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Abstract. We consider a two-stage planning problem where a fleet of snowplow trucks is 
divided among a set of independent regions, each of which then designs routes for efficient 
snow removal. The central authority wishes to allocate trucks to improve service quality 
across the regions. Stochasticity is introduced by uncertain weather conditions and unfore
seen failures of snowplow trucks. We study two versions of this problem. The first aims to 
minimize the maximum turnaround time (across all regions) that can be sustained with a 
user-specified probability. The second seeks to minimize the total expected workload that 
has not been completed within a user-specified time frame. We develop algorithms that 
solve these problems effectively and demonstrate their practical value through a case appli
cation to snowplowing operations in Utah, obtaining solutions that significantly outper
form the allocation currently used in practice.
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1. Introduction
Winter road maintenance is essential for ensuring pub
lic mobility and safety, especially in areas with long 
winters and frequent snowfalls. According to the 
Federal Highway Administration, more than 70% of 
U.S. roads are located in regions affected by snowfalls 
(FHWA 2020). Furthermore, snow removal and ice con
trol cost taxpayers over $2.3 billion/year (Han and Yu 
2017). Such high expenditures are unsurprising, given 
the amount of personnel and mechanization involved in 
winter road maintenance. For example, Utah experi
ences more than 25 snowstorms a year, and the Utah 
Department of Transportation (UDOT) employs hun
dreds of trucks to maintain state-owned roadway facili
ties, with costs averaging at about $1 million/storm 
(UDOT 2021). In the presence of such large costs, 
departments of transportation (DOTs) are seeking to 
better manage limited resources and meet the public’s 
rising level-of-service expectations. 

Snow removal operations are too complex to be man
aged centrally across the entire state road network. 
Thus, state DOTs partition their road networks into 
regions that independently operate their designated 
fleets of vehicles (Perrier, Langevin, and Campbell 2007b; 

Kinable, van Hoeve, and Smith 2021). Specifically, each 
region designs plowing routes such that all the road lanes 
within its jurisdiction are cleaned as efficiently as possi
ble, an example of what is known as the arc-routing prob
lem (Golden and Wong 1981). To give one example, 
UDOT divides northern Utah into 12 regions, each of 
which is equipped with snowplow trucks and crews for 
snow removal operations. Figure 1 shows the geographic 
partition and allocation of trucks that UDOT used in 
2020. Although the state DOT does not coordinate activi
ties within or between regions, it can use the allocation of 
trucks to regions to influence the efficiency of the system 
as a whole; for example, the performance metrics in 
Figure 1 indicate that region 2 is underequipped and that 
service quality could be improved by adjusting the 
fleet allocation.

Service quality in region r, given xr allocated trucks, can 
be evaluated in two ways. Turnaround time, denoted by 
Qr(xr), is a commonly adopted indicator (Salazar-Aguilar, 
Langevin, and Laporte 2012; Dowds and Sullivan 2021) of 
the efficiency of snow removal operations. A second met
ric is the number Mr(xr) of uncleaned lane miles after 
some prespecified time Tr, the idea being that it is neces
sary to complete snow removal by this time to ensure safe 
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access to hospitals, fire stations, and key activity areas. 
Both metrics may be subject to uncertain weather condi
tions: for example, heavy snowfall may significantly 
impede the mobility of snowplow trucks (Schultz et al. 
2022), thus increasing turnaround times. Snowplowing 
operations are also commonly affected (Li et al. 2019, 
Iyer et al. 2021) by randomly arising “failures” of trucks 
(e.g., mechanical issues or driver no-shows), whose like
lihood may also be influenced by the weather. In this 
paper, we consider two fleet allocation problems that 
account for these sources of uncertainty in distinct ways. 
Both problems can be stated very concisely. The first 
allocates K trucks between R regions to minimize the 
maximum turnaround time that can be sustained with a 
user-specified probability:

min
x∈ZR

++, t≥0
t

s:t:
XR

r�1
xr � K,

P max
r�1, : : : ,R

Qr(xr� ξr) ≤ t
� �

≥ 1� α:

(1) 

The quantities ξr ∈ {0, 1, : : : , xr} denote truck break
downs in each region. The second problem allocates K 
trucks between R regions to minimize the expected total 
(across all regions) uncleaned lane miles:

min
x∈ZR

++

E
XR

r�1
Mr(xr� ξr)

" #

s:t:
XR

r�1
xr � K:

(2) 

Thus, problem (1) is a risk-averse formulation that aims 
to guarantee a certain level of service quality in the pres
ence of uncertainty (the parameter α controls the user- 
specified probability that the attained objective will not 

be exceeded), whereas problem (2) is a risk-neutral for
mulation that simply optimizes average service quality. 
The probability in (1) and the expectation in (2) are taken 
over the joint distribution of weather and truck failures.

Before we discuss these two problems in more detail, 
it is important to explain how we handle the cost func
tions Qr(xr) and Mr(xr). For any fixed r and xr, both 
quantities can be computed by repeatedly solving arc- 
routing problems (for different weather scenarios) on 
the corresponding network data. Many papers on fleet 
management, such as Crainic et al. (2016), model the 
resource allocation decision jointly with all subsequent 
routing decisions using a two-stage formulation. We do 
not do this; rather, we compute the cost functions 
entirely offline, and problems (1) and (2) treat all of the 
Qr(xr) and Mr(xr) values as given inputs.

At first glance, such an approach seems to incur sig
nificant computational overhead. However, by separat
ing the routing problems from the resource allocation 
decision in this way, the offline computations become 
much easier. Under a fixed set of weather conditions, 
the values Qr(xr) and Mr(xr) are completely unrelated 
across regions r (each region has its own network topol
ogy), and so the routing problems are naturally paralle
lizable. In the context of northern Utah, a single such 
problem can be solved in five seconds (for a small 
region) to 30minutes (for a large one) on a laptop. It is 
therefore easy to solve multiple problems concurrently 
on different machines. With these computations done, 
the actual resource allocation decisions can also be 
computed much more efficiently (the approaches we 
develop require no more than five minutes). This 
approach is also highly modular—if we decide to tweak 
the performance metrics (e.g., by changing the threshold 
Tr) or to include additional relevant constraints in the 
routing problems, these changes can be made offline 
without rerunning a large two-stage model. The flexibility 

Figure 1. (Color online) Winter Road Maintenance in Northern Utah, Based on the Data for 2020 and Assuming All Trucks Are 
Operational 

(a) (b) (c)

Notes. (a) Northern Utah is divided into R � 12 regions, and each region r is allocated xr trucks. (b) The resulting turnaround time in each region, 
Qr(xr), varies from 64 to 187 minutes. (c) After 90 minutes for all r, the number Mr(xr) of uncleaned lane miles in region r varies from 8 to 175. See 
an animation of the snowplowing routes: https://youtu.be/Aqov3wbdWxI. (a) Fleet allocation in 2020. (b) Turnaround times. (c) Uncleaned lane 
miles.

Wang et al.: Resource Allocation Applied to Snowplowing Operations 
2 Transportation Science, Articles in Advance, pp. 1–20, © 2024 INFORMS 

https://youtu.be/Aqov3wbdWxI


thus afforded in integrating routing and fleet allocation 
is, in and of itself, a novel and attractive aspect of our 
work.

Thus, the methodological focus of our paper is not on 
the routing problems solved by individual regions, but 
on the central authority’s resource allocation decision, 
as represented by problems (1) and (2). Both problems 
are highly nonlinear and nonconvex. In (1), the main dif
ficulty is the last constraint, which is an example of a 
chance constraint (Ahmed and Xie 2018). Chance con
straints can sometimes be transformed into their deter
ministic equivalents, but it is well known that these 
reformulations may be more difficult to solve (Tang et al. 
2020). We find, however, that in the special case where 
weather is known and only truck failures are uncertain, 
the chance constraint becomes convex, and the problem 
can be solved to arbitrary precision using a fast binary 
search procedure that exploits a certain exchange prop
erty of the set of feasible allocations (a “jump system” in 
the sense of Murota 2021). The efficiency of this tech
nique allows it to be used as a heuristic for the general 
case of stochastic weather conditions. Essentially, we 
find a separate optimal allocation for each individual 
weather scenario (treating that scenario as given), evalu
ate these allocations under uncertain weather, and take 
the best. Although this approach does not guarantee an 
optimal solution to (1), it proves to be quite effective in 
practice.

In Problem (2), the main difficulty is the objective. 
Problems of this form are often approached using the 
sample average approximation method (Shapiro, 
Dentcheva, and Ruszczynski 2021), but this technique 
typically assumes that the underlying probability distri
bution does not depend on the decision variable (as a 
result, the decision maker can evaluate any feasible deci
sion under the same set of sampled scenarios). In our 
setting, however, the support of ξr depends on xr, mak
ing it difficult, if not impossible, to pregenerate samples 
of truck failures. For this reason, we devise a customized 
branch-and-bound algorithm to optimize the noncon
vex objective directly. At each node, the proposed 
method employs linear programming to generate a dis
crete relaxation, which can be solved efficiently without 
resorting to integer programming, using the theory of 
optimization over jump systems. The method provably 
finds the optimal solution, even in the presence of sto
chastic weather.

We demonstrate the practical value of the proposed 
modeling and algorithmic approaches in a case study 
based on real data from northern Utah. First, the solu
tions obtained by our methods substantially outperform 
UDOT’s current fleet allocation in both the risk-averse 
and risk-neutral settings. The solutions to (1) improve 
the maximum turnaround time by 22.5%–34.1%. Sec
ond, the solutions to (2) outperform UDOT’s fleet alloca
tion, with the improvements ranging between 51.6% 

and 70.5%. Both types of solutions also significantly out
perform a heuristic that allocates trucks proportionally 
to lane-miles, showing that network topology plays a 
vital role in performance. In the risk-averse setting, we 
find that explicitly modeling truck failures helps to 
reduce the incidence of extremely unfavorable out
comes, which not only carry social costs, but also can 
attract negative media attention. All of these results are 
made interpretable by examining the Utah network in 
key regions: essentially, our proposed allocations are 
better adapted to certain characteristics of the network 
topology (such as long isolated routes) that can cause 
significant disruptions in service quality in the event of 
truck failure. We also find that these improvements are 
easy to implement, requiring only a minor repositioning 
of trucks relative to current practice.

2. Literature Review
The four-part survey by Perrier, Langevin, and Camp
bell (2006a, b, 2007a, b) provides a comprehensive sum
mary of existing work on the planning, design, and 
operations of winter road maintenance. We may 
roughly categorize this body of work into three princi
pal areas—namely, design of regions, fleet allocation, 
and snowplow routing. These three classes of problems 
are closely connected: the size and network structure of 
a region obviously impacts the fleet size needed to serve 
it, while routing ensures that the fleet is being utilized 
effectively. However, the holistic integration of all three 
aspects is very intricate, and many studies resort to sim
plifications. For example, Kandula and Wright (1997) 
and Labelle, Langevin, and Campbell (2002), both of 
which focus on the design of regions, use various meth
ods to estimate deadheading miles without fully solving 
the routing problem. Similarly, many studies on 
fleet allocation bypass a comprehensive solution to the 
routing problem, either by working with a fixed set of 
routes (Fu, Trudel, and Kim 2009; Hajibabai and 
Ouyang 2016) or by analytically solving stylized models 
(Chien, Gao, and Meegoda 2013; Abdel-Malek et al. 
2014). In our case, the region design is fixed, but we fully 
integrate fleet allocation and routing, with the optimal 
(or near-optimal) values of the routing problems serving 
as cost functions used to evaluate allocations.

Those studies that do investigate routing tend to look 
at it in isolation. One stream of research uses mathemati
cal programming formulations, such as arc routing 
(Dror 2012, Corberán et al. 2021) or constraint program
ming (Kinable, van Hoeve, and Smith 2021), with vari
ous practical constraints, such as road priorities (Perrier, 
Langevin, and Amaya 2008; Quirion-Blais, Langevin, 
and Trépanier 2017), echelon routing (Salazar-Aguilar, 
Langevin, and Laporte 2012), and left-turn penalty (Cor
bett et al. 2020). An array of heuristic algorithms (Dus
sault et al. 2013; Hajibabai et al. 2014; Liu et al. 2014; 
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Quirion-Blais, Trépanier, and Langevin 2015; Holmberg 
2019) is available for different variants of the problem. 
See also Campbell et al. (2015) for a discussion of recent 
modeling and algorithmic advances. In our paper, the 
routing problem (given a fixed fleet size) is embedded 
inside the computation of Qr and Mr, and our research 
focus is on the efficient allocation of trucks under these 
cost functions. The literature on snowplow routing 
could be viewed as complementary to our work because 
one could potentially make use of any existing method 
to perform the required offline computations.

In practice, weather conditions are often uncertain 
(Berrocal et al. 2010), posing a significant challenge for 
snowplowing operations. There have been several 
efforts to incorporate stochasticity and/or dynamic 
environmental conditions into operational models. For 
example, Fu, Trudel, and Kim (2009) and Xu and Kwon 
(2021) model multiple time periods and allow various 
parameters to be updated using simulation models 
or, potentially, real-time data. Hajibabai and Ouyang 
(2016) consider stochastic factors, such as snowstorm 
severity, duration, and impacted area, as well as the pos
sibility of truck failure. These studies focus on managing 
a fixed fleet of trucks within a single region; as such, 
their models are all potentially compatible with our 
modular framework. We use vehicle routing problems 
(VRPs) to compute cost functions because UDOT 
expressed strong interest in improving routes and has 
only limited access to real-time data. In principle, how
ever, one could also use these alternate models to com
pute costs under a given fleet allocation.

The literature on fleet sizing is less abundant in 
comparison. Chien, Gao, and Meegoda (2013) and 
Abdel-Malek et al. (2014) account for the uncertainty of 
snowfall intensity and duration and develop analytical 
models to determine the snowplowing fleet that should 
be contracted for the upcoming winter. Li, RazaviAlavi, 
and AbouRizk (2021) use a simulation-based approach 
to assist winter maintenance agencies with designing 
short-term plans for fleet sizing and routing. These stud
ies make simplifying assumptions—for example, they 
view trucks as an unlimited resource, which is quite 
unrealistic in practice, as DOTs are severely constrained 
by fleet sizes and plow driver shortage (MoDOT 2022). 
Miller et al. (2018) determine optimal fleet sizes for three 
Ohio Department of Transportation districts under sev
eral different objectives. In their work, each district is 
treated individually, and the tradeoffs involved in allo
cating trucks between regions are not considered. 
Lastly, some studies (Jang, Noble, and Hutsel 2010; Sul
livan et al. 2019) attempt to jointly consider multiple 
aspects of winter maintenance, including districting, 
fleet allocation, and routing, but these approaches are 
completely heuristic in nature, though they may yield 
useful insights in numerical experiments.

3. Methodology: Risk-Averse Formulation
Table 1 summarizes notation used in this and subse
quent sections. This section focuses on Problem (1), 
which is approached in two steps. First, in Section 3.1, 
we assume that truck failures are the only source of 
uncertainty—that is, the weather conditions are known. 
We show how the problem can be solved to arbitrary 
precision in this setting. Second, in Section 3.2, we 
describe our model of weather uncertainty and discuss 
how the technique developed in Section 3.1 can be used 
as a heuristic to solve this more general case.

3.1. Efficient Solution Under Known Weather
For the time being, we assume that the values Qr(xr) are 
fixed and known for all r � 1, : : : , R and xr � 1, : : : , K. In 
words, given that k trucks are available in region r, we 
know the turnaround time that will be achieved in that 
region. Thus, the weather conditions are fixed, and the 
only random variables in (1) are the numbers ξr of truck 
failures.

We begin by deriving an explicit form for the chance 
constraint in (1). Because Qr is nonincreasing with non
negative range, for t ∈ [Qr(K), Qr(K� 1), : : : , Qr(0)] for 
any r, define

Q�1
r (t)¢ inf{k ∈ Z+ : Qr(k) ≤ t}, 

to be the smallest number of trucks whose allocation to 
region r would result in a turnaround time below t. For 
convenience, let Q�1

r (t) � ∞ if t < Qr(K) and Q�1
r (t) �

�∞ if t >Qr(0). Furthermore, denote by Fr the cumula
tive distribution function (CDF) of the stochastic failure 
ξr. Note that, given x � (x1, : : : , xR), Qr(xr� ξr) is a dis
crete random variable with support {Qr(xr), : : : , Qr(0)}. 
Then, for t ∈ R, we have

P
�

max
r

Qr(xr� ξr) ≤ t
�
�
YR

r�1
P(Qr(xr� ξr) ≤ t) (3) 

�
YR

r�1
P xr� ξr ≥Q�1

r (t)
� �

(4) 

�
YR

r�1
Fr xr�Q�1

r (t)
� �

, 

where (3) holds from the independence of ξr and (4) 
holds by the definition of Q�1

r .
As mentioned before, if we assume that each truck 

within a region is equally likely to fail, then ξr will fol
low a binomial distribution. In that case,

P max
r�1, ::, R

Qr(xr � ξr) ≤ t
� �

�
YR

r�1

Xxr�Q�1
r (t)

m�0

xr

m

� �

pm
r (1� pr)

xr�m, (5) 
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and the chance constraint in (1) becomes

YR

r�1

Xxr�Q�1
r (t)

m�0

xr
m

� �

pm
r (1� pr)

xr�m

0

@

1

A ≥ 1� α, (6) 

where we must have xr ≥Q�1
r (t) for r � 1, : : : , R to make 

the left-hand side well-defined; otherwise, the left-hand 
side of the chance constraint will equal zero. Next, we 
apply a log transform to both sides of (6) to obtain the 
reformulation

min
x∈ZR

++, t≥0
t

s:t:
XR

r�1
xr�K,

XR

r�1
log

Xxr�Q�1
r (t)

m�0

xr

m

 !

pm
r (1�pr)

xr�m

0

@

1

A≥ log(1�α),

xr≥Q�1
r (t), r�1, : : : ,R: (7) 

It can be observed that the objective function t is 
involved in a nonlinear term Q�1

r (t), which sets the 
lower bound to xr and also appears in the upper limit of 
the second sum in the chance constraint. For a fixed 
value of t, one can check whether there exists an alloca
tion x that would satisfy the chance constraint, by 

solving

ψ∗ �max
x∈ZR

++

XR

r�1
log

Xxr�Q�1
r (t)

m�0

xr

m

 !

pm
r (1� pr)

xr�m

0

@

1

A

s:t:
XR

r�1
xr � K,

xr ≥Q�1
r (t), r � 1, : : : , R:

(8) 

If ψ∗ ≥ log(1� α), this means that the chance constraint 
can be feasibly satisfied. Given our ability to solve (8) 
efficiently, we can find the smallest t for which (6) holds 
by using the binary search (Williams 1976) procedure 
outlined in Algorithm 1.

Algorithm 1 (A Binary Search Procedure for Problem (7))
Input: Predefined α and optimality tolerance ɛ.
Output: The ɛ-efficient t∗ and x∗. 
Step 1: Let tl �maxrQr(K), and tu �maxrQr(0). Let 
k � 1 and τk←

tl+tu
2 .

Step 2: Solve

ψ∗ � max
x∈ZR

++

XR

r�1
log

Xxr�Q�1
r (τk)

m�0

xr

m

� �

pm
r (1� pr)

xr�m

0

@

1

A

s:t:
XR

r�1
xr � K,

xr ≥ Q�1
r (τk), r � 1, : : : , R:

Table 1. Notation Used Throughout the Paper

Notation Meaning

R Number of regions
r Region index
K Total number of trucks that can be allocated between R regions
xr Number of trucks assigned to region r
ξr Number of failures among xr trucks assigned to region r
Fr Cumulative distribution function (CDF) of the random variable ξr
U Number of snowfall weather scenarios
u Weather scenario index
qu Probability of weather scenario u occurring
pr, u Probability of truck failure in region r under weather scenario u
α Probability threshold used in risk-averse formulation
Qr, u(xr) Turnaround time in region r with xr trucks under weather scenario u
Q�1

r (t) Smallest number of trucks assigned to region r attaining a turnaround time below t
Mr, u(xr) Uncleaned lane miles in region r with xr trucks under weather scenario u
Tr Time threshold for region r used in the computation of Mr, u
τ(u) Optimized turnaround time across R regions under weather scenario u
x(u) Optimized truck allocation under weather scenario u
t(u) Turnaround time achieved by x(u) under stochastic weather
t∗ Best turnaround time achieved by any x(u)
Γ(xr) Expected value of Mr(xr � ξr)

Γ
^

(xr) Greatest convex minorant of Γ(xr) with xr ∈ [1, K]

Γ
^[ar , br]

(xr) Greatest convex minorant of Γ(xr) restricted to xr ∈ [ar, br]

x∗ Optimized truck allocation obtained from our methods
x∗NF Optimized truck allocation obtained without considering truck failure
xUDOT Truck allocation currently used by UDOT
xLM Truck allocation made proportionally to the number of lane miles in each region
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Step 3: Repeat
If ψ∗ ≥ log(1� α), update tu← τk, k←
k+ 1,τk←

tl+tu
2 and go to Step 2.

Otherwise, update tl← τk, k← k+ 1,τk←
tl+tu

2 and go to Step 2.
Until (ψ∗ ≥ log(1� α) and tu� tl ≤ ɛ).

Step 4: Return τk and corresponding x.

To solve (8), we first show that ψ∗ is the optimal value 
of a separable concave function. It is known (An 1997) 
that, for fixed n and p, the mapping

xr ⊢→ log
Xxr

m�0

n
m

� �

pm
r (1� pr)

n�m

 !

, 

is (piecewise linear) concave in xr. The summand in the 
objective of (8) differs mainly in that n is replaced by xr. 
However, we can prove a similar property—that is, the 
term of interest is concave for xr ≥Q�1

r (τ). It directly fol
lows that the objective of (8) is separable and concave, 
being a sum of R concave functions.

Proposition 1. The function

xr ⊢→ log
Xxr�Q�1

r (τ)

m�0

xr
m

� �

pm
r (1� pr)

xr�m

0

@

1

A, 

is piecewise-linear concave for xr ≥Q�1
r (τ).

The feasible region of (8) is described by a hyper- 
plane bounded from below. We show below that this 
set represents a jump system (a concept introduced by 
Bouchet and Cunningham 1995), which is a set of inte
ger points with a certain exchange property, formalized 
using the following definitions.

Definition 1. For x, y ∈ Zn, a step s from x to y is a vec
tor s ∈ {0, 61}n such that x+ s ∈ [x, y] and ‖s‖1 � 1:

Definition 2. A jump system J ⊆ Zn is a nonempty set 
satisfying either of the following two conditions: 

1. If s is a step from x to y, then x+ s ∈ J, or
2. There exist steps s and s′ from x to y such that x+

s+ s′ ∈ J while x+ s ∉ J.

Proposition 2. The set

Jτ � x ∈ ZR
++

�
�
�
�
�

XR

r�1
xr � K, xr ≥ Q�1

r (τ)

( )

, 

is a jump system.

Ando, Fujishige, and Naitoh (1995) proposed a class 
of greedy algorithms that provably find the optimal 
solution to separable convex minimization on jump sys
tems. Shioura and Tanaka (2007) subsequently proved 
that such algorithms terminate in pseudo-polynomial 
time. Algorithm 2 gives an instance of such an algorithm 
for the problem of optimizing (8). The correctness and 

running time of this algorithm follow directly from the 
theory of optimization over jump systems.

Algorithm 2 (Greedy Algorithm to Find the Optimal 
Solution to (8))

Input: A separable concave function w(x) �
PR

r�1 

log
�Pxr�Q�1

r (τ)
m�0

�xr
m

�
pm

r (1� pr)
xr�m

�
, a finite 

jump system Jτ and a feasible solution x0 ∈ Jτ.
Output: The optimal solution x∗ to (8).
Step 1: x← x0.
Step 2: If neither of the two conditions below is sat

isfied, then stop. Otherwise, go to Step 3. 
1. There exists a step s such that x+ s ∈ Jτ 
and w(x+ s) > w(x).
2. There exists steps s, s′ such that x+ s ∉ 
Jτ, x+ s+ s′ ∈ Jτ and w(x+ s+ s′) > w(x).

Step 3: Compute

w1 ← max{w(x + s) |x + s ∈ Jτ,
w(x + s) > w(x)}, (9) 

w2 ← max{w(x + s) |x + s ∉ Jτ, x + s + s′

∈ Jτ, w(x + s + s′) > w(x)},
(10) 

where the maximum over the empty set is 
defined to be �∞.

Step 4: ŵ←max{w1, w2}. If ŵ � w1, let ŝ be the step 
s that attains the maximum of (9), x← x+ ŝ 
and go to Step 2. If ŵ � w2, let ŝ and ŝ′ be 
the steps s and s′ that attains the maximum 
of (10), x← x+ ŝ + ŝ′ and go to Step 2.

It then follows that Algorithm 1 solves (7) near- 
optimally in pseudo-polynomial time. It is known (Sab
harwal 2019) that binary search has a computational 
complexity of O(log(W=ɛ)), where W is the width of the 
initial interval and ɛ is the error tolerance. Each iteration 
of binary search uses Algorithm 2 to solve an instance of 
Problem (8) in pseudo-polynomial time. We state this 
result below for completeness.

Proposition 3. Algorithm 1 returns an ɛ-optimal solution 
to (7) in pseudo-polynomial time.

3.2. Heuristic Approach for Uncertain Weather
Suppose now that weather conditions are uncertain at the 
time when we make the fleet allocation decision. We 
assume, however, that this uncertainty is described by a 
finite set of scenarios, indexed by u � 1, : : : , U. Each sce
nario has a probability qu of happening. In practice, we 
use historical data on past snowfalls to define the scenar
ios and probabilities; see Section 5 for a concrete example.

We now denote by Qr, u(xr) the turnaround time 
achieved by xr vehicles in region r under weather sce
nario u. This models the direct impact of weather on 
performance: for example, trucks may be forced to 
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reduce their movement speed under more severe 
weather conditions, reducing the turnaround time. The 
distribution of ξr may also depend on u through the fail
ure probability pr, u (in other words, the number of truck 
failures is now conditionally binomial given the 
weather). As before, we assume that the values Qr, u(xr), 
for all r, u, and xr, are available to us.

With these modifications, (6) becomes

XU

u�1
qu
YR

r�1

Xxr�Q�1
r, u(t)

m�0

xr
m

� �

pm
r, u(1� pr, u)

xr�m

0

@

1

A ≥ 1� α,

(11) 

that is, we first condition on the weather scenario and 
then apply the results of Section 3.1. Unfortunately, the 
left-hand side of (11) is no longer log-concave, meaning 
that (1) can no longer be formulated as a convex integer 
program. To provide intuition for why this is the case, 
we recall a fact from the theory of continuous optimiza
tion (Boyd and Vandenberghe 2004, p. 107) that a proba
bility can be generally guaranteed to be log-concave in 
the decision variable only when the underlying proba
bility density is log-concave (unimodal). Although our 
problem is not continuous, we see a similar issue: the 
binomial distribution is unimodal, helping to explain 
why we saw log-concavity in Section 3.1, but the joint 
distribution of weather and truck failures need not be.

At the same time, although (11) is intractable from the 
point of view of finding the optimal xr, it becomes easy 
to optimize over t when xr is fixed. That is, any allocation 
can be made to satisfy the chance constraint: once we fix 
xr, a simple binary search will yield the smallest t for 
which (11) holds. Thus, an allocation obtained through 
other means can still be accurately evaluated in the set
ting of stochastic weather.

This suggests a heuristic approach that leverages the 
developments of Section 3.1 for the known-weather set
ting. For each u � 1, : : : , U, we run Algorithms 1 and 2
with Qr, u and pr, u as inputs. Essentially, we find an opti
mal allocation for each weather scenario individually. 
Letting x(u) and τ(u) be the output of Algorithm 1 for sce
nario u, we simply discard τ(u). Instead, we plug x(u)
into (11) and compute a different value t(u) that achieves 
(1� α)-level coverage under stochastic weather, rather 
than only under scenario u. We then let u∗ � arg minut(u)
and return x∗ � x(u∗) as the recommended allocation. The 
quantity t∗ � t(u∗) is precisely the turnaround time sus
tained by x∗ with probability 1� α in the stochastic- 
weather setting.

The main idea is that, although the number τ(u)
returned by Algorithm 1 may be infeasible under sto
chastic weather, the actual resource allocation x(u) can 
still straightforwardly be made to satisfy the correct 
chance constraint. Depending on the specific set of sce
narios that we are given, some u may be natural choices 

for risk-averse optimization—for example, if there is a 
single scenario with the “most severe” weather. In gen
eral, however, we can simply solve for each u and take 
the best allocation. Although this approach can be com
putationally costly, the cost is also easy to distribute 
because we can run different u in parallel.

Our practical experience (described in Section 5) has 
been that many realistic weather scenarios are quite sim
ilar (for example, the weather conditions in two scenar
ios may differ in only one or two regions). Thus, an 
allocation that is optimal for scenario u will also perform 
very well for other scenarios that are similar to u. Our 
heuristic approach was thus able to obtain significant 
performance improvements over current practice.

4. Methodology: Risk-Neutral 
Formulation

We now consider Problem (2), assuming uncertain 
weather from the beginning. As in Section 3.2, we are 
given weather scenarios u � 1, : : : , U, each with a proba
bility qu of happening. We denote by Mr, u(xr) the lane 
miles that have not been cleaned by xr vehicles in Tr 
time units, conditional on weather scenario u. As before, 
we let pr, u be the truck failure probability in each 
scenario.

The objective function may be computed more explic
itly as

E
XR

r�1
Mr(xr � ξr)

" #

�
XR

r�1

XU

u�1
qu
Xxr

k�0
Mr, u(xr � k)

·
xr

k

� �

pk
r, u(1� pr, u)

xr�k, (12) 

where we condition on the weather scenario as in (11). 
Now, (2) is given as an integer program with a nonlinear 
and nonconvex objective. Such problems are commonly 
tackled using branch and bound (B&B) methods (Burer 
and Letchford 2012). The performance of a B&B algo
rithm depends on its ability to generate good lower 
bounds, typically done by solving continuous relaxations 
of the original problem. For example, lower bounds for 
mixed integer programs are generated by solving linear 
programming relaxations (Wolsey 2020), while similar 
continuous relaxations are also employed in spatial 
B&B methods to tackle integer programs with nonlinear 
objectives (Smith and Pantelides 1999; Gerard, Köppe, 
and Louveaux 2017). This idea, however, is not applica
ble to our setting. Because xr appears in the binomial 
coefficients in (12), our objective function is not defined 
for noninteger xr, which prevents us from leveraging 
continuous relaxations of the problem. Instead, we 
design custom discrete relaxations, which can be solved 
efficiently. These are discussed in Sections 4.1 and 4.2. 
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Section 4.3 gives a full statement of the algorithm, and 
Section 4.4 discusses computational cost.

4.1. Initial Lower Bound
Greatest convex minorants are a natural approach to 
obtaining a lower bound. For notational convenience, 
let

Γr(xr) � E[Mr(xr � ξr)] �
XU

u�1
qu
Xxr

k�0
Mr, u(xr � k)

·
xr

k

� �

pk
r, u(1� pr, u)

xr�k, 

denote the summand in the objective (12). Next, con
sider the greatest convex minorant of Γr(xr), defined as

Γ
^

r(xr) � sup{Φr(xr) :Φr is piecewise convex and
Φr(xr) ≤ Γr(xr) for xr ∈ [1, K]}:

Because Γ
^

r(xr) is additionally nonincreasing and repre
sents a K-vector (see illustration in Figure 2(a)), it can be 
easily computed as the solution to a linear program:

min
Γ
^

r∈RK
+

XK

k�1
(Γr(k)�Γ

^

r(k))

s:t: Γ
^

r(k) ≤ Γr(k), k� 1, : : : ,K,

Γ
^

r(k)�Γ
^

r(k+1) ≥ Γ
^

r(k+1)�Γ
^

r(k+2),
k� 1, : : : ,K�2,

(13) 

where the last set of constraints ensures convexity. 
Repeating Proposition 2, we find that

min
x∈ZR

++

XR

r�1
Γ
^

r(xr)

�
�
�
�
�

XR

r�1
xr � K

( )

, 

is an instance of separable convex minimization on a 

jump system, and thus solvable in pseudo-polynomial 
time using a greedy algorithm similar to Algorithm 2. 
The solution of this problem provides a lower bound on 
the optimal value of (2).

4.2. Branching
Let x denote the optimal solution to the convex relaxa
tion. We select the region

r∗ � arg max
r
{Γr(xr)� Γ

^

r(xr)}, 

with the greatest discrepancy between the original and 
relaxed objective, and branch on the variable xr∗ to cre
ate two subsets of the search space with tighter relaxa
tions over more restricted intervals. To obtain such 
relaxations, let

Γ
^[ar, br]

r (xr) �

sup{Φr(xr) :Φr is piece-wise convex and
Φr(xr) ≤ Γr(xr)}, if xr ∈ [ar, br]

Γr(xr), otherwise,

8
<

:

denote the greatest minorant of Γr(xr), which is convex 
only over the domain [ar, br] of interest, and otherwise 
coincides with Γr(xr) (see Figure 2(b) for an illustration). 
This minorant can be computed with a linear program 
similar to (13), where the last set of convexity constraints 
will be specified only for k ∈ [ar, br]. Because convexity 
constraints are relaxed over the remaining domain, the 
resulting minorant will provide a tighter relaxation over 
the interval [ar, br] of interest.

When branching on variable xr∗ , we create two nodes 
with search spaces restricted to xr∗ ∈ [1, xr∗ ] and 
xr∗ ∈ [xr∗ + 1, K]. At the former node, we tighten the con

vex relaxation by replacing Γ
^[1, K]

r∗ (xr∗ )with Γ
^[1, xr∗ ]

r∗ (xr∗ ) in 

the objective. At the latter node, Γ
^[1, K]

r∗ (xr∗ ) is replaced 

with Γ
^[xr∗+1, K]

r∗ (xr∗ ). The described branching procedure 

Figure 2. (Color online) Examples of Γr(xr), Γ
^

r(xr), and Γ
^[6, 12]

r (xr) for a Single Region 
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Notes. (a) Γr(xr) and Γ
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r(xr) over the whole interval. (b) Γ
^

r(xr) over a restricted interval.
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is illustrated in Figure 3. As we continue to branch and 
construct (partially) convex minorants over more and 
more restricted domains, we will obtain tighter and 
tighter relaxations. This ensures that the gap between 
the (partially) convex relaxation and the original non
convex function decreases monotonically.

Algorithm 3 (Branch-and-Bound Procedure for problem (2))
Initialization: Set the bounds for xr to ar � 1, br � K.

Denote the root node with a relaxation by P0.
Update the node set Ω← {P0}.
Solve the relaxation on P0 using Algorithm 4 in 
the e-companion to obtain the optimal solution x0 

with LB0 and UB0. Update x∗ ← x0, ÛB←UB0.
while Ω ≠ ∅ do

Select the node P∗ ∈Ω with the smallest lower 
bound LB∗ and solution x to its relaxation,

min
ar ≤xr ≤br

XR

r
Γ
^[ar, br]

r (xr)

�
�
�
�
�

XR

r�1
xr � K

( )

, (14) 

and update Ω←Ω\{P∗}.
if there exists r such that Γ

^[ar, br]

r (xr)≠ Γr(xr) then
Find the region

r∗ � arg max
r
{Γr(xr)� Γ

^

r(xr)};

Branch on xr∗ and create two nodes:
P′ with a relaxation that coincides with (14) 
with br∗ � xr∗

P′′ with a relaxation that coincides with (14) 
with ar∗ � xr∗ + 1

for Ps in {P′,P′′} do
Solve the relaxation on Ps using Algorithm 4 
in the e-companion to obtain the optimal 
solution xs with its LBs and UBs.

if LBs < ÛB then
Update Ω←Ω ∪ {Ps}, x∗ ← xs, ÛB←min 
{ÛB, UBs}.

else
Discard Ps.

Return the solution x∗ as the optimal solution to (2).

With the proposed branching rule, the relaxation 
solved at each node of the B&B tree is of the form

min
ar ≤ xr ≤ br

XR

r
Γ
^[ar, br]

r (xr)

�
�
�
�
�

XR

r�1
xr � K

( )

: (15) 

Every such problem represents a convex-separable min
imization on a jump system, which is specified with a 
hyperplane, as well as upper and lower bounds on xr. 
As a result, similarly to Problem (8), it can be solved in 
pseudo-polynomial time using a greedy algorithm, 
which is provided in the e-companion for completeness.

4.3. Outline and Correctness
Finally, we state the outline of the entire B&B method in 
Algorithm 3. Specifically, the relaxation at each node is 
solved with Algorithm 4 in the e-companion to obtain x 
and LB. Plugging x into (12) yields the upper bound UB 
for the node.

If the obtained LB is less than the best upper bound 
found thus far, ÛB, then we look for the region r∗ with 
the highest discrepancy between the original and 
relaxed objective, and we branch on xr∗ to create two 
new nodes. The procedure is repeated while pruning 
nodes that cannot produce a better solution than the 
incumbent (e.g., the nodes where LB > ÛB). After all 
remaining nodes have met the termination condition 
and cannot be further split, the allocation with the least 
UB is returned. Thus, we are able to solve Problem (2) 

Figure 3. (Color online) An Illustrative Example of Branching on Variable xr∗

(a) (b) (c)

Notes. (a) In this example, we obtain the optimal solution x to the relaxed problem and identify r∗ as the index for which the difference between 
Γr(xr) and Γ

^

r(xr) is maximized. (b and c) We then branch variable xr∗ at point xr∗ � 5 and generate two child nodes where the search space of xr∗

is restricted to [1, xr∗ ] and [xr∗ + 1, 12], respectively. (a) Γr∗ (5) ≠ Γ
^

r∗ (5). (b) xr∗ ∈ [1, 5]. (c) xr∗ ∈ [6, 12].
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exactly, even when both weather and truck failures are 
uncertain.

Proposition 4. Algorithm 3 returns the optimal solution 
to Problem (2).

4.4. Computational Performance of the Branch- 
and-Bound Method

In our experience, the proposed branch-and-bound 
method is often able to find the optimal solution in a 
very small number of iterations. We illustrate this 
behavior on an instance with R � 12 regions. The cost 
functions in this instance are based on our case study in 
Section 5, but for illustration purposes, we simplify the 
problem so that there is only one weather scenario, and 
pr � p for all regions r. Figure 4(a) reports the total num
ber of convex relaxations solved by B&B for different 
values of p. For comparison, the figure also presents the 
number of convex programs that need to be solved via a 
simple brute-force partition, involving 

QR
r�1 cr problems 

of the form (15), with cr being the number of subintervals 
on which Γr is locally convex. We see that, out of thou
sands of possible convex programs, the proposed method 
generally solves no more than 10. For example, when p �
0.04, the B&B method only solves 9 convex relaxations 
out of a possible 10,000. When p ∈ {0:10, 0:25}, B&B finds 
an optimal solution by solving only one convex relaxation 
in each instance.

Figure 4(b) shows the B&B tree generated by the algo
rithm for the instance when p � 0.06. In this case, there 
are only five nodes. The problem can be solved quickly 
because the greatest convex minorants provide tight 
relaxations. Figure 4(c) shows (for different choices of p) 
the gaps between the best lower and upper bounds at 
each level of the tree; even at the root nodes, the gaps 
range only between 0.5% and 7.1%. Thus, the noncon
vexity of the cost functions does introduce some error into 
the solutions, but the relaxation captures enough of the 

overall shape of the functions that we are able to make rea
sonably good tradeoffs between different curves.

5. Case Study: Allocation of Snowplow 
Trucks in Northern Utah

We demonstrate the practical value of our framework in 
a case study based on data from northern Utah. Section 
5.1 describes the infrastructure and weather data used 
to compute cost functions in different scenarios. Sec
tions 5.2 and 5.3 present results for problems (1) and (2), 
respectively. Section 5.4 compares the two solutions to 
each other, illustrating the tradeoff between risk-averse 
and risk-neutral allocation. Finally, Section 5.5 discusses 
practical implementation of the proposed allocations 
through fleet repositioning.

5.1. Infrastructure and Weather Data
In this application, we have K � 61 single-wing plows 
allocated over R � 12 regions. For each region, we 
extract detailed infrastructure data about the number of 
lanes and travel speed on each road. Taking the Wells
ville region as an example (see Figure 5), the number of 
lanes on each road segment determines the minimum 
required number of traverses, which is the key input for 
optimizing snowplowing routes. We extract truck tra
jectories from automated vehicle location data to recon
struct UDOT’s plowing routes and validate the required 
number of traverses for each road segment, as well as 
travel speeds.

Weather conditions, in each region, can be catego
rized into three levels (Ye 2009) of snowfall intensity: 
light (0.06–0.1 inches/hour (in/hr)), moderate (0.1–0.5 
in/hr), and heavy (above 0.5 in/hr). The National Cen
ters for Environmental Information furnish daily snow
fall records across the United States through monitoring 
stations (NCEI 2023). From this database, we extracted 
snowfall data for the 12 Utah regions considered in our 
study, recorded between 2019 and 2022 during the 

Figure 4. (Color online) Computational Efficiency of B&B Framework and the B&B Tree with p � 0.06, as well as Convergence 
of Lower Bound and Upper Bound 

(a) (b) (c)

Notes. (a) # of convex programs solved. (b) The B&B tree with p � 0.06. (c) Convergence of UB and LB.
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months of January, February, March, April, November, 
and December. After data cleaning and removal of miss
ing entries, we were left with snowfall information for 
195 distinct days. These 195 instances of snowfall can be 
systematically classified into 55 distinct scenarios, each 
of which represents a unique combination of weather 
conditions for each region (thus, weather is not indepen
dent across regions).

Figure 6 illustrates the snowfall levels across regions 
for each scenario, as well as the frequency with which 
each scenario was observed in the data. For ease of visu
alization, the scenarios are numbered in order of 
decreasing frequency; thus, for example, 8% of historical 
snowfall instances followed scenario 1, 4% of instances 
followed scenario 2, etc. We see that scenario 1 is one of 
the mildest in terms of snowfall intensity, whereas sce
narios 2 and 3 are the most severe. Although there is 
clearly some variation, most scenarios involve a combi
nation of light and moderate snowfall levels, and many 
of these combinations are quite similar: for example, sce
narios 26–33 and 44–51 have similar conditions in many 
regions.

To compute Qr, u(xr) and Mr, u(xr) for each region r 
and weather scenario u, we transform the snowplow 

routing problem into a vehicle routing problem and run 
routing heuristics repeatedly to minimize the turn
around time and uncleaned lane miles, given varying 
fleet sizes. A general formulation of this problem is 
given in the e-companion for completeness, but a 
high-level understanding is sufficient for the present 
discussion. As shown in Figure 7, each arc to be cleaned 
is augmented with an additional node. The resulting 
vehicle routes, which visit all of these nodes, are guaran
teed to clean all road lanes. Travel costs are calculated 
based on assumed vehicle speeds. Many studies have 
found that speed is affected by weather severity; for 
example, Agarwal, Maze, and Souleyrette (2005) esti
mated a 7%–9% reduction in speed (relative to the speed 
limit) under light snowfall and 11%–15% under heavy 
snowfall. A Utah-based study by Schultz et al. (2022) 
reported a broader range of reductions, from as low as 
3% under light snowfall to as high as 40% under heavy 
snowfall. Taking these diverse results into account, we 
assume that plowing speed is reduced by 5%, 15%, and 
30% of the speed limit under light, moderate, and heavy 
snowfall levels, respectively.

Thus, the values of Qr, u(xr) and Mr, u(xr) are com
puted by solving the routing problem, for various fleet 

Figure 5. (Color online) An Illustrative Example of Detailed Infrastructure and Vehicle Location Data for Wellsville Region 

Notes. (a) Roadways in Wellsville. (b) Travel speeds. (c) Trajectory data.

Figure 6. (Color online) The Combination of Snowfall Intensity Across 12 Regions Within Each Individual Scenario (a) and the 
Likelihood of Each Snowfall Scenario Occurring (b) 

(a) (b)
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sizes xr, under the travel speeds prescribed by scenario 
u for region r (as seen in Figure 6). These cost functions 
are shown in Figure 8. For each r, Mr is the number of 
uncleaned lane miles after Tr � 90minutes, which is con
sidered an excellent level of service in providing access 
to important locations (Utah Winter Maintenance 2021). 
For most regions, Mr(xr) is zero for large enough xr, but 
this is not always true because the network topology 
may make it impossible to clean every road by time Tr.

The total number of routing problems to be solved is 
fairly large: in theory, we would need to consider every 
possible combination of region, fleet size, and snowfall 
intensity. In practice, every cost curve in Figure 8 has 

flattened out for fleet sizes of 12 or more trucks, so the 
actual number of problems to solve is smaller than 
3 · 12 ·R. Furthermore, the difficulty of these problems 
varies widely between regions. Table 2 presents compu
tation times for three representative regions (smallest, 
largest, and medium-sized) and three fleet sizes. We do 
not differentiate by weather scenario in this table 
because weather only affects the travel costs, not the 
problem size. Computational cost tends to decrease 
with the fleet size because it is easier to satisfy all of the 
demand with more trucks. Some of the individual pro
blems can be solved in 5seconds or less, whereas others 
require upward of 30minutes. Because these problems 

Figure 7. (Color online) Example Transformation for Wellsville, UT 

(a) (b) (c)

Notes. Based on the road network information (a), we create an instance of the arc-routing problem (b), in which the nodes represent intersec
tions, while the arrows denote lanes between adjacent intersections. The corresponding node-routing problem is obtained using a standard trans
formation (Pearn, Assad, and Golden 1987; Hajibabai et al. 2014), where “delivery” nodes are inserted in the middle of each arc (c). (a) Wellsville 
network. (b) Arc routing problem. (c) Node routing problem.

Figure 8. (Color online) Qr and Mr Are Computed by Running Vehicle Routing Heuristics, Given Varying Fleet Sizes Under 
Light, Moderate, and Heavy Snowfalls 

Notes. (a) Qr for region r given xr operational trucks light moderate heavy. (b) Mr for region r given xr operational trucks.
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can be easily solved in parallel on different machines, all 
of the required offline computation could conceivably 
be done in one day.

5.2. Truck Allocation Based on Problem (1)
As described in Section 3.2, we obtain a solution x∗ to (1) 
by running Algorithm 1 for each scenario u. For each of 
the 55 allocations thus obtained, we compute the short
est turnaround time that it can sustain with probability 
1� α, in the uncertain-weather setting, using (11). We 
then let x∗ be the allocation with the shortest turnaround 
time among these.

We set the optimality tolerance in Algorithm 1 to ɛ �
0:001 minutes. The failure probabilities pr, u are set to 
0.03, 0.06, and 0.09 if the snowfall intensity in region r 
under scenario u is light, moderate, or heavy, respec
tively (thus, vehicles are more likely to fail in more 
severe weather). In the following, we consider a variety 
of α values. Although x∗ changes depending on α, we 
found that scenarios 5 and 8 consistently produced the 
best-performing allocations. Referring back to Figure 6, 
we see that scenario 5 has moderate snowfall intensities 
in every region, whereas scenario 8 is mostly moderate, 

with a few cases of light snowfall. Thus, the most robust 
allocations are obtained by assuming conditions that are 
somewhat worse than average, but not the worst possi
ble (scenario 2, which has the most severe weather, pro
duces overly conservative results).

Figure 9(a) reports the final allocations x∗ and their 
corresponding turnaround times t for different α. Three 
benchmarks are considered: the allocation xUDOT cur
rently used by UDOT; a simple heuristic xLM (“lane 
miles”) that allocates trucks proportionally to the num
ber of lane miles in each region; and a modification of x∗
denoted by x∗NF (“no failures”) that ignores the possibil
ity of truck failure. This last allocation is computed in 
the same manner as x∗, by individually optimizing with 
respect to each scenario and taking the best, but with the 
additional assumption that pr, u ≡ 0. Thus, x∗NF does 
account for weather uncertainty, but not for vehicle reli
ability, allowing us to assess the significance of consid
ering both types of uncertainty together. Turnaround 
times for all three benchmarks are obtained using (11).

We find that x∗ significantly reduces the maximum 
turnaround time compared with xUDOT, for all α, with 
improvements ranging between 22.5% and 34.1%. For 
example, UDOT’s allocation can sustain a maximum 
turnaround time of 186.8minutes with a probability of 
0.95, whereas x∗ can sustain 144.6minutes (an improve
ment of 22.5%) with the same guarantee. Similarly, x∗
surpasses xLM consistently across the entire spectrum of 
α values, yielding enhancements ranging from 9.1% to 
24.1%. The performance of x∗ and x∗NF is much closer, 
owing to the fact that the allocations themselves are 
often similar, but x∗ still produces improvements for 9 
out of 10 distinct values of α, ranging up to 8.8%. We 
will revisit this comparison further down, showing 
other ways in which x∗ is preferable to x∗NF.

It is illustrative to examine the overall performance 
distribution for each allocation, rather than just the 
objective value. Consider the case α � 0:10. For each 

Table 2. Computation Times for Several Representative 
(r, xr) Combinations

Region (ID) Fleet size Computation time (s)

Smallest (5) 2 5.6
Smallest (5) 4 2.1
Smallest (5) 6 0.5
Medium (2) 2 103
Medium (2) 4 173
Medium (2) 6 85
Largest (3) 2 1,739
Largest (3) 4 1,021
Largest (3) 6 833

Note. All computation times were obtained on a machine with an 
IntelVR CoreTM i7-10510U CPU and 16 GB of RAM.

Figure 9. (Color online) Performance of ɛ-Optimal Allocations Based on Problem (1) with Different α 

(a) (b)

Notes. (a) ɛ-optimal allocations based on (1). (b) Comparing different allocations.
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snowfall scenario u, we generate 500, 000 · qu truck break
down situations from binomial distributions whose 
means depend on u and the allocations xUDOT, xLM, x∗NF, 
and x∗. For every such simulated situation, we record the 
turnaround time if it exceeds t∗ � 128:9 minutes, which is 
the objective value achieved by x∗ under α � 0:10. We 
then report the frequencies of such situations, out of the 
total sample of 500,000, in Figure 10. For the optimal allo
cation x∗, the total weight of these situations is close to 0.1, 
as guaranteed by the model. For xUDOT, xLM, and x∗NF, it 
is, respectively, 1, 0.32, and 0.11. We can immediately see 
that xUDOT has a severe shortage of vehicles in region 2, 
whereas xLM has a shortage in regions 5 and 6. On the 
other hand, x∗ and x∗NF differ only by a single vehicle, 
which x∗ diverts from region 8 to region 4. The overall 
improvement is small, because a reduction in turnaround 
time for region 4 is offset by an increase in region 8, but 
there is, nonetheless, a net gain.

To provide further insight into these comparisons, 
Figure 11, (a) and (b) show the roadways within regions 
2 and 6, respectively. It is clear that both regional net
works suffer from poor connectivity. A single truck fail
ure will lead to a significant increase in turnaround time 

because one of the remaining trucks will then have to 
navigate and clear multiple isolated “arms” of the net
work. For example, in region 2, the turnaround time for 
xUDOT (under α � 0:10) will jump up to 167.1minutes, 
even under light snowfall, and 186.8minutes under 
moderate snowfall. To mitigate this risk, x∗ assigns three 
additional trucks to region 2. In this way, network topol
ogy can force us to allocate additional resources, even to 
relatively small regions. The benchmark xLM, which is 
calculated solely based on lane miles, assigns only two 
trucks to region 6, but the lack of connectivity in the net
work makes this insufficient.

Figure 12 shows the roadways within regions 3, 4, 
and 8. As we saw in Figure 10(d), region 3 has the high
est frequency of excessive turnaround times, despite the 
fact that (under α � 0:10) x∗ assigns a substantial fleet of 
eight trucks to it. This may be due to the fact that (from 
Figure 6) this region also has the highest probability of 
heavy snowfall (10%). At the same time, even under 
severe weather conditions, a single truck failure in 
region 3 will only increase the turnaround time by 
10minutes, whereas for region 4, there will be a more 
substantial escalation of 20.4minutes. For this reason, 

Figure 10. (Color online) Frequency of Each Region in Sampling Experiments for Problem (1) with α � 0:10 and 
(pl, pm, ph) � (0:03, 0:06, 0:09)

(a) (b)

(c) (d)

Notes. Resulting in t > 128.9 for (a) xUDOT, (b) xLM, and (c) x∗NF, as well as (d) x∗. Note that the vertical axis of (a) and (b) has a different scale from 
the others.
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when x∗ moves one of the trucks assigned by x∗NF to the 
reasonably well-connected region 8, it is preferable to 
divert this additional vehicle to region 4, rather than 3.

Let us now compare x∗ and x∗NF more closely in the 
case α � 0:05, where the two allocations achieve nearly 
identical turnaround times. Despite this similarity, the 
two allocations produce visibly different performance 
distributions. Figure 13(a) shows the empirical distribu
tion of maximum turnaround times greater than t∗ �
144:6 minutes from a sample of 500,000 scenarios (in 
other words, this is the conditional distribution of turn
around time, given that it exceeded 144.6). It is clear that 
x∗ is more robust, with a smaller median and lower con
centration above it. The difference between the two allo
cations (as seen in Figure 13, (b) and (c)) is that x∗
removes two trucks from region 8 and one truck from 
each of regions 1 and 3 and adds one truck to regions 6, 
7, 9, and 11. We have already seen that region 6 is vul
nerable to truck failures; as for regions 1, 7, 9, and 11, 
their road networks are shown in Figure 14, (a)–(d). 
Within region 7, a segment of Highway 91 contains five 

lanes in both directions. If all three trucks allocated by 
x∗NF are operational, one truck would travel several 
times along US-91 to clean all the lanes, leaving the 
remaining roadways to the other two trucks. A single 
failure would increase turnaround time by approxi
mately 45minutes; with the fourth truck added by x∗, 
the cost of one failure is reduced to 17minutes. Simi
larly, both regions 9 and 11 contain at least one long 
roadway off to the side: thus, taking region 11 as an 
example, the cost of one truck failure is 53.8minutes 
under x∗NF, even under light snowfall, but only 
17.6minutes under x∗. Increasing the fleet in these 
regions does not completely eliminate the risk of out
liers (because it is also possible for two trucks to fail), 
but it will reduce costs in “typical” situations.

Finally, we remark on the cost of computing x∗. The 
average cost of finding an optimal allocation for a single 
scenario u is 3.29seconds across all α values. The prob
lem appears to be easier for large α values, so the aver
age cost per scenario is 2.63seconds for α � 0:5 and 
5.61seconds for α � 0:05. Even in the worst case, 

Figure 11. (Color online) Responsible Roadways Within Regions 2 and 6 

Notes. (a) Responsible roadways within region 2. (b) Responsible roadways within region 6.

Figure 12. (Color online) Responsible Roadways Within Regions 3, 4, and 8 

Notes. (a) Region 3. (b) Region 4. (c) Region 8.
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however, we can find allocations for all 55 scenarios in 
approximately five minutes (or less, if we compute 
them in parallel).

5.3. Truck Allocation Based on Problem (2)
We implement the proposed B&B framework to solve 
(2). Unlike the risk-averse formulation, problem (2) does 
not have a tunable parameter, so we vary the level of 
risk by considering four settings for the truck failure 

probabilities. Each setting consists of three possible 
values of pr, u corresponding to light, moderate, and 
heavy snowfall. These numbers are 0.02, 0.04, and 0.06 
for setting 1; 0.03, 0.06, and 0.09 for setting 2; 0.04, 0.08, 
and 0.12 for setting 3; and 0.05, 0.10, and 0.15 for setting 
4. Figure 15(a) provides optimal allocations x∗ for differ
ent failure probability settings, whereas Figure 15(b)
compares them against xUDOT, xLM, and x∗NF, computed 
analogously to the previous setting. The expected 

Figure 13. (Color online) Robustness Comparison and Analysis Between x∗ and x∗NF Based on Problem (1) with α � 0:05 and 
(pl, pm, ph) � (0:03, 0:06, 0:09)

(a) (b) (c)

Notes. (a) Distribution of t > 144.6 for x∗NF and x∗. (b) Frequencies of the seven regions resulting in turnaround time greater than 144.6 minutes 
under x∗NF. (c) Frequencies of the seven regions resulting in turnaround time greater than 144.6 minutes under x∗.

Figure 14. (Color online) Responsible Roadways Within Regions 1, 3, 9, and 11 

Notes. (a) Region 1. (b) Region 7. (c) Region 9. (d) Region 11.
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performance of each allocation is evaluated in the 
stochastic-weather setting using (12).

Most of the interesting characteristics of individual 
regions have already been discussed in Section 5.2, so 
we do not repeat them here, but we briefly summarize 
the results. As before, x∗ consistently outperforms the 
three benchmarks. Service quality is improved by 
51.6%–70.5% over xUDOT and 24.8%–47.3% over xLM. 
The improvement over x∗NF ranges from 2.7% to 8.2% 
(and increases with the failure probability). Overall, 
however, the risk-neutral setting is less sensitive to truck 
failures than the risk-averse setting. In problem (2), any 
improvement in one region is partially offset by a reduc
tion in another, whereas the risk-averse formulation 
rewards us for eliminating large outliers.

As in Section 5.2, we remark on computational cost. 
Problem (2) turns out to be easier to solve than (1), with 
all four settings requiring less than one second for the 
B&B method to return the optimal solution. In fact, 
under settings 1, 2, and 4, the optimal solution was 
found on the root node, whereas setting 3 required 

solving three relaxations. Interestingly, the presence of 
weather uncertainty appears to have the effect of 
smoothing out some of the nonconvexity of the cost 
curves, as these instances require fewer iterations than 
the single-scenario example of Section 4.4.

5.4. Comparison of Optimal Solutions for (1) 
and (2)

It is also useful to compare the optimal allocations for Pro
blems (1) and (2) by assessing the performance of one 
solution using the objective of the other model. Because 
of space considerations, we present results for two of the 
four settings (namely, settings 2 and 3) defined in Section 
5.3 for the truck failure probabilities. These comparisons 
are shown in Figures 16 and 17. Note that (1) has a differ
ent solution for each value of α, whereas (2) has only a 
single optimal solution per failure setting.

We find that the risk-averse allocations, when evalu
ated in terms of expected uncleaned lane miles, consis
tently increase the objective by 25%–86% (under setting 
2) and 22%–76% (under setting 3) relative to optimal. 

Figure 15. (Color online) Performance of Allocations Based on Problem (2) with Varying Failure Probability Settings 

(a) (b)

Notes. (a) Optimal allocations based on (2). (b) Comparing different allocations.

Figure 16. (Color online) Evaluation of x∗ to (1) and (2) in Uncleaned Lane Miles (a) and Turnaround Time (b) Under Setting 2 
of the Truck Failure Probabilities 

(a) (b)
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Because these ranges are fairly wide, one could poten
tially use such an analysis to select α if the decision 
maker wanted to partially accommodate the second 
objective. On the other hand, when the optimal solution 
to (2) is evaluated in terms of maximum turnaround 
time, the objective value is increased by 13%–25% 
(under setting 2) and 10%–20% (under setting 3) relative 
to the best risk-averse solution. There is thus a clear tra
deoff between the two objectives. If the risk tolerance 
parameter α is high, the risk-neutral solution can per
form reasonably well in both settings, but if the decision 
maker is greatly concerned about outliers, the risk- 
averse solution will be preferable.

5.5. Fleet Repositioning
In the following, we show that our improved truck allo
cations can be implemented at minimal cost to UDOT, 
simply by repositioning a very small number of trucks. 

This is done by solving a transportation problem to min
imize the total travel distance needed to transform 
UDOT’s current allocation into the proposed alloca
tions. The travel distance between any two maintenance 
stations is the network-based driving distance queried 
from Google Maps. Because of space considerations, we 
only consider setting 2 of the truck failure probabilities 
in this discussion.

Figure 18(a) presents the least expensive reposition
ing strategy to transform xUDOT into allocation x∗ based 
on Problem (1) with α � 0:10. This is achieved by mov
ing only 4 out of 61 trucks: region 2 will receive one and 
two trucks from regions 6 and 10, respectively, and 
region 6 will provide one truck to region 3. Similarly, 
Figure 18(b) presents the least expensive repositioning 
strategy to transform xUDOT into allocation x∗ based on 
Problem (2). This requires us to move 7 out of 61 trucks: 
region 10 will send one truck to region 12; region 6 will 

Figure 17. (Color online) Evaluation of x∗ to (1) and (2) in Uncleaned Lane Miles (a) and Turnaround Time (b) Under Setting 3 
of the Failure Probabilities 

(a) (b)

Figure 18. (Color online) The Least-Expensive Truck Repositioning Strategies for Fleet Reassignment Based on Problem (1) 
with α � 0:10 and Problem (2), Under Setting 2 of the Truck Failure Probabilities 

Notes. (a) Transforming xUDOT into x* based on (1). (b) Transforming xUDOT into x* based on (2).
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send two trucks to region 3; region 5 will send one truck 
to region 4 and another one to region 2; and region 1 
will send two trucks to region 2. One additional conclu
sion that can be drawn from this discussion is that per
formance is quite sensitive to the resource allocation: 
very significant practical impact can be achieved by 
making very minimal adjustments to current practice.

However, once the fleet is repositioned, we expect that 
x∗ will remain stable because the weather patterns, the 
road network, the partition of the network into regions, 
and the available fleet all change fairly slowly, and it is 
reasonable to suppose that they will remain constant, at 
least for the duration of a single winter season. Regions 
generally do not share or exchange vehicles on a short- 
term basis, as this would create a problem of accountabil
ity. UDOT has no protocols in place for shared decision 
making, and, in fact, this would defeat the purpose of 
partitioning the network in the first place, which is done 
to make operations more manageable and to distribute 
the responsibility between different teams.

6. Conclusions
We have considered the optimal allocation of snowplow 
trucks among a set of independent regions, while 
accounting for stochastic weather and truck failures. 
Both risk-averse and risk-neutral allocations can be effi
ciently computed. These allocations are shown to signif
icantly outperform the UDOT’s current allocation of 
trucks in northern Utah, as well as other benchmarks.

Although the developed methodology is applied to 
winter road maintenance in Utah, the same framework 
can be employed more broadly to allocate trucks for 
other practical problems in logistics where a large ser
vice area is subdivided into multiple regions or districts, 
such as waste collection or parking enforcement. More
over, the developed framework would be applicable 
when allocating other types of resources that are subject 
to stochastic failures, such as the allocation of heavy 
machinery among construction sites with the objective 
to minimize the makespan. Our approach is most suit
able when there is one type of resource with a clear pri
ority over the others. For example, single-wing plow 
trucks represent 85% of UDOT’s fleet. At the same time, 
the assignment of larger trucks (i.e., double-wing and 
tow-plow trucks) is fairly restricted to a few major high
ways. As a result, the allocation of single-wing trucks 
has a clear priority, as it is expected to have the highest 
impact on the efficiency of snow removal operations.
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