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Abstract

Single-Index Models are high-dimensional regression problems with planted structure, whereby
labels depend on an unknown one-dimensional projection of the input via a generic, non-linear,
and potentially non-deterministic transformation. As such, they encompass a broad class of
statistical inference tasks, and provide a rich template to study statistical and computational
trade-offs in the high-dimensional regime.

While the information-theoretic sample complexity to recover the hidden direction is lin-
ear in the dimension d, we show that computationally efficient algorithms, both within the
Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require
Q(dk*/ 2) samples, where k* is a “generative” exponent associated with the model that we
explicitly characterize. Moreover, we show that this sample complexity is also sufficient, by
establishing matching upper bounds using a partial-trace algorithm. Therefore, our results pro-
vide evidence of a sharp computational-to-statistical gap (under both the SQ and LDP class)
whenever k* > 2. To complete the study, we construct smooth and Lipschitz deterministic
target functions with arbitrarily large generative exponents k*.
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1 Introduction

1.1 Problem Setup

The focus of this paper is to study a family of high-dimensional inference tasks characterized by
planted low-dimensional structure. In the context of supervised learning, where a learner observes
a dataset {(z;,1;)}7_, with input features z € R? and labels y € R, the natural starting point is
to consider data with hidden one-dimensional structure, and where features are drawn from the
standard Gaussian measure 4 in R%:

Definition 1.1 (Gaussian Single-Index Model). We say that a joint distribution P € P(R?¢ x R)
follows a Gaussian single index model if there exists a probability measure P € G C P(R?) and
w* € S9! such that P = [R,+ ® Id]4[v4_1 ® P], where R« € Oy is any orthogonal matrix whose
last column is w*, i.e. of the form R« = [R, w*] and

G = {Wen) € PR X R); vz = 1 E,[Y?] < 00; Dya(vllm @ 1) > 0} M

is the class of non-separable bivariate probability measures, whose first marginal is the standard
one-dimensional Gaussian, and whose second-order moment w.r.t. its second argument is finite.

In words, a single index model is a joint distribution in R? x R that admits a product structure
dP(z,y) = dvyg—1(R]z)dP(w* - z,y) into a non-informative component Rz of dimension d — 1,
and an informative component, determined precisely by P and the direction w*. The Gaussian
setting further specifies the marginal distribution of the features. We will denote the planted model
by Py« p (or simply P,« when the context is clear). We have used the conventions that, for any
random variable X, P, stands for the law of X under P, e.g. P, = <, and P, the marginal of



Additive Gaussian Noise Multiplicative Gaussian Noise Mixture of Distributions

Figure 1: Visualization of the joint density P of (Z,Y") for the additive noise model, multiplicative
noise model, and mixture of distributions model. The heatmap shows the density of P and the plots
to the left of and below the heatmap show the densities of the marginals P, and P, respectively.

Y. Similarly, we will make use of notations P,,, P that stand respectively for the conditional
probability laws of Z given Y and Y given Z.

Note that in this language, Gaussian single-index models are closely related to Non-Gaussian
Component Analysis (NGCA) [DKS17]. In NGCA, a d-dimensional distribution admits a product
structure in terms of a univariate non-Gaussian marginal and a d — 1 Gaussian distribution. In
our case, the planted non-Gaussian component is two-dimensional, but the statistician is given one
direction of the non-Gaussian subspace (the label V).

Throughout the paper, we use the letter Z to denote the one-dimensional (Gaussian) random
variable w*- X. When there exists o : R — R such that P, . (-, 2) = 6,(.) , we say that (X,Y) follows
a deterministic single-index model as Y = 0(Z) = o(w* - X), where o is said to be link function.
However, Definition 1.1 allows for additional randomness in the label, as long as its distribution
only depends on x through z = w* - . Examples of non-deterministic single-index models include
additive noise, where Y = o(Z) 4 £ and ¢ is an independent random variable, e.g. & ~ N(0,1);
multiplicative noise, where Y = o (Z), Mixture of distributions, where Y ~ py if Z > 0and Y ~ o
if Z < 0, or Massart-type noise, where Y = &0 (Z) and P(§ = 1) = 1—n(Z) and P(§ = —1) = n(Z);
see Figure 1.

In the remainder of this paper, and unless stated otherwise, we assume that P is known, so that
the inference task reduces to estimating the hidden direction w* drawn from the uniform prior over
Sd-1 " after obserivng n iid samples from P, p. By instantiating specific choices for P, one recovers
several well-known statistical inference problems, such as linear recovery, phase-recovery, one-bit
compressed sensing, generalized linear models or Non-Gaussian Component Analysis [DKS17], as
well as close variants of Tensor PCA [MR14]. An important common theme across these differ-
ent statistical models over recent years has been to understand computational-to-statistical gaps,
namely comparing the required amount of samples needed to estimate w*, using either computa-
tionally efficient methods or brute-force search. Computational efficiency may be measured either
by restricting estimation algorithms to belong to certain computational models, or by establishing
reductions to problems believed to be computationally hard. In this paper, we focus our attention on
Statistical-Query algorithms [Kea98], which capture a broad class of learning algorithms including
robust gradient-descent methods, as well as the Low-Degree Polynomial method [Hop18, KWB19],
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a flexible framework to assess the average-case complexity of statistical inference tasks.

The primary focus of this work is to derive the optimal sample complexity for recovering w* given
i.i.d. samples {(z;,y;)}1, from a single-index model (Definition 1.1). Perhaps unsuprinsingly, one
can recover w* up to error € by brute-force search when n = ©(d/e?) (Theorem 6.1), in accordance
with related statistical inference tasks. However, when restricted to SQ and LDP algorithms, our
main results will establish a tight sample complexity of order n = G(dk*/ 2), with matching upper
and lower bounds, where k* = k*(P) is an exponent associated with P that we explicitly characterize
(Definition 2.4). We thus obtain evidence of a computational-statistical gap of polynomial scale for
a broad class of inference problems.

1.2 Background and Related Work

Single-index models (also called generalized linear models) have a long history in the statistics
literature [MN83, Ich93, HIS01, HMSWO04, DJS08, DH18|. When the link function ¢ is monotonic,
there are perceptron-like algorithms (e.g. Isotron/GLM-tron [KS09, KKSK11]) that recover the
ground truth signal with n = ©(d) samples where d is the dimension of the data.

Perhaps the simplest example of a generalized linear model with a non-monotonic link function
is phase retrieval in which o(u) = |u|. In contrast to the monotonic case, phase retrieval ex-
hibits a conjectured statistical-computational gap in the noisy setting [MM18, BKM ™19, MLKZ20|
In the presence of label noise, there are constants civ < capce such that recovery is informa-
tion theoretically possible with n/d > c¢it but is conjectured to be computationally hard unless
n/d > carLg. Note, however, that this is not true in the noise-free setting as there are computation-
ally efficient algorithms based on lattice reduction that achieve the information-theoretic threshold
[AHSS17, SZB21].

For both monotonic and quadratic link functions, the optimal sample complexity scales linearly
in the input dimension d. In addition, this rate can even be recovered by directly optimizing the
maximum likelihood objective using simple first order methods such as online stochastic gradient
descent (SGD). However, the problem is significantly harder when the link function is more compli-
cated. [BAGJ21] demonstrated that for general single index models, online SGD on the maximum
likelihood objective succeeds if and only if n = é(dmax(l’l*’l)) where [* is the information exponent
of the single index model, which is defined to be the degree of the first nonzero Hermite coeflicient of
o (Definition 2.2). However, the significance of the information exponent extends far past optimiz-
ing the maximum likelihood objective. It has appeared as the fundamental object in determining
the sample complexity in many follow up works [BBSS22, DLS22, DNGL23, DKL 723, ABAM23|.

[DLS22| formalized this by proving a correlational statistical query (CSQ) lower bound which
shows that either n 2 dmax(LI"/2) samples or exponentially many queries are necessary for learning
a single index model with information exponent [*. In addition, this lower bound is tight as
it is possible to learn a single index model with ©(d™*(11"/2)) samples in polynomial time by
training wide three layer neural networks [CBL"20] or by smoothing the landscape of the maximum
likelihood objective [DNGL23|.

The information exponent arose as the fundamental object governing sample complexities given
correlational queries of the form E[Y'h(X)]. This is rich enough to capture gradient methods with
mean squared error loss as they only interact with the data through correlational queries:

L) =E[(fo(X)-Y)?] = VoL(0) =E[(fo(X)— Y)Vofo(X) ]. (2)

correlational query



However, methods outside of the correlational statistical query (CSQ) framework can break the n 2
d™@x(LU"/2) sample complexity barrier [CM20, MM18, BKM*19, MLKZ20, DTA*24]. The general
technique for these methods is to first apply a pre-processing function 7 to the label Y to lower
the information exponent to 2 before running a CSQ algorithm. This is possible because the
information exponent defined by [BAGJ21] is not composition invariant, i.e. it is possible that
the information exponent of (X, 7(Y")) is strictly smaller than the information exponent of (X,Y).
In fact, [MM18, BKM™19, MLKZ20] give a necessary and sufficient condition on P that enables
such T to lower the information exponent to 2. Using the notation described in Definition 1.1, the
condition on P writes:

E[E[22-1]Y]’| #0, (3)

where expectations are taken with respect to (Z,Y) ~ P . Such ‘pre-processing’ methods that go
beyond the CSQ lower bound are in fact instances of SQ-algorithms, which interact with data via
general queries of the form E[¢(X,Y)] for a broad class of test functions ¢. In particular, these
works imply that the SQ complexity for learning single-index models satisfying (3) is n = O(d).
The natural follow-up question —and the main focus of this work— is to quantify the statistical-
computational gap for arbitrary P, going beyond the criterion given by Eq.(3) and identifying
necessary and sufficient conditions for efficient recovery.

1.3 Summary of Main Results

Our first main result establishes sample complexity lower bounds required by any SQ-algorithm to
solve the single-index problem determined by P:

Theorem 1.2 (SQ lower bound, informal version of Theorem 3.2). Given P € G and n i.i.d.
samples from Py« p, there exists an explicit exponent k* = k*(P) < oo such that no polynomial time
SQ-algorithm can succeed in recovering w* unless n > d* /2.

Additionally, this SQ complexity coincides with the rate where the low-degree method succeeds:

Theorem 1.3 (Low-degree method detection lower bound, informal version of Theorem 3.5). Under
the low-degree conjecture (Conjecture 3.4), if k* = k*(P) is the exponent in Theorem 1.2, then given
n i.i.d. samples from either P« p where w* ~ Unif(Sdfl) or a null distribution Py := v4 ® Py, no
polynomial time algorithm can distinguish Py« p from Py unless n 2, dr /2,

We denote the associated exponent k*(P) as the generative exponent of the model, in contrast
with the information exponent, and analyze its main properties in Section 2. In the meantime, the
attentive reader might already anticipate that indeed one has k*(P) < I*(P).

Our second main result shows that these computational lower bounds are tight, by exhibiting a
polynomial-time algorithm, based on the partial-trace estimator, that succeeds as soon asn 2 dk /2

Theorem 1.4 (informal version of Theorem 4.1 and Corollary 4.4). Given P € G and n i.i.d.
samples from Py p, there exists an efficient algorithm that succeeds in estimating w* when n 2
dmar(LE/2) - epen when P is misspecified.



Combined with an information-theoretic sample complexity upper bound n = O(d) (Theo-
rem 6.1) —which follows from relatively standard arguments, Theorem 1.4 thus establishes a
sharp computational-to-statistical gap (under both the SQ and the LDP frameworks) as soon as
E*(P) > 2. Our last main contribution shows that for any k&, there exists smooth distributions such
that k*(P) = k:

Theorem 1.5 (informal version of Theorem 5.1 and Theorem 5.2). For any k € N and 7 > 0, there
exists 0 € Cg°(R) such that Z ~~, Y = o(Z) + W, with W ~ N(0,72) defines a joint distribution
(Y, Z) ~ P satisfying k*(P) = k.

Notations Given a probability measure u defined over R™, we denote by L?(R™, ) the space of ji-
measurable, square-integrable functions. For f, g € L*(R™, 1), we write (f, g),, = Ex~,[f(X)g(X)]
and ||in = (f, f)u- We use v = 71 to denote the standard Gaussian measure N(0,1) and for d > 1

we use 7,4 to denote the standard isotropic Gaussian measure in R, N (0, I,).

Hermite Polynomials We define the normalized Hermite polynomials {hy}r>0 € L?(R,v1) by

(=D* 1 n(2)
VE 1(2) oz*

These polynomials satisfy the orthogonality relations Ez., [h;j(Z)hie(Z)] = 1=f.

hi(z) :=

,2€R keN. (4)

Acknowledgements: We thank Guy Bresler, Yatin Dandi, Ilias Diakonikolas, Daniel Hsu, Flo-
rent Krzakala, Theodor Misiakievicz, Tselil Schramm, Denny Wu, Ilias Zadik and Lenka Zdeborova
for useful feedback during the completion of this work, which was partially developed during 2023’s
Summer School “Statistical Physics and ML back together again" in Cargese. AD acknowledges
support from a NSF Graduate Research Fellowship. AD and JDL acknowledge support of the
ARO under MURI Award W911NF-11-1-0304, the Sloan Research Fellowship, NSF CCF 2002272,
NSF IIS 2107304, NSF CIF 2212262, ONR Young Investigator Award, and NSF CAREER Award
2144994. JB was partially supported by the Alfred P. Sloan Foundation and awards NSF RI-
1816753, NSF CAREER CIF 1845360, NSF CHS-1901091 and NSF DMS-MoDL 2134216.

2 The Generative Exponent

Let us start by defining the information exponent of [BAGJ21, DH18§] in our framework. We begin
with Parseval’s identity for Hermite polynomials. We define o such that o(Z) := Ep[Y|Z] is the
conditional expectation of Y given Z, thus o € L?(R,~) and we have

Fact 2.1 (Spectral Variance Decomposition). The variance of o(Z) verifies the expansion

Varplo(Z)] = Zﬁf where 0y :=Ep[Yhi(Z)] . (5)

1>1

Therefore if o is not constant, there exists [ > 1 such that 8; # 0. We define the information
exponent [* as the first such I:
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Figure 2: We plot three examples of a joint distribution P of (Z,Y"), the witness function &g+ (y),
and the joint distribution of (Z,&,(Y)). In the first example, Y = ¢;2 + sin(ceZ) for constants
c1,co such that 8 = 0. The transformation & zeros out the bulk and amplifies the caps of the
curve in order to lower the information exponent from *(P) = 2 to I*((Id ® ¢1)xP) = 1. As a
result, k*(P) = 1. In the second example, the model ¥ = Z¢ has multiplicative Gaussian noise
and E[Y|Z] = 0 so this model has I*(P) = co. The transformation (» interpolates between +/[Y]
for Y] ~ 0 and |Y] for |Y] farther from 0. The transformed distribution (right column) now has
*((Id ® &) #P) = 2 so k*(P) = 2. The third example is the distribution used in [MM18| as an
example where k* > 2. In this case, we verify that k* = [* = 4 so the tight sample complexity for
the single index model corresponding to this choice of P is n > d?.



Definition 2.2 (Information Exponent revisited). The information exponent of P € G is defined
by:

*(P) :=min{l > 1;8, # 0} where pJ;:=Ep[Yh(Z)]. (6)

Note that Definition 2.2 only depends on P through the conditional expectation o, and is
therefore agnostic to any form of label noise. Below, we define another index, the generative
exponent. As for the information exponent, its definition follows from an expansion, but for this
exponent, we do it through the expansion of the x?-mutual information of (Z,Y) ~ P, i.e. the
x?-divergence between P and the product of its marginals I,2[P] := D,2[P||P, @ P,]:

Lemma 2.3 (Mutual Information Decomposition). We have the following expansion

L:[P] = Z/\i where Ap := [|Gellp,  and G = E[hy(Z)[Y]. (7
k>1

The proof of this Lemma is postponed to Section D of the Appendix. We note that because
Ep[Y?] < oo, the conditional expectation (i := E[ht(Z)|Y] is well defined. In addition, ¢, €
L*(R,P,) because for each k, H<k||§>y < EyEgz)y[hi(Z)?] = Ez[h(Z)?] = 1. Therefore when P is
not a product measure, as is required by Definition 1.1, we have that I,2[P] > 0 so there exists
k > 1 such that \; # 0. We define the generative exponent £* as the first such k:

Definition 2.4 (Generative Exponent). The generative exponent of P € G is defined by:
k*(P) :=min{k > 1; A, # 0} where A :=|[[Gll[p, and ¢ :=Ep[h(Z)|Y]. (8)

Observe that 3 and Cy are related by 8, = (y, Cx)p,. We can thus reinterpret the exponent [*(P)
as the smallest k such that (3 has non-zero correlation with linear functions in L?(R, P,), capturing
the correlational structure of CSQ queries. This also implies that the generative exponent is at
most the Information exponent, i.e. k*(P) < I*(P) because A\, = 0= 8 = 0.

The function (;(y) measures the k-th Hermite moment of the conditional ‘generative’ process
Z|Y = y; as such, the fact that \p > 0 ‘witnesses’ x?-mutual information carried by order-k
moments, and reciprocally Ay = 0 indicates the absence of order-k exploitable information, even
after conditioning on the observed labels. This is illustrated in Figure 2 and formalized by our SQ
and low-degree lower bounds; see next section.

Remark 2.5. Observe that it is possible to build distributions P such that k*(P) < oo, but I*(P) =
00, i.e. such that E[Y|Z] is constant. Consider for example P = @uvye, with p(z,§) = (z,2£). We
have E[Y|Z] = 0, hence I*(P) = co. However, k*(P) = 2 (see Figure 2). This is reflected by the
fact that squaring the labels reduces the problem to moisy phase retrieval as E[Y?|Z = z] = 2°.

Finally, we show that the generative exponent can be expressed as the smallest information
exponent over all possible transformations of the label by squared-integrable functions:

Proposition 2.6 (A Variational Representation). The generative exponent k*(P) can be written
as:

k(P) = romf, F(Id@T)4P) . (9)



This provides a ‘user-friendly’ characterization of the generative exponent: for any polynomial @
of degree k < k*(P) and any measurable test function 7 € L?(R,P,), Proposition 2.6 tells that we
must have Ep[T(Y)Q(Z)] = 0. In addition, because I* only depends on the conditional expectation
E[T(Y)|Z], this variational representation extends to non-deterministic channels, i.e. if ¥ — Y” is
a Markov chain with E[(Y")?] < oo then k*(Z,Y’) > k*(Z,Y). In particular, no post-processing of
Y, either random or deterministic, can reduce the generative exponent.

We conclude this section with some representatitve examples for deterministic models, illustrated
in Figures 3 and 2.

Example 2.7 (Explicit Examples of generative exponent). We give the following explicit examples:

(i) For o a polynomial, we have k*(c) < 2 and k*(0) = 2 iff o is even. In particular, k*(h;) =1
if j is odd and k*(hj) =2 if j is even.

(ii) For o(z) = 22", we have k*(o) = 4.

(iit) From [MM18, Remark 3, if y € {—1,1} is boolean with P(Y = 1|Z = z) = EWM,[tanh(clz)Q—
tanh(cz2)?] for carefully chosen cy,cy then k*(o) = 4.

Finally, an immediate consequence of Proposition 2.6 is the following:

Corollary 2.8 (invariance to bijections). If ¢ : R — R is a bijection such that o, o~ € L*(P,),
then k*(o) = k*(po0o).

3 Computational Lower Bounds

3.1 From CSQ to SQ lower bounds

Recall that the CSQ complexity of Gaussian single-index models is established by considering the
correlation Ex [E[Y|X] - E[Y'|X]], where (X,Y) ~ P, and (X,Y”’) ~ P, are two hypothesis in the
class. This correlation admits a closed-form representation via the Ornstein-Ulhenbeck semigroup
in L?(R, 1) and the Hermite decomposition of o(z) = Ep[Y|Z = 2] = Y, Behi(2):

Ex [E[Y|X] - E[Y'|X]] = Z m*B2 , where m = w-w' . (10)

E>1*

For randomly chosen w, w’ ~ Unif(S%1), the correlation m = w - w’ is of order d~'/? so the kth
term in this expansion is of order d=%/2. Therefore, the first nonzero term of this expansion, which
is of order d"/2, dominates the search problem. This is used in the proof of the CSQ lower bound
that CSQ algorithms require n > d'"/? samples to learn w* [DLS22, ABAM22].

However, unlike the CSQ complexity, which is determined by average pairwise correlations, the
SQ-complexity is determined by the x? symmetrized divergence:

dP,, dP,,
dP, dP,

Xo (P, Py ) := Ep, [ } —1 where Py=7,0P,. (11)

Remarkably, one can exhibit an analog of (10), where the coefficients i are replaced by Ag:
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Figure 3: For every k, Y = hi(Z) has generative exponent 1 if &k is odd and 2 if k is even. In
particular, the difficulty of learning the single index model defined by P = (Id ® hj)xv1 does not
grow with k.
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Lemma 3.1 (x? Representation). Let w,w’ € S4=1 " and denote m = w - w', then we have

Xo(Pu, P ) = Y mA7 (12)
k>k*

The proof of this Lemma is postponed to Section E of the Appendix. As above, m is of order
d~1/2 so this sum is dominated by the first nonzero term in the sequence, which is given precisely
by the generative exponent k* = k*(P).

3.2 SQ Framework for Single-Index Models

Appendix B reviews the basic framework to establish SQ query complexity for search problems,
which has been used for a variety of statistical inference tasks, e.g. [DKS17, DH21], and instantiates
it for the particular setting of the single-index model; see Section B.2. We consider the statistical
query oracle VSTAT(n) which responds to query h : R? x R — [0,1] with h which satisfies:
h—p| < /p(1=p)/n+1/n, where p = Ex y [1(X,Y)].

The primary challenge in proving an SQ lower bound is computing the SQ-dimension; see

Definition B.5. This is enabled in our setting thanks to the key Lemma 3.1. This result leads to

k

a control of the relative y?-divergence of the form yZ(Pu,Py) < A\f.m Ty %, with m = w -’

(Lemma E.2), which yields the following SQ lower bound (proved in Appendix E.2):

Theorem 3.2 (Statistical Query Lower Bound). Assume that (X,Y) follow a Gaussian single-
index model (Definition 1.1) with generative exponent k*. Let ¢ = d" for any r < d"* and assume
that A3, > rd='/2. Then there exists a constant ci+ depending only on k* such that to return
with W - w*| > &(d=/?), any algorithm using q queries to VSTAT(n) requires:

¥
Cl* d\ ?
n > . (7&) : (13)

Therefore under the standard heuristic that VSTAT(n) measures the algorithmic complexity of
an algorithm using n samples, any algorithm that uses poly(d) queries must use n 2 d*"/2 samples.
A remarkable feature of eq. (13) is the absence of polylog factors; this is achieved thanks to an
improved construction of the discrete hypothesis set Dp (Definition B.5) using spherical codes; see
Lemma E.3.

Remark 3.3 (Choice of Null Model). In the proof of Theorem 3.2, we compare P, with the null
model Py := vq ® Py. As a result, Theorem 3.2 primarily measures the detection threshold. Indeed,
[DH21] observed a detection/estimation gap for the related problem of tensor PCA and proved that
SQ algorithms require n 2 ds+1 for estimation. We leave open the possibility that such a gap
exists under the SQ framework for our setting as well. However, because Algorithm 1 succeeds in
estimating w* with n =< d¥" /2 (see Theorem 4.1) this would be an artifact of the SQ framework.

3.3 The Low Degree Polynomial Method

In this section we prove a lower bound for the class of low-degree polynomials, which has been
used to argue for the existence of statistical-computational gaps in a wide variety of problems
[KWB19, BEAH'22, Wei23]. This has been formalized through various versions of the low degree
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conjecture [Hop18, Hypothesis 2.1.5, Conjecture 2.2.4|, for which we state an informal version for
distinguishing between two distributions, P (signal) and Py (null). We define the likelihood ratio
R = jg’ and the low-degree likelihood ratio R<p by the orthogonal projection in L?(Py) of R onto
polynormals of degree at most D. The low-degree conjecture states that low-degree polynomials
(i.e. D =~ log(n)) act as a proxy for polynomial time algorithms:

Conjecture 3.4 (Low-Degree Conjecture, informal). ' Let D = w(log(d)). Then if R<pllp, =
14 04(1), no polynomial time algorithm can distinguish P and Po. If [R<p|lp, = Oa(1), they can
do so with only constant probability.

By definition, we have that ||R||%2(PO) = 14+D,2[P||Po] = 1+ I,2[P], which hints at the fact that
the decomposition lemma 3.1 and its associated generative exponent will also be driving the behavior
of the Low-Degree estimator. This is indeed the case: our main result in this section computes the
low degree likelihood ratio [|R<p||p, and shows that it remains near 1 unless n 2 dv" /2

Theorem 3.5 (Low-Degree Method Lower Bound). Let P be a single index model, let P be the
distribution of P, when w is chosen randomly from Unif(S91). Let X € R"*? and Y € R" denote
a sequence of n i.i.d. inputs and targets drawn from P. Let Py := v4®P, denote the null distribution.
Let R(x,y) denote the likelihood ratio %(w, y) and let R<p(z,y) denote the orthogonal projection

in L?(Py) of R(w,y) onto polynomials of degree at most D in x. Then if )\% < Vd and § = 77

L&)
IR<pllp, = (1+ oa(l Z Lo (k%5 — D!

(A% 0)7
it
The proof is in Appendix E.3. This provides an immediate corollary which proves impossibil-

ity results for weak and strong recovery for all polynomial time algorithms under the low-degree
conjecture (Conjecture 3.4):

Corollary 3.6. Let P,Py, R be as in Theorem 3.5 and assume k* > 1. Then,

e Weak Detection: If D = log(d)” and n < d for ’y < X then R<pllp, =1+ o0a4(1).

e Strong Detection: For any D < /d, if n < < —% . then [[R<pllp, = Oa(1).

This shows that under Conjecture 3.4, n 2> d% samples are necessary for polynomials of degree
D= log(al)2 to distinguish between IP and Py. Note that because recovery is strictly harder than de-

tection, this also implies that recovering w* from P also requires n > d b samples, which is matched

by our upper bound (Theorem 4.1). We also remark that the D,c* /2 + threshold in Corollary 3.6
matches the optimal known computational-statistical trade-off for tensor PCA [BGL17, WAM19].

3.4 Discussion

Relationship between SQ and LD lower bounds Our statistical query lower bound (Theo-
rem 3.2) and our low-degree polynomial lower bound (Theorem 3.5 and Corollary 3.6) have similar

IThe conjecture is stated for inference problems with some level of robustness to noise; this excludes known failures
of LD methods to capture computational hardness in problems with algebraic structure; see [ZSWB22, DK22].
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forms. The statistical query lower bound says that given d" statistical queries or a polynomial of
degree D (which can be computed in d” time) we need:

k* /2 k* /2
S d d

or

nz — n2 —e
~ Tk ~ Dkrj2-1

samples respectively. A common theme in these lower bounds is the possibility of trading off
statistics with computation. In particular, for k* > 2, given n = 6d*"/2 samples, w* is always
learnable given sufficiently many queries (p sufficiently large) or a sufficiently high degree polynomial
(D sufficiently large). These bounds differ slightly in their dependence on r, D: the SQ bound
depends on r*" while the low-degree bound depends on DF' /21 We believe the low-degree result
is tight, as it exactly matches existing statistical-computational tradeoffs that are known for tensor
PCA [BGL17, WAM19]. This gap is due to the fact that our low-degree lower bound relies on
average correlations over a prior, while the SQ lower bound relies on worst case correlations over a
discrete set of points, which we constructed using spherical codes (see Lemma E.3).

Indeed, the proof of the low-degree lower bound (Theorem 3.5) suggests an algorithm for achiev-
ing this continuous statistical-computational tradeoff by computing higher order tensors than in
Algorithm 1. Specifically, if p is a sufficiently large even integer, then we consider

T := (711) Z Sym <® yzhk($1)> S Rk*p.

p/ SC|n],|S|=p €S

We can now apply partial trace to T to reduce it to a matrix M and then return the top eigenvector
of M. Note that by construction, E[T] = (w*)®*"? so E[M] = w*w*”. We leave the analysis of M
and the question of whether M obeys Gaussian universality (as in Section 4) to future work.

Finally, we mention the work [BBH"21], which provides generic ‘translations’ between SQ and
low-degree lower bounds under mild conditions, at the expense of a loss in the parameters (number
of queries to degree of polynomial). It would be interesting to quantify this loss in our setting.

NGCA aka ‘Gaussian Pancakes’ The SQ lower bounds that we present here for single index
models are similar in essence to the SQ lower bounds for Gaussian hypothesis testing from [DKS17].
In short, given a non-gaussian univariate distribution u € P(R), this problem considers distributions
Q € P(R?) of the form Q = Q.+ = Ru(va—1 ® p), where R € Oq4 as in Definition 1.1. The
relevant quantity that governs the SQ-complexity of recovering the planted direction w* (where
again w* = Reg) is the smallest degree k such that E,[ht(2)] # 0. As such, there is a direct
reduction from the single index model setting to NGCA:

Proposition 3.7 (Single-Index to NGCA Reduction). An SQ algorithm that solves NGCA with
planted distribution p of exponent k and direction w* € S~ yields an efficient SQ algorithm to
solve the single-index model with generative exponent k and direction w*.

As a result, our SQ-hardness results imply the hardness results in [DKS17]. An intriguing
question is whether the reduction could go the other way, namely whether the SQ-hardness of
Gaussian pancakes implies the SQ-hardness of learning certain single-index models. While we do
not answer this question in the present paper, we show in Appendix E.5 a reduction from NGCA
to a slight variant of the single-index model.
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Tensor PCA  Both our upper bound (Theorem 4.1) and lower bound (Theorem 3.2) were heavily
inspired by related work in the tensor PCA literature. Specifically, the partial trace estimator in
Algorithm 1 is related to the partial trace estimator for tensor PCA [HSSS16, DH24| which is the
simplest method that achieves the conjectured optimal rate of n = @(dk/ 2) for tensor PCA. The
derivation of our lower bounds were also inspired by similar results for tensor PCA, including the
SQ lower bound for tensor PCA proved by [DH21|, and the Low-Degree method lower bound of
[KWB19, Theorem 3.3].

CLWE and periodic structures [SZB21] proved a lower bound for learning single-index models.
They showed that under a cryptographic hardness assumption, there is a noisy single-index problem
such that regardless of the samples n, no polynomial time algorithm can recover the ground truth
w*. Our results imply a similar lower bound for the special case of SQ algorithms without the
cryptographic hardness assumption (Lemma E.4). We also note that in the noise-free setting, the
situation is different, and in fact there are (non-SQ) polynomial-time algorithms, such as LLL, that
break the SQ-lower bound for certain single-index models and related NGCA [SZB21, ZSWB22,

DK22] by exploiting periodic structures in the link function.

4 Partial Trace Estimator

Algorithm 1: Tensor Power Iteration with Partial Trace Warm Start

Input: dataset D = {(zi,y:)}i=1, moment k
Draw n/2 fresh samples Dy from D
if k is even then
Construct the partial trace matrix: M, + ‘D—lo‘ 2 (ey)eDo yhk(aj)[_[@%];
v < v1(My), the eigenvector corresponding to the top eigenvalue of M, (in absolute value)
else if k is odd then
Construct the partial trace vector: v, < ‘D—lo‘ 2 (ey)eDs yhk(gj)[]@)%] ;
Normalize v < vn/||vn||;
if £ > 3 then
Run log(d) steps of tensor power iteration:
for i =1,...,log(d) do
Draw n/2i7L2 fresh samples D; from D
v By Caen, Yhr(@) Y]
v < v/[lvll;
end

Run one final step of tensor power iteration:
Draw n/4 fresh samples D, from D

v %m Z(I,y)G'Dﬁn yhk(m)[v®(k71)}
v v/|vll;
Output: v

)

We have shown so far that Theorems 3.2 and 3.5 extend the ‘necessary’ criterion presented
in Eq. (3) from [MM18, BKM*19, MLLKZ20] to arbitrary exponents k* > 2, as indeed a simple
calculation shows that E[E[Z? — 1]Y]?] = 2A\3. Concerning the ‘sufficient’ direction of Eq.(3), the
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Figure 4: We empirically verify our observation in Lemma F.9 that M,, satisfies Gaussian univer-

sality for k* > 2. We take k* = 4 and compute M,, for d = 4096 and varying 6 = 7z. The target

function is Y = (4(Z2%¢~%°) (see Figure 2). Here §* = % is the predicted BBP threshold
[BBAPO5|. The dots represent the medians over 10 random seeds of each quantity (eigenvalues and

eigenvector correlation) and the error bars represent the standard deviation over these 10 trials.

algorithms that match the previous lower bound for k* < 2 suggest a meta-strategy for the general
case k* > 2: first apply a transformation T of the labels to reduce to correlational queries, and then
apply an optimal CSQ algorithm. Moreover, Theorem 3.5 further illuminates the matter, since it
identifies the optimal degree-D test.

The definition of the generative exponent reveals that the desired pre-processing is precisely
T(y) = Cr+(y). We can then combine this pre-processing with an order-k* optimal CSQ algorithm,
based on the partial-trace algorithm [HSSS16, FD23, DNGL23|, described in Algorithm 1. As
shown in Appendix F, this algorithm achieves the promised optimal sample complexity:

Theorem 4.1 (Algorithm 1 Statistical Guarantee). Let {(z;,y;)}7 be i.i.d. samples from Py p.
For any e > 0 and k > 1, there exists a constant Cy, depending only on k and a denoiser T : R — R
such that if A, = A/ log"(3/\x) and n > Cy[d*/? /X2 + d/(\3€)], Algorithm 1 applied to samples
{(24, T (y3)) Yoy returns a vector  with (- w*)? > 1 — €2 with probability greater than 1 — 2e~%
for a constant ¢ = ¢(k) depending only on k.

The partial trace algorithm has been analysed in the context of Tensor PCA [HSSS16, FD23],
and provides efficient recovery of the planted direction up to the computational threshold [DH21].
At the technical level, the primary challenge we face is that the errors in Algorithm 1 are heavy
tailed and non-Gaussian. Explicitly, while it is possible to reduce learning a single index model to
a form of tensor PCA, the resulting noise matrix has highly correlated entries with heavy tails. For
example, while the individual entries of the resulting noise tensor are of order n~1/2, as for tensor
PCA, the operator norm of this tensor is of order d*/? rather than d'/? for tensor PCA.

Characterizing the precise weak recovery threshold A remarkable consequence of our anal-
ysis is that, when k* > 2 is even, after applying the partial trace operation to reduce this tensor to a
matrix, this matrix obeys Gaussian universality [BvH23|, and in particular, the spectrum of the par-
tial trace matrix M,, converges to a semicircle law. Explicitly, this means that the spectrum of M,
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is close to the spectrum of the Gaussian matrix G with E[G] = E[M,,] and E[G ® G] = E[M,, ® M,,].
Therefore to understand the spectral properties of M,,, it suffices to compute the the covariance
of M,,, which we do in Lemma F.10. From Lemma F.10, we see that when k* > 4, the Gaussian
equivalent matrix G can be approximated by another Gaussian matrix G* (in the space probability
space) which satisfies:

E[T(Y)?|d*" /> il < )42
e —nr IG =Gl S\ —— (14)

d T
G* L ﬁk* wwl +

where S« = E[T (Y)hg«(Z)] is the signal strength after applying the appropriate label transforma-
tion, W is a standard Wigner matrix, and the bound on |G — G*||, holds with high probability.
We can therefore leverage existing results for spiked Wigner matrices to get exact constants for
weak recovery when considering this partial trace estimator. With high probability, the spectrum
of G* —EG™* is contained in the interval [-2R(1 4 04(1)),2R(1 + 04(1))] where

o ET?] dr
R I

(15)

In addition, the spectrum of G exhibits a BBP transition [BBAP05], i.e. there is an outlier eigen-
value at (Bg+ + R?/Br+)(1+04(1)). Tt is also known that for B+ > R, (v1(G*)-w*)? = 1—(R/Bk~)?
where v1(G*) is the eigenvector of G* corresponding to the largest eigenvalue (in absolute value).
However, as we only prove universality of the spectrum of M,, (and not of its eigenvectors), this does
not directly imply that v1(M,) - w* has the same behavior. Nevertheless, we empirically verify this
property for M, in Figure 4. The combination of Gaussian universality with the BBP transition
implies there is a phase transition for weak recovery of w* at the cutoff:

n E[Y?]

0= = =: 0" 1
dkr /2 B kr(k* — 1) ’ (16)

However, unlike for phase retrieval, in which the spectral estimator gives a tight threshold for
estimation [MM18], this constant can be improved by increasing the order of the tensor before
applying partial trace (see Section 3.4). This is consistent with the known statistical-computational
tradeoffs for tensor PCA ([BGL17, WAM19]). We note also that the Gaussian universality does
not hold for k* = 2 in which R and o2 are both order d/n, corresponding to the setting studied in
[MM18].

Remark 4.2 (Memory and Runtime of Algorithm 1). It is possible to implement Algorithm 1 with
O(d) memory (not counting the memory to store the dataset), and runtime O(d2+1). This requires
using Lemma F.3 and Lemma F.8 to avoid explicitly computing the Hermite tensor hy(z).

Extension to unknown P The only instance where we used the knowledge of P in the previous
algorithm is in Lemma F.2, where a suitable thresholding 7 is applied to the labels. This guarantees
that n = E[T (Y)hi(Z)] # 0, leading to the recovery of w* in the high-dimensional regime. However,
it is sufficient to consider a label transformation 7 that has non-negligible correlation with (. For
instance, this can be guaranteed in a setting where P is only known to belong to a certain non-
parametric class of distributions, as we now illustrate. Given P € G, let {¢}}1, denote the orthogonal
polynomial basis of L?(R, P,). We now decompose (j+ in this basis: (g« = >, vy
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Assumption 4.3 (Source Condition). Form > 1, define &, := \.2>",s, v} < 1, then there exists
N such that €,, < 1 form > N. B

This assumption is mild as it only prevents extreme cases for which the first harmonics (v;)i<n
have infinitesimally small mass. Note that we choose a polynomial basis only for convenience?. We
can now build 7 as a truncated random polynomial spanned by the first M terms; Lemma F.14
shows that such a random choice already provides a label transformation 7 with non-negligible
correlation 7 = Ep[T (Y )hy» (Z)], with high probability over the draw of the random polynomial.

Plugging this lemma directly in the proof of Theorem 4.1 and via a union-bound, we obtain
an analogous guarantee for the recovery of w*, where the price of not knowing P only manifests
itself in the worsening of the constant, from 7 to 7. We can now go one step further, and ignore
k* altogether. This may be achieved using the technique from [DH18, Algorithm 2], that tries all
possible k € {1, K} and outputs the direction yielding the best goodness-of-fit on a held-out dataset
of size L. The overall procedure, described in Algorithm 2 in Appendix F.8, enjoys the following
guarantees:

Corollary 4.4 (Partial Trace for unknown P and k*). Let {(xi,y:)}j=, be i.i.d. samples from
P, p with k*(P) = k*. Then, under Assumption /.3, if n > Q(\2.d* /%2 +d/e?), L 2 6~*log(1/4),
the procedure described in Algorithm 2 with K = k* returns w0 satisfying (0 - w*)? > 1 — €2 with
probability greater than 1 — e~ —§ — 20k* .

5 Existence of Smooth Distributions for any generative expo-
nent £*

Now that we have identified the precise sample and query complexity of the single index model in
terms of the exponent k*(P), we turn to the question of characterizing the class {P; k*(P) = k} for
any k. We focus our attention on the additive gaussian noisy setting, namely (Z,Y) ~ P satisfy
Y =0(Z) + 7&, where o : R — R is a link function, and £ ~ 7 is independent of Z. When 7 = 0
we recover the deterministic case.

In this context, the Information exponent provides a transparent description in terms of the
Hermite decomposition of o; in particular for each k one can easily construct analytic functions
such that [*(P) = I*(0) = k (e.g. the degree-k Hermite polynomial). Such structure is absent in
the generative exponent setting: observe that in virtue of Lemma 2.6, the exponent only depends
on the set of level sets {{u € R;o(u) = t}}+, which does not easily lend itself to harmonic analysis.

A simple example of link function with &* > 2 is o(z) = z%e=*". For this o, k* = 4 which
implies the single index model determined by ¢ is unlearnable in polynomial time without n > d?
samples.® However, this construction does not easily generalize to higher k*. Nonetheless, we are
able to establish the existence of smooth link functions with prescribed generative exponent:

Theorem 5.1 (Smooth Single-Index models with prescribed k*). For each k, there exists o €
C°(R) such that the deterministic single index model P = (Id ® o)um satisfies k*(P) = k.

2We note that from observed data {(x;,y;)}i<n, one could in particular estimate the marginal P, using a (scalar)
non-parametric kernel density estimator, and therefore estimate the first terms of the orthogonal polynomial basis.
For simplicity, and w.l.o.g., we will assume that such basis elements are available.

3Examples of o with k* > 2 were discovered in prior works as well, e.g. [MM18, Remark 3]. See Figure 2 for a
figure of this construction along with the corresponding (4.
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The main idea of the proof, presented in Appendix G.1, is to build the link function via the
coarea formula, by evolving a one-parameter family of level sets {S; := o~ 1(t)};. Each level set
Si = {214, 2n,+} needs to be such that E[hy(z)|z € o71(¢)] = 0, which becomes a polynomial
equation in the points z;;. We first determine a suitable form for Sy, based on Hermite-Gauss
quadrature, and then obtain S;, ¢ € [0,T) as the solution of an ODE that enforces that this
condition is preserved through ‘time’ using a Vandermonde-type kernel. See Figure 5 for examples
of link functions o with generative exponents k* = 3, ..., 8.

k=3 k=4 k=5
—4 -2 0 2 4 —4 -2 0 2 4 —4 -2 0 2 4
(a) k* =3 (b) k* =4 (c) k* =5
k=6 k=7 k=38
PR i : i AR i : i AR ; : 7
(d) k* =6 () k* =7 (f) k* =8

Figure 5: Explicit constructions of o with different prescribed generative exponents. These were
generated by numerically integrating the ODE in eq. (181).

Finally, we establish that adding Gaussian noise to the labels preserves the generative exponent:

Theorem 5.2 (Additive Gaussian noise preserves generative exponent). Fort>0ando:R — R,
we denote @, ,(u,v) = (u,o(u) + 7v) € R2. Then the additive noisy model P = (®, ,) 2 satisfies

kE*(P) = k*(P), where P = (Id ® 0) 41

The proof of Theorem 5.2 reveals that non-Gaussian noise distributions p also yield the same
conclusion, provided the characteristic function (&) = Ez,[e 7] satisfies ¢(€) # 0 for all &,
Under these conditions, like the information exponent, the generative exponent is ‘oblivious’ to
additive noise (albeit with potentially smaller signal strength A« ).
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6 Information-Theoretic Sample-Complexity

We conclude the analysis of the single-index model by obtaining an upper bound for the sample
complexity, irrespective of the estimation procedure. This question has been addressed in several
planted problems of similar structure [MM18, DH21, MR 14], providing the groundwork needed to
establish the following result:

Theorem 6.1 (Information-Theoretic Upper Bound). For all k > 1, there exists a procedure which
returns W with (w - w*)? > 1 — €2 with probability at least 1 — 2~ if n = O (A%Q)
k

In essence, the (inefficient) estimator optimizes a certain correlation over the sphere, and uses a
‘corrector’ step from [DH21, Theorem 5] to yield a tight dependence on e. Combined with the SQ
and LDP-lower bounds, these results thus establish a sharp computation-to-statistical gap (under
both the SQ and LDP frameworks) for the single-index problem as soon as k*(P) > 2.

7 Conclusions

In this work, we have explored the question of efficiently estimating the planted structure from data
drawn from a single-index model. We identified the generative exponent k*(P) as the fundamental
quantity driving the sample complexity required for recovering the hidden direction, and proved
tight matching upper and lower bounds, using the partial trace algorithm and the SQ and LDP
frameworks respectively. Taken together, our results give a unified perspective on a variety of
planted high-dimensional problems, and provide evidence of a tight computational-to-statistical
gap as soon as k*(P) > 2.

That said, there are nuances that future work should aim to address: On one hand, our partial
trace algorithm includes power iterations, which are not bona-fide SQ, making the fine-grained
comparison between our upper and SQ-lower bounds somewhat murky [DH21]. On the other hand,
our Low-Degree lower bound concerns the detection problem (that is, testing P, vs Py for some
w), while the natural setting for us is the recovery problem. Although this mismatch does not
impact the tightness of the rate d* /2, in other high-dimensional inference problems it reveals more
fine-grained information, e.g. [PWBM18], such as sharp recovery thresholds.

One natural extension of our work is to the multi-indez setting, in which the labels depend on a
projection of the input onto a subspace of dimension > 1. A multi-index model can be described by
an orthogonal matrix W* € R"*¢ and a joint distribution P € P(R" xR) over (Z,Y) where z = W*z.
The goal in the multi-index setting is to recover the subspace defined by W*. This already gives rise
to rich structure not present in the single-index setting. For example, the natural generalization of
the information exponent [AGJ21] is the leap complexity [ABAM23, DTA ™24, BBPV23]. However,
it remains unclear what the natural generalization of the generative exponent is, even for k* = 2.
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A Additional Notation

A.1 Tensor Notation
Throughout this section let 7' € (R%)®* be a k-tensor.

Definition A.1 (Tensor Action). For a j tensor A € (R4)®7 with j < k, we define the action T[A]
of T on A by

d
(TIA iy i, = > Ty g At g (RY)OGI), (17)
ik7j+1,.‘.7ik:1
We will also use (T, A) to denote T[A] = A[T] when A,T are both k tensors. Note that this
corresponds to the standard dot product after flattening A, T.

Definition A.2 (Permutation/Transposition). Given a k-tensor T and a permutation 7 € S, we
use 7(7T) to denote the result of permuting the axes of T by the permutation , i.e.

W(T)ihm,ik = Tiw(l):“wiw(k)' (18>
Definition A.3 (Symmetrization). We define Sym,, € (R?)®2* by
1
(Symk)i1,~~~7ik7j1,~~~7jk = Il Z 61’#(1)’]'1 T 6i7r(k)7jk (19)
’ TESk
where Sy is the symmetric group on 1,...,k. Note that Sym,, acts on k tensors T' by
1
(Symg[T])is..in = 45 > w(D). (20)
TESK

i.e. Sym,[T] is the symmetrized version of T

We will also overload notation and use Sym to denote the symmetrization operator, i.e. if T is
a k-tensor, Sym(7T) := Sym,[T].

Lemma A.4. For any tensor T,

[Sym(T)|[p < Tl - (21)
Proof.
1 1
ISym@llp = | 32 7)< 5 3 Il = 171 (22)
weSk F weSk
because permuting the indices of T does not change the Frobenius norm. |

B SQ Framework for Search Problems

The relevant framework is developed in [FGR"17]. We provide a quick recap of the relevant
definitions.

24



B.1 Main Ingredients

Definition B.1 (Search Problem over Distributions). Let X be a domain, D be a set of distribu-
tions over X, F be a set of solutions, and Z : D — 27 be a map to the set of valid solutions. The
distributional search problem is to find a valid solution f € Z(D) given oracle access to samples
from an unknown D € D. We will also use Z; to denote the set of distributions D for which f is a
valid solution.

Definition B.2 (STAT oracle). Let D € D be the unknown distribution. Given a tolerance 7 and
a query h: X — [—1,1], the STAT(7) oracle returns a value within 7 of E,.p[h(x)].

Definition B.3 (Relative Pairwise Correlation). Given two distributions D;, Dy and a reference
distribution D,

xp(D1,D3) := /Dl(lx))(l;)z(x)dz -1 (23)

Definition B.4 ((v, 3)-correlation). We say that a set of m distributions D = {Dy,..., D, }
is (v,0) correlated relative to a distribution Dy over X if |xp(D;, D;)| < ~ for i # j and
|XDo(Di, D;)| < j for all i € [m)].

Definition B.5 (SQ Dimension). Given a search problem Z and parameters v, 3, we define the
statistical query dimension SD(Z,+, ) to be the largest integer m such that there exists a distri-
bution Dy over X and a finite set of distributions Dp C D with |Dp| > m such that for any f € F,
Dy :=Dp\ Zy is (7, B)-correlated relative to Dy.

The following lemma is from [FGR*17, Corollary 3.12]:

Lemma B.6 (General SQ Lower Bound). For any 7' > 0, any SQ algorithm requires at least
y

/

SD(Z,7,5) - 5= queries to STAT (/v +~') or VSTAT(

i to solve Z.

1
3(v+Y)
We will use the following corollary which is equivalent to Lemma B.6:

Corollary B.7. For any v, 5,7 > 0, any algorithm requires at least SD(Z,~, 3) - Z;_J queries to
VSTAT(n) to solve Z.

B.2 Instantation for the Single-Index Problem
We now instantiate this framework for the single-index model from Definition 1.1:
e Domain: X = R?% x R (represents the (X,Y) pair).

Distributions: D = {P,, : w € S971}.

Solution Set: F = §4-1,

e Valid Solutions: Z(P,«) ={w e F : |w-w*| > é(d*1/2)}.

Inverse: Z, = {P,+ : w* € S ! and |w-w*| > O(d"'/?)},

Reference Distribution: D =4 ® P,,.
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C Hermite Polynomials and Hermite Tensors

We provide a brief review of the properties of Hermite polynomials and Hermite tensors.

Definition C.1. Let u € R?. We define the kth normalized Hermite tensor hy, € (R?)®* by

() = VE va(w)

e lluli?/2

where v4(u) := enaT is the PDF of a standard Gaussian in d dimensions.

Note that when d = 1, this definition reduces to the standard univariate Hermite polynomials
{hi}, which are orthonormal with respect to ~;:

By [ (w)hi(w)] = G5 - (25)

Furthermore, if u,v are correlated Gaussians with correlation c, this inner product scales with o*.
Explicitly,

[l (W)hi ()] = 6" where VgM:N(o, B ﬂ) (26)

[TRIINENS
The orthogonality property also has a tensor analogue:
Burryylh(u) @ hi(u)] = d55Symy,. (27)
Equivalently, for any j tensor A and k tensor B:
Eunry [(hj(2), A) (hi(2), B)] = d;x (Sym(A), Sym(B)). (28)
The Hermite tensors in R¢ are related to the univariate Hermite polynomials by the identity:

hi(u-v) = (hy(u),v®*)  for all u € R%, v e §471, (29)

D Proofs of Section 2

Fact 2.1 (Spectral Variance Decomposition). The variance of o(Z) verifies the expansion

Varp(o(Z)] = Y 87 where B :=Ep[Yh(Z)] . (5)
>1

Proof. We have Varp[o(Z)] = E[0(Z)?] — E[o(Z)]? and by decomposition of o into {hg}x>0, the
orthogonal basis of L?(RR,~;), we have

E[0(2)’] = Y Elo(Z)(2)? = Y EEN|Zn(2) =Y E[Ym(2)? (30)

>0 1>0 1>0

where the last equality stems from the property of conditional expectation. Finally, substracting
E[o(Z)]?> = B2 ends the proof of the equality. [ ]
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We begin by computing the Hermite expansion of % where Py = P,®P, is the null distribution:

Lemma D.1. We have the following expansion in L?(Pg):
dP
—(z,y) = ZCk(y)hk('z)- (31)
dPo k>0

Proof. We can directly compute the kth Hermite coefficient of the likelihood ratio as a function of
Y:

Ep, %(Z, Y)hk(Z)|Y] = Ep[hi(2)[Y] = (- (32)
0

Therefore the Hermite expansion of % is,

dP L2(Po)
d?(% y) =’ Z G (y)h(2). (33)
0 k>0
|
We can now restate and prove Lemma 2.3.
Lemma 2.3 (Mutual Information Decomposition). We have the following expansion
Le[Pl =3 A% where Np:=||Gllp, and (i :=E[hy(2)[Y). (7)
E>1
Proof of Lemma 2.3. Recall that the mutual information is given by
dP \?
I,»2[P] = Ep, [(dPo) ] — 1. (34)
Therefore by Lemma D.1, this is equal to
LalP) = Y B [G(V)] - 1= 3 X 1= A2 (35)
k>0 k>0 E>1
|

Proposition 2.6 (A Variational Representation). The generative exponent k*(P) can be written
as:

E*(P) = TengEPy)l (Id®T)xP) . 9)

Proof. Let k* = k*(P). For any k < k* and T € L?(R,P,), By properties of the conditional
expectation:

E[T(YV)h(2)] = EE[TY)h(2)Y]] = E[T(Y)E[hm(2)|Y]] = E[T(Y)G(Y)] =0 (36)
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Therefore for all T € L*(R, P, ), we have k*(P) < I*((Id®7)xP) and hence taking the infimum
over such 7T, it yields that

k*< inf I*((Id P) . 37
< nf (A T)4P) (37)

Next, let define for all y € R, T*(y) := (k- (y) = E[hi=(2)|Y = y]. Note that 7 € L*(P,) and by
the same calculation as previously, we have

E[T*(Y)hi (Z)] = E[T* (V)G (V)] = E [G. (V)] = [IGe-[I, > 0, (38)

which concludes the proof of the theorem.
[ |

Example 2.7 (Explicit Examples of generative exponent). We give the following explicit examples:

(1) For o a polynomial, we have k*(c) < 2 and k*(0) = 2 iff o is even. In particular, k*(h;) =1
if j is odd and k*(h;) =2 if j is even.

(i) For o(z) = 22¢=%", we have k*(o) = 4.

(i1i) From [MM18, Remark 3], ify € {—1,1} is boolean with P(Y = 1|Z = z) = EWNW[tanh(clz)Qf
tanh(caz)?] for carefully chosen cy,cy then k*(o) = 4.

Proof. When o is a polynomial, we need to show that there exists g € P, such that

Elg(a(2))lu(2)] # 0 (39)

for I =1 or I = 2. Since both ¢ and h; are monotonic after their largest root, picking g(t) =
1ie(r—s Rr+s) for sufficiently large R and § > 0 yields

Elg(o(2)h(2)] = E[hu(2)1.ea] , (40)

where either A = I is a single interval (if ¢ has odd degree) or A = I_ U I} two intervals if o
has even degree. We have E[h1(2)1.ca] # 0 whenever A =1 or I # —I,, and E[h2(2)1.c4] # 0
otherwise. To conclude, observe that we can find R and ¢ such that I_ # —I iff o is not even.

Lemma D.2. Let 0(Z) := Z%exp(—Z?). Then the single index model defined by P := (Id® )4
satisfies k*(P) = 4.

Proof of Lemma D.2. As o is even it suffices to prove that A = 0 and Ay > 0. By Lemma G.2, to
prove that A4 = 0 it suffices to check that

Y sign(o’(2)27(z) (41)

z€0~1(y)
is constant in y P,-almost everywhere. Therefore it suffices to check this for 0 < y < 1, as
max, o(z) = 1. On this interval, o= (y) = {—22(vy), —21(y), 21(y), 22(y)} with o’(21(y)) > 0 and
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o'(z2(y)) < 0. Therefore for y € (0,1),

S sign(o (=) (2)

z€a~1(y)

=2[z1(y)V(21(y)) — 22(y)¥(22(v))]

=2[yy — VY]

—o. (42)

Next, we need to verify that {4 # 0. In fact, we claim that 84 # 0, i.e. I*(P) = 4. We have that:

REPTI e 2"/
Elo(Z2)he(2)] = Z“e™? -Hey(Z) - dz
o2 = | 1(2)- =
oo . . ) e—32°/2
= Z°—64"4+3Z7)- dz
/—oo( ) V 2T
_ 43
27
#0 (43)
by routine Gaussian integration. |

E Proofs of Section 3

The main goal of this section is to prove Theorem 3.2. We begin this section by proving some
necessary intermediate results, and then conclude the section proving the aforementioned theorem.
Finally we conclude providing results on reduction from the NGCA to the single index model and
back.

E.1 Proof of the preliminary results

We begin by generalizing Lemma D.1 to the full distribution P,, over (X,Y’) where the null distri-
bution is now Py := v4 ® P,,.

Lemma E.1. For any w € S we have the following expansion in L*(Py):
dP,,
o Z Co(Y)hi(X - w) (44)
k>0
Proof. Note that by Definition 1.1, dP,(X,Y) = v4_1 (X H)P(X-w,Y) and dPo(X,Y) = v4_1(X+)Po(X-
w,Y’). Therefore by Lemma D.1,

dP,, dpP
dIF’O(X Y) =5 - (X -w,Y) I;)Ck V(X - w). (45)
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We can now prove the expansion of y2(P,,P,) presented in Lemma 3.1.

Lemma 3.1 (x? Representation). Let w,w’ € S4=1 " and denote m = w - w', then we have

0P, Puy) = > mFAL (12)

k>k*

Proof of Lemma 3.1. We have:

(46)

dP,, dP,
Xo(Puy, Pur) := EPO[ }1.

dP,  dP,

Therefore by Lemma E.1 and the orthogonality property of Hermite polynomials, this is equal to

X, (B Pur) = 3 BIG(Y (0w} = 1= 37 Xpm*

k>0 E>1

E.2 Proof of Theorem 3.2

We now move towards proving Theorem 3.2. For this we introduce two intermediate results in
Lemma E.2 and E.3.

Lemma E.2. Let m = w - w'. We have

K mE +1
Xe (P, Py ) < X2omP 4 T (47)
Proof. From the previous lemma, we have that
Xo(Puw,Pur) = Y Aim
k>k
= )\i*mk* + Z /\kmk
k>k*
< /\i*mk* + Z mF
k>k
k41
m
= A\ : 48
L (48)
|

The following lemma shows that there are a large number of nearly orthogonal vectors:

Lemma E.3. There exists an absolute constant C' such that for any m < dd1/4, there exist m

; _ Clog,(m)?
vectors wy, ..., Wy, Wwith max.j (w; - w;| < € for e = \/ =25,
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Proof. From [NNW12|, we have that there exists a constant ¢ such that such points exist whenever

_ logm 2
d< 2 . 49
= <loglogm+10g(1/e)> (49)

_ [Clog,(m)?
€= V%- (50)

for a sufficiently large constant C. Then we have that

We will take

dlog? d d/410g'/? d
2
which is true by the assumption on m. In addition, note that log(1/€) < log(d). Therefore,
s logm 2 d logm 2 q
€ Pe . = — (52)
loglogm + log(1/€) C'log,(m)? logd C
and taking C' sufficiently large completes the proof. |

Now we are in place to prove the main result of the section, Theorem 3.2.

Proof of Theorem 3.2. Let m < d?’* be a positive integer to be chosen later. From Lemma E.3,

there exist m vectors wy, ..., wy,, such that |w; - w;| < e for all i # j where € = 4/ %W for an
absolute constant C. Let D = {Py, : i € [m]}. For any Py, Py, with i # j,
(wl . wQ)k*-i—l

L2 <N R o 53
1— (w2 K UJQ) = "k ( )

X%(DwUDwQ) < )\%* (wq 'wz)k* +

Therefore for A7, > 2¢, we can bound this by 2A7,¢*". Therefore SD(Z,2)?.¢*",1) > m. Then by
Corollary B.7,

3 _oN2 e 1 3 .
qzwuﬁemzw(n%e’“) (54)
k*
which implies
* 2
% <202, 4 Eq (55)

Now setting m = 2¢gn gives that

k* /2
1 1 d

n> > (% ) 56
YN A7, (logﬁ(Qqn)) (56)

Now let cg+ be a sufficiently small constant which depends only on k* and assume for the sake of
contradiction that

k*/2
n< k. <‘j> . (57)
Ak \logy(q)
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Then we must have that

*

E*+1

Therefore for the algorithm to succeed we must have

0z (ot )’”21( d )’”2 L )’“”_n (59)
~ 22, \og2(2qn) = X2, \ (logy(q) + k*)2 ~N2 ogy(q) cpr

Therefore for sufficiently small cx« we have derived a contradiction so we must have that

k" /2
n> Sk (f ) (60)
Moo \logg(q)

which completes the proof. |

Lemma E.4 (Lower Bound for Highly Periodic Neuron). Let o(Z) = cos(2nyZ). Then for w,w’

with m == |w - w'| < ﬁ,

-
X(Q)(Pw,]}”wz) < eXp(—QﬂQ’yQ) + 1L (61)
—-m

In addition, when v = cd'/* and m = d=Y* for a sufficiently small constant ¢, any algorithm

requires m 2 d?’" queries to VSTAT (n) to recover w* when P = v(2)d,(z)(y) unless n 2 a?’

Proof. We will begin by computing P_|,. Note that the level sets are given by:

+ 21y
o =u = JE 0.2 0) vhere ZF(y) = TUCOWERT g
jez 2y
Therefore by the coarea formula,
b Yjez ”Y(Z;_(y))fszjr(y)(z) +’Y(Z;(Z/))5Z;r(y)(z) (63)
Z'y ez V(2] W) +(Z; )
We will now use the Poisson summation formula. For any f,
D 12 () =) cos(jarccos(y)) f (v4)- (64)
JEL JEZ
Plugging in f = ~ gives
S (ZF ) = S cos(j arceos(y)) exp(—27%1%2) (65)
JEL JEZL
=v+7 Z cos(j arccos(y)) exp(—2m25%~?). (66)
Jj#0
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This second term can be bounded by

2Zexp 27T2 2 2 ) < QZGXP(—27TQJ'Y2) =
j>1 Jj>1

2
exp(2m2+2) — 1

We can conduct the same analysis with Z: so the normalization factor is 2v(1 + O(e™¢

now apply the same technique to compute {(x}. We have that for & < ~,

> A2 )2 ()

JEZL

=7 Z cos(j arccos(y))(2mjv)* exp(—27r23272) exp(—jim/2)

JEZ
= QVZcos(jarccos(y))(QW]v) exp(— 2772]272) exp(—jim/2)

j>1
< 272 27jy) exp( 27252 2)

j>1
< 29(2my)* > jF exp(—2n%jy7)

§>1
2km2~? k! 2(k — 1)7%+?2

< 27(27r'y)keXp< 729%) + klexp(2( )m2y%)

(exp(272y?) — 1)*+1
< y(4my)* exp(—27m%~?).

Therefore for m < ﬁ’

X%(PUM Pw’) 5 eXp(—27l'2’yQ) Z(47Tfymj)k +

k<~

mY

1—-m

< 2exp(—277272) + %

The SQ lower bound now directly follows from Corollary B.7.

E.3 Low Degree Polynomial Lower Bound

Using Lemma E.1, we can directly prove Theorem 3.5:

<4 eXp(—Zﬂ'Q*yQ‘) .

).

(67)

We

Theorem 3.5 (Low-Degree Method Lower Bound). Let P be a single index model, let P be the
distribution of P, when w is chosen randomly from Unif(S9~1). Let X € R"*¢ and Y € R™ denote
a sequence of n i.i.d. inputs and targets drawn from P. Let Py := v4®P, denote the null distribution.
Let R(z,y) denote the likelihood ratio - 5, (@,y) and let R<p(x,y) denote the orthogonal projection

in L2(Pg) of R(x,y) onto polynomials of degree at most D in x. Then if & < Vd and § :=

L]

A2, 5)7
”R<D”IP0 (1+o0a(l Z Tope (K5 — 1)!!u.

j!
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Proof of Theorem 3.5. Let R, := %‘g denote the likelihood ratio conditioned on w. We begin by
computing the full likelihood ratio:

E. [H;L:l Py ['r'ia yz]]
T2 Plai]Plyi]

Then by Lemma E.1, we can expand this as

R((x17y1)1"'7(xn7yn)) = :]Ew

HRw(xz»yz)‘|

i=1

n

R =E, H Z Cr(yi) (25 - w)

i=1 \ k>0

We will isolate the low degree part with respect to {z1,...,z,}, which we denote by R<p. To
compute this, we need to switch the product and the summation:

R=E,|Y > <H Chs (yi ) Pk (s - w))

p=0ki+...+k,=p \i=1

We note that each term on the right hand side is a polynomial in x4, ..., x, of degree p which is
orthogonal to all polynomials of degree less than p. Therefore R<p is given by:

Rep=Eu|Y, > (ﬁ%(yi)hm(fﬂi'w)>

p=0Fki1+...+k,=p \i=1

We can now use the orthogonality property of Hermite polynomials to compute the norms with
respect to the null distribution Py. If if w,w’ are independent draws from the prior on w then:

D n
2 ”
HRSDHLZ(]FO) =Ky, E E ( A (w - w’)k‘>
1

p=0ki+...4kn=p \i=

eyl ¥ (ID4)

p=0 ki+...+kn=p

i=

Let z be a random variable with distribution w - w’ where w, w’ are drawn independently from the
prior on w, and let P<p be the projection operator onto polynomials of degree at most D in z.
Then we can rewrite the above expression as:

n

2
IR<plZ2p,) = B=|P<n | [ D A2*
k>0

By linearity of expectation and of the projection operator P<p, we can expand this using the
binomial theorem:
J

n
IR<plF2en = (j>]E Pep || D Aie"

3>0 k>k*
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We can now lower bound ||R§D||2LQ(]P,0) by isolating the terms where k = k*:

[D/k"] o

IReplisey 2 2 (7)E[Pen i+ ]
Z
=0

k*j — )
( >A 12|k *j k*( /2j 1 ) =: R*.
| | J (d + 2i)

1=

We can similarly upper bound this expression by using that \? < 1. Plugging this in for k& > k*

gives:
I.D/k*J k*+1 J
2 n k* z
IR<pllz2e,) < <j)]El7’<D[</\2*Z + 1_Z> H
7=0
D/

r 7 . E*41 7
n « . Mz
=R*+ Z <)E PSDlZ<Z>(Ai*2k )Jz(l_z)]]
=0 J L i=1
[D/k*] n M f k1 i
_ P E 2 Kty o
R™+ jz::O <j) _;(i>(>‘kz )" P<p-k+(; z)l(1_2>H
[D/k*] J RIRR
o 5 Ol e ()]
= M/ S\ o
[D/k*] J . K j+i
* n J\ y20—-19) o
R () ())\ * E[ }
jgo j Z:ZI i)k (1—2)
LD/k"] J .
<R*+C (n> Z <]))\2(] Z)E[ k ]-H]
- . 7)) 4 i
7=0 i=1

where the last line follows from [DNGL23, Lemma 26]. We can now relate the k*j + i and the
k*j-th moments:

|D/k* | J . 1k /2
n j JE*+1
Reole, <Rt +0 Y (0) 3 (1) e (2552

=0 i=1
|D/k* : I
« Jk*+1
ALY <)Aiz Ik <1+ (Ai*d )> .

LD/k"]

. [cp
w2 ()
k:*
< R*(1+ 04(1)),

which completes the proof. |
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This implies the following corollary:
Corollary 3.6. Let P,Py, R be as in Theorem 3.5 and assume k* > 1. Then,
e Weak Detection: If D =log(d)® andn < d" for v < %, then [[R<pllp, =1+ 0a(1).

o %

k*
e Strong Detection: For any D < V/d, if n < %1, then [|[R<pllp, = Oa(1).
Dz~ =

Proof. The weak recovery threshold follows directly from Theorem 3.5 by setting § = d"=* . For
the strong recovery threshold, we have by Theorem 3.5,

12) o
2 ) (A2,6)7
HRSDHPO S Z Lo (K*j — D! l}!

J k*q k*j/2 )
G) () oeer
* x _ .7
Skrk /2]k /2—1
ok /2—1
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(pery
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o
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<.
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=)
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o
—

—_
\
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~
QN

which completes the proof. |

E.4 Reduction from Single-Index Model to NGCA

We restate and prove Proposition 3.7.

Proposition 3.7 (Single-Index to NGCA Reduction). An SQ algorithm that solves NGCA with
planted distribution p of exponent k and direction w* € S~ yields an efficient SQ algorithm to
solve the single-index model with generative exponent k and direction w*.

Proof. Let us fix a single index problem, P,,- p with generative exponent k = k*(P), and direction
w* € S971. By definition of the generative exponent, we have that [|(x||p, > 0. Define A, =
{y; CGe(y) > 0}, A_ = {y;C(y) < 0} and o := max {P,(A4),Py,(A_)}. Then a > 0 as otherwise (i
would be 0 Py-a.e. In the following, we consider without loss of generality that o = P, (A4 ).

Let us define u(dz) = a™! fA+ P.iy(dz,y) Py(dy) € P(R), where we recall that P, is the
conditional distribution of Z given Y. Let us assume that we have access to {(z;,y;)}i<n, i.1.d.
samples distributed according to P« p. Now, let us perform rejection sampling, that is, for all
i < n, we keep x; if and only if y; € Ay. This builds a data set of 72(n) samples {Z;};<n(n) that
are i.i.d. from a NGCA-model with distribution g and direction w*. From a > 0, we have that
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Eulh(Z)] = o= [ ¢k(y)Py(dy) > 0. Moreover, the number of samples obtained after rejection
sampling will concentrate (with binomial tails) at 7 = an, with « independent of dimension. Hence
any SQ-algorithm that solves the built NGCA model, i.e. that is able to find the direction w*, will
solve the later single-index one efficiently. |

E.5 Reduction from NGCA to Single-Index Model Variant
Given X’ ~ Q +, we consider X ~ ~4 drawn independently from X', and ¥ = hy(X - X').

Assume wlog that w* is the first canonical vector, and let us write 2’ = (21,%’) and = = (21, ).

The conditional distribution of Y given X satisfies

olo) = [ ptolear@ar) = [ ([0 ngeneiatas)) et

:/ (/ 5y—hk(zlzg+|m|z)71(d2)> p(dz})
R R

71(2)
_E, / . ——dH(2)
e [ {zhy (z12) +|Z]| 2) =y} ||=’C|||h§€(x1$/1 + [1Z]|2)]

= i, (y, 21, |l (71)

where we used the coarea formula and the rotational symmetry of the Gaussian measure. In
other words, the conditional distribution p(y|z) now depends on two scalar summary statistics:
the projection along one hidden direction and the norm of x. The limitation of this construction,
however, is the fact that the signal strength x; is of order O(1), while the fluctuations of the
uninformative norm ||z|| are also of order ©(1), leading to a presumably harder estimation task
than that of Definition 1.1.

F Proofs of Section 4

We begin by defining the un-normalized Hermite polynomials and Hermite tensors:

Definition F.1.
Hep(z) := VElhi(z) and Hey(z) := VElhy(z). (72)

Unlike hy, Heg naturally tensorizes, i.e.

d
Hey(2)i,....i, = | [Heyg : ij=ip(@:)- (73)
i=1
For example,
Heg(l‘)l)lg = Heg(xl)Hel (l‘g) (74)
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F.1 Truncating (.(Y)
Throughout this section, let

2. A7

Lemma F.2. Let P € G. Then for any k, there exists a bounded function T : R — [~1,1] such
that Ep [T (Y)hi(Z)] 2 A2 and Ep[T(Y)?] < AZ.

Proof. Let k* = k*(P) and recall (i« (y) := Eplhi~
truncation radius R and define 7 : R — R by 7 (y) :
definition. Then,

(Z2)|Y = y] where (Z,Y) ~ P. We will fix a
= %G (U)11¢,.. ()1 <r- Note that [T(y)] <1 by

R-Ep[T(Y)hy+(Z)] = Ep (G- (Y)?] = Ep[Ghs (Y)*11¢,.. (v) 2]
=A% = Ep[Gi (V) 1y, v 2 R)- (76)
The first term is nonzero because by the definition of k*. Therefore it suffices to prove that the

second term vanishes as R — oo. Using Lemma 1.4 and Markov’s inequality, we can bound this
second term by:

|Ep [ (Y)*1¢,.. vy R]| < VEr[Ger (V)i (2)?]P[ICr (V)] 2 B

- E[G(Y)?
< VEIG ()7 tor(3/ELG(v)2)) - e
_ los(3/A)" A, (77)
7 :
Therefore taking R = C'log(3/ /\k*)k*/ ? for a sufficiently large constant C' gives:
2
Ep[T (Y i (2)] 2 ——E (79)
log(3/Ag+)
In addition, 7 also satisfies:
BelT(Y)?) < REplGer (V)?] § — 2= (79
R log(3/A )"/
]

F.2 Tensor Power Iteration

The following lemma shows that Tensor Power Iteration can be computed with O(d) memory as it
does not require storing the tensor hy(z).

Lemma F.3 (Efficient Tensor Power Iteration). For any v € S9!,

Hey, (2)[v®* Y] = zHey,_1 (2 - v) — (k — 1)vHeg_o(z - v). (80)
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Proof. Because Hey(x) tensorizes, we have that for w L v,

Hey (2)[v®* Y] . v = Hep(z-v) and Heg(2)[v®* V). w = (2 - w)Hep_1(z-v).  (81)

Therefore,
Hey, (2)[v®* Y] = zHep_1 (2 - v) + v[Heg (2 - v) — (@ - v)Hep_1 (2 - v)]
= zHeg_1(x - v) — (k — 1)vHeg_a(z - v) (82)
by the two term recurrence for He. [ |

Lemma F.4 (Tensor Power Iteration Convergence). Let ¢,C = c(k),C(k) be constants depending
only on k. Letv € S*1 with o := v-w*. Let D = {(x,y;) }ien) be a dataset of size n with |y;| < 1.
Let

0= % Z yhy(2)[®* Y], and v = HgH . (83)
(z,y)€D
We will denote the effective signal strength by Br:
~ E[Y hi(Z
PR\ 10) s

VE[Y?] log" (3/E[Y?])
and we will assume without loss of generality that B, > 0. Then for o € [d='/*,1/2] we have that if
cd

n> Frat’ (85)
then with probability at least 1 — 2e=%" v -w > 2(v-w). In addition, for any € > 0 if
Cd
> —, (86)
66,%0[2k—2

then with probability at least 1 — 2d~¢, v/ - w* > 1 —e.

Proof. Let A% := E[Y?]log"(3/E[Y?]). Note that E[¢] = w*Bra* 1. In addition for any w, we have
by Lemma 1.4 that

s |

1
E[(0 - w)?] - (E[0] - w)* < EE[YQhk(w)[U@’““_”’ w)’] <
Therefore by Lemma 1.3, for any w € S¢~!, with probability at least 1 — 4,

60— Bl -wl £ 42 ol/0) log(”f)m Sy » os1/0), (38)

because n > d. Next, for any x let 2+ := Pj;’vx and decompose 0 as:

. 1 1
ot =—- - Z yrthy_i(v-x). (89)

(z,y)€D
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Then z is independent of %, hy_1 (v - x) so this is equal in distribution to

11
N0 - — > yPhoa(vox)’ly | (90)

k
(z,y)€D

Therefore by the standard 2 tail bound, with probability at least 1 — 2e~¢,
RS E L S P2y (91)
~n o n kot '
(z,y)€D

Again by Lemma [.3 we have that with probability at least 1 — §,

3 k
”,UJ_HQ g ﬁ . ;\2 + )‘log(l/d) + log(n/é) ) (92)
n n n

Therefore for n > d, we have with probability 1 — 2e~%" that |v*]? < %. In combination with
the above bound on |(¢ — E[0]) - w|, this gives that with probability at least 1 — 2e~%",
A2d

b —E[0]]* < —.
o~ BRI S =

In the first case when a € [d=/4,1/4] and n > W’ this gives that with probability at least
1—2e 7,

*

2]l
Brak =t + (v — E[0]) - w*
Brak~t + [0 — E[0]|

< 3 Bak—t

T Brakt+ o — E[9]

< 3 Bkl

Z BraF—1+ Brah 28

6o

S 8a+1

> 2 (93)

because a < 1/4. In the second case when n 2> we have with probability at least 1—2e~%,

__d
~ 652a2k—2 ?

;. bewt | Bra T+ (0 —EB)) - w* _ Brab (1 —€/2)
ST e = Brak=t 4 ||o — E[2]| = Bra*—1(1+ ¢/2) >21-e (94)

which completes the proof. |

40



F.3 Partial Trace

We begin by defining the un-normalized orthogonal polynomials for x? random variables:
Definition F.5. Let p(d)( ) be defined by
LA k=1
n00 =3 (§)r - T 20, (95)
— \J iy
=0 =7
These satisfy the following orthogonality relation:

Lemma F.6. Let r ~ x?(d). Then,

k—1
E[p® (rp® ()] = dki2* T] (d -+ 2i). (96)
=0

Proof. For any j < k,

E[r+7)( ‘”H d + 2i)

)e
)i

1)kt H (d + 2i) H (d + 2i)
k l+7 1
= (d+ 29) Z() k t H (d+ 27)

k .
_ d+212<) l(2+l+ﬁ7_1>2ﬁj!
i=0 =0 J

k—1
= 1,=2"k! [ [ (@ + 2i) (97)
i=0
where the last line followed from the fact that the kth finite difference of the polynomial g(I) =
(%H;j_l) is 0 unless j = k, in which case it is 1. ]
These are related to the Hermite polynomials by the following lemma:

Lemma F.7. For any x € RY,
d
PV (||2]?) = Heg (x)[1%"] (98)

Proof. Note that both sides are monic polynomials in ||z||°. In addition, the right hand side is an
orthogonal family of polynomials in ||m||2 because for j # k,

E [Ro; () [1%]hoy () [T**]] = 0 (99)
because Elhy; ® hoi] = 0. Because the set of monic orthogonal polynomials is unique, we must
have that p\” (||z]|2) = (2k!)Y/2hay,(z)[I®*] for all z. [ ]
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Lemma F.8 (Efficient Computation of Partial Trace). If k =25+ 1,
j d+2
Hey,(2)[1%7] = i (|l2|*)e (100)
and if k =25+ 2. Then,
Hey ()[1%7] = pi* ™ (lo]*)ea” — pi*™ (o|*) Lu. (101)
Proof. We start with Lemma F.7 for j + 1:
Hezy 42(2) (12079 = pi? ([l2]]?). (102)
Differentiating both sides with respect to z in the v direction gives:
(2j +2) Sym(v & Hezj 11 () [I%7+] = (25 + 2)(w - v)p{" ™ (Jl2][®). (103)

Note that the left hand side is simply equal to Heg;1(z)[I®7] - v, so and rearranging gives the
result for k£ odd. Next, we will differentiate again in the v direction. Then we have that:

(27 + 1) Sym(v ® v @ Hey;(z))[I% 1] (104)
= (2/)(z - )2\ (Jl2]]?) + P (2]1?). (105)

Of the (254 1)!! pairings on the left hand side, (2j — 1)!! pair v with itself and then pair all indices of
He;;(x) while 25(25 — 1)!! pair 2j — 2 indices of Heyj(x) and the remaining two with v. Therefore
the left hand side is equal to:

PV (l]?) + (27)0 Hes; ()[120 Vo, (106)
Therefore we must have

d+2
P (2l?) — pd ()12

i d+4
0" Heg; () 120 V]u = (z - v)pf" " (|l2]]%) + 3 : (107)
Because p§d+2) - p§d) = f(2j)pgcit2), this reduces to
i d+4 d+2
o" Hey; (2)[1%V Vo = (- 0)p{ 55" (2]”) — pf237. (108)
As this is true for any v € S¢~1, this completes the proof. |

F.4 The Even Case
First we will start with the even case. We will show that v := vy (M,,) has good alignment with w*.

Lemma F.9. Let k > 4 and let M, be the partial trace matrixz in Algorithm 1 and assume that
lyil <1 for alli. Define the effective signal strength

. E[Yhy(Z)] (109)

VEIY?]log (3/E[Y?))
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Then for k > 4, with probability at least 1 — 2e~%,
ﬁQdk/2
[ My, — E[Ma]ll, < \/ %Tn (110)
k

k)2
> d

n ~o 7
NE/BI%

In addition, for

(111)

we have that v = vy (M,,) satisfies (v-w*)? > 1 —e.
Proof. Let n = % = E[Y?]log"(3/E[Y?]]). We will use Lemma L.5. First we compute o2 :=
[E[(Mp — M)?]|l2-
0% = |[E[(My — M)?]|2
IE[(M: — M)

- [IE[AZ7]]|2

1
n
1
n
1
— 112
. (112)

- HEX,Y [YQhk*(X) [I®”z’"ﬂ

2

Now by Lemma 1.4, for any v € §¢°1,

Eyy Y2 Hhk (X) {I®

o2 2

K*_o 2
o3[ 55 ]
2

<nd ‘Sym (I®¥ & v) H
< ndF/2. (113)
Therefore,

dk/2
e (114)
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We bound o, similarly:

S SB[ M)’

1 s
= By [Vhe ()77 0,0

1 o
< “Exlhe (X)[I® 7, u,v)?]
n
1 . 2
|
n F
]_ *
< Z I k*—2
<
a1
= . 115
_ (115)
Next, by Lemma F.12 and Lemma 1.6 we have that
k* 42 kX
— _d 1 TdT
Rt tlosm) Tdx (116)
n
and for any &’ > 0, with probability at least 1 — ¢’ we have that
M|, _ a5 4+ log(n/6) T d'F
max —12 < & . (117)
i€ln] n n
Therefore with probability at least 1 —n eXp(—dl/ k*), we have
k*42
M; d
max IMill2 o d 5 (118)
i€[n] n n
Now we can set
a5 4 ast
R=C\l——— —5=C —p (119)

for a sufficiently large constant C' and apply Lemma [.5 to get that with probability at least
1—de~t —ned""

dk*4—2 dakl*2+1 dk 4+2
| M, — EM, ||z < 20 + O <t1/2+ 23 4 t). (120)
n

ni/2 ni/12

Now for k* > 4 we can set t = d° for ¢ < 1/8 to get that with probability at least 1—de % —ne_dl/k,
for any n > d'T we have

dk/2
1M, — EM,||2 S 0 = 1/ 25— (121)
n
The conclusion for v = v1(M,) now directly follows from the Davis-Kahan inequality. [ |
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Lemma F.10. Assume that (Z,Y) ~ P and k*(P) > 2. Then for any k > 4, if we define ¥ by

dk=2)/2

P [E[Y2He4(2)]w*®4 + 4E[Y2Hey (Z)]T + 2E[Y?] Sym,

k(k— DI
where T = 6 Sym(w*®* @ I) — w*®* @ I — I @ w*®?, then

k=4
[E[My ® Mi] = Xlop Sd = .

(122)

(123)

Proof. We will temporarily switch to the un-normalized Hermite polynomials Hey. If k& = 25 + 2,

this is equal to

KIE[Y 2hi (X)[1%77 ] @ hy(X) 12777
E[Y*He (X)[I®"7" ]| @ Hex(X)[I9"7]]

d+4 d+2 d+4 d+2
=E[V2[p{" ) (lel)aa” — p{ D (al)1] @ [P (et — pitH

J J

= B[V (o))"

d d
— B[y (|lalpl " ()2 @ 1]

d+4 d+2
—E[y 2 (|2l ()] @ 252

+ B[V (le))2 T @ 1]

(124)

We will now compute this term by term. We will use O(d’~1) to refer to error terms whose tensor

operator norms are bounded by O(d’~!). For the first term, we have that

B[y 29 ()2

= 2RV 22®4) 4 O(dF ™)

= 27 jIV [E[Y?Hey (Z2)]w*®*
+ 6E[Y?Hey(Z)] Sym(w*®? @ I)
+ 3E[Y? Sym(I @ I)] + O(d’~1).

For the second and third terms,

d+4 d+2
E[v2p{" Y (e )pf"? (l2)e®2 @ 1

= Y IE[Y?2®? @ I+ O(d’ )

= 291 [E[Y *Heo (2)Jw*®* @ T + E[YHI @ I] + O(d'Y).

Finally for the last term we have:

E[Y2p{"? (lal)*1 1]
=25 R[YHI @1+ O(d™1).
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Renormalizing by k! to reduce back to the normalized Hermite polynomials hj gives:

E[Y 2hy (X)[I%"77] @ hy(X)[1%°7]]
- k(kd_]m : [E[Y2ﬂe4(2)1w*®4
+ E[Y2Hes(2)][6 Sym(w*®* @ I) — w*®* @ I — I @ w*®?
FEYY3Sym(I® ) —I® 1]} +O(dY
d7

e []E[YQHM(Z)]w*@‘l + 4E[Y?Heo(2)]T + 2E[Y?] Sym, | + O(d’ 1) (128)

where T'= 6 Sym(w*®* @ I) — w**? @ I — I @ w*®?, |

F.5 The Odd Case

Next, we will study the odd case. This is much simpler than the even case as it doesn’t require
matrix concentration. However, it is not possible to directly reach e error with this step. We
therefore analyze the sample complexity for reaching v - w* > d—1/*:

Lemma F.11. Let k be odd and let v, be the vector from stage 1 of Algorithm 1. Assume that
ly;| < 1. Denote the effective signal strength By by

Br = E[Yi(2)] . (129)
VE[Y?] log* (3/E[Y?))

Then for a sufficiently large constant C' = C(k), if

Cdk/2
n=— (130)
B
c k+1
with probability at least 1 — 2e=%", HZWH -w* > d=Y*. Furthermore, if n > Cde,(§22 , we have that
" k

with probability at least 1 —2e~% v -w* > 1 —e.

Proof. As in Lemma F.9, let n := A} logk(?)/)\k). We will begin by computing the variance. Note
that for any v € S9!, by Lemma 1.4 we have:

E[Y2hy (X)[I2°5, 0]?]
< nE[R(X)[125F 0]
<nd'T. (131)

Therefore by Lemma 1.3, with probability at least 1 — § we have

(vn —E[on]) - w S/ nlog(lf)dkzl + log(n/é)IZQHdk;l. (132)
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For the norm, recall that if &k =25 + 1,

VIR (2) 1275 ) = 2p{ (||2])2). (133)

Let 7; := % and let Z;7 = Z; — w*(Z; - w*). Then Z; is independent of ||z;| and x; - w*. Therefore
[EAL i

viewed as a function of {Z;"}, v;- is a sub-Gaussian vector with constant o = 1 3" | yizp;d) (lz])?.
Therefore with probability at least 1 — 2e~%, |lv| < 0v/d so it suffices to bound o. We have by
Lemma 1.3,

0% Sndd + O(d //n). (134)
Therefore, with probability at least 1 — 2e~%", 62 < PV log" (3/Ar)d’ and

o || < ¥ (135)
n ~ n :

Combining this with the bound of (v,, — E[v,]) - w* this gives with probability at least 1 —e~%",
ki1

d 2
lon — Efv,]|| < 1/ . (136)

~
n

Combining everything gives that when n = Cd*/?/ B,%,

Up Br + (vn — E[v,]) - w* Bin Bin —1/4
LW > > — =Cd*, 137
Toal " = Bt o —Blall ~\ pae VA (137)

In addition, when n = Cd"% /(82),

vn o Bt (on—Ea))wt _ Bl—e/2)
T Ty warey gy -y o e s wrapery ks (138)

F.6 Proof of Theorem 4.1

We are now ready to prove Theorem 4.1:

Proof of Theorem 4.1. By Lemma F.2 there exists a truncation of (3, 7 : R — [~1,1] such that
the effective signal strength A satisfies:

2 EelT(he (2P

)\2
k*
= >

Ep[T(Y)2] log"(3/Ep[T(Y)2)) ™ log(3/A\r) ™"

(139)

We will first show that the output of the first stage satisfies v - w* = ©O(1). For k = 1, this
follows directly from Lemma F.11. For k = 2, the result follows from [MM]18, Theorem 2|. For
k > 2 with k even, the result follows from Lemma F.9. Finally, when k£ > 3 with k£ odd we have
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that after the partial trace warm start, by Lemma F.11 v - w* > d~'/%. Then until v - w* = 1/4,

each step of tensor power iteration will double v-w* with n 2 (vw*)+452 by Lemma F.4. This will
: k

converge to v-w* = 1/4 in 10g(d1/4) < log(d) steps. Finally, by Lemma F.4 one more step of tensor

power iteration with n > 532 gives (v-w*)?2 > 1 —e. As every step happens with probability at
k

least 1 —2e~%°, a union bound gives that the final success probability is also 1 — 2e~% for constant

¢ depending only on k. |

F.7 Concentration

Lemma F.12. Let X ~ vy, let k be an even number, and define M := hy(x) {I®¥] Then,

k+2
E[|Mo||2Y2 <d % and E[|| M2 — E|M|oP)7 < p*/2d5. (140)
Proof. For the first inequality we have:
E[||Ms|3] < E[|| My ||%]
= 3 B (X)[I®"7 e, ¢5)7]
i,

_ 2
= Z HSym (I®¥ R e; ®ej)HF
%,

k+2

<d*. 4T =45 (141)
For the moment bound, first note that
E[Tr(M)?) = E[hy(X)I®*?P] < 1)} = "/, (142)

Next, note that by symmetry, there exist polynomials p,q of degree at most % — 1 such that
M = p(||z||*)zz” + q(||z|)2I. We can expand Tr(M) as:

Te(M) = p(lz]*)llz]* + g(l|z]*)d. (143)

Therefore both p(||z||?)||z||?> and ¢(||z||?)d must have variance bounded by d*/2. By Gaussian
hypercontractivity, they also have p norms bounded by (p — 1)*/2d*/%. Then,

1M 1]2 = max (|q(ll=[1*)], [p(lzl*) l]* + q(ll2]*)])

< Ip(lel®)ll=* + laClz]*)] (144)
so letting C' denote the mean of the right hand side, if we subtract C from both sides we get that
E[[[|M]|z — CIP]MP < p*/2dv/e, (145)
Finally,
E[|[|M]|z — EIIM|2[")'/? < E[|[|M ]|z — CIP]VP + [E[|M]]; - C)|

< 2E[|[|M]|z — O]/
< ph/2gh/4 (146)
where the second to last line follows from Jensen’s inequality. |
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Lemma F.13. Let X ~ g, let k be an even number, letv € ST1 and define M := hy(x) [I®%,v],
Then,

k k—
E[|Mo]3]'/? <dF  and E[||[M[2 — E|M||oP)"" < p*2d" T (147)
Proof. As above we have
E[|| Ma|3] < E[[| M| 7]
= ZE[hk(X)[I®%vv’eiv€j]2]
A!j
@iz 2
X fs( ovnoe),
i,j

<d®.dT =d*t. (148)

In addition, As above we have
E[Tr(M)’] = E[pi[12°5, o] < |15 = a7 (149)
The remainder of the proof is identical to the proof of Lemma F.12. |

F.8 Proofs for Unknown P Learning

Lemma F.14 (Unknown P label transformation). Assume M > N and Assumption /.3. Let
0 ~ Unif(SM=1) and consider ¥ = Zl]\il Oi¢r. Let R > 0 and define T(y) == V() 1jw(y)<p-

Then with probability greater than 1 — § over the draw of 0, for R = % we have

7 = |Ep[T(Y)hi (2)]| 2 6202, > 0, (150)

where 2 hides constants in k* and appearing in Assumption 4.5.

Proof. Let ApCir = > ;<5 i the L2(R, Py )-orthogonal projection of (+ onto the space spanned
by degree-M polynomials. We have

REp[T(Y)h (Z)] = (¥, Ces)p, — Ep[Gr (Y)W (Y )1 9(v)>R]
= (U, ApCedp, — Ep[Cor (V) U (Y) 1y (yy >R

ApyCier
~ A Gl (0, ) BolG (VR rsal - (15)

Now, following the proof of Lemma F.2 we bound the second term in the RHS:
|[Ep (¢ (V)¥(Y) 1wy ]| < \/||‘I’(Y)||?>yEP[Ck*(Y)zl\\y(y)\zR] (152)
= \/EP[Ck* (Y)1jw(v) >Rl
VEp [ (Z)1P[[¥(Y)] > R]

3 VEN(Y)?Z] 3K
R R’

IN
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where we have used the fact that ||¥] = 1.
Now, thanks to Assumption 4.3, and M > N, there exists k > 0 such that ||Ap(i+]|?> =

A2. (1 —enr) > kAZ.. We thus obtain
AMCk* >
g, MOk
< [ AnCell /p,

Aiex VR 3k

3k
R

Ep[7(V)he (2)]] > %Ak*\/%

Finally, we conclude with a basic anti-concentration property of the uniform measure on Sy;_1:

Lemma F.15 (Anti-Concentration of the Uniform measure, [BBSS22, Lemma A.7]). Let 6§ ~
Unif(Sar—1) and 0y € Spr—1 arbitrary. For any € > 0, we have P[|0 - 0y| < €] < devV M.
Putting everything together, and picking ¢ = §/(4v M) in Lemma F.15, we obtain that with

probability greater than 1 — 4, for R > 3:\1*46\/%’

_ Mer0y/m 3F
EP[T(Y)hk* (Z)] > 4\/MR - ﬁ
> ?;f}%f . (154)

Algorithm 2: Partial Trace Algorithm, unknown P and k*
Input: Dataset D = {(z, )}, largest degree M, largest exponent k*, signal strength
>‘k*7 basis ((bl)lgjy{
Set R=C/\;. and R=C.
Split D into train D’ and validation D such that |D| = L.
Draw random 6 € Unif(Sy—1) and form ¥ = 3", 0:¢;.
for k < k* do B
Run Algorithm 1 on D" with 7 = R™'W1 g <p to obtain y.
Compute Fj, = + Zlel W (y) e (0 - k)1 gy < -
end

Define k = arg maxy, | F|.
Output: 0y,

Corollary 4.4 (Partial Trace for unknown P and k*). Let {(z;,v:)}, be i.i.d. samples from
Py p with k*(P) = k*. Then, under Assumption 4.3, if n > QA\2.d*" /2 +d/e?), L = 6~ *og(1/9),
the procedure described in Algorithm 2 with K = k* returns @ satisfying (i - w*)? > 1 — €2 with
probability greater than 1 —e~%" — § — 20k*.
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Proof. The proof is adapted from [DH18, Theorem 14].
Theorem 4.1 together with Lemma F.14 ensures that, provided n > & /\22, with probability

greater than 1 —§ — e~ %" |Jig — w*|| < \/d*"/2/n, as well as |(¥, ()| > O\ 6.
We now study the accuracy of our goodness-of-fit statistic:

Lemma F.16 (Concentration of Goodness-of-Fit Statistic). For any k € {1,k*}, R > 0 and § > 0,
we have

k o )
< ; +Cx 1\%(1/5) —log(l/é) log(L/6)*? 4 > 125 .

Pp {|Fk — (W 'W*)k<‘I’,Ck>P1

(155)

For L > logd~!log (Lé_l)k, a union bound over {1,%k*} thus yields, with probability greater
than 1 — 20k*,

. R 10g<1/5)
3k -
| By, — (g - w*)F (W, G, | < i%ff + CKT

- 1/4
_0 log 6! /
B L

=A(0,L) ,Vke{lk}.

(156)

Let us now relate the performance of our estimator w; in terms of the ‘good’ estimator wy«.
Following [DH18, Theorem 14|, we have

(g, - w*)F| - (W, ¢)| > Fl — A (157)
> Fi» — A
> | (g - w*)* |- (T, G )| — 2A
>0

whenever A(8, L) < CApd < 11(®, ()| But this implies that [(¥,(;)|, which means that k= k*.
|

Proof of Lemma F.16. We have E[F?] < R%*E[hj(X - )] < R?, and by Gaussian hypercontrac-
tivity,

E[F}] < R'E[h(2)"] < RY(I — 1)kV/2 . (158)
We can then apply Lemma lemma 1.3, to Fj, — E[F}] to deduce that for any ¢ > 0,

|Fy — E[F, RV log 1/9) | 1og(1/5) log(L/8)*?| < 26 . i (159)

L2
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Next we bound the effect of the truncation:

[ELF] — B[ (Y )he(X - )] = [Be [0V ke (X - 00) - Lgyy o | (160)

< VIPO)IR, Elhi(X - @)L g 2]

= \/]E hi(X - 0k)*Ljw(yy > R]

VER(2) B[ w(V)] > ]
_ 3 VERYT] 3
o R R

IN

)

and finally let us compute

E[U(Y)he(X -p)] = Ey [V (YV)Ez )y Ew oy hi (W - w*)Z + /1 = (W, - w*)2W)]

= (@ - w*) By [O(V)E 2y hip(Z)]
= (wy, -w*)k<\I’,Ck>Py )

(161)

where we used the fact that Hermite polynomials are eigenfunctions of the Ornstein-Ulhenbeck

semigroup.

G Proofs of Section 5
G.1 Proof of Theorem 5.1

Throughout this section, we will occasionally use the un-normalized Hermite polynomials (Defini-

tion F.1) which will simplify the notation.

Lemma G.1. There exists a function f : [0, 1] —> [0 1] such that f(0) =
(1) =

monotonic and for all k € N, f®)(0) = fR (1
Proof. Let

f(x);/omexp{s(ll_s)}ds where Z/Olexp{s(

1)}ds (162)

Then it is clear that f(0) =0, f(1) =1, and if a < b,

0, f(1) =1, f is strictly

1—s

I 1
b) — =— ——¢d 1
10~ fl@) = [ew{~ s Jas >0 (163)
so f is monotonic. Finally, we have that
dF1 1
*) — 164
100 =3 { = e - 1 1o
= lim Pe(@) exp —71
20 | gr(z) z(1— )
=0.
where py (), gx(2) are polynomials in z. The proof for f*)(1) = 0 is identical. |
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In the deterministic setting P = (Id ® o)y where ¢ € C1(R), the condition that ¢, = 0 in
L*(R,Py) reduces to E[g(Y)hy(Z)] = 0 for any g € L%y. From Sard’s theorem, the set of critical
values of o, ie, the set S, := {y € R; 32 € 07 !(y) s.t.0’(z) = 0} has Lebesgue measure zero. In
particular, we have that a.e. 071(y) is a discrete set with ¢’(2) # 0 for any z € ~!(y). Therefore,
applying the coarea formula leads to

|
= [ 9W) </( )Wd%(z)) dy (165)

and therefore

= hk(o[l(y)i)v(afl(y)i) Cfory ¢ S, . (166)

We first verify an equivalent integral condition:

Lemma G.2 (Integral Form). The condition fg,l(y) hﬁﬁfgz)(‘z) dz =0 for Py-a.e. y is equivalent to

the following quantity being constant in y:
/ A ()sign(e’ () o (2) = C (167)
o~ 1(y

Proof. Follows directly from integrating with respect to y, and using that [hgy] = —hg_17. [ |
Definition G.3. Given u = (uq,...,u,) € R"”, we define Q(u) by:

[n/2]

Qu) = Eonr [ J(ui +2) = D (2 = Dlep_si(u) (168)
i=1 i=0
where eg(u) is the kth elementary symmetric polynomial on w1, ..., uy,.
Definition G.4. Given n distinct points uq, ..., u, we define v(u) € R, u = (uq,...,uy) by

- Q(ul,...,ﬁi,...,un)
vl = Hi;ﬁj(uj —u;)

where (uq,...,4;,...,uy) is the (n — 1)-dimensional vector in which the i-th coordinate has been
removed.

(169)
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Lemma G.5. For any distinct points u1, ..., u, and for 0 < k <n we have

n 1 k=0
ZHek(ui)v(u)i =<0 O<k<n. (170)
= (-1)1Qw) k=n

Proof. We will first prove the result for & < n. Let A € R"*" be defined by A;; := He;_1(x;). Then
we can decompose A = CV where C € R™"*" contains the coefficients of the Hermite polynomials,
i.e. Cj; is the coefficient of 27 in He;(z), and V € R"™ " is a Vandermonde matrix defined by
Vi; = m;‘fl. Note that C is invertible (since it is triangular) and as the x; are distinct, V' is invertible
as well so A is invertible. Then the unique solution to Av* = e; is given by v* = V"1C le;.
By the formula for converting Hermite polynomials to monomials, we have that C~! = |C| so

(Cte1); = (j — 2)!"15;_1. Therefore from the formula for the inverse of a Vandermonde matrix,

vp =Y (VTG -2

2l5-1
_ Z en—j(T1,... &iy. .. Tp) G

21j—1 Hk#z‘(xk — ;)
_ ZQU en—j—1(T1,. . &iy. o ) (G — DN
- Hj;éi(xj — ;)
Q@1 By, 1)

[1si(zj — =)

e (171)

Therefore v* = v(z) so Av(x) = e;. Next, pick some x,; which is distinct from x1,...,2,. By
the above computation we know that

n+1
> Hep(:i)v(x1, ... Tng1)i =0 (172)
i=1
which implies that
ZHen(ﬂfi)U(xh oy Tny1)i = —Hen (Tna1)v(z1, .o Tng1)i
=1
Q(x1, ..., xy)
= —He, (x,, . 173
( +1)H?:1(xi — Tpt1) (a7)
We can now take x,,+1 — oo on both sides. For the left hand side we have for i < n:
lim  o(x1,...,Zps1); = lim Q1o Tir ooy Ty Tn)
@n+1200 nt1700 (Tnt1 — @) [1; 45 5<n (@5 — 72)
g TN ODIT, g +2)
= lim
Tn417700 Hj;éi(xj — ;)
=0(x1,.. ., Tn)i- (174)



On the right hand side we have:

H n n
e DR (175)
en1=o0 [ (i — Tn1)

Putting it together gives that

> Hen(zi)v(@1,. ., 2n)i = (=1)" ' Q(x1, ..., Tn) (176)
i=1
which completes the proof. |

We will use the following well-know result for the Gauss-Hermite quadrature ([DRO7]):
Lemma G.6 (Gauss-Hermite Quadrature). Let r1,...,r, be the roots of He,,. Then

1
'U(rl,...,’f'n)i = m > 0. (177)

Lemma G.7. For any k* > 0 and any € > 0 there exist points x1,..., T+ such that if ri,... Tk
are the roots of Hey (), we have

|z, —ri| <eVi and Q(x1,...,z5) #0. (178)

Proof. Note that @ is a polynomial in n variables of degree n which can have only finitely many
roots. Therefore it is not possible for all points x € X?:l[ri —€,1; + €] to be roots of Q. [ |

We are now ready to prove Theorem 5.1:

Theorem 5.1 (Smooth Single-Index models with prescribed k*). For each k, there exists o €
C°(R) such that the deterministic single index model P = (Id ® o)uv1 satisfies k*(P) = k.

Proof. Let r1,...,rg= be the roots of Heg+. From Lemma G.6, we know that v(rq,...,re+) > 0.
Therefore by continuity there exists ¢ such that

|z, —ri| <0 Vi = v(xy,...,z,) > 0. (179)
Then by Lemma G.7 there exist 21 (0), . .., z,(0) with |2;(0) — r;| < /2 such that Q(z1(0),...,2,(0)) #
0. Again by continuity there exists e such that for all x1, ..., 2z, with |z; — 2;(0)| < € for all i, we
have both
v(Z1,...,2n) >0 and sign(Q(z1,...,z,)) = sign(Q(z(0))). (180)
671-2/2

Now let y(x) := VoL be the PDF of a standard Gaussian and let = evolve according to the ODE:

zh(t) = y(z:) vz, .. an); for i=1,...,n. (181)

We will run this ODE for ¢ € [—7,7] for 7 sufficiently small so that ||z(t) — z(0)||1 < e for all
t € [—7,7]. We will also define the quantity:

Z(t) i= 'Y Hepoa (a: (0)(w(1). (182)
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Then using that -LHey,_;(z)v(z) = —Hey(2)y(z), we have that for any 1 < k < k*,
= - Z Hey, () (i) (1)
i=1
=— Z Heg (z;)v(z(t));
i=1

0 k< k*
- {(—1>k*+1cz<x<t>> - e

Therefore we have that Zy(t) = Z,(0) for all k¥ < k* and |Z« (t) — Z- (—t)| > 0.
Note that by construction, x}(¢) > 0 for all ¢ € [—7,7]. Therefore z; : [-7, 7] : R is injective and
for e sufficiently small, the images {x;([—7,7])}; don’t intersect. We can now define 6 by

&) = {|xl_ (x)| z € zi([-7,7]) (184)

T otherwise.

Note that & is smooth except at 6-1(0) U6~ 1(7). Now let f : [0,1] — [0,1] be the mollifier
constructed in Lemma G.1. Then if 6 has generative exponent k*, o(z) := f(é(x)/7) also has
generative exponent k* and is smooth. Therefore it suffices to show that & has generative exponent
k.

We will compute E[He(z)|y] for y € (0,7]. First, let us consider y = 7. Using E[Hex(x)] = 0
we can write:

E[Hex (2)|y = 7] = —E[Hex(z)]y < 7]
" opwi(T)
=— Z/ Hey(z)v(z)dz

= Zk(1) = Z(—71). (185)

By the above calculation this is 0 for k < k* because Zy(7) = Zr(—7) = Z(0) and it is nonzero
for k = k*. Next, let us consider y € (0,7). Then 67 !(y) is a set of discrete points at which o is
smooth so y has a continuous density and we can apply the co-area formula (166):

Hey (2)7(x)

E[Hex(z)[y) oc ) &' ()]

z€6—1(y)

_ - Hep(zi(y)y(wi(y) | Hep(zi(—y))v(i(—y))
D R = o ) e 7ot e (186)
From the definition of 6 we have that if x € z;([—7, 7]):
(o) — Sl ) s

zi(ei (@)
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Therefore we can simplify the above expression as:

E[Hey (x ZHek zi(y)y(wi(y)) |25 ()| + Hep (i (=) y (@i (=) [2i(=y) - (188)

Now because z}(t) > 0 for all ¢ € [—7, 7], we can remove the absolute values to get:

E[He (« ZHek ()7 (w:(y)) 7 (y) + Heg (wi(—y))y(wi(—y))wi(—y)

*[Zk( ) = Zi(=y)] (189)
which we computed above. In particular, this is 0 for £ < k* and nonzero for k = k* for any
y > 0. Therefore, E, {Em [Hek(x)|y]2} =0 for k < k* and is nonzero for k = k* which completes the
proof. |

G.2 Proof of Theorem 5.2

Theorem 5.2 (Additive Gaussian noise preserves generative exponent). For 7 >0 and o : R — R,
we denote @, ,(u,v) = (u,0(u) + 1v) € R?. Then the additive noisy model P = (P, ,) x> satisfies
k*(P) = k*(P), where P = (Id ® 0) 1.

Proof. Since k*(P) = k*, by Lemma F.2 there exists g : R — [—1, 1] such that E[g(Y)hg-(Z)] # 0.
We consider gr(y) := g(y)1}y<r- For R sufficiently large, we claim that E[gr(Y)hr+(Z)] # 0. We
have that

Elgr(Y)hi (Z)] = Elg(Y) i (2)]] = |[Elg(Y)hi+ (Z)11y> ]|
< VE[g(Y)2hy- (Z)2]P[]Y] = R]
< VE[Y?|/R? (190)

which vanishes as R — oco. Therefore for sufficiently large R we have Elgr(Y)hi«(Z)] # 0. Now
gr € L*(R) N L2(R). Let us consider its Fourier representation T (y) = [ gr(£)e’¥d¢. Then

Blon(Y - (2)] = [ Gn(©E - (2)]de (191)

which shows that there must exist & such that ¢¢(y,z) = e®Yhy-(2) satisfies Ep[o¢(Y, Z)] # 0.
Now, let G;(y,2) = 7y(7y)d., where 7 is the standard Gaussian density. By definition we have
P =P x G, := G,P. Recall that G, is self-adjoint in L?(R). Thus

Eploe(Y, 2)] = / b (9, 2)dP(y, 2)
- / 6c (. 2)d(G-P)(y, 2)

/¢y, JdP(y, =)

—exp( §2r)Ep[¢e (Y. 2)] 0. (192)
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This shows that k*(P) < k*(P). But note that by Proposition 2.6, we also have k*(P) > k*(P).
Therefore k*(P) = k*(P).
|

H Proofs of Section 6

Theorem 6.1 (Information-Theoretic Upper Bound). For all k > 1, there exists a procedure which
returns W with (w - w*)? > 1 — €2 with probability at least 1 — 2~ if n = O (A%Q)
k

Proof. We will show that

/
nzdelog<i)k210g<)\ie) (:)< d > 7 (193)

2 2 2 9
L€ L€

where C}, is an constant depending only on k, is sufficient for recovery whp.

Throughout the proof we will use < to hide constants that depend only on k. Let A5 be an § net
of 5971 with |Nj| < (2)?. We define g(z,y) = (i(y)hi(z) and Ay = Gkl L2(p,)- Fix a truncation
radius R and define L, (w) by

1 n
Ly (w) = Ezg<w'I“yi)l\g(w'wi,yi)lSR (194)
i=1

We will consider the estimator:

W € argmin max |L,(w) — A2 (w - 12))’“| . (195)
wesgd—1 WENs

We will begin by concentrating L,,. First note that by Lemma [.4,
Elg(w- X, Y)?) = E[ge(¥)?h(w - X)% S Af log(3/A1)"" (196)

L

Therefore by Bernstein’s inequality we have that for any w € S9~!, with probability at least 1—2e ™,

(197)
Therefore by a union bound we have that with probability at least 1 — 2e~¢,
%
M log( <> ) dlog(3/6) dloe(3/5
sup |Lo (i) — E[L, (@)]] (4) + pHoe3/0) (198)
wENs n n
Next we bound the effect of truncation on E[L,, (w)]:
[E[Ln(w)] — E[g(w - X, Y)]|
= [Elg(w - X, Y)1jg0w-x.v)>r|
< VE[g(w - X,Y)2|P[|g(w - X,Y)| > R]
<3k /Pllg(w- X,Y)| > R]. (199)
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To control this probability, we use the moment method. By Jensen’s inequality and Gaussian

hypercontractivity we have for all p > 1,

Ellg(w - X, Y)I"] < VE&Y)?]E[hi(Z)*] < E[hi(Z)*] < (2p)"".

Therefore for R > (2¢)*, we can take p = R'/*/(2¢) to get

Pllg(w - X,Y)| > R] < (sz)kp = exp (—;eRl/k> .
Plugging this in gives
Bl ()] - Bly(- X V)] < 3 exp (— 1)
Finally, because the k-th Hermite coefficient of v is A7, we have that
Elg(w- X,Y)] = Af(w - w)".

Combining everything gives that with probability at least 1 — 2e~%:

2 ANk 2 k
£%|Ak(w~w) — A (w - w*)¥|
2 ~\E 2 *\k
< Iax |Ln(w) — A (w - ) |—|—£réz}\>é | Ln(w) — Af(w - w*)¥|

<2 max |Ly(w) — A} (w - w*)"|

’UJGN,;
= 25%% |Ln(w) — E[g(w - X, Y)]|
k
< sup |Ln() — BlLn(@)]] +3* exp (Rl/k)
weNs 4e

[N

Xlog(2 ) "dlog(3/6
SJ los(3) dlon(3/0) dlog(3/5)
n

n

+ 3% exp (—le/k) .

e
Therefore by [DH21, Lemma 25|, we have that

A min(fl — w*||, || +w*|)

k
A2 log( 3 ) " dlog(3/6)
55+\J k ()‘k) —|—Rd10g(3/5) + exp <_feR1/k> )

n n

Now take R = (4elog(3/d))*. Then,

3
2
Ak

) 5dlog(3/(5) N dlog(3/(5)k+1

n n

2 ~ * ~ * )\z log(
A min(||d — w*||, @ +w*[]) 6 +
and taking 6 = O(eA}) and using that 3/6 > log(3/6)" completes the proof.

59

(200)

(201)

(202)

(203)

(204)

(205)

(206)



I Concentration Lemmas
Lemma I.1 (Gaussian Hypercontractivity). Let f be a polynomial of degree k. Then for p > 2,
Exan [ (X)PI7 < (p = 1)F Epor [F(X)?]. (207)
Such moments imply the following tail bound (e.g. see [DNGL23, Lemma 24]):

Lemma 1.2. Let § > 0 and let X be a mean zero random variable satisfying

EIXP] < B2 for p= 20800 (208)

for some k. Then with probability at least 1 — &, | X| < B(ep)*/?.

We will combine this with the following tail bound which can be easily proved with a routine
truncation argument:

Lemma 1.3. Let X,,...,X,, be independent mean zero random wvariables such that for all p > 2,
1Xill,, < Bp*'? for some k and let o = Y 7, E[|X;|%]. Let Y = 327, X;. Then with probability at
least 1 — 26,

Y| <k o/log(1/6) + Blog(1/) log(n/5)k/2. (209)

Proof. Let R be a truncation radius to be chosen later and define X; = Xil)x,1<r- We have that
with probability at least 1 — 8, || X1 < CxBlog*/?(1/8). Therefore by a union bound we have that
with probability at least 1 — &, max; | X;|| < C,Blog"?(n/8) =: R. Let Y = ¥, X;. Then,

|91 - E1v)|| < i |Erxa - EL%]

— Z |E[X:L)x >R8]l

i=1

< 3" VEIXIPIPUIX] > B

<o Y PlIXi] > R]
i=1

< 0. (210)

Finally, because E[Xf] < E[X?], we have by Bernstein’s inequality that with probability at least
1-9,

HY _E[Y] H < o+/10g(1/8) + Rlog(1/6)
< 04/10g(1/6) + Blog"/?(n/5)log(1/9). (211)
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Combining everything gives with probability at least 1 — 26,
Y| < 06 + 0+/log(1/6) + Blog"/?(n/8) log(1/6)
< o/log(1/8) + Blog"?(n/6)log(1/6). (212)
|

We will often use the following lemma from [DNGL23, Lemma 23] when we have tight bounds
on ||X]|; and all moments of Y but only a very loose bound on || X||,:

Lemma L.4. Let X,Y be random variables with [|Y][, < Bp*/? for
. 1 X1l
p = min 2,-log< .
( k X1y

E[XY] < [X], - B-(ep)*/?. (213)

Then,

For matrix concentration we will use the following corollary of [BvH23, Theorem 2.7]:

Lemma I.5. LetY = Y7 | Z; where {Z;}_, are self-adjoint, mean zero, and independent random
matrices. Define:

1/2
o= ||IE[Y2]H§/27 o, = sup E[WYw)?'? R:=E [?elz[a;f]( ||Zz||g] . (214)

v,weSd—1
Then for any R > R o1/ + RV2 and any t > 0, if 6 = Plmax;epy [|Zill2 > R], then with
probability at least 1 —§ — de™t,
|Y —EY ||y — 20 < 0.t/ + RY36%/3¢%/3 1 Rt. (215)
To compute R and the tail probability &, we will use the following lemma:

Lemma 1.6. Let {Z;}7 ;| be a sequence of independent random variables with polynomial tails, i.e.
there exists B, k such that B[|Z;|P]*/? < Bp*/2. Define R = max?_, Z;. Then for any p < log(n)/k,
E[|R[P]Y? < Blog"?(n) and for any § > 0, with probability at least 1 — 8, R < Blog"?*(n/é).

Proof.

1/p n 1/p
BIAP =B x|zl <B Y121 <amt (216
e|n
i=1
Now plugging in p = log(n)/k gives:
p1/p 2 5
1 2
E[RP]V/? —E Kmax |zi|2) } <B (eog(”)> < Blog® (n). (217)
i€[n) k
In addition by Markov’s inequality we have that when p = tze/k ,
1/pk/2\ P
P[R>tB] < (ntp) = nexp (_:@ﬂ/k> : (218)
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