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Abstract

Few neural architectures lend themselves to provable learning with gradient based
methods. One popular model is the single-index model, in which labels are produced by
composing an unknown linear projection with a possibly unknown scalar link function.
Learning this model with SGD is relatively well-understood, whereby the so-called
information exponent of the link function governs a polynomial sample complexity rate.
However, extending this analysis to deeper or more complicated architectures remains
challenging.

In this work, we consider single index learning in the setting of symmetric neural net-
works. Under analytic assumptions on the activation and maximum degree assumptions
on the link function, we prove that gradient flow recovers the hidden planted direction,
represented as a finitely supported vector in the feature space of power sum polynomials.
We characterize a notion of information exponent adapted to our setting that controls
the efficiency of learning.

1 Introduction

Quantifying the advantage of neural networks over simpler learning systems remains a primary
question in deep learning theory. Specifically, understanding their ability to discover relevant
low-dimensional features out of high-dimensional inputs is a particularly important topic of
study. One facet of the challenge is explicitly characterizing the evolution of neural network
weights through gradient-based methods, owing to the nonconvexity of the optimization
landscape.

The single index setting, long studied in economics and biostatistics [25] offers the simplest
setting where non-linear feature learning can be characterized explicitly. In this setting,
functions of the form = — f((z,6*)) where 6* € S;_; represents a hidden direction in high-
dimensional space, and f a certain non-linear link function, are learned via a student with an



identical architecture z — f({z,)), under certain data distribution assumptions, such as
Gaussian data. Gradient flow and gradient descent [4, 13, 29] in this setting can be analyzed
by reducing the high-dimensional dynamics of 6 to dimension-free dynamics of appropriate
summary statistics, given in this case by the scalar correlation (0, 6*).

The efficiency of gradient methods in this setting, measured either in continuous time or
independent samples, is controlled by two main properties. First, the correlation initialization,
which typically scales as \/Lg for standard assumptions. Second, the information exponent sy
of f [2,4, 7,10, 11, 13], which measures the number of effective vanishing moments of the
link function — leading to a sample complexity of the form O(d*~!) for generic values of s.

While this basic setup has been extended along certain directions, e.g. relaxing the structure
on the input data distribution [9, 29|, considering the multi-index counterpart |1, 2, 3, 11|, or
learning the link function with semi-parametric methods |7, 21], they are all fundamentally
associated with fully-connected shallow neural networks. Such architecture, for all its rich
mathematical structure, also comes with important shortcomings. In particular, it is unable
to account for predefined symmetries in the target function that the learner wishes to exploit.
This requires specialized neural architectures enforcing particular invariances, setting up
novel technical challenges to carry out the program outlined above.

In this work, we consider arguably the easiest form of symmetry, given by permutation
invariance. The primary architecture for this invariance is DeepSets [30], which is necessarily
three layers by definition and therefore not a simple extension of the two layer setting. In
order to quantify the notion of ‘symmetric’ feature learning in this setting, we introduce a
symmetric single index target, and analyze the ability of gradient descent over a DeepSet
architecture to recover it. Under appropriate assumptions on the model, initialization and
data distribution, we combine the previous analyses with tools from symmetric polynomial
theory to characterize the dynamics of this learning problem. Our primary theorem is a proof
of efficient learning under gradient flow, with explicit polynomial convergence rates controlled
by an analogue of information exponent adapted to the symmetric setting. Combined with
other contemporary works, this result solidifies the remarkable ability of gradient descent to
perform feature learning under a variety of high-dimensional learning problems.

2 Setup

2.1 Notation

For z € C, we will use Z to denote the complex conjugate, with the notation z* always being
reserved to denote a special value of z rather than an operation. For complex matrices A
we will use AT to denote the conjugate transpose. The standard inner product on C¥ is
written as (-, ), whereas inner products on L?(v) spaces for some probability measure v will



be written as (-, -),. Furthermore, for h a vector and p(x) a vector-valued function, we will
use (h, p), as shorthand for the notation (h, p(-)),.

2.2 Regression setting and Teacher function

We consider a typical regression setting, where given samples (z,y) € X x C with y = F(x),
we seek to learn a function F, with parameter w € CM by minimizing some expected
loss Ey, [L(F(z), Fy(x))]. Note that we consider complex-valued inputs and parameters
because they greatly simplify the symmetric setting (see Proposition 2.3), hence we will also
assume X C CV. Both F and F,, will be permutation invariant functions, meaning that
F(zr1y, - rny) = F(x1,...,2y) for any permutation 7 : {1, N} — {1, N}.

Typically the single index setting assumes that the trained architecture will exactly match
the true architecture (e.g. as in [4]), but below we will see why it’s necessary to consider
separate architectures. For that reason, we’ll consider separately defining the teacher F' and
the student F,,.

The first ingredient are the power sum polynomials:

Definition 2.1. For k € N and x € CV, the normalized powersum polynomial is defined as
X
() = —F= Y 2F .

Let p(z) = [p1(x), p2(x),...] be an infinite dimensional vector of powersums, and consider a
fixed vector h* € C* of unit norm. Then our teacher function F' will be of the form

F:X—>C (1)
x = F(x) = f((h",p(x))) (2)

for some scalar link function f : C — C. F may thus be understood as a single-index function
in the feature space of powersum polynomials.

2.3 DeepSets Student Function

Let us remind the typical structure of a DeepSets network [30], where for some maps
®: X — CMand p: CM — C, the standard DeepSets architecture is of the form:

x5 p(Py(x),..., Pu(x)) . (3)

The essential restriction is that ® is a permutation invariant mapping, typically of the form
b, (r) = Zgzl ¢Om(xy,) for some map ¢, : C — C. In order to parameterize our student
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network as a DeepSets model, we will make the simplest possible choices, while preserving its
non-linear essence. To define our student network, we consider the symmetric embedding ¢
as a one-layer neural network with no bias terms:

N

P (x) = o(amrn) , (4)

n=1

for i.i.d. complex weights sampled uniformly from the complex circle a,, ~ S! and some
activation o : C — C. And given some link function g : C — C, we’ll consider the mapping p
as:

pu(:) = g((w,)) , (5)

where w € CM are our trainable weights. Putting all together, our student network thus
becomes

F,: X —>C
z = Fy(x) = g((w, @(2))) - (6)

In other words, F,, corresponds to a DeepSets network where the first and third layer weights
are frozen, and only the second layer weights (with no biases) are trained.

The first fact we need is that, through simple algebra, the student may be rewritten in the
form of a single-index model.

Proposition 2.2. There is matriz A € C**M depending only on the activation o and the
frozen weights {a, }M_, such that

g({w, @(x))) = g({(Aw, p(x))) . (7)

2.4 Hermite-like Identity

In the vanilla single index setting, the key to giving an explicit expression for the expected
loss (for Gaussian inputs) is a well-known identity of Hermite polynomials [15, 22|. If hy
denotes the Hermite polynomial of degree k, this identity takes the form

(o)) (e 0)), = Ok, v)* (8)

where u,v € R™ and 7, is the standard Gaussian distribution on n dimensions.

In our setting, as it turns out, one can establish an analogous identity, by considering a
different input probability measure, and a bound on the degree of the link function. We
will choose our input domain X = (S')", and the input distribution we will consider is the
set of eigenvalues of a Haar-distributed unitary matrix in dimension N [12], or equivalently
the squared Vandermonde density over N copies of the complex unit circle [20]. We'll
interchangeably use the notation E,v[f(x)g(x)] = (f, 9)v.
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Proposition 2.3. Consider h,h € C* with bounded Ly norm. For exponents k.l with
k <~/'N, if h is only supported on the first VN elements, then:

((h, p)*, (h, p)!Yv = Skl (h, BYF . 9)

The crucial feature of this identity is that the assumptions on support and bounded degree
only apply to (h, p)*, with no restrictions on the other term. In our learning problem, we
can use this property to make these assumptions on the teacher function, while requiring no
bounds on the terms of the student DeepSets architecture.

In order to take advantage of the assumptions on the support of h and the degree in the
above proposition, we need to make the following assumptions on our teacher link function f
and our true direction h*:

Assumption 2.4. The link function f is analytic and only supported on the first VN degree
monomials, i.e.

VN o
f2) = S (10)
=V
Furthermore, the vector h* is only supported on the first /N elements.

Although this assumption is required to apply the orthogonality property for our loss function
in the following sections, we note that in principle, including exponentially small terms of
higher degree in f or higher index in h* should have negligible effect. Moreover, one should
interpret this assumption as silently disappearing in the high-dimensional regime N — oc.
For simplicity, we keep this assumption to make cleaner calculations and leave the issue of
these small perturbations to future work.

2.5 Information Exponent

Because Proposition 2.3 takes inner products of monomials, it alludes to a very simple
characterization of information exponent. Namely:

Definition 2.5. Consider an analytic function f: C — C that can be written in the form
fe) =3 o (11)
im V7!
Then the information exponent is defined as s = inf{j > 1: a; # 0}.

Similar to the Gaussian case [4, 7|, the information exponent s will control the efficiency
of learning. Assuming |o,| is some non-negligible constant, the value of s will be far more
important in governing the convergence rate.



2.6 Choosing a learnable loss

There are two subtleties to choosing an appropriate loss function. Namely, the necessity of a
correlational loss (with regularization), and the necessity of choosing the student and teacher
link functions to be distinct.

At first glance, it is tempting to simply define a loss of the form
L(w) = Bynv|F(2) = Fu(2)]* = oy [|F((R", p(2))) = f((Aw, p(x))[*] - (12)

However, the Deepsets student model is not degree limited, that is the support of Aw is not
restricted to the first v/N terms of the powersum expansion. In other words, expanding this
loss will require calculating the term || f({Aw, p))||?;, which will contain high degree terms
that cannot be controlled with Proposition 2.3. One could avoid this issue by choosing the
activation such that Aw only contains low-index terms, but we want to consider larger classes
of activations and enforce fewer restrictions.

One can instead consider a correlational loss. In this case, in order to make the objective
have a bounded global minimum, it’s necessary to either regularize w, or project at every
step of SGD, which is the strategy taken in Damian et al. [10]. In our setting, this projection
would correspond to projecting w to the ellipsoid surface ||Awl|| = 1. This projection would
require solving an optimization problem at every timestep [23|. To avoid this impracticality,
we instead consider regularization.

Then with complete knowledge of the link function f, specifically its monomial coefficients,
we can now define the correlational loss

VN 2 .
Ew) = By [~ Re{ s p@) TCCAw o} + 32 Shjawgs - 1y

This loss enjoys benign optimization properties, as shown by the following proposition:

Proposition 2.6. If there exist coprimes k,l with ay, oy # 0, and h* is in the range of A,
then L exclusively has global minima at all w such that Aw = h*.

However, unlike the real case, complex weights causes issues for learning this objective.
Namely, this objective can be written as a non-convex polynomial in cos# where 6 is the
angle of (Aw, h*) in polar coordinates.

Therefore, we consider a different choice of student link function that will enable a simpler
analysis of the dynamics. For the choice of g(z) Qs »% we instead consider the loss:

= JaslVal
e T eyl ] sl
L(w) = Eoov | = Re{ f({(h",p(@))g((Aw, p@@) } | + 5 Aw] (14)
= —|ag| Re{(Aw, h*)*} + ‘0475|||Aw||25 : (15)



We note that Dudeja & Hsu [13] used a similar trick of a correlational loss containing a single
orthogonal polynomial in order to simplify the learning landscape. The global minima of this
loss, and in fact the dynamics of gradient flow on it, will be explored in the sequel.

3 Related Work

3.1 Single Index Learning

The conditions under which single-index model learning is possible have been well-explored in
previous literature. The main assumptions that enable provably learning under gradient flow
/ gradient descent are monotonicity of the link function [16, 17, 27, 29] or Gaussian input
distribution [4]. The former assumptions essentially corresponds to the setting where the
information exponent s = 1, as it will have positive correlation with a linear term. Under the
latter assumption, the optimal sample complexity was achieved in Damian et al. [10], with
study of learning when the link function is not known in Bietti et al. [7].

When both assumptions are broken, the conditions on the input distribution of rotation
invariance or approximate Gaussianity are nevertheless sufficient for learning guarantees |9].
But more unusual distributions, especially in the complex domain that is most convenient for
symmetric networks, are not well studied.

3.2 Symmetric Neural Networks

The primary model for symmetric neural networks was introduced in Zaheer et al. [30] as the
DeepSets model. There are many similar models that enforce permutation invariance |19, 24,
26], though we focus on DeepSets because of its relationship with the power sum polynomials
and orthogonality [31]. We are not aware of any other works that demonstrates provable
learning of symmetric functions under gradient-based methods.

4 Provably Efficient Recovery with Gradient Flow

4.1 Defining the Dynamics

The gradient methods considered in Arous et al. [4], Ben Arous et al. [6] are analyzed by
reducing to a dimension-free dynamical system of the so-called summary statistics. For
instance, in the vanilla single-index model, the summary statistics reduce to the scalar



correlation between the learned weight and the true weight. In our case, we have three
variables, owing to the fact that the correlation is complex and represented by two scalars,
and a third variable controlling the norm of the weight since we aren’t using projection.

Note that although our weight vector w is complex, we still apply regular gradient flow to
the pair of weight vectors wg, we where w = wg + iwe. Furthermore, we use the notation
V =V, =V, +1Vy.. With that in mind, we can summarize the dynamics of our gradient
flow in the following Theorem.

Theorem 4.1. Given a parameter w, consider the summary statistics m = (Aw,h*) € C
and v = || P Aw|* where Pk is projection onto the orthogonal complement of h*. Let the
polar decomposition of m be re.

Then given the preconditioned gradient flow given by

W = —@(ATA)”VL(w) | (16)

the summary statistics obey the following system of ordinary differential equations:

7= (1—8)r"tcossd — (v+1*)'r, (17)
%COS s = (1 —0)sr* (1 — cos® s6) , (18)
0 = 207° cos s0 — 2(v + r?) v | (19)

where § := 1 — ||[Pah*||* and Py is the projection onto the range of A.

The proof is in Appendix D. The main technical details come from using Wirtinger calculus
to determine how the real and imaginary parts of w evolve under the flow. Additionally, the
correct preconditioner (intuitive from the linear transform of w) is crucial for reducing the
dynamics to only three summary statistics, and converting to dynamcis on cos sf rather than
6 itself simplifies the description of the learning in the next section dramatically.

4.2 Provable Learning

These dynamics naturally motivate the question of learning efficiency, measured in convergence
rates in time in the case of gradient flow. Our main result is that, under some assumptions
on the initialization of the frozen weights {a,, }}_, and the initialized weight vector wy, the
efficiency is controlled by the initial correlation with the true direction and the information
exponent, just as in the Gaussian case.

Theorem 4.2. Consider a fived ¢ > 0. Suppose the initialization of wy and (a,,)™_, are such
that:



(1) Small correlation and anti-concentration at initialization: 0 < ro <1,
(i) Initial phase condition: cos sy > 1/2,
(iii) Initial magnitude condition for Aw: vy =1 —rZ,

(iv) Small Approzimation of optimal error: 6 < min(e/2, O(s~°ry)).

Then if we run the gradient flow given in Theorem 4.1 we have € accuracy in the sense that:
rp>1—¢€, cossbp>1—¢€, vp<e (20)

after time T', where depending on the information exponent s:

O (logt s=1,
T< ( 5 62 A ) (21)
0(25 o S—l—log;) s>1.
Remark 4.3. We note that we only recover cos s =~ 1, rather than a guarantee that 6 ~ 0,
and so the hidden direction is only determined up to scaling by a sth root of unity. This
limitation is may appear to be an issue with the choice of the student link function g, but it is
unavoidable: if the teacher link function f(z) = \/ngs, one can calculate that for any choice

of g, L(w) is invariant to scaling w by an sth rootiof unity.

4.3 Initialization Guarantees

In order to apply the gradient flow bound proved in Theorem 4.2, it only remains to understand
when the assumptions on initialization are met. Unlike the single-index setting with Gaussian
inputs, the initial correlation is not guaranteed to be on the scale of LN, but will depend
on the activation function and the random weights in the first layer. Let us introduce the
assumptions we’ll need:

Assumption 4.4. We assume an analytic activation o(z) =Y pe, cx2®, with the notation
oy = max;<p<n |cx|VE and o_ = ming .o /5 \ce|Vk. We further assume:

(i) cr, =0 iff k=0,
(i1) o analytic on the unit disk,
(iii) 1/o_ = O(poly(N)),

(ZU) ZZZN+1 k‘|0k‘2 S e_O(\/]v)'

The first two conditions are simply required for the application of Proposition 2.3, as the
powersum vector p is built out of polynomials induced by the activation and does not include
a constant term. The second two conditions concern the decay of the coefficients of ¢, in the
sense that the decay must start slow but eventually become very rapid. These conditions are
necessary mainly for ensuring the Small Approximation of optimal error condition:



Lemma 4.5. Let o satisfy Assumption 4.4, and assume M = O(N?). Then for any unit norm
h* € C* that is only supported on the first VN elements, with probability 1 — 2 exp(—O(N)):

1— || P4h*|?> < e OV

Lastly, we can choose an initialization scheme for w which handily ensures the remaining
assumptions we need to apply Theorem 4.2. The crucial features of ¢ are similar to the
previous result. Namely, we want the initial correlation ry to be non-negligible because this
directly controls the runtime of gradient flow. Slow initial decay with fast late decay of the o
coefficients directly implies that Aw, has a lot of mass in the first v/N indices and very little
mass past the first NV indices. These requirements rule out, say, exp as an analytic activation
because the coefficients decay too rapidly.

Lemma 4.6. Suppose w is sampled from a standard complex Gaussian on M wvariables. It

ollows that if we set wy = ——, and use the summary statistics from Theorem 4.1, then with
| Aw]]

probability 1/3 — 2exp(—O(N)) and any h* as in Lemma 4.5

, o :
(i) 1>1ry> Co T for some universal constant ¢ > 0,
(i1) cos sy > 1/2,

(iii) vg =1 —r2.

Finally, we consider a straightforward choice of ¢ that meets Assumption 4.4 so that we can
arrive at an explicit complexity bound on learning:

Corollary 4.7 (Non-asymptotic Rates for Gradient Flow). And Consider £ =1 — \/LN and
the specific choice of activation

o(z) = arctan &z + £z arctan €z .

Suppose we initialize w from a standard complex Gaussian in dimension M with M = O(N?3),
and {an }M_, ~ St did. Furthermore, treat s and € as constants relative to N. Then with
probability 1/3 — 2exp(—O(N)), we will recover € accuracy in time

O (log * =1
TS{ (10g2) ;

2 22
O<25N78—|—10g%> s>1. (22)

Proof. By Proposition H.5, the activation o given in the corollary statement satisfies Assump-
tion 4.4, so we can apply Lemma 4.6 and Lemma 4.5 to satisfy the requirements of Theorem 4.2.
In particular, the fourth condition is given by assuming e~®VM < min(e/2, O(s~*r¢)) which
is true when s is constant, and € and ry are at most polynomial compared to N.

Note that o = O(1) and o_ = O (547), so it follows that 7o > O (547) with probability
1/3 — 2exp(—O(N)). Conditioning on this bound gives the desired bound on the time for €
accuracy. O
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Hence, we have a rate that, for s = O(1), is not cursed by dimensionality to recover the true
hidden direction h*. As mentioned above, there are two caveats to this recovery: w is only
recovered up to an sth root of unity, and to directly make predictions of the teacher model
would require using the teacher link function rather than using the student model directly.

Since this result concerns gradient flow over the population loss, a natural question is what
barriers exist that stymie the SGD analysis of recent single index papers [4, 9, 10]. These
works treat the convergence of SGD by a standard drift and martingale argument, where the
drift follows the population gradient flow, and the martingales are shown to be controlled via
standard concentration inequalities and careful arguments around stopping times. Applying
these tactics to a discretized version of the dynamics given in Theorem 4.1 mainly runs into
an issue during the first phase of training. Unlike in Arous et al. [4] where the drift dynamics
have the correlation monotonically increasing towards 1, at the start of our dynamics the
correlation magnitude r and the “orthogonal" part of the learned parameter v are both
decreasing (with high probability over the initialization). Showing that this behavior doesn’t
draw the model towards the saddle point where r = 0 requires showing that v decreases
meaningfully faster than r, i.e. showing that % log % is positive. It’s not clear what quality
of bounds the martingale concentration inequalities would provide for this quantity, and we
leave for future work if the six stage proof of the dynamics behavior could be successfully
discretized.

5 Experiments

To study an experimental setup for our setting, we consider the student-teacher setup outlined
above with gradient descent. We consider N = 25, M = 100, and approximate the matrix A
by capping the infinite number of rows at 150, which was sufficient for 1 — || P4h*||* < 0.001
in numerical experiments. For the link function f, we choose its only non-zero monomial
coefficients to be a3 = a4, = a5 = \/ig And correspondingly, ¢g simply has a3 = 1 and all
other coefficients at zero.

We choose for convenience an activation function such that A, = (%)ka?’j1 We make
this choice because, while obeying all the assumptions required in Assumption 4.4, this
choice implies that the action of A on the elementary basis vectors e; for 1 < j < VN is
approximately distributed the same. This choice means that ||Pah*|| is less dependent on
the choice of h*, and therefore reduces the variance in our experiments when we choose h*
uniformly among unit norm vectors with support on the first v/N elements, i.e. uniformly

from the complex sphere in degree VN.

Under this setup, we train full gradient descent on 50000 samples from the Vandermonde V'
distribution under 20000 iterations. The only parameter to be tuned is the learning rate, and
we observe over the small grid of [0.001,0.0025,0.005] that a learning rate of 0.0025 performs
best for the both models in terms of probability of r reaching approximately 1, i.e. strong
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recovery.

As described in Theorem 4.1, we use preconditioned gradient descent using (ATA)~! as
the preconditioner, which can be calculated once at the beginning of the algorithm and
is an easy alteration to vanilla gradient descent to implement. We use the pseudoinverse
for improved stability in calculating this matrix, although we note that this preconditioner
doesn’t introduce stability issues into the updates of our summary statistics, even in the
case of gradient descent. Indeed, even if one considers the loss L(w) under an empirical
expectation rather than full expectation, the gradient VL (w) can still be seen to be written in
the form Afv for some vector v. If one preconditions this gradient by (ATA)~!, and observes
that the summary statisics m and v both depend on Aw rather than w directly, it follows
that the gradient update on these statistics is always of the form A(ATA)"*AT = Py, so even
in the empirical case this preconditioner doesn’t introduce exploding gradients.

Training of r Training of cos(s*theta)

0.50

0.25 4

0.00 A

Value

—0.25 A —0.25 4
—0.50 1 —0.50 A
—0.75 A —0.75 A
—1.00 A —1.00 4
T T T T T T T T T T T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration Iteration
Training of v Training of r (with L_hat)
1.00 A 1.00 A
0.75 1 0.75 1 '[ ﬂ [
. —
0.50 0.50 4 |
\ 1/
0.25 \ 0.25 /
\
[ 9 —_—————e———
2 000 2 0.00 A — —
B 2
—0.25 A —0.25 4
—0.50 A —0.50 1
—0.75 1 —-0.75 A
—1.00 A —1.00 A
T v v T T r T T T T T u T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration Iteration

Figure 1: The learning trajectory, over ten idependent runs, of the three summary statistics
in the case of our chosen loss function L, and the trajectory of the r statistic for the more
complicated loss function L
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6 Discussion

6.1 Experimental Results

The outcomes of our experiments are given in Figure 1. We observe very high rates of strong
recovery using the loss L. For the loss L, we note that r often becomes stuck, indicating the
model has reached a local minima.

We note that our analysis is somewhat pessimistic, as the experimental gradient descent on
L(w) will often achieve near perfect accuracy even if cos s#y < 0. This is mainly an issue of
proof technique: although cos s is always increasing under the dynamics, r is necessarily
decreasing for as long as cos sf is negative. It is quite subtle to control whether cos sf will
become positive before r becomes extremely small, and the initialization of r is the main
feature that controls the runtime of the model. However the empirical results suggest that a
chance of success > 1/2 is possible under a more delicate analysis.

However, the analysis given in the proof of Theorem 4.2 does accurately capture the brief dip
in the value of r in the initial part of training, when the regularization contributes more to
the gradient than the correlation until cos s# becomes positive.

Because we can only run experiments on gradient descent rather than gradient flow, we
observe the phenomenon of search vs descent studied in Arous et al. [4], where the increase in
the corrleation term r is very slow and then abruptly increases. For the model trained with
j), we observe that there is much greater likelihood of failure in the recovery, as r appears to
become stuck below the optimal value of 1.

6.2 Extensions

The success of this method of analysis depends heavily on the Hermite-like identity in
Proposition 2.3. In general, many of the existing results analyzing single index models need
to assume either Gaussian inputs, or uniformly distributed inputs on the Boolean hypercube
(see for example Abbe et al. [2]). In some sense, this works cements the inclusion of the
Vandermonde distribution in this set of measures that enable clean analysis. The proof
techniques for these three measures are quite disparate, so it remains open to determine if
there is a wider class of “nice" distributions where gradient dynamics can be succcessfully
analyzed.

Additionally, the success of the multi-layer training in Bietti et al. [7], Mahankali et al. [21]
suggests that simultaneously training the frozen first layer weights may not prohibit the
convergence analysis. The matrix A depends on the first layer weights through a Vandermonde
matrix (see X in the proof of Lemma 4.5), and the simple characterization of the derivative
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of a Vandermonde matrix alludes to further possibilities for clean analysis.

6.3 Limitations

A first limitation is the focus of this work on complex inputs, analytic activations, and fixed
input distribution (namely the squared Vandermonde density). Although complex analytic
functions are less commonly studied in the literature, they do still appear in settings like
quantum chemistry [5, 18]. Regarding the focus on the Vandermonde distribution, we note
this is similiar to the vanilla single-index setting in the restriction to Gaussian inputs, under
which the theory is particularly powerful, simplest and understanding of non-Gaussian data
is still nascent.

A second limitation is that this work focuses on input distributions over sets of scalars,
whereas typically symmetric neural networks are applied to sets of high-dimensional vectors.
Proposition 2.3 does not work out of the box for these settings without a high-dimensional
analogue of the inner product (-, )y with similar orthogonality properties. It is possible
to define such an inner products on the so-called multisymmetric powersums with similar
orthogonality [31], and we leave to future work the question of whether such inner products
could grant similar guarantees about the learning dynamics in this more realistic setting.

7 Conclusion

In this work we’ve shown a first positive result that quantifies the ability of gradient descent
to perform symmetric feature learning, by adapting and extending the tools of two-layer
single index models. In essence, this is made possible by a ‘miracle’, namely the fact that
certain powersum expansions under the Vandermonde measure enjoy the same semigroup
structure as Hermite polynomials under the Gaussian measure (Proposition 2.3) — leading
to a dimension-free summary statistic representation of the loss. Although the resulting
dynamics are more intricate than in the Euclidean setting, we are nonetheless able to establish
quantitative convergence rates to ‘escape the mediocrity’ of initialization, recovering the same
main ingredients as in previous works |1, 4], driven by the information exponent. To our
knowledge, this is the first work to show how learning with gradient based methods necessarily
succeeds in this fully non-linear (i.e. not in the NTK regime) setting. Nevertheless, there are
many lingering questions.

As discussed, one limitation of the analysis is the reliance on gradient flow rather than
gradient descent. We hope that in future work we’ll be able to effectively discretize the
dynamics, made more challenging by the fact that one must track three parameters rather
than simply the correlation. Still, we observe theoretically and empirically that the symmetric
single index setting demands a number of unusual choices, such as a correlation loss and
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distinct student and teacher link function, in order to enable efficient learning. And in a
broader scheme, if one remembers the perspective of DeepSets as a very limited form of a
three-layer architecture, the issue of provable learning for deeper, more realistic architectures
stands as a very important and unexplored research direction — and where Transformers
with planted low-dimensional structures appear as the next natural question.
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A Proof of Proposition 2.2

The proposition is true for any activation with a Laurent series, but we will only prove it for
activations satisfying Assumption 4.4 since that’s the only setting we’ll require it.

Consider an analytic activation ¢ with no constant term, given as

o(z) =) (23)

And remind the deepsets features map

Oy () =Y o(anan,) (24)

n=1

(25)

where we have neurons without bias terms.

Then for a weight w € C*| one can quickly see

(w0,9(2) = > wn Y olan,) (26)

— Z Z Wicral VEkpe(x) (28)
k=1 m=1
= (Aw, p(x)) (29)

where Ay, = ck\/Eafn

B Proof of Proposition 2.3

We require some definitions to use the machinery of symmetric polynomials.
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Definition B.1. An integer partition A is non-increasing, finite sequence of positive integers
A1 > Ao > -+ > M. The weight of the partition is given by |\ = Zle Ai. The length of a
partition l(X\) is the number of terms in the sequence.

Then we characterize a product of powersums by:

pr(@) =[] @ (30)

Finally, define the combinatorial constant ¢\ = Hli'l(mz)' where m; denotes the number of
parts of A\ equal to 1.

Theorem B.2 (|20, Chapter VI (9.10)| ). For partitions A, pn with |A\| < N:

(D, Pu)v = talazy (31)

With that in mind, let’s consider the inner product of two simple single-index functions.

Let p = [p1, po, - . ] be an infinite vector of powersums, and choose exponents ¢, j with i < v/ N.
Then for any h,h € C* such that h is only supported on the first v/ N entries:

o] =i a]=5
i\’ —
i\ 2 VN
o =i k=1
T\, W7o
= 0;;1! IZ‘ (a)h Lo (35)
— 0,;1!(h, h)* (36)

C Proof of Propsition 2.6

Applying Proposition 2.3 and using assumptions on the degree bound on f and the support
of h*, we can write:
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j=1 J' j=1 J:

VN
= >l (0", Aw)’ (38)
j=1

Hence we have

A

L(w) = Bowy [~ Re{ (0, p(@)) F((Aw,p@)) } | + A (39)

1 * 1 X |O‘j|2 25
= —5 (f(R%p)), f({Aw, )}y — S {f({h*,p)), F((Aw,p)))y + Z 5 [[Aw[* (40)

2

| P |
== log*Re{(n*, Aw)’} + =7 | Aw|[* (41)
j=1

Now, we use the same notation as in Theorem 4.1 and introduce variables m = (Aw, h*) = re®
and v = ||Aw||? — r?, such that we can write:

N VN 1
Bw) = 3 oyl (= cosio + 50+ 1)) (42
=1

Because » > 0 and v > 0, this loss can be minimized by setting v = 0 and any 6 where
cosj = 1 for all 7 with a; # 0. Since we assume there are distinct indices 4, 7 that are
coprime with non-zero support, we require 76 and 76 to both be multiples of 27, which is
only possible if # = 0 mod 27. Therefore:

A VN 1
L(w) = Z |Q{j|2 <—7“j + §T2j) (43)
j=1
VN ’CY‘|2 ) 9
=C+y (7 -1) (44)
j=1
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for some constant C, and this is minimized at » = 1. Hence, if r = 1,0 =0 mod 27w,v = 0,
it follows that Aw = h*.

D Proof of Theorem 4.1

Given the matrix A and weight w, an identical calculation to the one in Proposition 2.6
shows that

Lw) = oy [~ Re{ £(0" p(e))g((Aw p)) }] + el aw (45)
= —|a,| Re{(Aw, h*)*} + 'O‘—25||\Awu% (46)

To calculate the gradient with respect to the real and imaginary parts of w, we use tools from
Wirtinger calculus [14]. Using the notation that Vg = %(VWR + iV, ) and the appropriate
generalization of the chain rule, we have:

2V Re{ (Aw, h*)*} = Va ((Aw, 1" + (Aw, h*)s) (47)
= VulAw, b*) (48)
— s{Aw, b7y Aty (49)
Likewise,

2V | Aw||** = 25| Aw||**~ ) Vg | Aw|* (50)
= 25| Aw|** IV (wf AT Aw) (51)
= 25| Aw||*?*V AT Aw (52)

Thus, we have:
VL =Vy,L+iVy.L (53)
— V. L (54)
— s {Aw, B AR 4 || [| Aw|| 26D AT Aw (55)
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We introduce the parameters

m = (Aw, h*) = (w, ATh*) (56)
v = || P Awl? = [|Aw* — [m? (57)

And we consider preconditioned gradient flow of the form (where for complex variables we
use similar notation that w = wg + wci):

1
)= — ATA)T'VL
w S‘%'( )V (58)
= ATA) LA — || Aw|?¢ Dw (59)
It follows that
m = (), ATh*) (60)
= | Pab*|Pm" = (v + [m[*)*"'m (61)

where Py = A(ATA)7' A" is the orthogonal projection onto the range of A.

Let m = a + bi = re, so we have 1 = a + bi. Thus

a= ||P,4h*||27“5_1 cos(s —1)0 — (v + 7“2)5_17‘ cos 6 (62)
b= —||Psh*||*r* sin(s — 1)0 — (v +72)* 'rsind (63)

Now we do a change of variables, because a = r cos@ and b = rsinf, so

a=rcosf —rfsinf (64)
b=7rsinf + 6 cosb (65)
(66)

Rearranging, we can get the flow on r and 6:
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= acosf + bsin
= || PsR*||*r*  cos s — (v + )5t

(

(
10 = —asin @ + bcosf (69

(

(

= —||Pah*|*r* ! sin s6

~— — — ~—

We can instead control the flow on cos s8:

d .
P s) = —0ssin s0 = || Pyh*||*sr* 2 sin® s0 (72)

and calculate the flow on v:

0 = 2Re{(Aw, Aw)} — 2rr (73)
=2 (r*cos st — (v +1%)° — || Pah*||*r® cos s + (v + r*)*"'r?) (74)
= 2(1 — ||Pah*||*)r® cos 56 — 2(v + 7?)* v (75)
Finally, introducing the notation § = 1 — |[[P4h*||?, we have
7= (1—68)r " cossh — (v+7r*)1r (76)
d
7 €08 s = (1 — 6)sr* (1 — cos® s6) (77)
O = 267% cos s0 — 2(v + r*) v (78)

E Proof of Theorem 4.2

We will use the following facts repeatedly in the below arguments.

First, because 7 > 0 when r = 0, and 7 < 0 when r = 1, it follows that r can never leave the
range [0, 1]. Furthermore, note that cos s is always non-decreasing.

E.1 Cases=1

In the setting with information complexity equal to 1, we immediately have the following
identities:
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r=(1—-9)cost —r
d
— > (1 —06)(1 — cos?
o cosf > (1 —6)(1 — cos”0)
0 <20 —2v

Let us address v first. From our assumptions, ¢ < €, and so when v > €, v is negative. It
follows that a trajectory that begins below e cannot ever exceed €. In other words, if vy < e,

v can never exceed € and we've achieved optimality.

Otherwise, supposing vy > €, consider values of ¢ where v; > § so that the RHS of the

inequality of v is strictly negative and we may write:

Integrating from 0 to ¢ gives that

—log|d — vi| — (—log |0 — vg|) > 2t

which yields the bound

v <5+ (vg—0)e < f+e

By Lemma H.1,

cos 0, > tanh((1 — 0)t)

Finally, we consider 7.

(83)

Choose T} = inf{t > 0: v, <€, cosb, > ﬂ}, and Ty, = inf{t > T} : 7, > 1 — €¢}. Note that

-6
one can easily confirm that T} < O (log %)

Then for all ¢t € [T1,T3), we have
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o= (1—0)cosOy—ry >1—¢/2—1y (86)
and the RHS is always non-negative.
Dividing by the RHS and integrating from 77 to ¢ gives
—log(1—€/2—r) +log(l —€/2—rp) >t —T (87)

Rearranging gives

r>1—¢€/2—(1—¢/2—rp )™ (88)

Note that by definition of T5, it follows that

1—r, <e/2+e (89)
So it follows that To, < T7 + log %

Altogether, the total time to achieve e optimality for all three variables is O (log %)

E.2 Case s> 1

In this case, because we cannot straightforwardly solve or bound the system of ODEs, we
need to control rates in stages. We have a stopping time for one variable at a time, and use
local monotonicity to ensure bounds on the remaining variables.

First Phase In the first stage, we consider the duration of time 7} = inf{t > 0: v, < v*}
where v* := 27°67257?rj, and bound the behavior of each variable. Below, we will consider
t€[0,Ty].
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To control the behavior or r, we consider the following manipulations:

%log r = 2(1 — 5)7“5_2 cos s — Q(U + 7“2)5_1 (90)
gilosy =2 2wty (91)
This implies
d r2 ) 2
A PN L o 2
dthgU 2r COSSQ(l 5 51)) o2)

By definition, in this range of ¢t we have v, > 1%5, so it follows that the RHS of this equation

is always positive. Hence it follows that log % is increasing, and by monotonicity of log, we
have

N

r2 _r
> 052 93
v T To (93)

This implies that
7= (1—68)r " cossh — (v+7r*)'r (94)
2 s—1
> (1—0)r* tcos sl — (r_2 + r2> r (95)
7o

> ot ((1 _ §)cos sf — (i ; 1) ) (96)

Suppose it is true that r < %Té, then it follows that:

26



r2(1 — &) cos sty

r <

- 2
r2(1 — &) cos sy
re+1
~ (1 —6)cossby
R

< ((1 = ) cos s0)"/*

s—1

G+’
0

So it follows that 7 will be positive whenever r < 2r3. We have ry

> %7‘3 for t <1Tj.

Finally we can control v by observing that, for t € [0, T1], v > v* > (26)'/%. Hence,

v <20 —20° < —¢°

which implies

And integrating from 0 to ¢t < T; gives

(-1 5 1 7Y I - > ¢
s—1

Uy

Rearranging gives

_ 1
Ut S t s—1

This gives a bound on T3 < (v*)~ =D = O(25°r;*)

27

(97)
(98)

(99)

(100)

r2, it follows that

(101)

(102)

(103)
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Lastly by monotonicity we have cos sf7, > cos sfy.

So to summarize:

1
ry > 67’3 (105)
cos sOr, > cos st (106)
vy, < U (107)

Furthermore, we’ve actually proven that v, < v* for all ¢ > T}, which we will use in subsequent
phases.

Second Phase We define T, = inf{t > T7 : r, > 1/5}. As before, if ry; > 1/5 then To =0
and we can skip to the next phase, so we assume otherwise.

Using the identity (1 + x)¥ < 1 + 2¥2 which holds for any z € [0, 1] and k > 1, observe that
the ODE governing r can now be bounded as:

7= (1—08)cossOr’! — (v+7r*)tr (108)
s—1
> (1 —0) cos sOor*™* — <% + 1> r2s1 (109)
> (1 —6) cos shpr*™* — (1 + 23_17%) r2st (110)
1—-46 ra
> s—1 1 0 2s—1 111
=5 " < +232(6r)2)r (11)

where in the last step we use that v < v* and plug in the definition of v* and the bound
cos sby > 1/2.

Consider any t when r = %r%, and observe that the above inequality implies 7 > 0. Because
o > %T%, this implies we will always have r > %7"3 for larger values of ¢, and we may bound:

1—90 1
r > 5 il — (1 + @) r?st (112)

Hence, we can apply Lemma H.2 with a = (1 —§)/2, b =1+ 55, where k* = (a/b)* > 1/5,

and using the initialization of rp,. This grants the bound that 75 < T + 0(347";1‘”'1) =
T + 0(63r528+2).
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Therefore the new summary is:

ey >1/5 (113)
cos s, > cos st (114)
vy, < U (115)

1—-1

Third Phase We define T3 = inf{t > T5 : cos s6; > 1:‘?}

First of all, note that the bound on r derived in the last phase required lower bounding cos sf
by cos sfy. Since cos sl is non-decreasing, that bound is still true by an identical argument.

So we can bound the ODE for 6:

%COS 56 = (1 —8)sr* (1 — cos® s) (116)
> (1—6)s(1/5)" (1 — cos” s0) (117)

Note that by lemma H.1 with & = (1 — §)s(1/5)* 2, we have

The bound v < v* continues to hold. In summary, we now have:

rr, > 1/5 (119)
v

cos s, > s (120)

vpy, <0 (121)

Fourth Phase We define Ty = inf{t > T3 : r, > r*} where r* := 1 — S% Again, consider
the non-trivial case where T # 0.

Because the bound on v is the same, and the bound on cos s is better than before, we can
now bound the ODE of r similarly to the second phase:
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_a
Applying Lemma H.2 with k = T3 _ 1 _ 1 we have:

T 942y
252

T =inf{t > Ty :r > k*} < T3 + O(5%log 5)

Finally, note that k% = (1 — L)2 >1— s%, which implies that T, < T.

Thus we have:

Ty, >t
_ 1
454
cos s, >
* 1—-6
< *
’UT4 S

(122)

(123)

(124)

(125)
(126)

Fifth Phase We define T; = inf{t > T} : cos s6; > 1_652,1)75 < v} where vf = 27%(¢/2)(r*)%.

1—

Again, since cos s is increasing and v is always less than v*, the bound on r > r* established

in the last step will stay true.

Thus, by the identity ¥ > (r*)¥ = (1 — %)k >1-— S% we have the ODE inequalities:

s

K cos s = (1 — 0)sr® (1 — cos® s6)

dt
>(1-10)s <1 — 1) (1 — cos? s6)

S

O = 267° cos s0 — 2(v + r?)* v

§2(5—2(1—2(8_1))v

52

It is easy to see that we’ll have the bound
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1
Ty <Ty+ O (log —) (131)
€

and in summary

Ty > 1" (132)
1—¢€/2

cos s, > T (133)

vg, <o (134)

Sixth Phase We define Ts = inf{t > T5 : r, > 1 — €}, and assume the non-trivial setting
where Ty # 0.

Note that v is negative when v = v', so the bound v < v' remains true for ¢t > Ty. Thus, we
can control the ODE of r one more time:

7= (1—68)r " cossh — (v+7r*)tr (135)
> (1-0)r* 1 (1—¢€/2) — (1 + %)1 r (136)
> (1—¢/2)r* ! — (1 - 2%) r?st (137)

> (1—¢/2)r"! — <1 - 6/2<T*)2) r2sl (138)

r2

One can confirm that when r = r*, the RHS of the above inequality is positive, so 7 > 0.
Thus, since rq, > r*, it will always be the case that » > r* for ¢ > T, so as before we bound:

7> (1—€/2)r" = (14 ¢/2)r*! (139)

By Lemma H.2, we have that

1
T6 <T5+0 <log —> (140)
€

and thus we’ve achieved e optimality for all three of our variables.
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F  Proof of Lemma 4.5

Remind from Proposition 2.2 that A € C**M is of the form

A = cxVkak (141)

where we assume ¢;, > 0, and a,, ~ S*. Note that

L= [[Pal”|? = || Px1"? (142)
= min || Aw — h*|]? (143)
(144)

so we need to choose a candidate value of w.

Consider the block decomposition

A= {B} (145)

where B € CN*M and C' € C**M . Suppose we decompose h* = {g] where u € CV. Then

if we apply the pseudoinverse and define w = B u, observe:

Aw = {g} B*u (146)
_ {ggiﬂ (147)

Observe that we can decompose B = DX where D is a diagonal matrix such that Dy, = ck\/E
and Xy, = a¥ . Since N < M, one can see X is a rectangular Vandermonde matrix evaluated
on {a,, }M_,. Almost surely, these values are all pairwise distinct, which implies that X has
linearly independent rows. Since D is diagonal with no zeros along the diagonal, B also has
linearly independent rows. This condition implies BB™ = I. So we have

32



Aw = [Cé”w} (148)

Remember |[u]| = ||h*]| = 1, as u is the first N elements of 2* and hence still only supported
on the first VN elements. Because BT = XD~ we have:

ICB*ul < [ XFID™ ull (149)
(150)

We can now go about bounding these norms.

Since w is only supported on the first N elements and ||u|| = 1, it follows ||[D™'u|| <
1

1
Ck\/E oo

maxlgkg /N

By Lemma H.4, we have the bound

X <0 (\/LM) (151)

Finally for any @ € CM with ||| = 1, we have by Cauchy-Schwarz:

2

o] M
ICwl>= > > tmerVkal, (152)
k=N+1 |m=1
[e's) M 9
< >l Y v (153)
k=N+1 m=1
=M Y klel (154)
k=N+1
< Me OWN) (155)

where we use in the last step Assumption 4.4.

With these bounds, we clearly have
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L—||Pah”[| < [ Aw — 27]* (156)

2

Uu u
e |5 b
< [|CB ulf? (158)
M -O(N
< e OWN) (159)

VMo

Because M = O(N3), and we've assumed 1/0_ is polynomial in N, this bound can be written
as e OWN) for possibly different constants in the big O notation.

G Proof of Lemma 4.6

Remind that my = (Awg, h*) = m(Aw, h*). Because the complex Gaussian is invariant
to multiplication by an unit modulus complex number, it follows that 6, is independent of
ro and uniformly distributed on S*. Because s is a positive integer, s is also uniformly
distributed on S!, and hence P(cos sy > 1/2) = 1/3. And by our choice of normalization,
vo = 1 — rZ automatically. So it only remains to prove the first statement is true with high
probability.

We remind that rg = |<ﬁz’£”*>|. By Cauchy-Schwartz, it’s clear that ro < 1, so only the lower
bound is non-trivial. If we use the same notation to decompose the matrix A as in the proof

of Lemma 4.5, it’s clear that

|{Aw, h*)| = [(Bw, )| (160)

= |(w, B')| (161)

If we condition on B, then by rotation invariance of the Gaussian, note that |(w, Biu)]
is distributed identically to |g|||BTu|| where g is sampled from a one dimensional complex
Gaussian.

By the argument in Lemma 4.6, since u is only supported on the first v/ /N elements, note
that:
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1Bl = | XTDlu]
> o (X)[[D'ull
>on(X)o_
>o0_0O(VM)
with probability 1 — 2exp(—O(N)) by Lemma H.4

Lastly, we need to control

[Aw]| < [[Bwl| + [|Cw]| < ([[B]l + IC])]|wl]

And we can write again by Lemma H.4, with similarly high probability:

1Bl = |1DX]
< [ID[Ix]
< o,01(X)

< 0+O(\/M)

(166)

Combining this with the bound on ||C]| we derived in Lemma 4.6, and the concentration on

|w|| from Lemma H.3 we have with probability 1 — 2exp(—O(N)):

JAw] < (0, 0(VM) + e ) O(VM)

Finally we can say that with probability 1 — 2exp(—O(N))

for some universal constant c.
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H Auxiliary Lemmas

H.1 Dynamics Inequality Lemmas

The following lemmas provide bounds on our dynamics that we can apply multiple times
in different phases of the proof. Both of these lemmas are essentially special cases of the
Bihari-LaSalle Inequality [8], but because the proofs are much simplified due to our setting,
and for completeness, we include the proofs below.

Lemma H.1. Consider 6 with the differential inequality

%cos s6 > k(1 — cos® s6) (173)

with cos s6y > 1/2. Then we have

cos s6; > tanh(kt) (174)
and hence if T' = inf{t > 0 : coss0; > ¢}, then T < i log ﬁ

Proof. Clearly the RHS of the inequality is always positive, so we may write:

d
< cos st ok
—_— 1
1 —cos?2sf — (175)
and integrating from 0 to ¢ gives
tanh ™' (cos s6,) — tanh ™" (cos s6y) > kt (176)

Note tanh™*(cos s6y) > 0, so cos s, > tanh(kt). Since cos s, is increasing, it follows that

-1
T < tanh™ " (c)

<— (177)
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And using the closed form of tanh™(c) for |c| < 1 implies

1 1+c¢
T< —1 1
=0 %1 ¢ (178)
1 2
O

Lemma H.2. Consider s > 2. Suppose we have constants 0 < a < b and a function r of
time t with differential identity:

P> artTh — o2t (180)

Furthermore, assume 0 < ro and it always the case that r < 1.

Let k=%, and T = inf{t > 0:r > k*}, then:

1 [ 2 1
Tgka(sl—l—logl_k) (181)

Proof. If ro > k%, then T = 0 and the bound is obviously true. So assume ry < k? < ks%l,
where the second inequality follows from the facts that £ < 1 and s > 2.

Consider the change of variables y = r*~! /k:

= %(s — 1)rs 2% (182)
> %(s — 1) (ar* ™% — br¥7?) (183)
> %((17’28_2 — br373) (184)
_ %(kr%_z _ 7,35—3) (185)

= T - Ky (156)
= bk*y* (1 - y) (187)



For ¢t € [0,T), the RHS will always be positive, so we can write

> bk? 188
y*(1—y) 159
Simple algebra lets us rewrite:
y v Y 2
=4 =+ —— >0k 189)
y yr 1-y (
And integrating from 0 to t gives
1 1 9
logy: — logyo — y_ + y_ — log(1 — y) + log(1 — yo) > bkt (190)
t 0

Remind that y—lt > 0 and collecting terms, we have:

1 1 1
—log (— - 1) + log (— - 1) > bkt — — (191)

Yt Yo Yo

Taking exponentials and simple bounds:

1 1 1
— —1< —exp (—bkzzt + —) (192)
Yt Yo Yo
Rearranging and reminding y, = r{ ' /k
k s—1
<ri7<n (193)

1+ exp(—bk2t + yio)

To finish the proof, we’ll show that r, > k? is implied by a condition on t. Suppose that
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2 1
t>— | — +1 194
(yo+0g1—k) ( )

Then using the fact that £ < 1, and logx < z for all > 0, it follows

1 /1 1 k
t>—|—+log—+1 195
> o (o +log T +log ) (199

1 1 1
> — | —+log ——— 196
bl (yo S0 (E- 1)) 10
Rearranging implies that
1

k< (197)

a 1 k2t 4+ L
1—|—y0exp< bk t+yo)

and plugging this into Equation 193 implies that 7, > k2. Hence, the stopping time T obeys:

1 2 1
T<—(—+1 198
_bk2<yo+0gl—k) (198)
Plugging in the definition of yq gives the bound. O

H.2 Concentration Inequality Lemmas

We require a few very standard lemmas, adapting concentration inequalities to the complex
setting.

Lemma H.3. If w is drawn from the standard complex Gaussian on M dimensions, then

P(||w]l = VM| > t) < 2exp(—ct?) (199)

for some universal constant c.
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Proof. Note that an equivalent way of sampling a complex Gaussian is w = \/Li(w R+ iwe)

with wg, we both sampled iid from a standard real Gaussian on M variables. Therefore

gl + e

“|l

is simply a standard Gaussian on 2M variables, so from Theorem

[l (200)

2

2
WR
o (201)

Note that w :=

we
3.1.1 in Vershynin [28]:

P([|[w]| = VM| > t) = P(|[la] - V2M| > tv/2) (202)
< 2exp(—ct?) (203)

for some universal constant c.

]

Lemma H.4. Let a,, ~ S be sampled iid, for m = 1,..., M, and define X € CN*M gs
Xom = a. Then if we choose M = O(N?), with probability 1 — 2 exp(—O(N)):

01(X) = O(VM),on(X) = O(VM) (204)

Proof. Note that the columns of X are independent, mean zero, and isotropic. Let X, be
the mth column, and consider any v € CM with |Jv|]| = 1. Note that || X,,|| = V'N, so it
follows that

(Xm0}l < VN (205)

where || - ||y, denotes the subgaussian norm [28]. Hence, we can apply Theorem 4.6.1
from Vershynin [28] to X7. Note, although this proof assumes real-valued variables, the same
arguments follow through with no change to complex variables given the subgaussian bound
on [[(X, v)|y,. Hence,
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VM — cN(VN 4+ t) < on(X) < 01(X) < VM + CN(VN + 1) (206)

for universal constants ¢, C and with probability 1 — 2exp(—t?). Choosing ¢ = V/N and
M = O(N?3) gives the result.

H.3 Valid Activations

We quickly note a one simple choice of many possible activation functions that meets our
criteria in Assumption 4.4.

Proposition H.5. Let 0(z) = arctanéz + {z arctan &z for £ =1 — \/Lﬁ Then this activation
satisfies Assumption 4.4, and o, < /2, 0_ > O (ﬁ)

Proof. Observe that ¢ is analytic on the unit disk following from properties of arctan, with
the Laurent series

o(2) =€z + €227 — %323 - %424 +... (207)

So the only coeffient equal to zero is the constant term. Moreover, if split into sequence of
odd degree and even degree coefficients, both sequences are decreasing in absolute value, so
we can instantly say that o, < v/2 and

o_ = min_|g|Vk (208)
1<k<VN

VN
1— L
(=)

SN0 (ﬁ) (209)

v

Moreover, we can calculate:

41



S Hal <

k=N+1

o ]{?gk_l
2 Gy

k=N+1
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