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Abstract. We consider a two-stage planning problem where a fleet of snowplow trucks is
divided among a set of independent regions, each of which then designs routes for efficient
snow removal. The central authority wishes to allocate trucks to improve service quality
across the regions. Stochasticity is introduced by uncertain weather conditions and unfore-
seen failures of snowplow trucks. We study two versions of this problem. The first aims to
minimize the maximum turnaround time (across all regions) that can be sustained with a
user-specified probability. The second seeks to minimize the total expected workload that
has not been completed within a user-specified time frame. We develop algorithms that
solve these problems effectively and demonstrate their practical value through a case appli-
cation to snowplowing operations in Utah, obtaining solutions that significantly outper-
form the allocation currently used in practice.
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1. Introduction

Winter road maintenance is essential for ensuring pub-
lic mobility and safety, especially in areas with long
winters and frequent snowfalls. According to the
Federal Highway Administration, more than 70% of
U.SS. roads are located in regions affected by snowfalls
(FHWA 2020). Furthermore, snow removal and ice con-
trol cost taxpayers over $2.3 billion/year (Han and Yu
2017). Such high expenditures are unsurprising, given
the amount of personnel and mechanization involved in
winter road maintenance. For example, Utah experi-
ences more than 25 snowstorms a year, and the Utah
Department of Transportation (UDOT) employs hun-
dreds of trucks to maintain state-owned roadway facili-
ties, with costs averaging at about $1 million/storm
(UDOT 2021). In the presence of such large costs,
departments of transportation (DOTs) are seeking to
better manage limited resources and meet the public’s
rising level-of-service expectations.

Snow removal operations are too complex to be man-
aged centrally across the entire state road network.
Thus, state DOTs partition their road networks into
regions that independently operate their designated
fleets of vehicles (Perrier, Langevin, and Campbell 2007b;

Kinable, van Hoeve, and Smith 2021). Specifically, each
region designs plowing routes such that all the road lanes
within its jurisdiction are cleaned as efficiently as possi-
ble, an example of what is known as the arc-routing prob-
lem (Golden and Wong 1981). To give one example,
UDOT divides northern Utah into 12 regions, each of
which is equipped with snowplow trucks and crews for
snow removal operations. Figure 1 shows the geographic
partition and allocation of trucks that UDOT used in
2020. Although the state DOT does not coordinate activi-
ties within or between regions, it can use the allocation of
trucks to regions to influence the efficiency of the system
as a whole; for example, the performance metrics in
Figure 1 indicate that region 2 is underequipped and that
service quality could be improved by adjusting the
fleet allocation.

Service quality in region r, given x, allocated trucks, can
be evaluated in two ways. Turnaround time, denoted by
Q,(xy), is a commonly adopted indicator (Salazar-Aguilar,
Langevin, and Laporte 2012; Dowds and Sullivan 2021) of
the efficiency of snow removal operations. A second met-
ric is the number M, (x;) of uncleaned lane miles after
some prespecified time T, the idea being that it is neces-
sary to complete snow removal by this time to ensure safe
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Figure 1. (Color online) Winter Road Maintenance in Northern Utah, Based on the Data for 2020 and Assuming All Trucks Are

Operational

W Depot region 5
1 Bothwell
¢ region 6

5 Huntsville region 7
6 Morg:

side region 8
10 South Logan 4 trucks
11 Wellsville 4 trucks region 9

12 Laketown

4 trucks

== Turnaround Time (min)

(b) (c)

== Uncleaned Lane Miles

region 4 region 4
region 3 region 5 region 3
region 2 region 6 region 2
o =% — — regionl region 7 D egion 1
(=2 ==l S T IR
7 (=]
region 12 region 8 region 12
region 11 region 9 region 11
region 10 region 10

Notes. (a) Northern Utah is divided into R = 12 regions, and each region r is allocated x, trucks. (b) The resulting turnaround time in each region,
Q,(x,), varies from 64 to 187 minutes. (c) After 90 minutes for all 7, the number M, (x,) of uncleaned lane miles in region r varies from 8 to 175. See
an animation of the snowplowing routes: https: // youtu.be/Aqov3wbdWxI. (a) Fleet allocation in 2020. (b) Turnaround times. (c) Uncleaned lane

miles.

access to hospitals, fire stations, and key activity areas.
Both metrics may be subject to uncertain weather condi-
tions: for example, heavy snowfall may significantly
impede the mobility of snowplow trucks (Schultz et al.
2022), thus increasing turnaround times. Snowplowing
operations are also commonly affected (Li et al. 2019,
Iyer et al. 2021) by randomly arising “failures” of trucks
(e.g., mechanical issues or driver no-shows), whose like-
lihood may also be influenced by the weather. In this
paper, we consider two fleet allocation problems that
account for these sources of uncertainty in distinct ways.
Both problems can be stated very concisely. The first
allocates K trucks between R regions to minimize the
maximum turnaround time that can be sustained with a
user-specified probability:

min t
xeZR,, 120
R
s.t. fo =K, 1)
r=1

IP’( maxRQ,A(xr —¢&,) < t) >1—a.
r=1,...,
The quantities &, €{0,1,...,x,} denote truck break-
downs in each region. The second problem allocates K
trucks between R regions to minimize the expected total
(across all regions) uncleaned lane miles:

R
min E [ZMr(xr - gr)‘|
r=1

erIL

)

Thus, problem (1) is a risk-averse formulation that aims
to guarantee a certain level of service quality in the pres-
ence of uncertainty (the parameter a controls the user-
specified probability that the attained objective will not

be exceeded), whereas problem (2) is a risk-neutral for-
mulation that simply optimizes average service quality.
The probability in (1) and the expectation in (2) are taken
over the joint distribution of weather and truck failures.

Before we discuss these two problems in more detail,
it is important to explain how we handle the cost func-
tions Q,(x,) and M,(x,). For any fixed r and x,, both
quantities can be computed by repeatedly solving arc-
routing problems (for different weather scenarios) on
the corresponding network data. Many papers on fleet
management, such as Crainic et al. (2016), model the
resource allocation decision jointly with all subsequent
routing decisions using a two-stage formulation. We do
not do this; rather, we compute the cost functions
entirely offline, and problems (1) and (2) treat all of the
Qy(x,) and M, (x,) values as given inputs.

At first glance, such an approach seems to incur sig-
nificant computational overhead. However, by separat-
ing the routing problems from the resource allocation
decision in this way, the offline computations become
much easier. Under a fixed set of weather conditions,
the values Q,(x,) and M,(x,) are completely unrelated
across regions r (each region has its own network topol-
ogy), and so the routing problems are naturally paralle-
lizable. In the context of northern Utah, a single such
problem can be solved in five seconds (for a small
region) to 30 minutes (for a large one) on a laptop. It is
therefore easy to solve multiple problems concurrently
on different machines. With these computations done,
the actual resource allocation decisions can also be
computed much more efficiently (the approaches we
develop require no more than five minutes). This
approach is also highly modular—if we decide to tweak
the performance metrics (e.g., by changing the threshold
T,) or to include additional relevant constraints in the
routing problems, these changes can be made offline
without rerunning a large two-stage model. The flexibility
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thus afforded in integrating routing and fleet allocation
is, in and of itself, a novel and attractive aspect of our
work.

Thus, the methodological focus of our paper is not on
the routing problems solved by individual regions, but
on the central authority’s resource allocation decision,
as represented by problems (1) and (2). Both problems
are highly nonlinear and nonconvex. In (1), the main dif-
ficulty is the last constraint, which is an example of a
chance constraint (Ahmed and Xie 2018). Chance con-
straints can sometimes be transformed into their deter-
ministic equivalents, but it is well known that these
reformulations may be more difficult to solve (Tang et al.
2020). We find, however, that in the special case where
weather is known and only truck failures are uncertain,
the chance constraint becomes convex, and the problem
can be solved to arbitrary precision using a fast binary
search procedure that exploits a certain exchange prop-
erty of the set of feasible allocations (a “jump system” in
the sense of Murota 2021). The efficiency of this tech-
nique allows it to be used as a heuristic for the general
case of stochastic weather conditions. Essentially, we
find a separate optimal allocation for each individual
weather scenario (treating that scenario as given), evalu-
ate these allocations under uncertain weather, and take
the best. Although this approach does not guarantee an
optimal solution to (1), it proves to be quite effective in
practice.

In Problem (2), the main difficulty is the objective.
Problems of this form are often approached using the
sample average approximation method (Shapiro,
Dentcheva, and Ruszczynski 2021), but this technique
typically assumes that the underlying probability distri-
bution does not depend on the decision variable (as a
result, the decision maker can evaluate any feasible deci-
sion under the same set of sampled scenarios). In our
setting, however, the support of &, depends on x,, mak-
ing it difficult, if not impossible, to pregenerate samples
of truck failures. For this reason, we devise a customized
branch-and-bound algorithm to optimize the noncon-
vex objective directly. At each node, the proposed
method employs linear programming to generate a dis-
crete relaxation, which can be solved efficiently without
resorting to integer programming, using the theory of
optimization over jump systems. The method provably
finds the optimal solution, even in the presence of sto-
chastic weather.

We demonstrate the practical value of the proposed
modeling and algorithmic approaches in a case study
based on real data from northern Utah. First, the solu-
tions obtained by our methods substantially outperform
UDOT'’s current fleet allocation in both the risk-averse
and risk-neutral settings. The solutions to (1) improve
the maximum turnaround time by 22.5%-34.1%. Sec-
ond, the solutions to (2) outperform UDOT’s fleet alloca-
tion, with the improvements ranging between 51.6%

and 70.5%. Both types of solutions also significantly out-
perform a heuristic that allocates trucks proportionally
to lane-miles, showing that network topology plays a
vital role in performance. In the risk-averse setting, we
find that explicitly modeling truck failures helps to
reduce the incidence of extremely unfavorable out-
comes, which not only carry social costs, but also can
attract negative media attention. All of these results are
made interpretable by examining the Utah network in
key regions: essentially, our proposed allocations are
better adapted to certain characteristics of the network
topology (such as long isolated routes) that can cause
significant disruptions in service quality in the event of
truck failure. We also find that these improvements are
easy to implement, requiring only a minor repositioning
of trucks relative to current practice.

2. Literature Review

The four-part survey by Perrier, Langevin, and Camp-
bell (2006a, b, 2007a, b) provides a comprehensive sum-
mary of existing work on the planning, design, and
operations of winter road maintenance. We may
roughly categorize this body of work into three princi-
pal areas—namely, design of regions, fleet allocation,
and snowplow routing. These three classes of problems
are closely connected: the size and network structure of
a region obviously impacts the fleet size needed to serve
it, while routing ensures that the fleet is being utilized
effectively. However, the holistic integration of all three
aspects is very intricate, and many studies resort to sim-
plifications. For example, Kandula and Wright (1997)
and Labelle, Langevin, and Campbell (2002), both of
which focus on the design of regions, use various meth-
ods to estimate deadheading miles without fully solving
the routing problem. Similarly, many studies on
fleet allocation bypass a comprehensive solution to the
routing problem, either by working with a fixed set of
routes (Fu, Trudel, and Kim 2009; Hajibabai and
Ouyang 2016) or by analytically solving stylized models
(Chien, Gao, and Meegoda 2013; Abdel-Malek et al.
2014). In our case, the region design is fixed, but we fully
integrate fleet allocation and routing, with the optimal
(or near-optimal) values of the routing problems serving
as cost functions used to evaluate allocations.

Those studies that do investigate routing tend to look
atitinisolation. One stream of research uses mathemati-
cal programming formulations, such as arc routing
(Dror 2012, Corberan et al. 2021) or constraint program-
ming (Kinable, van Hoeve, and Smith 2021), with vari-
ous practical constraints, such as road priorities (Perrier,
Langevin, and Amaya 2008; Quirion-Blais, Langevin,
and Trépanier 2017), echelon routing (Salazar-Aguilar,
Langevin, and Laporte 2012), and left-turn penalty (Cor-
bett et al. 2020). An array of heuristic algorithms (Dus-
sault et al. 2013; Hajibabai et al. 2014; Liu et al. 2014;
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Quirion-Blais, Trépanier, and Langevin 2015; Holmberg
2019) is available for different variants of the problem.
See also Campbell et al. (2015) for a discussion of recent
modeling and algorithmic advances. In our paper, the
routing problem (given a fixed fleet size) is embedded
inside the computation of Q, and M,, and our research
focus is on the efficient allocation of trucks under these
cost functions. The literature on snowplow routing
could be viewed as complementary to our work because
one could potentially make use of any existing method
to perform the required offline computations.

In practice, weather conditions are often uncertain
(Berrocal et al. 2010), posing a significant challenge for
snowplowing operations. There have been several
efforts to incorporate stochasticity and/or dynamic
environmental conditions into operational models. For
example, Fu, Trudel, and Kim (2009) and Xu and Kwon
(2021) model multiple time periods and allow various
parameters to be updated using simulation models
or, potentially, real-time data. Hajibabai and Ouyang
(2016) consider stochastic factors, such as snowstorm
severity, duration, and impacted area, as well as the pos-
sibility of truck failure. These studies focus on managing
a fixed fleet of trucks within a single region; as such,
their models are all potentially compatible with our
modular framework. We use vehicle routing problems
(VRPs) to compute cost functions because UDOT
expressed strong interest in improving routes and has
only limited access to real-time data. In principle, how-
ever, one could also use these alternate models to com-
pute costs under a given fleet allocation.

The literature on fleet sizing is less abundant in
comparison. Chien, Gao, and Meegoda (2013) and
Abdel-Malek et al. (2014) account for the uncertainty of
snowfall intensity and duration and develop analytical
models to determine the snowplowing fleet that should
be contracted for the upcoming winter. Li, RazaviAlavi,
and AbouRizk (2021) use a simulation-based approach
to assist winter maintenance agencies with designing
short-term plans for fleet sizing and routing. These stud-
ies make simplifying assumptions—for example, they
view trucks as an unlimited resource, which is quite
unrealistic in practice, as DOTs are severely constrained
by fleet sizes and plow driver shortage (MoDOT 2022).
Miller et al. (2018) determine optimal fleet sizes for three
Ohio Department of Transportation districts under sev-
eral different objectives. In their work, each district is
treated individually, and the tradeoffs involved in allo-
cating trucks between regions are not considered.
Lastly, some studies (Jang, Noble, and Hutsel 2010; Sul-
livan et al. 2019) attempt to jointly consider multiple
aspects of winter maintenance, including districting,
fleet allocation, and routing, but these approaches are
completely heuristic in nature, though they may yield
useful insights in numerical experiments.

3. Methodology: Risk-Averse Formulation
Table 1 summarizes notation used in this and subse-
quent sections. This section focuses on Problem (1),
which is approached in two steps. First, in Section 3.1,
we assume that truck failures are the only source of
uncertainty—that is, the weather conditions are known.
We show how the problem can be solved to arbitrary
precision in this setting. Second, in Section 3.2, we
describe our model of weather uncertainty and discuss
how the technique developed in Section 3.1 can be used
as a heuristic to solve this more general case.

3.1. Efficient Solution Under Known Weather

For the time being, we assume that the values Q,(x,) are
fixed and known forall»=1,...,Rand x, =1,...,K. In
words, given that k trucks are available in region r, we
know the turnaround time that will be achieved in that
region. Thus, the weather conditions are fixed, and the
only random variables in (1) are the numbers &, of truck
failures.

We begin by deriving an explicit form for the chance
constraint in (1). Because Q, is nonincreasing with non-
negative range, for f € [Q/(K), Q,(K—1),...,Q,(0)] for
any r, define

Q. '(t) 2 inflk e Z": Qi(k) < 1},

to be the smallest number of trucks whose allocation to
region r would result in a turnaround time below ¢. For
convenience, let Q- !(t) = oo if t < Q,(K) and Q;!(t) =
—oo if £ > Q,(0). Furthermore, denote by F, the cumula-
tive distribution function (CDF) of the stochastic failure
&, Note that, given x = (xy,...,xr), Qx(x, —&,) is a dis-
crete random variable with support {Q:(x;),...,Q,(0)}.
Then, for t € R, we have

R

P(mrax Qr(xr — cfr) < t) = HP(Qr(xr - (E‘r) < t) (3)
r=1
R

=[P -&=2Q7'®) @

R
= HFr(xr - Qr_l(t))r

where (3) holds from the independence of &, and (4)
holds by the definition of Q,!.

As mentioned before, if we assume that each truck
within a region is equally likely to fail, then &, will fol-
low a binomial distribution. In that case,

r=1,..,R

erfQ;‘l(t) X
= " - p)t ", 5
| > (m)m ) 3)

T m=0

IP’( max  Q,(x, — &) < t)
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Table 1. Notation Used Throughout the Paper

Notation Meaning

R Number of regions

r Region index

K Total number of trucks that can be allocated between R regions

X, Number of trucks assigned to region r

&, Number of failures among x, trucks assigned to region r

F, Cumulative distribution function (CDF) of the random variable &,

u Number of snowfall weather scenarios

u Weather scenario index

qu Probability of weather scenario u occurring

Prou Probability of truck failure in region 7 under weather scenario u

a Probability threshold used in risk-averse formulation

Qyulxr) Turnaround time in region r with x, trucks under weather scenario u
o\ (1) Smallest number of trucks assigned to region r attaining a turnaround time below ¢
M, ,(x;) Uncleaned lane miles in region r with x, trucks under weather scenario u
T, Time threshold for region r used in the computation of M, ,

7 Optimized turnaround time across R regions under weather scenario u
x® Optimized truck allocation under weather scenario u

£ Turnaround time achieved by x® under stochastic weather

t* Best turnaround time achieved by any x

T'(x,) Expected value of M,(x, —&,)

T(x,) Greatest convex minorant of I'(x,) with x, € [1,K]

l;[a”byj(x,) Greatest convex minorant of I'(x,) restricted to x, € [a,,b/]

x* Optimized truck allocation obtained from our methods

XNF Optimized truck allocation obtained without considering truck failure
XUDOT Truck allocation currently used by UDOT

XM Truck allocation made proportionally to the number of lane miles in each region

and the chance constraint in (1) becomes solving
R xr_Qfl(t)
R [0 ' =max » log prL—p) "
(Z >p:“(1 —p) T 210 (6) mex 2los| 2 o
r=1 m=0
R ®)
s.t. Zxr =K,
where we must have x, > Q;1(t) forr=1,...,R to make =1

the left-hand side well-defined; otherwise, the left-hand
side of the chance constraint will equal zero. Next, we
apply a log transform to both sides of (6) to obtain the
reformulation

min ¢t

xezZR, >0

6—Q, (D)

R
Zlog
r=1

xyZQr’l(t), r=1,...,R.

Xy
( >p”ﬂ(1 —p)" " | 2log(1—a),
m

m=0

@)

It can be observed that the objective function t is
involved in a nonlinear term Q,!(t), which sets the
lower bound to x, and also appears in the upper limit of
the second sum in the chance constraint. For a fixed
value of f, one can check whether there exists an alloca-
tion x that would satisfy the chance constraint, by

x>Q ), r=1,...,R.

If " > log(1 — a), this means that the chance constraint
can be feasibly satisfied. Given our ability to solve (8)
efficiently, we can find the smallest ¢ for which (6) holds
by using the binary search (Williams 1976) procedure
outlined in Algorithm 1.

Algorithm 1 (A Binary Search Procedure for Problem (7))
Input: Predefined a and optimality tolerance e.
Output: The e-efficient * and x*.

Step 1: Let #; = max,Q,(K), and t, = max,Q,(0). Let
k=1and 7 « 23
Step 2: Solve

R xer;l(Tk) Xy
" = max Zlog Z <m)Pr(1Pr)’

m=0
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Step 3: Repeat
If ¢*>log(l—a), update f, < 74,k «
k+1, 1, < H* and go to Step 2.
Otherwise, update t; « 7y, k — k+1, 7
il and go to Step 2.
Until (¢* > log(1 —a) and £, —t; < €).
Step 4: Return 7, and corresponding x.

To solve (8), we first show that ¢* is the optimal value
of a separable concave function. It is known (An 1997)
that, for fixed n and p, the mapping

Xy = log <Z ( Z)pf(l - pr)”’”>,

m=0

is (piecewise linear) concave in x,. The summand in the
objective of (8) differs mainly in that # is replaced by x,.
However, we can prove a similar property—that is, the
term of interest is concave for x, > Q, (7). It directly fol-
lows that the objective of (8) is separable and concave,
being a sum of R concave functions.

Proposition 1. The function

xr*Qfl(T)
x > log ( Z (Z )p’y”(l - p,)xyfﬂ> ,
m=0

is piecewise-linear concave for x, > Q; (7).

The feasible region of (8) is described by a hyper-
plane bounded from below. We show below that this
set represents a jump system (a concept introduced by
Bouchet and Cunningham 1995), which is a set of inte-
ger points with a certain exchange property, formalized
using the following definitions.

Definition 1. For x,y € Z", a step s from x to y is a vec-
tor s € {0, =1}" such that x + s € [x,y] and ||s||; = 1.

Definition 2. A jump system | CZ" is a nonempty set
satisfying either of the following two conditions:

1. If sisastep from x toy, thenx +s €], or

2. There exist steps s and s” from x to y such that x +
s+s’ €] whilex+s¢].

Proposition 2. The set

J = {xezfj+

R
> x=Kx 2 Qr‘l(f)},

r=1
is a jump system.

Ando, Fujishige, and Naitoh (1995) proposed a class
of greedy algorithms that provably find the optimal
solution to separable convex minimization on jump sys-
tems. Shioura and Tanaka (2007) subsequently proved
that such algorithms terminate in pseudo-polynomial
time. Algorithm 2 gives an instance of such an algorithm
for the problem of optimizing (8). The correctness and

running time of this algorithm follow directly from the
theory of optimization over jump systems.

Algorithm 2 (Greedy Algorithm to Find the Optimal
Solution to (8))
Input: A separable concave function w(x) = Zlle

log (Z’,ZZOQ' o (; )Pi"(l - Pr)"”’”), a finite
jump system J° and a feasible solution x° € J*.
Output: The optimal solution x* to (8).
Step 1: x — x°.
Step 2: If neither of the two conditions below is sat-
isfied, then stop. Otherwise, go to Step 3.
1. There exists a step s such that x+s€]J*
and w(x + s) > w(x).
2. There exists steps s,s” such that x+s¢
J5,x+s+s €] and w(x +s+5") > w(x).
Step 3: Compute

w1 «— max{w(x +s)|x+s €],
w(x +s) > w(x)}, )
wy — max{w(x+s)|x+se¢ ], x+s+5s
eJf, wx+s+s")>wx)},
(10)

where the maximum over the empty set is
defined to be —co.

Step 4: W «— max{w;, wy}. If & = wy, let § be the step
s that attains the maximum of (9), x < x+§
and go to Step 2. If @ =w,, let § and §’ be
the steps s and s’ that attains the maximum
of (10), x <= x +§ + 5" and go to Step 2.

It then follows that Algorithm 1 solves (7) near-
optimally in pseudo-polynomial time. It is known (Sab-
harwal 2019) that binary search has a computational
complexity of O(log(W/e)), where W is the width of the
initial interval and € is the error tolerance. Each iteration
of binary search uses Algorithm 2 to solve an instance of
Problem (8) in pseudo-polynomial time. We state this
result below for completeness.

Proposition 3. Algorithm 1 returns an e-optimal solution
to (7) in pseudo-polynomial time.

3.2. Heuristic Approach for Uncertain Weather
Suppose now that weather conditions are uncertain at the
time when we make the fleet allocation decision. We
assume, however, that this uncertainty is described by a
finite set of scenarios, indexed by =1, ...,U. Each sce-
nario has a probability g,, of happening. In practice, we
use historical data on past snowfalls to define the scenar-
ios and probabilities; see Section 5 for a concrete example.
We now denote by Q, ,(x,) the turnaround time
achieved by x, vehicles in region r under weather sce-
nario u. This models the direct impact of weather on
performance: for example, trucks may be forced to
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reduce their movement speed under more severe
weather conditions, reducing the turnaround time. The
distribution of &, may also depend on u through the fail-
ure probability p;, ,, (in other words, the number of truck
failures is now conditionally binomial given the
weather). As before, we assume that the values Q, ,,(x;),
for all r, u, and x,, are available to us.
With these modifications, (6) becomes

u R [%Qu0 .
unH Z <Tl;>p;r”,1u(1 - Pr,u)xrim > 1-— «,
u=1 r=1 m=0

1)

that is, we first condition on the weather scenario and
then apply the results of Section 3.1. Unfortunately, the
left-hand side of (11) is no longer log-concave, meaning
that (1) can no longer be formulated as a convex integer
program. To provide intuition for why this is the case,
we recall a fact from the theory of continuous optimiza-
tion (Boyd and Vandenberghe 2004, p. 107) that a proba-
bility can be generally guaranteed to be log-concave in
the decision variable only when the underlying proba-
bility density is log-concave (unimodal). Although our
problem is not continuous, we see a similar issue: the
binomial distribution is unimodal, helping to explain
why we saw log-concavity in Section 3.1, but the joint
distribution of weather and truck failures need not be.

At the same time, although (11) is intractable from the
point of view of finding the optimal x,, it becomes easy
to optimize over t when x, is fixed. That is, any allocation
can be made to satisfy the chance constraint: once we fix
X,, a simple binary search will yield the smallest ¢ for
which (11) holds. Thus, an allocation obtained through
other means can still be accurately evaluated in the set-
ting of stochastic weather.

This suggests a heuristic approach that leverages the
developments of Section 3.1 for the known-weather set-
ting. For each u=1,...,U, we run Algorithms 1 and 2
with Q,,, and p, ,, as inputs. Essentially, we find an opti-
mal allocation for each weather scenario individually.
Letting ¥ and 7 be the output of Algorithm 1 for sce-
nario u, we simply discard 7. Instead, we plug x*)
into (11) and compute a different value t* that achieves
(1 — a)-level coverage under stochastic weather, rather
than only under scenario u. We then let u* = arg min, t*)
and return x* = x") as the recommended allocation. The
quantity t* = ) is precisely the turnaround time sus-
tained by x* with probability 1 —a in the stochastic-
weather setting.

The main idea is that, although the number ()
returned by Algorithm 1 may be infeasible under sto-
chastic weather, the actual resource allocation x™ can
still straightforwardly be made to satisfy the correct
chance constraint. Depending on the specific set of sce-
narios that we are given, some 1 may be natural choices

for risk-averse optimization—for example, if there is a
single scenario with the “most severe” weather. In gen-
eral, however, we can simply solve for each u and take
the best allocation. Although this approach can be com-
putationally costly, the cost is also easy to distribute
because we can run different 1 in parallel.

Our practical experience (described in Section 5) has
been that many realistic weather scenarios are quite sim-
ilar (for example, the weather conditions in two scenar-
ios may differ in only one or two regions). Thus, an
allocation that is optimal for scenario 1 will also perform
very well for other scenarios that are similar to ©. Our
heuristic approach was thus able to obtain significant
performance improvements over current practice.

4. Methodology: Risk-Neutral
Formulation

We now consider Problem (2), assuming uncertain
weather from the beginning. As in Section 3.2, we are
given weather scenarios u = 1,. .., U, each with a proba-
bility g, of happening. We denote by M, ,(x,) the lane
miles that have not been cleaned by x, vehicles in T,
time units, conditional on weather scenario u. As before,
we let p., be the truck failure probability in each
scenario.

The objective function may be computed more explic-
itly as

R R u
E lz M, (x, — 5,)] = Z Z qu
r=1

r=1 u=1 k

X

M, u(xy — k)
0

X o
(T

where we condition on the weather scenario as in (11).
Now, (2) is given as an integer program with a nonlinear
and nonconvex objective. Such problems are commonly
tackled using branch and bound (B&B) methods (Burer
and Letchford 2012). The performance of a B&B algo-
rithm depends on its ability to generate good lower
bounds, typically done by solving continuous relaxations
of the original problem. For example, lower bounds for
mixed integer programs are generated by solving linear
programming relaxations (Wolsey 2020), while similar
continuous relaxations are also employed in spatial
B&B methods to tackle integer programs with nonlinear
objectives (Smith and Pantelides 1999; Gerard, K&ppe,
and Louveaux 2017). This idea, however, is not applica-
ble to our setting. Because x, appears in the binomial
coefficients in (12), our objective function is not defined
for noninteger x,, which prevents us from leveraging
continuous relaxations of the problem. Instead, we
design custom discrete relaxations, which can be solved
efficiently. These are discussed in Sections 4.1 and 4.2.
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Section 4.3 gives a full statement of the algorithm, and
Section 4.4 discusses computational cost.

4.1. Initial Lower Bound

Greatest convex minorants are a natural approach to
obtaining a lower bound. For notational convenience,
let

u Xy
rr(xr) = E[Mr(xr - 5r)] = ZQuZMr,u(xr - k)

u=1 k=0
Xr _
: ( k )pl;,u(l _Pr,u)xr kr

denote the summand in the objective (12). Next, con-

sider the greatest convex minorant of I',(x,), defined as
lv"r(xr) = sup{®,(x,) : D, is piecewise convex and
D,(x,) < Ty(x,) for x, € [1,K]}.

Because T',(x,) is additionally nonincreasing and repre-
sents a K-vector (see illustration in Figure 2(a)), it can be
easily computed as the solution to a linear program:

K —
min Y (0(0) ~T4(k)

I,eR¥ k=1
st. T,(k) <T,(k), k=1,...K, (13)
T,(k)—T,(k+1)>T,(k+1)—T,(k+2),

k=1,...,K-2,

where the last set of constraints ensures convexity.
Repeating Proposition 2, we find that

R R
min {;rr(xr) z:l:xr = K}/

xeZR,
is an instance of separable convex minimization on a

jump system, and thus solvable in pseudo-polynomial
time using a greedy algorithm similar to Algorithm 2.
The solution of this problem provides a lower bound on
the optimal value of (2).

4.2. Branching
Let X denote the optimal solution to the convex relaxa-
tion. We select the region

r = arg max{I',(x,) — fr(fr)}/

with the greatest discrepancy between the original and
relaxed objective, and branch on the variable x,- to cre-
ate two subsets of the search space with tighter relaxa-
tions over more restricted intervals. To obtain such
relaxations, let

sup{®;(x,) : O, is piece-wise convex and
O,(x,) < T'i(x))}, if x, € [a,, b, ]

I',(x;), otherwise,

_lar, br]
rr (xr) =

denote the greatest minorant of I';(x,), which is convex
only over the domain [a,,b,] of interest, and otherwise
coincides with I',(x,) (see Figure 2(b) for an illustration).
This minorant can be computed with a linear program
similar to (13), where the last set of convexity constraints
will be specified only for k € [a,,b,]. Because convexity
constraints are relaxed over the remaining domain, the
resulting minorant will provide a tighter relaxation over
the interval [a,, b, ] of interest.

When branching on variable x,., we create two nodes
with search spaces restricted to x-€[1,X+] and
Xr € [X +1,K]. At the former node, we tighten the con-

_[1K] _[LE]
vex relaxation by replacing I',.  (x) withT,.  (x»)in

_[1,K]
the objective. At the latter node, I',.  (x,+) is replaced
Xp+1,

_[x, K]
with T',. (x4+). The described branching procedure

_[6,12]
Figure 2. (Color online) Examples of I',(x;), I';(x,),and T',  (x,) for a Single Region

(a)
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Notes. (a) T,(x,) and T, (x,) over the whole interval. (b) T,(x,) over a restricted interval.
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Figure 3. (Color online) An Illustrative Example of Branching on Variable x,-

(a)

(b) (c)

180 1801 180
160 1601 160
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120 1201 120
100 1001 100
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60 60 60
40 401 40
20 20t 20
0 0 0 y
0 2 4 6 8 10 12 0 2 4 8 10 12 0 2 4 6 8 10 12
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Notes. (a) In this example, we obtain the optimal solution ¥ to the relaxed problem and identify 7* as the index for which the difference between
I',(x,) and T',(x,) is maximized. (b and ¢) We then branch variable x,- at point X,- = 5 and generate two child nodes where the search space of x;-
is restricted to [1,%,-] and [} +1,12], respectively. (a) I';- (5) # I’ (5). (b) x- € [1, 5]. (c) x,- € [6,12].

is illustrated in Figure 3. As we continue to branch and
construct (partially) convex minorants over more and
more restricted domains, we will obtain tighter and
tighter relaxations. This ensures that the gap between
the (partially) convex relaxation and the original non-
convex function decreases monotonically.

Algorithm 3 (Branch-and-Bound Procedure for problem (2))
Initialization: Set the bounds for x, toa, =1,b, = K.
Denote the root node with a relaxation by P°.
Update the node set Q « {P}.
Solve the relaxation on P° using Algorithm 4 in
the e-companion to obtain the optimal solution x°
with LB” and UB'. Update x* « ¥°, UB « UB".
while Q # 0 do
Select the node P* € Q with the smallest lower
bound LB* and solution X to its relaxation,

, R _fa,b] R
,min Z T, (%) ; v=KS (4
and update Q « OQ\{P"}.

_lar,br]
if there exists r such thatI',  (x;) # I':(x,) then
Find the region

= arg max{rr(fr) - fr(fr)}}

Branch on X, and create two nodes:
P’ with a relaxation that coincides with (14)
with by =X
P” with a relaxation that coincides with (14)
witha, =x,+1

for P° in {P’,P"} do
Solve the relaxation on P* using Algorithm 4
in the e-companion to obtain the optimal
solution x° with its LB® and UB°.

if LB° < UB then
Update Q< QU {P°}, x* %", UB « min
{UB, UB*}.
else
Discard P°.
Return the solution x* as the optimal solution to (2).

With the proposed branching rule, the relaxation
solved at each node of the B&B tree is of the form

R
> x= K} (15)

Every such problem represents a convex-separable min-
imization on a jump system, which is specified with a
hyperplane, as well as upper and lower bounds on x,.
As a result, similarly to Problem (8), it can be solved in
pseudo-polynomial time using a greedy algorithm,
which is provided in the e-companion for completeness.

4.3. Outline and Correctness

Finally, we state the outline of the entire B&B method in
Algorithm 3. Specifically, the relaxation at each node is
solved with Algorithm 4 in the e-companion to obtain X
and LB. Plugging x into (12) yields the upper bound UB
for the node.

If the obtained LB is less than the best upper bound
found thus far, UB, then we look for the region r* with
the highest discrepancy between the original and
relaxed objective, and we branch on x,- to create two
new nodes. The procedure is repeated while pruning
nodes that cannot produce a better solution than the
incumbent (e.g., the nodes where LB > UB). After all
remaining nodes have met the termination condition
and cannot be further split, the allocation with the least
UB is returned. Thus, we are able to solve Problem (2)
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exactly, even when both weather and truck failures are
uncertain.

Proposition 4. Algorithm 3 returns the optimal solution
to Problem (2).

4.4. Computational Performance of the Branch-
and-Bound Method

In our experience, the proposed branch-and-bound
method is often able to find the optimal solution in a
very small number of iterations. We illustrate this
behavior on an instance with R = 12 regions. The cost
functions in this instance are based on our case study in
Section 5, but for illustration purposes, we simplify the
problem so that there is only one weather scenario, and
p, = p for all regions . Figure 4(a) reports the total num-
ber of convex relaxations solved by B&B for different
values of p. For comparison, the figure also presents the
number of convex programs that need to be solved via a
simple brute-force partition, involving leil cr problems
of the form (15), with ¢, being the number of subintervals
on which I, is locally convex. We see that, out of thou-
sands of possible convex programs, the proposed method
generally solves no more than 10. For example, when p =
0.04, the B&B method only solves 9 convex relaxations
out of a possible 10,000. When p € {0.10,0.25}, B&B finds
an optimal solution by solving only one convex relaxation
in each instance.

Figure 4(b) shows the B&B tree generated by the algo-
rithm for the instance when p = 0.06. In this case, there
are only five nodes. The problem can be solved quickly
because the greatest convex minorants provide tight
relaxations. Figure 4(c) shows (for different choices of p)
the gaps between the best lower and upper bounds at
each level of the tree; even at the root nodes, the gaps
range only between 0.5% and 7.1%. Thus, the noncon-
vexity of the cost functions does introduce some error into
the solutions, but the relaxation captures enough of the

overall shape of the functions that we are able to make rea-
sonably good tradeoffs between different curves.

5. Case Study: Allocation of Showplow
Trucks in Northern Utah

We demonstrate the practical value of our framework in
a case study based on data from northern Utah. Section
5.1 describes the infrastructure and weather data used
to compute cost functions in different scenarios. Sec-
tions 5.2 and 5.3 present results for problems (1) and (2),
respectively. Section 5.4 compares the two solutions to
each other, illustrating the tradeoff between risk-averse
and risk-neutral allocation. Finally, Section 5.5 discusses
practical implementation of the proposed allocations
through fleet repositioning.

5.1. Infrastructure and Weather Data

In this application, we have K = 61 single-wing plows
allocated over R = 12 regions. For each region, we
extract detailed infrastructure data about the number of
lanes and travel speed on each road. Taking the Wells-
ville region as an example (see Figure 5), the number of
lanes on each road segment determines the minimum
required number of traverses, which is the key input for
optimizing snowplowing routes. We extract truck tra-
jectories from automated vehicle location data to recon-
struct UDOT’s plowing routes and validate the required
number of traverses for each road segment, as well as
travel speeds.

Weather conditions, in each region, can be catego-
rized into three levels (Ye 2009) of snowfall intensity:
light (0.06-0.1 inches/hour (in/hr)), moderate (0.1-0.5
in/hr), and heavy (above 0.5 in/hr). The National Cen-
ters for Environmental Information furnish daily snow-
fall records across the United States through monitoring
stations (NCEI 2023). From this database, we extracted
snowfall data for the 12 Utah regions considered in our
study, recorded between 2019 and 2022 during the

Figure 4. (Color online) Computational Efficiency of B&B Framework and the B&B Tree with p = 0.06, as well as Convergence

of Lower Bound and Upper Bound
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Notes. (a) # of convex programs solved. (b) The B&B tree with p = 0.06. (c) Convergence of UB and LB.
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Figure 5. (Color online) An Illustrative Example of Detailed Infrastructure and Vehicle Location Data for Wellsville Region

Notes. (a) Roadways in Wellsville. (b) Travel speeds. (c) Trajectory data.

months of January, February, March, April, November,
and December. After data cleaning and removal of miss-
ing entries, we were left with snowfall information for
195 distinct days. These 195 instances of snowfall can be
systematically classified into 55 distinct scenarios, each
of which represents a unique combination of weather
conditions for each region (thus, weather is not indepen-
dent across regions).

Figure 6 illustrates the snowfall levels across regions
for each scenario, as well as the frequency with which
each scenario was observed in the data. For ease of visu-
alization, the scenarios are numbered in order of
decreasing frequency; thus, for example, 8% of historical
snowfall instances followed scenario 1, 4% of instances
followed scenario 2, etc. We see that scenario 1 is one of
the mildest in terms of snowfall intensity, whereas sce-
narios 2 and 3 are the most severe. Although there is
clearly some variation, most scenarios involve a combi-
nation of light and moderate snowfall levels, and many
of these combinations are quite similar: for example, sce-
narios 26-33 and 44-51 have similar conditions in many
regions.

To compute Q,,.(x,) and M, ,(x,) for each region r
and weather scenario 1, we transform the snowplow

L

V- Pt lcn@_-

2
3 ¥
%

3
H

e . l_i_?

routing problem into a vehicle routing problem and run
routing heuristics repeatedly to minimize the turn-
around time and uncleaned lane miles, given varying
fleet sizes. A general formulation of this problem is
given in the e-companion for completeness, but a
high-level understanding is sufficient for the present
discussion. As shown in Figure 7, each arc to be cleaned
is augmented with an additional node. The resulting
vehicle routes, which visit all of these nodes, are guaran-
teed to clean all road lanes. Travel costs are calculated
based on assumed vehicle speeds. Many studies have
found that speed is affected by weather severity; for
example, Agarwal, Maze, and Souleyrette (2005) esti-
mated a 7%-9% reduction in speed (relative to the speed
limit) under light snowfall and 11%-15% under heavy
snowfall. A Utah-based study by Schultz et al. (2022)
reported a broader range of reductions, from as low as
3% under light snowfall to as high as 40% under heavy
snowfall. Taking these diverse results into account, we
assume that plowing speed is reduced by 5%, 15%, and
30% of the speed limit under light, moderate, and heavy
snowfall levels, respectively.

Thus, the values of Q, ,(x;) and M, ,(x,) are com-
puted by solving the routing problem, for various fleet

Figure 6. (Color online) The Combination of Snowfall Intensity Across 12 Regions Within Each Individual Scenario (a) and the

Likelihood of Each Snowfall Scenario Occurring (b)
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Figure 7. (Color online) Example Transformation for Wellsville, UT
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Notes. Based on the road network information (a), we create an instance of the arc-routing problem (b), in which the nodes represent intersec-
tions, while the arrows denote lanes between adjacent intersections. The corresponding node-routing problem is obtained using a standard trans-
formation (Pearn, Assad, and Golden 1987; Hajibabai et al. 2014), where “delivery” nodes are inserted in the middle of each arc (c). (a) Wellsville

network. (b) Arc routing problem. (c) Node routing problem.

sizes x,, under the travel speeds prescribed by scenario
u for region r (as seen in Figure 6). These cost functions
are shown in Figure 8. For each r, M, is the number of
uncleaned lane miles after T, = 90 minutes, which is con-
sidered an excellent level of service in providing access
to important locations (Utah Winter Maintenance 2021).
For most regions, M,(x,) is zero for large enough x,, but
this is not always true because the network topology
may make it impossible to clean every road by time T,.
The total number of routing problems to be solved is
fairly large: in theory, we would need to consider every
possible combination of region, fleet size, and snowfall
intensity. In practice, every cost curve in Figure 8 has

flattened out for fleet sizes of 12 or more trucks, so the
actual number of problems to solve is smaller than
3-12-R. Furthermore, the difficulty of these problems
varies widely between regions. Table 2 presents compu-
tation times for three representative regions (smallest,
largest, and medium-sized) and three fleet sizes. We do
not differentiate by weather scenario in this table
because weather only affects the travel costs, not the
problem size. Computational cost tends to decrease
with the fleet size because it is easier to satisfy all of the
demand with more trucks. Some of the individual pro-
blems can be solved in 5seconds or less, whereas others
require upward of 30 minutes. Because these problems

Figure 8. (Color online) Q, and M, Are Computed by Running Vehicle Routing Heuristics, Given Varying Fleet Sizes Under

Light, Moderate, and Heavy Snowfalls
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Notes. (a) Q, for region r given x, operational trucks light moderate heavy. (b) M, for region r given x, operational trucks.
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Table 2. Computation Times for Several Representative

(r, x,) Combinations

Region (ID) Fleet size Computation time (s)
Smallest (5) 2 5.6

Smallest (5) 4 2.1

Smallest (5) 6 0.5
Medium (2) 2 103
Medium (2) 4 173
Medium (2) 6 85

Largest (3) 2 1,739
Largest (3) 4 1,021

Largest (3) 6 833

Note. All computation times were obtained on a machine with an
Intel® Core™ i7-10510U CPU and 16 GB of RAM.

can be easily solved in parallel on different machines, all
of the required offline computation could conceivably
be done in one day.

5.2. Truck Allocation Based on Problem (1)

As described in Section 3.2, we obtain a solution x* to (1)
by running Algorithm 1 for each scenario u. For each of
the 55 allocations thus obtained, we compute the short-
est turnaround time that it can sustain with probability
1 —a, in the uncertain-weather setting, using (11). We
then let x* be the allocation with the shortest turnaround
time among these.

We set the optimality tolerance in Algorithm 1 to € =
0.001 minutes. The failure probabilities p,, , are set to
0.03, 0.06, and 0.09 if the snowfall intensity in region r
under scenario u is light, moderate, or heavy, respec-
tively (thus, vehicles are more likely to fail in more
severe weather). In the following, we consider a variety
of a values. Although x* changes depending on «, we
found that scenarios 5 and 8 consistently produced the
best-performing allocations. Referring back to Figure 6,
we see that scenario 5 has moderate snowfall intensities
in every region, whereas scenario 8 is mostly moderate,

with a few cases of light snowfall. Thus, the most robust
allocations are obtained by assuming conditions that are
somewhat worse than average, but not the worst possi-
ble (scenario 2, which has the most severe weather, pro-
duces overly conservative results).

Figure 9(a) reports the final allocations x* and their
corresponding turnaround times ¢ for different . Three
benchmarks are considered: the allocation xypor cur-
rently used by UDOT; a simple heuristic x;m (“lane
miles”) that allocates trucks proportionally to the num-
ber of lane miles in each region; and a modification of x*
denoted by x{;z (“no failures”) that ignores the possibil-
ity of truck failure. This last allocation is computed in
the same manner as x*, by individually optimizing with
respect to each scenario and taking the best, but with the
additional assumption that p,, =0. Thus, x{y does
account for weather uncertainty, but not for vehicle reli-
ability, allowing us to assess the significance of consid-
ering both types of uncertainty together. Turnaround
times for all three benchmarks are obtained using (11).

We find that x* significantly reduces the maximum
turnaround time compared with xypor, for all a, with
improvements ranging between 22.5% and 34.1%. For
example, UDOT’s allocation can sustain a maximum
turnaround time of 186.8 minutes with a probability of
0.95, whereas x* can sustain 144.6 minutes (an improve-
ment of 22.5%) with the same guarantee. Similarly, x*
surpasses Xy consistently across the entire spectrum of
a values, yielding enhancements ranging from 9.1% to
24.1%. The performance of x* and x3 is much closer,
owing to the fact that the allocations themselves are
often similar, but x* still produces improvements for 9
out of 10 distinct values of «, ranging up to 8.8%. We
will revisit this comparison further down, showing
other ways in which x* is preferable to xy.

It is illustrative to examine the overall performance
distribution for each allocation, rather than just the
objective value. Consider the case a =0.10. For each

(Color online) Performance of e-Optimal Allocations Based on Problem (1) with Different o

(b)

Figure 9.
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snowfall scenario u, we generate 500,000 - g, truck break-
down situations from binomial distributions whose
means depend on u and the allocations xupor, X1m, X\g,
and x*. For every such simulated situation, we record the
turnaround time if it exceeds t* = 128.9 minutes, which is
the objective value achieved by x* under a = 0.10. We
then report the frequencies of such situations, out of the
total sample of 500,000, in Figure 10. For the optimal allo-
cation x*, the total weight of these situations is close to 0.1,
as guaranteed by the model. For xypor, x1m, and x3, it
is, respectively, 1, 0.32, and 0.11. We can immediately see
that xypor has a severe shortage of vehicles in region 2,
whereas xpyv has a shortage in regions 5 and 6. On the
other hand, x* and x}; differ only by a single vehicle,
which x* diverts from region 8 to region 4. The overall
improvement is small, because a reduction in turnaround
time for region 4 is offset by an increase in region 8, but
there is, nonetheless, a net gain.

To provide further insight into these comparisons,
Figure 11, (a) and (b) show the roadways within regions
2 and 6, respectively. It is clear that both regional net-
works suffer from poor connectivity. A single truck fail-
ure will lead to a significant increase in turnaround time

because one of the remaining trucks will then have to
navigate and clear multiple isolated “arms” of the net-
work. For example, in region 2, the turnaround time for
xypor (under a =0.10) will jump up to 167.1 minutes,
even under light snowfall, and 186.8 minutes under
moderate snowfall. To mitigate this risk, x* assigns three
additional trucks to region 2. In this way, network topol-
ogy can force us to allocate additional resources, even to
relatively small regions. The benchmark xiy, which is
calculated solely based on lane miles, assigns only two
trucks to region 6, but the lack of connectivity in the net-
work makes this insufficient.

Figure 12 shows the roadways within regions 3, 4,
and 8. As we saw in Figure 10(d), region 3 has the high-
est frequency of excessive turnaround times, despite the
fact that (under a = 0.10) x* assigns a substantial fleet of
eight trucks to it. This may be due to the fact that (from
Figure 6) this region also has the highest probability of
heavy snowfall (10%). At the same time, even under
severe weather conditions, a single truck failure in
region 3 will only increase the turnaround time by
10minutes, whereas for region 4, there will be a more
substantial escalation of 20.4minutes. For this reason,

Figure 10. (Color online) Frequency of Each Region in Sampling Experiments for Problem (1) with & = 0.10 and

(1, Pm, 1) = (0.03,0.06,0.09)
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Figure 11. (Color online) Responsible Roadways Within Regions 2 and 6

(@)

(b)

Notes. (a) Responsible roadways within region 2. (b) Responsible roadways within region 6.

when x* moves one of the trucks assigned by x} to the
reasonably well-connected region 8, it is preferable to
divert this additional vehicle to region 4, rather than 3.
Let us now compare x* and x3; more closely in the
case a = 0.05, where the two allocations achieve nearly
identical turnaround times. Despite this similarity, the
two allocations produce visibly different performance
distributions. Figure 13(a) shows the empirical distribu-
tion of maximum turnaround times greater than t* =
144.6 minutes from a sample of 500,000 scenarios (in
other words, this is the conditional distribution of turn-
around time, given that it exceeded 144.6). It is clear that
x* is more robust, with a smaller median and lower con-
centration above it. The difference between the two allo-
cations (as seen in Figure 13, (b) and (c)) is that x*
removes two trucks from region 8 and one truck from
each of regions 1 and 3 and adds one truck to regions 6,
7,9, and 11. We have already seen that region 6 is vul-
nerable to truck failures; as for regions 1, 7, 9, and 11,
their road networks are shown in Figure 14, (a)—(d).
Within region 7, a segment of Highway 91 contains five

lanes in both directions. If all three trucks allocated by
x\p are operational, one truck would travel several
times along US91 to clean all the lanes, leaving the
remaining roadways to the other two trucks. A single
failure would increase turnaround time by approxi-
mately 45minutes; with the fourth truck added by x*,
the cost of one failure is reduced to 17 minutes. Simi-
larly, both regions 9 and 11 contain at least one long
roadway off to the side: thus, taking region 11 as an
example, the cost of one truck failure is 53.8 minutes
under x3y, even under light snowfall, but only
17.6minutes under x*. Increasing the fleet in these
regions does not completely eliminate the risk of out-
liers (because it is also possible for two trucks to fail),
but it will reduce costs in “typical” situations.

Finally, we remark on the cost of computing x*. The
average cost of finding an optimal allocation for a single
scenario u is 3.29 seconds across all a values. The prob-
lem appears to be easier for large o values, so the aver-
age cost per scenario is 2.63seconds for a =0.5 and
5.61seconds for a=0.05. Even in the worst case,

Figure 12. (Color online) Responsible Roadways Within Regions 3, 4, and 8
(@)

Notes. (a) Region 3. (b) Region 4. (c) Region 8.




16

Wang et al.: Resource Allocation Applied to Snowplowing Operations
Transportation Science, Articles in Advance, pp. 1-20, © 2024 INFORMS

Figure 13. (Color online) Robustness Comparison and Analysis Between x* and x}; Based on Problem (1) with a = 0.05 and

(1, Pm, 1) = (0.03,0.06,0.09)
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however, we can find allocations for all 55 scenarios in
approximately five minutes (or less, if we compute
them in parallel).

5.3. Truck Allocation Based on Problem (2)

We implement the proposed B&B framework to solve
(2). Unlike the risk-averse formulation, problem (2) does
not have a tunable parameter, so we vary the level of
risk by considering four settings for the truck failure

probabilities. Each setting consists of three possible
values of p,, corresponding to light, moderate, and
heavy snowfall. These numbers are 0.02, 0.04, and 0.06
for setting 1; 0.03, 0.06, and 0.09 for setting 2; 0.04, 0.08,
and 0.12 for setting 3; and 0.05, 0.10, and 0.15 for setting
4. Figure 15(a) provides optimal allocations x* for differ-
ent failure probability settings, whereas Figure 15(b)
compares them against xypor, XM, and X3, computed
analogously to the previous setting. The expected

Figure 14. (Color online) Responsible Roadways Within Regions 1, 3,9, and 11

(@)

(c)

Notes. (a) Region 1. (b) Region 7. (c) Region 9. (d) Region 11.

(d)
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Figure 15. (Color online) Performance of Allocations Based on Problem (2) with Varying Failure Probability Settings
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performance of each allocation is evaluated in the
stochastic-weather setting using (12).

Most of the interesting characteristics of individual
regions have already been discussed in Section 5.2, so
we do not repeat them here, but we briefly summarize
the results. As before, x* consistently outperforms the
three benchmarks. Service quality is improved by
51.6%-70.5% over xypor and 24.8%-47.3% over Xim.
The improvement over xy ranges from 2.7% to 8.2%
(and increases with the failure probability). Overall,
however, the risk-neutral setting is less sensitive to truck
failures than the risk-averse setting. In problem (2), any
improvement in one region is partially offset by a reduc-
tion in another, whereas the risk-averse formulation
rewards us for eliminating large outliers.

As in Section 5.2, we remark on computational cost.
Problem (2) turns out to be easier to solve than (1), with
all four settings requiring less than one second for the
B&B method to return the optimal solution. In fact,
under settings 1, 2, and 4, the optimal solution was
found on the root node, whereas setting 3 required

solving three relaxations. Interestingly, the presence of
weather uncertainty appears to have the effect of
smoothing out some of the nonconvexity of the cost
curves, as these instances require fewer iterations than
the single-scenario example of Section 4.4.

5.4. Comparison of Optimal Solutions for (1)
and (2)

Itis also useful to compare the optimal allocations for Pro-
blems (1) and (2) by assessing the performance of one
solution using the objective of the other model. Because
of space considerations, we present results for two of the
four settings (namely, settings 2 and 3) defined in Section
5.3 for the truck failure probabilities. These comparisons
are shown in Figures 16 and 17. Note that (1) has a differ-
ent solution for each value of o, whereas (2) has only a
single optimal solution per failure setting.

We find that the risk-averse allocations, when evalu-
ated in terms of expected uncleaned lane miles, consis-
tently increase the objective by 25%—-86% (under setting
2) and 22%-76% (under setting 3) relative to optimal.

Figure 16. (Color online) Evaluation of x* to (1) and (2) in Uncleaned Lane Miles (a) and Turnaround Time (b) Under Setting 2

of the Truck Failure Probabilities
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Figure 17. (Color online) Evaluation of x* to (1) and (2) in Uncleaned Lane Miles (a) and Turnaround Time (b) Under Setting 3

of the Failure Probabilities
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Because these ranges are fairly wide, one could poten-
tially use such an analysis to select « if the decision
maker wanted to partially accommodate the second
objective. On the other hand, when the optimal solution
to (2) is evaluated in terms of maximum turnaround
time, the objective value is increased by 13%-25%
(under setting 2) and 10%-20% (under setting 3) relative
to the best risk-averse solution. There is thus a clear tra-
deoff between the two objectives. If the risk tolerance
parameter « is high, the risk-neutral solution can per-
form reasonably well in both settings, but if the decision
maker is greatly concerned about outliers, the risk-
averse solution will be preferable.

5.5. Fleet Repositioning

In the following, we show that our improved truck allo-
cations can be implemented at minimal cost to UDOT,
simply by repositioning a very small number of trucks.

(b)

o P(2)
200f 204% . . oo P(1)| 4
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a

This is done by solving a transportation problem to min-
imize the total travel distance needed to transform
UDOT’s current allocation into the proposed alloca-
tions. The travel distance between any two maintenance
stations is the network-based driving distance queried
from Google Maps. Because of space considerations, we
only consider setting 2 of the truck failure probabilities
in this discussion.

Figure 18(a) presents the least expensive reposition-
ing strategy to transform xypor into allocation x* based
on Problem (1) with o = 0.10. This is achieved by mov-
ing only 4 out of 61 trucks: region 2 will receive one and
two trucks from regions 6 and 10, respectively, and
region 6 will provide one truck to region 3. Similarly,
Figure 18(b) presents the least expensive repositioning
strategy to transform xypor into allocation x* based on
Problem (2). This requires us to move 7 out of 61 trucks:
region 10 will send one truck to region 12; region 6 will

Figure 18. (Color online) The Least-Expensive Truck Repositioning Strategies for Fleet Reassignment Based on Problem (1)
with @ = 0.10 and Problem (2), Under Setting 2 of the Truck Failure Probabilities
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send two trucks to region 3; region 5 will send one truck
to region 4 and another one to region 2; and region 1
will send two trucks to region 2. One additional conclu-
sion that can be drawn from this discussion is that per-
formance is quite sensitive to the resource allocation:
very significant practical impact can be achieved by
making very minimal adjustments to current practice.

However, once the fleet is repositioned, we expect that
x* will remain stable because the weather patterns, the
road network, the partition of the network into regions,
and the available fleet all change fairly slowly, and it is
reasonable to suppose that they will remain constant, at
least for the duration of a single winter season. Regions
generally do not share or exchange vehicles on a short-
term basis, as this would create a problem of accountabil-
ity. UDOT has no protocols in place for shared decision
making, and, in fact, this would defeat the purpose of
partitioning the network in the first place, which is done
to make operations more manageable and to distribute
the responsibility between different teams.

6. Conclusions
We have considered the optimal allocation of snowplow
trucks among a set of independent regions, while
accounting for stochastic weather and truck failures.
Both risk-averse and risk-neutral allocations can be effi-
ciently computed. These allocations are shown to signif-
icantly outperform the UDOT’s current allocation of
trucks in northern Utah, as well as other benchmarks.
Although the developed methodology is applied to
winter road maintenance in Utah, the same framework
can be employed more broadly to allocate trucks for
other practical problems in logistics where a large ser-
vice area is subdivided into multiple regions or districts,
such as waste collection or parking enforcement. More-
over, the developed framework would be applicable
when allocating other types of resources that are subject
to stochastic failures, such as the allocation of heavy
machinery among construction sites with the objective
to minimize the makespan. Our approach is most suit-
able when there is one type of resource with a clear pri-
ority over the others. For example, single-wing plow
trucks represent 85% of UDOT'’s fleet. At the same time,
the assignment of larger trucks (i.e., double-wing and
tow-plow trucks) is fairly restricted to a few major high-
ways. As a result, the allocation of single-wing trucks
has a clear priority, as it is expected to have the highest
impact on the efficiency of snow removal operations.
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