Computing Machinery, New York, NY, USA, 894–905. https:
//doi.org/10.1145/3366423.3380169

[55] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin,
Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley
Mao, Feng Qian, and Zhi-Li Zhang. 2021. A Variegated Look at 5G in the Wild:
Performance, Power, and QoE Implications. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference. Association for Computing Machinery, New York,
NY, USA.

[56] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP. In Proc. USENIX ATC.

[57] Kathleen Nichols, Van Jacobson, Andrew McGregor, and Janardhan Iyengar. 2011.
Controlled Delay Active Queue Management. https://www.rfc-editor.org/rfc/
rfc8289.html.

[58] Abhay K. Parekh and Robert G. Gallager. 1993. A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The Single-node Case.
IEEE/ACM Trans. Netw. (1993).

[59] Eric Parsons and Gabriel Foglander. 2023. The four key components of Cloud
RAN. https://www.ericsson.com/en/blog/2020/8/the-four-components-of-cloud-
ran.

[60] Darijo Raca, Dylan Leahy, Cormac J. Sreenan, and Jason J. Quinlan. 2020. Beyond
Throughput, the next Generation: A 5G Dataset with Channel and Context Met-
rics. In Proceedings of the 11th ACM Multimedia Systems Conference (Istanbul,
Turkey). Association for Computing Machinery, New York, NY, USA.

[61] Devdeep Ray, Jack Kosaian, K. V. Rashmi, and Srinivasan Seshan. 2019. Vantage:
Optimizing Video Upload for Time-Shifted Viewing of Social Live Streams. In
Proceedings of the ACM Special Interest Group on Data Communication (Beijing,
China) (SIGCOMM ’19). New York, NY, USA.

[62] S. Blake and D. Black and M. Carlson and E. Davies and Z. Wang and W. Weiss.
1998. An Architecture for Differentiated Services. https://tools.ietf.org/html/
rfc2475.

[63] T. Schierl, C. Hellge, S. Mirta, K. Gruneberg, and T. Wiegand. 2007. Using
H.264/AVC-based Scalable Video Coding (SVC) for Real Time Streaming in
Wireless IP Networks. In 2007 IEEE International Symposium on Circuits and
Systems. 3455–3458. https://doi.org/10.1109/ISCAS.2007.378370

[64] H. Schwarz, D. Marpe, and T. Wiegand. 2007. Overview of the Scalable Video
Coding Extension of the H.264/AVC Standard. IEEE Transactions on Cir-
cuits and Systems for Video Technology 17, 9 (2007). https://doi.org/10.1109/
TCSVT.2007.905532

[65] M. Shreedhar and George Varghese. 1995. Efficient Fair Queueing Using Deficit
Round Robin. ACM SIGCOMM Computer Communication Review (1995).

[66] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin
Katti, and Nick McKeown. 2016. Programmable Packet Scheduling at Line Rate.
In Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16).

[67] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand. 2012. Overview of the High
Efficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuits and
Systems for Video Technology (2012).

[68] Software Radio Systems(SRS). 2021. srsRAN Your own mobile network. https:
//www.srslte.com/.

[69] Ammar Tahir and Radhika Mittal. 2023. Enabling Users to Control their Internet.
In 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). USENIX Association, Boston, MA, 555–573. https://www.usenix.org/
conference/nsdi23/presentation/tahir

[70] Chia-Hui Tai, Jiang Zhu, and Nandita Dukkipati. 2008. Making Large Scale
Deployment of RCP Practical for Real Networks. In INFOCOM 2008. 27th IEEE
International Conference on Computer Communications, Joint Conference of the
IEEE Computer and Communications Societies, 13-18 April 2008, Phoenix, AZ,
USA.

[71] Vikram Sachdeva. 2020. Zoom - Video conf app at scale. https://medium.com/
@vsachdeva/zoom-video-conf-tool-at-scale-e86289c290b8.

[72] M. Wien, R. Cazoulat, A. Graffunder, A. Hutter, and P. Amon. 2007. Real-Time
System for Adaptive Video Streaming Based on SVC. IEEE Transactions on
Circuits and Systems for Video Technology 17, 9 (2007), 1227–1237. https:
//doi.org/10.1109/TCSVT.2007.905519

[73] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011.
Better Never than Late: Meeting Deadlines in Datacenter Networks (SIGCOMM

’11). Association for Computing Machinery, New York, NY, USA. https://doi.org/
10.1145/2018436.2018443

[74] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic
Forecasts Achieve High Throughput and Low Delay over Cellular Networks. In
Proc. USENIX NSDI.

[75] Yaxiong Xie, Fan Yi, and Kyle Jamieson. 2020. PBE-CC: Congestion Control via
Endpoint-Centric, Physical-Layer Bandwidth Measurements. In Proceedings of
the Annual Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for Computer
Communication. https://doi.org/10.1145/3387514.3405880

[76] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Congkai An,
Yiming Shi, Liang Liu, and Huadong Ma. 2020. Understanding Operational 5G: A
First Measurement Study on Its Coverage, Performance and Energy Consumption.
479–494. https://doi.org/10.1145/3387514.3405882

[77] Mao Yang, Yong Li, Depeng Jin, Li Su, Shaowu Ma, and Lieguang Zeng. 2013.
OpenRAN: A Software-Defined Ran Architecture via Virtualization. In Proceed-
ings of the ACM SIGCOMM 2013 Computer Communication Review (Hong
Kong, China). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/2486001.2491732

[78] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. 2015. Adaptive Congestion Control for Unpredictable Cellu-
lar Networks. In Proceedings of the 2015 ACM Conference on Special Inter-
est Group on Data Communication (SIGCOMM ’15). https://doi.org/10.1145/
2785956.2787498

[79] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward A. Lee.
2018. AWStream: Adaptive Wide-area Streaming Analytics. In Proceedings of
the ACM Special Interest Group on Data Communication (SIGCOMM ’18).

[80] Huanhuan Zhang, Anfu Zhou, Yuhan Hu, Chaoyue Li, Guangping Wang, Xinyu
Zhang, Huadong Ma, Leilei Wu, Aiyun Chen, and Changhui Wu. 2021. Loki:
Improving Long Tail Performance of Learning-Based Real-Time Video Adap-
tation by Fusing Rule-Based Models. In Proceedings of the 27th Annual In-
ternational Conference on Mobile Computing and Networking (New Orleans,
Louisiana) (MobiCom ’21). New York, NY, USA, 775–788. https://doi.org/
10.1145/3447993.3483259

[81] Huanhuan Zhang, Anfu Zhou, Jiamin Lu, Ruoxuan Ma, Yuhan Hu, Cong Li,
Xinyu Zhang, Huadong Ma, and Xiaojiang Chen. 2020. OnRL: Improving Mobile
Video Telephony via Online Reinforcement Learning. In Proceedings of the
26th Annual International Conference on Mobile Computing and Networking
(London, United Kingdom) (MobiCom ’20). New York, NY, USA, 14 pages.
https://doi.org/10.1145/3372224.3419186

[82] Yunfei Zhang, Gang Li, Chunshan Xiong, Yixue Lei, Wei Huang, Yunbo Han,
Anwar Walid, Y. Richard Yang, and Zhi-Li Zhang. 2020. MoWIE: Toward
Systematic, Adaptive Network Information Exposure as an Enabling Technique
for Cloud-Based Applications over 5G and Beyond (Invited Paper) (NAI ’20). New
York, NY, USA. https://doi.org/10.1145/3405672.3409489

[83] Anfu Zhou, Huanhuan Zhang, Guangyuan Su, Leilei Wu, Ruoxuan Ma, Zhen
Meng, Xinyu Zhang, Xiufeng Xie, Huadong Ma, and Xiaojiang Chen. 2019.
Learning to Coordinate Video Codec with Transport Protocol for Mobile Video
Telephony. In The 25th Annual International Conference on Mobile Computing
and Networking (Los Cabos, Mexico) (MobiCom ’19). Association for Com-
puting Machinery, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3300061.3345430

212

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

[84] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on Im-
age Processing 13, 4 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861

213

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

(a) AT&T (b) T-Mobile (c) Verizon

Figure 15: Median and 99%ile latency in different LTE download network traces with an RTT of 60 ms (averaged over 5 videos, with
error bars showing the standard deviation).

A SUPPLEMENTARY CASE STUDY RESULTS
We provide several additional case study results here.

Figure15 shows the median and tail latency of frames transmission
in the first case study (6.1). We see similar trends with tail latency as
with the AoI metric – Octopus has 1.8–28× lower tail latency than
the baselines.

Figure 16(a) presents the frame transmission latency of OctoBBR,
when compared with Octopus and the other baselines for the first
case-study. Consistent with the AoI trends reported in 7.1, OctoBBR
exhibits a slightly higher 99%ile latency than Salsify, while Octopus
achieves at least 2× lower tail latency than all other schemes. The
performance improvement of Octopus compared with OctoBBR
highlights the benefit of in-network adaptation policies.

Figure 16(b) compares the frame latency of Octopus with PDrop
(priority-based dropping) using different buffer sizes. Again, consis-
tent with the AoI trends in 7.2, we find that PDrop only outperforms
Octopus when the buffer is small(50KB), and suffers from long tail
latency when the buffer size goes large. As we showed in 7.2, PDrop
with a small buffer size of 50KB results in degraded video quality
for our second case-study, when compared to Octopus. This shows

that the performance of PDrop highly depend on the buffer threshold,
which is non-trivial for the network operator to tune.

(a) OctoBBR(Octopus without in-
network support)

(b) PDrop with different buffer
sizes

Figure 16: Median and 99%ile latency of OctoBBR and the
priority-based dropping approach.

214

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2024 at 18:32:04 UTC from IEEE Xplore. Restrictions apply.

