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A B S T R A C T

In the wake of seismic events, prompt and accurate building damage assessment is crucial
to inform post-disaster interventions and recovery efforts. This paper advances a novel multi-
period planning strategy for post-earthquake building inspections, conceptualizing the task as
a multi-period orienteering problem (MPOP). In this framework, each building selected for
inspection hosts a specific reward indicating its informative value for damage assessment. The
objective is to design inspection routes that maximize damage information acquisition while
adhering to time constraints. After data collection, we utilize a Gaussian process regression
(GPR) model to estimate the damage in uninspected buildings. To validate our approach, we
conduct an earthquake simulation with realistic building information from San Francisco. The
experimental outcomes reveal that our multi-period damage assessment framework maintains
robust performance across diverse scenarios and consistently surpasses conventional period-
by-period inspection strategies, yielding enhanced damage information acquisition and greater
precision in damage estimation. This outcome underscores the effectiveness of our proposed
method in strengthening post-earthquake damage assessment and improving recovery planning.

1. Introduction

Earthquakes are common and devastating natural disasters that frequently occur worldwide (Farooqui et al., 2017). These seismic
events often cause extensive damage to both human lives and man-made infrastructure (Frolova et al., 2017; Dong and Shan, 2013).
After an earthquake, performing a prompt assessment of building damage in the affected region is an imperative task. To guarantee
the precision of building damage information, on-site inspections are regarded as a dependable approach where skilled professionals
are dispatched to the affected buildings to meticulously assess the earthquake-induced damage. These field surveys facilitate a
thorough damage assessment, thereby assisting in well-informed decision-making regarding post-earthquake recovery.

In practice, time and resource constraints limit inspections to all affected buildings within a region. To address this, the research
community advocates for the use of ‘‘representative samples’’. Using this approach, specific building samples are inspected to train a
damage inference model. Subsequently, this model is utilized to estimate damages for the remaining uninspected buildings (Sheibani
and Ou, 2021; Stojadinović et al., 2022; Mangalathu and Jeon, 2020). Emphasizing efficient sampling, Sheibani and Ou (2021)
proposed a clustering method where a building from each cluster acts as a representative data point, reflecting the characteristics
of other buildings within its cluster. This clustering-based approach has received affirmation in subsequent studies for enhancing
sampling efficiency and improving the performance of learning algorithms (Demir et al., 2010; Wu, 2018; Liu and Wu, 2020).
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Fig. 1. A multi-period inspection-based framework for post-seismic regional building damage inference.

Due to constraints imposed by daily working hours, comprehensive building inspections usually extend for multiple periods.
Consequently, it becomes imperative to improve the efficiency of inspection routing and make the best use of the available time
to conduct inspections for more damage information. Some of the related work formulates the inspection routing problem as a
traveling salesman problem or a vehicle routing problem in which all inspections are conducted within one or multiple trips with a
minimum travel distance or time (Lagaros and Karlaftis, 2011). In actuality, inspecting all representative buildings can be impossible
due to strict inspection schedules. To work within these time constraints while maximizing damage data collection, some research
suggests adopting a selective inspection approach to gather as much damage data as possible (Cheraghi et al., 2024). This strategy
frames the inspection routing problem for each period as an orienteering problem, emphasizing the optimization of routes based on
immediate objectives for that specific period. While this period-by-period approach seems effective, it carries the risk of becoming
overly focused on local optimization and potentially missing out on a more globally efficient routing planning.

Departing from this convention, our study introduces a multi-period inspection routing approach. This method embraces a
broader perspective, aiming to maximize damage information collection across multiple periods to conduct regional building
damage estimation (see Fig. 1). In this framework, we begin by employing a clustering algorithm to sample a set of representative
buildings. Each of these selected buildings is then assigned a non-negative reward based on a tailored reward assignment criterion.
Consequently, we determine multi-period inspection routes maximizing reward collection while adhering to daily and cumulative
working-hour constraints. Using the building damage data gathered from inspections along these optimized routes, we proceed to
train a damage inference model to estimate the damage in uninspected buildings within an earthquake-affected region.

Our main contributions focus on:

• An advanced method for post-earthquake damage assessment that combines optimization of inspection routing with machine
learning.
• A fresh perspective on inspection routing, turning it into an MPOP, offering a viable alternative to the conventional
period-by-period approach.
• The introduction of a Lagrangian relaxation method addresses the challenges of routing planning over multiple periods. Paired
with a Gaussian process regression (GPR) model, this aids in making accurate damage estimations in uninspected buildings.
• Method validation on instances with real-world building information data from San Francisco, showing the superiority of
our multi-period inspection routing model. In our tests, our approach performs better than the conventional period-by-period
inspection planning, both in terms of reward gain and damage estimation accuracy.

2. Literature review

This section reviews the literature on post-earthquake building damage assessment using diverse data sources, optimizing
inspection routes for on-site building damage assessment, and routing optimization involving multi-period planning.

2.1. Post-earthquake building damage assessment

2.1.1. Image-based damage assessment
Remote sensing technologies provide access to satellite imagery, enabling extensive coverage for rapid seismic building damage

assessment. Leveraging these images, extensive research integrates computer vision and machine learning to detect earthquake-
induced damage effectively. Ji et al. (2018) develop a convolutional neural network for identifying building collapses, employing
high-resolution satellite images from the 2010 Haiti earthquake. Similarly, Xia et al. (2023) train a convolutional neural network
using high-resolution remote sensing images of buildings before and after the 2023 Turkey earthquake, subsequently applying the
network to assess the extent of building damage in Islahiye. Additional research on post-earthquake damage assessment using remote
sensing images includes studies by Wu et al. (2014), Cha et al. (2018), Chen and Yu (2019), Xu et al. (2019), Ma et al. (2020), Qing
et al. (2022), Xu et al. (2023a), Cui et al. (2022), Wang et al. (2022) and Wang et al. (2023c).
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While the aforementioned research extensively utilizes remote sensing images for post-earthquake damage assessment, it is
noteworthy that most remote sensing images provide only a top-down view of buildings, thus limiting the assessment of facade
damage and other structural details. This constraint significantly affects the depth of damage assessment for impacted buildings.
With the advancement of unmanned aerial vehicle (UAV) technologies, they are increasingly recognized for their capability to
collect comprehensive damage data, including information on facades and ground floors (Levine and Spencer, 2022; Xu et al.,
2023b). Contributions to seismic damage assessment using UAV-captured images include works by Wang et al. (2023b), Xiong
et al. (2020), and Han et al. (2022). Despite UAVs provide detailed insights into building structural conditions, their limitations in
navigating tight spaces may omit crucial information on non-structural elements and occupancy status, such as gas leaks or hazardous
substances. Additionally, varying UAV flight regulations across jurisdictions pose challenges for their universal application after
seismic events (Franke et al., 2018).

Current research on image-based damage assessment mainly offers a basic classification of damage levels, with limited
quantitative analysis of building damage. To improve post-earthquake rescue and relief operations, it is crucial to develop a
comprehensive framework that enables a more accurate evaluation of building damage.

2.1.2. Crowdsourcing-based damage assessment
Crowdsourcing platforms leverage eyewitness reports, offering a swift means to estimate the extent of damage. Pioneering this

initiative, the United States Geological Survey introduced the ‘‘Did You Feel It?’’ online platform in 1999. This platform was designed
to collect seismic intensity data and related damage reports from internet users, processing and archiving this information based on
postal zip codes. Subsequently, these data are used to generate interactive maps (Quitoriano and Wald, 2020).

On the technological front, recent advances in natural language processing enable researchers to acquire earthquake-induced
damage information from textual data. In their investigation, Madichetty and Sridevi (2019) use statistical features of tweets, such
as hashtag frequency and mentions, and keywords pertinent to infrastructure and casualties, to detect damage-related tweets for
the 2015 Nepal earthquake. Xing et al. (2021) employ a character-level convolutional neural network trained using crowdsourced
social media and mobile phone signaling data to estimate the impact of the 2017 Jiuzhaigou earthquake.

Although crowdsourcing offers a cost-effective means to gather damage data, its dependency on subjective input and susceptibil-
ity to data biases diminish its reliability for precise damage estimations. For example, factors such as population density and internet
accessibility influence its reach and representativeness, potentially skewing the data in favor of regions with denser populations or
greater internet penetration (Li et al., 2023; Quitoriano and Wald, 2020). Therefore, crowdsourcing is viewed as a complementary
tool to other methods, such as remote sensing and on-site inspections, which provide finer detail and precision in damage assessment.

2.1.3. Damage assessment through on-site inspection
On-site inspection typically involves trained professionals meticulously evaluating buildings, and providing detailed quantitative

assessments of structural changes due to earthquake-induced ground motions. Although time-consuming and resource-intensive,
on-site inspection is a reliable method for precise damage assessment. After the L’Aquila earthquake on 6 April 2009, over 70,000
buildings were inspected for seismic performance analysis (Indirli et al., 2013). In the aftermath of the 2015 Gorkha earthquake,
more than 30,000 paper assessment forms were utilized to evaluate the safety and damage of residential buildings in the impacted
regions (Didier et al., 2017).

To enhance on-site inspection efficiency and seek accurate damage estimation across affected regions, a method integrating
selective inspections and machine learning is proposed. This involves focusing on carefully selecting representative buildings. The
damage data gathered from the inspections on these buildings is then utilized to train a machine learning model, enabling the
estimation of damage in the remaining uninspected buildings. Sheibani and Ou (2021) and Stojadinović et al. (2022) leverage
k-means clustering to identify a minimal subset of buildings for damage inspection. Wieland et al. (2012) initially categorizes
the entire building population into distinct sub-populations and then utilize a random sampling approach to select representative
buildings. Tamang et al. (2023) introduce a stratified purpose sampling technique to select a representative set of samples. In our
work, we apply a k-means clustering algorithm used in the work by Sheibani et al. (2022) to group all the buildings into distinct
clusters, and from each cluster, one building is selected as a representative building to be potentially inspected.

Supervised learning techniques have shown that building damage in uninspected structures can be reliably estimated using data
from a small subset of inspected buildings (Kovačević et al., 2018; Kourehpaz and Molina Hutt, 2022). These methods typically
involve training a damage estimation model using collected damage data and subsequently applying the trained model to assess
damage in uninspected buildings. Various supervised learning algorithms have been employed to predict seismic damage on a
regional scale. For instance, studying the 2015 Nepal earthquake, which resulted in over $7 billion in damage and loss, Ghimire
et al. (2022) compare a set of algorithms including linear regression, support vector regression, and gradient boosting. They find
that the random forest regression outperforms the others in terms of predictive accuracy. Mangalathu et al. (2020) analyze building
damage data from the 2014 Napa, CA earthquake, revealing that random forest algorithms deliver superior accuracy on the specific
case.

While ensemble methods such as random forest have demonstrated effectiveness in predicting damage, the uncertainty in
predictions from ensemble tree-based models relies on the variability among weak learners, specifically decision trees (Coulston
et al., 2016). In contrast, GPR models stand out due to their ability to quantify prediction uncertainties analytically by capturing
distributions over predicted outputs (Schulz et al., 2018). This potentially informs decision-making by providing confidence levels
for damage predictions in uninspected buildings. The non-parametric nature of GPR models allows for flexible data fitting without
imposing strict assumptions about damage patterns (Williams and Rasmussen, 2006). Their proficiency in delivering dependable
predictions in post-disaster scenarios has established their significance in regional building damage assessment (Sheibani and Ou,
2021; Sheibani et al., 2022; Bodenmann et al., 2023; Cheraghi et al., 2024). Recognizing the strengths of GPR in this domain, we
choose it for our work on post-earthquake damage estimation.
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2.2. On-site inspection route optimization

Designing efficient inspection routes, considering time constraints, to collect damage data from identified representative buildings
is a critical yet underexplored aspect within the framework of damage assessment through on-site inspection. Wieland et al. (2012)
treat the task of visiting all representative buildings as a Traveling Salesman Problem, aiming to minimize both costs and time spent
in the field. Similarly, Nagasawa et al. (2021) determine traveling paths for a fleet of UAVs to implement post-disaster building
inspections by solving a generalization of the Traveling Salesman Problem. Yet, due to realistic time constraints, it is often infeasible
to inspect all representative buildings within a single trip. On the contrary, Sheibani et al. (2022) acknowledge these time constraints
and adopt a day-by-day inspection strategy, iteratively training a GPR model until reaching a desired accuracy. However, a notable
drawback of this method is its day-to-day focus, which tends to optimize inspection routes in isolation rather than as a coordinated
sequence.

Oruc and Kara (2018) propose a bi-objective mathematical model to optimize routes for drones and motorcycles inspecting
population centers and road segments in Istanbul’s Kartal district in Turkey. The first objective maximizes the value added by
assessing road segments, while the second maximizes the profit from inspecting points of interest. Wang et al. (2023a) formulate
a D-optimal orienteering problem to identify the optimal inspection route, aiming to maximize the quality of damage information
obtained from the surveyed buildings. The proposed model is optimally solved using both row-generation and column-generation
techniques. The focus of both references is exclusively on optimizing the inspection routes for a single period.

2.3. Multi-period routing optimization

Our research focuses on multi-period routing optimization, a topic that has been extensively explored in existing literature. Neves-
Moreira et al. (2020) propose a multi-period VRP considering refueling decisions to minimize fuel consumption costs. Dayarian et al.
(2016) tackle a real-world production collection issue with demand fluctuations across periods, formulating it as a multi-period VRP
to devise a tactical routing plan ensuring given levels of service quality. Zhang et al. (2024) introduce a multi-period VRP with time
windows for drug distribution during epidemics, aiming to minimize total travel time and psychological penalty costs for affected
areas.

Larrain et al. (2019) address a multi-period VRP with delivery due dates, where each customer is associated with a release
and due date indicating goods availability and visit deadline. Using a variable MIP neighborhood descent algorithm, they aim to
minimize distribution costs and delays. Laganà et al. (2021) tackle multi-period routing for postal services, proposing an adaptive
large neighborhood search heuristic to minimize routing costs. Qin et al. (2015) propose a multi-period inspector scheduling problem
and develop a tabu search heuristic to optimize routes for professional inspectors conducting on-site inspections at supplier factories
before shipment.

Kundu et al. (2022) offer a comprehensive review of literature on disaster logistics management, highlighting a significant
emphasis on single-period planning for disaster relief operations within the domain. However, the exploration of multi-period
planning studies in disaster management remains limited. Sadeghi et al. (2023) develop a multi-period VRP aimed at optimizing
water delivery in post-disaster humanitarian logistics. Additionally, de Castro Pena et al. (2023) propose a multi-period routing
problem for cleaning debris following disasters.

In our study, we consider an inspection routing problem spanning multiple periods to conduct building damage assessment
following an earthquake. The problem is formulated as a multi-period orienteering problem aiming to optimize inspection routes
to maximize the accumulation of cumulative damage information. The strategic route planning across multiple periods, as opposed
to the period-by-period routing approach commonly used in existing studies, enables more efficient utilization of time resources
and holds the potential to increase both the total number of inspections conducted and the amount of collected damage data.
Consequently, it can lead to improved damage estimation based on the data gathered during inspections.

3. Experimental data and reward assignment

In this section, we first introduce the experimental data generated through the simulation of a hypothetical earthquake scenario,
utilizing realistic building information from the San Francisco Bay area testbed. Since the damage inspection routing in our work
is formulated as a multi-period orienteering problem, the reward for each inspection becomes an indispensable input. As a result,
we proceed to determine reward association in building inspection.

3.1. Earthquake simulation

We simulate a synthetic earthquake scenario using the regional Workflow for Hazard And Loss Estimation (rWHALE) (Elhaddad
et al., 2019; Lu et al., 2020). This scenario replicates an earthquake event with a magnitude of 7.0 along the Hayward fault, with
its epicenter in Oakland, CA. The ground motions are generated from physics-based models based on the SW4 finite difference
program (Petersson and Sjogreen, 2017), developed by Lawrence Livermore National Laboratory (Rodgers et al., 2020).

Thirty-nine simulated seismograms are evenly distributed across the region, which are subsequently assigned to individual
buildings using the k-dimensional tree algorithm (Elhaddad et al., 2019). These ground motion time histories are then applied
to shear building models (Lu and Guan, 2017), constructed based on building data sourced from UrbanSim (Waddell, 2002) and the
testbed provided by NHERI SimCenter (Zsarnóczay et al., 2023) available at the DesignSafe data repository (Rathje et al., 2017).
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Table 1
Building attributes and ground motion indices.

Building attributes Ground motion indices

Construction year Sa(T1)

No. of stories Arias
Floor area Fajfar
Occupancy type Spectrum intensity
Latitude Signal IQR
Longitude Signal kurtosis

Fig. 2. Geospatial distribution of building characteristics and ground motions in the San Francisco testbed: (a) by construction year and (b) by assigned peak
ground accelerations (PGAs) from a grid of seismograms.

To address the inherent uncertainty in the building models, we randomize the structural characteristics such as the story height,
initial stiffness, and damping ratio. Through time history analysis, we calculate engineering demand parameters, including maximum
acceleration, inter-story drift ratio, and residual drift. The economic loss estimation is then carried out using the method proposed
by Zeng et al. (2016) based on FEMA-P58 (FEMA, 2019). The loss ratio is a measure of repair-to-replacement costs, with a value of
one indicating total loss.

3.2. Dataset characteristics

For predicting building damage, supervised learning models utilize paired input3output data. Sheibani and Ou (2021) demon-
strate that a synergistic combination of readily available building attributes and specific ground motion (GM) indices aptly
characterizes building inventory data for regional damage and loss predictions via a GPR model.

This study identifies several intensity measures that have a robust correlation with structural damage. Among these are the
spectral acceleration at the structure’s fundamental period (Sa(T1)), the Arias intensity (Arias, 1970), Fajfar intensity (Fajfar et al.,
1990), and spectrum intensity (Housner, 1952). Moreover, the dataset incorporates statistical attributes of GMs in the time domain,
such as the Interquartile Range (IQR) and kurtosis.

Table 1 presents the set of 12 features that combine building attributes with GM characteristics. Additionally, the economic
loss ratio values derived from simulations are used as damage observations, serving as the labels for the dataset. Fig. 2 displays
the distribution of construction years of buildings and the peak ground acceleration represented as a fraction of the gravitational
acceleration. Meanwhile, Fig. 3 provides a visual depiction of building heights proportional to the number of stories, along with
spectral acceleration, Sa(T1), serving as an intensity metric that accommodates the attributes of GMs and structural properties.

In our study, we randomly select 20,000 buildings from the testbed, dividing them evenly into two sets: ā and ā 2. The former
serves as the data pool for representative sampling for on-site inspection, while the latter is exclusively reserved for evaluating the
proposed damage inference framework.

3.3. Representative building selection and inspection reward allocation

This section describes our procedure for identifying representative buildings from ā using clustering techniques and assigning
each an inspection reward, which is instrumental for damage inspection routing.
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Fig. 3. Spectral acceleration Sa(T1) of buildings in the San Francisco testbed, with building heights scaled in proportion to the number of stories.

We employ a clustering approach to group analogous building data and minimize inter-group overlap, aiming to derive distinct
centroids from the dataset ā (Ezugwu et al., 2020). A detailed exploration of inspection reward allocation can be found in
Appendix A. Let Ci ⊂ ā denote the ith cluster. The clustering objective can be formalized as:

min
{�1 ,�2 ,&,�k}

{C1 ,C2 ,&,Ck}

k1

i=1

1

x*Ci

‖x − �i‖2

where �i represents the centroid of the ith cluster, and k is the total number of clusters. This objective seeks to minimize the
variance within clusters, ensuring that the chosen centroids are truly representative. Utilizing the k-means++ algorithm (Arthur
and Vassilvitskii, 2006), we determine these centroids, and the buildings closest to them are selected as candidates for inspection,
forming the subset V ⊂ ā. Next, with each building i * V , we associate an inspection reward

ri = |ñi|,

which is equivalent to the size of the cluster to which building i belongs.
The described reward assignment is aligned with the findings of Wu (2018) and Liu et al. (2021), who introduce clustering-based

sampling techniques for training regression models. They show that the centroids of larger clusters provide more representative
samples, thus enhancing predictive accuracy. Sheibani et al. (2022) also validate this insight within the context of GPR, emphasizing
the efficacy of selecting representative samples from sizable clusters.

4. Post-earthquake building inspection routing problem

The preceding section outlines the methodology for identifying representative buildings and assigning inspection rewards. With
these rewards in place, our focus now shifts to the challenge: optimizing inspection routes to maximize total rewards over multiple
periods while satisfying time constraints. Subsequent subsections present the mathematical formulation of the multi-period building
inspection routing problem and offer a comprehensive discussion of the solution approaches employed to address this problem.

4.1. Mathematical formulation

The multi-period inspection routing problem can be formulated as a multi-period orienteering problem (MPOP), which is
characterized by a graph denoted as G = (V ,A), where the node set is defined as V = {0} L Vc . Here, node 0 serves as the starting
and ending node of a tour, while Vc = {1, 2,& , N} represents the set of buildings to be visited, at most once, across all defined
periods. Each node i * Vc is associated with a reward ri and an inspection time ei. The reward assigned to i * Vc is determined
based on the criterion outlined in Section 3.3. Notably, the reward and inspection time for node 0 are set to zero. The arc set A
represents the paths connecting any adjacent pair of buildings, with each arc aij * A having an associated travel time cij .

A feasible tour within any period t * {1, 2,& , T } starts and ends at node 0, and its duration cannot exceed the maximum daily
working duration H . Across all periods, the cumulative working time, including time for inspection and travel, must fall within the
maximum time duration denoted with W . We introduce a binary variable zt

ij
, equal to 1 if node j is visited immediately after node

i in the tour for period t, and 0 otherwise. With these notations in place, the MPOP can be formally represented as:

max
zt
ij
*{0,1},ui*Z

+

T1

t=1

1

i*V

1

j*V

riz
t
ij

(1)
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s.t.
T1

t=1

1

j*V

zt
ij
d 1, "i * Vc , i � j (2)

T1

t=1

1

i*V

1

j*V

(cij + ej )z
t
ij
d W (3)

1

i*V

1

j*V

(cij + ej )z
t
ij
d H, "t * {1, 2,& , T } (4)

1

i*Vc

zt
0i
=

1

j*Vc

zt
j0

= 1, "t * {1, 2,& , T } (5)

1

j*V

zt
ij
=

1

j*V

zt
ji
, "i * V , t * {1, 2,& , T } (6)

2 d ut
i
d N, "i * Vc (7)

ut
i
− ut

j
+ 1 d (N − 1)(1 − zt

ij
). "t * {1, 2,& , T }, i, j * Vc , i � j (8)

The objective (1) maximizes the cumulative rewards collected over T periods. Constraints (2) ensure that each node is visited
at most once throughout all periods. Constraints (3) restrict the total working time across all periods to remain within the specified
limit of W . Constraints (4) limit the daily working duration to remain within the threshold H . Constraints (5) guarantee that
the inspection team starts and completes their tour at node 0. Furthermore, constraints (6) are formulated as flow conservation
constraints. Finally, constraints (7)3(8) are employed to prevent the formation of subtours and ui is an integer variable indicating
the position of node i in the tour.

4.2. Solution approach

We employ a Lagrangian relaxation method tailored for the MPOP. The methodology begins by relaxing the constraints
that couple different periods, allowing the decomposition of the MPOP into single-period subproblems that are more tractable.
Subsequently, the Lagrangian dual of the relaxed problem is solved using the subgradient algorithm, which provides an upper
bound for the original MPOP. Considering that the Lagrangian dual solution might not always satisfy the original constraints, we
further devise an enhancement procedure to derive a feasible solution based on the Lagrangian dual solution.

4.2.1. Lagrangian relaxation
We relax constraints (2) and (3) by introducing Lagrangian multipliers �i e 0 where i * Vc and � e 0, respectively. Then, model

(1) can be reformulated as:

max
zt
ij
*{0,1},ui*Z

+

1

t*T

1

i*V

1

j*V

riz
t
ij
−

1

i*Vc

�i

(
1

t*T

1

j*V

zt
ij
− 1

)
− �

(
1

t*T

1

i*V

1

j*V

(cij + ej )z
t
ij
−W

)

s.t. (4)3(8).

The objective of the problem above represents an upper bound (UB) on the optimal objective function value of the original
problem since two constraints have been relaxed.

4.2.2. Subgradient optimization
The tightest UB could be obtained by solving the Lagrangian dual:

minL(Ą, �) = min max
zt
ij
*{0,1}

1

t*T

1

i*V

1

j*V

(
ri − �i − �(cij + ej )

)
zt
ij
+

1

i*Vc

�i + �W

s.t. �i e 0, "i * Vc

� e 0.

We utilize a subgradient method to tackle the Lagrangian dual problem. This approach involves the iterative update of multipliers
Ą and �, contributing to the progressive enhancement of the UB over iterations. Initially set to zero, these multipliers are updated
from iteration � to � + 1 following specific procedures:

�
�+1
i

= max

{
0, �

�

i
− ��

(
1 −

1

t*T

1

i*V

1

j*V

zt
ij

)}
, "i * Vc (9)

��+1 = max

{
0, �� − ��

(
W −

1

t*T

1

i*V

1

j*V

(cij + ej )z
t
ij

)}
. (10)

The step length �� at iteration � is computed as:

�� =
��

(
L(Ą�, ��) − LB∗

)
√

1
i*Vc

(
1 −

1
t*T

1
j*V zt

ij

)2

+
(
W −

1
t*T

1
i*V

1
j*V (cij + ej )z

t
ij

)2
, (11)

where LB∗ is the best found lower bound and �� is the step length parameter.
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4.2.3. Heuristic for upper bound
In each iteration of multiplier updates, we are confronted with a sequence of orienteering problems (OPs) that require solutions.

As the OP is known as an NP-hard problem (Vincent et al., 2019), seeking optimal solutions can lead to significant computational
expenses and may become unfeasible, particularly in the context of large-scale instances. To tackle this challenge, we strike a trade-
off between solution quality and computational burden by customizing a heuristic, offering a faster alternative for addressing the
OPs.

For each OP, we address it by initially solving a Traveling Salesman Problem to visit a subset of nodes. We employ a combination
of the nearest insert algorithm and a 2-opt exchange procedure for this purpose, even if it may return an infeasible solution that
violates the daily time constraint. The obtained solution serves as the input for the route adjustment process. In the subsequent steps,
we enhance this solution through an iterative application of a drop-node and an add-node operator. In each iteration, the drop-node
operator selectively eliminates the least valuable node from the route while the add-node operator includes the most valuable node
from the non-visited node set. The primary aim is to uphold adherence to the daily time constraint while simultaneously minimizing
the reduction in the total accumulated reward.

It should be noted that the reward distribution remains consistent across all inspection periods. As a result, solving OPs
sequentially will yield an identical solution for each period. To tackle this issue, we apply an operation ensuring that previously

Algorithm 1: Heuristic to solve OPs

Input: Reward ri, "i * Vc , inspection time ei, "i * Vc , daily time limit H
Output: Inspection tour set ℜ for T periods

1 Initialization: Non-visited node set Vno ± Vc

2 for t = {1, 2, ..., T } do

3 Sort Vno in descending order based on the reward and select the first +
2H

ei
, nodes;

4 Apply the nearest neighbor algorithm and the 2-optimal exchange procedure for route generation to traverse selected nodes and obtain
a route ℜt with travel time 
(ℜt) and collected reward � (ℜt);

5 while 
(ℜt) > H do
6 Identify the node i with the least reward in ℜt and update ℜt ö {i};
7 Apply the nearest neighbor algorithm and the 2-optimal exchange procedure for route generation to traverse nodes in ℜt;
8 Update ℜt, 
(ℜt), � (ℜt), Vno ± Vno ö ℜ

t;

9 end
10 while 
(ℜt) + ei < H do
11 Find the node

i∗ = argmax
i*Vno

{
� (ℜ̃t) − � (ℜt)

|||
(ℜ̃t) d H}

where ℜ̃t is the optimized route to traverse the nodes in ℜt with the inclusion of node i using the nearest neighbor algorithm
and the 2-optimal exchange procedure.

12 Update ℜt
± ℜ̃t, 
(ℜt) ± 
(ℜ̃t), � (ℜt) ± � (ℜ̃t), Vno ± Vno ö {i

∗};

13 end
14 Identify the node i with the highest reward in ℜt;
15 Update Vno ± Vno ö {i};

16 end

Algorithm 2: Heuristic to find a lower bound to the original problem

Input: Upper bound solution ℜ, inspection time ei, "i * Vc , T , total time limit W , daily time limit H , reward ri,"i * Vc

Output: Sub-optimal solution to the original problem
1 Initialization: prohibited list � ± ∅, non-visited node set Vno ± Vc .
2 Let 	 (ç) denote an insertion algorithm and crossover and exchange improvement procedures to optimize routes with the limit of each route

duration less than H to traverse a set of nodes.
3 for t = {1, 2, ..., T } do
4 S1 = ℜt K � , S2 = ℜt − � ;
5 ℜt

± ℜt ö S1, � ± � L S2;

6 end
7 Run 	 (LT

t=1
ℜt) and obtain a set of routes � with total travel time 
(�) and collected reward � (�);

8 Vno ± Vc ö (L
T
t=1

ℜt);

9 while 
(�) + ei < W do
10 Find the node

i∗ = argmax
i*Vno

{
� (�̃) − � (�)||
(�̃) d W }

where �̃ is a set of optimized tours returned by applying 	 (� L {i}).
11 Update � ± �̃, 
(�) ± 
(�̃), � (�) ± � (�̃), Vno ± Vno ö {i

∗};

12 end
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Algorithm 3: Lagrangian heuristic

Input: Maximum iterations ℑ

Output: zt
ij
, 1 −

LB∗

UB∗

1 Initialization:
2 Iteration count � = 1;
3 Ą� = ÿ, �� = 0;
4 Step length parameter �� = 1;
5 Solve the relaxed problem using Algorithm 1 and obtain a solution z̃t

ij
;

6 Let LB = LB∗ = 0, UB∗ = L(Ą�, ��).
7 while � < ℑ do
8 Compute the step length �� using (11);
9 Update ĄĀ and �� using (9)3(10);

10 Solve the relaxed problems and compute L(Ą�+1, ��+1);

11 if UB∗ > L(Ą�+1, ��+1) then
12 UB∗ ± L(Ą�+1, ��+1);
13 end
14 Apply Algorithm 2 with z̃t

ij
to obtain a feasible solution zt

ij
and LB;

15 if LB∗ < LB then
16 LB∗ ± LB;
17 end
18 if UB has not decreased by more than 0.1% in past 50 iterations then

19 �� =
1

2
;

20 end
21 if (�%100) == 0 then
22 Reset �� to 1;
23 end
24 � = � + 1;

25 end

visited high-value nodes in the route for period t remain inaccessible in subsequent periods from t + 1 to T (see lines 14 and 15 in
Algorithm 1). The detailed procedures are outlined in Algorithm 1.

4.2.4. Heuristic for lower bound

After calculating L(Ą, �) using the values of Ą and � in each iteration, the next step is to obtain a feasible solution for the original
problem to determine a lower bound (LB). As mentioned before, the solution ℜ generated by Algorithm 1 may be infeasible since it
can potentially violate the constraints (2) and (3). Therefore, it is imperative to make adjustments to ℜ to ensure that the resulting
solution complies with all constraints in the original problem. The step-by-step procedure for achieving this is detailed in Algorithm
2. Specifically, the output from Algorithm 1 serves as the initial solution and may involve nodes covered by routes for multiple
distinct periods. The first task is to address these overlaps, guaranteeing that each node is visited only once across all periods. This
task is executed through lines 3 to 6. Subsequently, the vehicle routing heuristic 	 (ç) is invoked in line 7 to determine routes for
visiting these covered nodes while the non-visited node set is updated in line 8. Despite the total route duration being within the
limit, additional valuable nodes must be identified for inclusion to increase reward collection until the maximum time duration is
surpassed, as demonstrated in lines 9 to 11.

4.2.5. Lagrangian heuristic

The procedure of the proposed Lagrangian heuristic is outlined in Algorithm 3. We begin by assigning initial values to LB and
Lagrangian multipliers. An iterative loop is then executed until the termination criterion is met. Within each iteration, dual steps of
the subgradient optimization are carried out to enhance the UB, with concurrent updates to the feasible solution zt

ij
. Specifically,

the Lagrangian dual problem is addressed using Algorithm 1, yielding an UB. Additionally, Algorithm 2 is utilized to transform the
solution of the Lagrangian dual problem into a feasible solution for the original problem.

5. Uninspected buildings damage inference

The preceding section details the approach for determining inspection routes that maximize the rewards from building damage
inspection. Following this, we shift our focus to applying the collected damage data to train a GPR model for estimating damage in
uninspected buildings. To ensure clarity, we begin with an overview of GPR and its common applications, then proceed to discuss
the critical configurations, with a particular emphasis on the selection of kernel functions and the key hyperparameters that have
demonstrated best performance in our experiments.
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5.1. Gaussian process regression

GPR stands as a robust non-parametric Bayesian approach, particularly suited for regression tasks where the relationship between
input variables and outputs is complex (Schulz et al., 2018). Distinct from conventional machine learning algorithms that predict
a single value, GPR provides a predictive output distribution for a given input. Fundamentally, GPR employs the sampling of
multivariate Gaussian functions to best fit the given inputs, with the kernel function measuring the similarity between input
pairs. The effectiveness of GPR relies on the hyperparameters of the chosen kernel function, which require careful selection and
optimization. The typical workflow for GPR involves gathering input3output data, choosing an appropriate kernel function for the
problem at hand, optimizing the hyperparameters of the determined kernel function, and deploying the trained GPR model for
predictions.

GPR’s versatility is evidenced by its widespread application across diverse fields. In the manufacturing sector, it has been utilized
for evaluating tool wear status (Kong et al., 2018) and predicting the capacity of lithium-ion batteries (Liu et al., 2019). In water
resource management, GPR aids in forecasting monthly streamflows (Sun et al., 2014) and predicting water temperatures (Grbić
et al., 2013). Beyond these, GPR’s utility extends to estimating building energy consumption (Zeng et al., 2020) and projecting
mortality rates (Wu and Wang, 2018), demonstrating its broad applicability and effectiveness.

5.2. Post-earthquake building damage inference

In this study, we utilize GPR to deduce earthquake-induced damage in buildings. This approach is supported by previous research,
such as the work by Sheibani and Ou (2021), Sheibani et al. (2022), and Cheraghi et al. (2024), demonstrating the reliability of
GPR models in damage estimation. Our discussion starts by outlining the mathematical framework underpinning GPR as follows.
The function f serves as our predictive tool, capturing incurred building damage. This function links a vector Ė, encompassing a set
of structural and locational attributes of a building (see Table 1), to quantifiable damage metric f (Ė). Recognizing the inherent
uncertainties of earthquake damage, we propose that the true function f (ç) can be represented as a Gaussian process (GP), a
framework that conceives a set of observations as manifestations of a multivariate Gaussian distribution (Williams and Rasmussen,
2006). The GP is specified by its mean function m and covariance function ℘:

f (Ė) < õþ(m(Ė),℘(Ė, Ė2)),

where

m(Ė) = E[f (Ė)],

℘(Ė, Ė2) = E[(f (Ė) − m(Ė))(f (Ė2) − m(Ė2))].

Given the typical scarcity or uncertainty of damage data, a zero-mean prior, m(ç) = 0, is often assumed (Sheibani and Ou, 2021).
On-site inspections often come with noise, stemming from factors like accessibility issues or subjective evaluations. As such, the
estimates provided by inspection teams are perceived as noisy approximations of true damages. Expressing these estimates as y,
they relate to the underlying damage function f as:

y = f (Ė) + �, (12)

with � being a zero-mean Gaussian noise term characterized by variance �2
n
.

With our training data, or inspection records, represented as (X, ė), and potential test locations as X2, our objective becomes
inferring the probable damage values at X2, denoted by Ą̂ . This inference follows the distribution:

Ą̂ |X, ė, X2 < ü (ą̂, Σ̂),

where

ą̂ = KX2X [KXX + �2
n
I]−1ė, (13)

Σ̂ = KX2X2 −KX2X [KXX + �2
n
I]−1KXX2 .

Here, Kij stands for a covariance matrix, its entries derived from our chosen kernel function evaluated at different data points.

5.3. Kernel function and hyperparameter tuning

The kernel function (or covariance function) ℘ is a central aspect of GPR. This function captures how correlated two data points
Ėi and Ėj are in our model. Specifically, for any two data points Ėi and Ėj , ℘(Ėi, Ėj ) denotes the covariance between the function
values, cov[f (Ėi), f (Ėj )].

Selecting the right kernel function is an important step in building the damage inference model as it encodes the prior belief
about the unknown function f (Williams and Rasmussen, 2006). Sheibani and Ou (2021) compare various kernel functions to predict
regional earthquake damage. Their findings suggest that the rational quadratic (RQ) kernel, when combined with the Automatic
Relevance Determination (ARD) feature, accurately captures patterns across different dimensions, leading to better predictive
performance. ARD kernels help the model highlight the most important features of the data while downplaying less significant
ones. After training, the effectiveness of each feature in our model can be inferred from its corresponding length scale.
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Fig. 4. The spatial distribution and associated reward of buildings in a single instance.

The RQ kernel is described as:

℘RQ(Ėi, Ėj ) = �2
f

[
1 + (Ėi − Ėj )

⊤ ĉ

2�
(Ėi − Ėj )

]−�
,

where �2
f
is the signal variance, ĉ is a diagonal matrix holding the length scales tied to each feature, and � is a parameter that

modifies how heavily these lengthscales influence the kernel.
Posterior covariance depends on both the chosen kernel and the noise variance �2

n
. The entire model is defined by a group of

hyperparameters, labeled ā. These hyperparameters consist of the signal variance, length scales, �, and the noise variance. To train
the model and identify the best hyperparameters, we maximize the marginal likelihood of observations for the hyperparameters:

ā∗ = argmax
ā

log p(ė|X,ā),

where ā∗ denotes the optimal values of hyperparameters.
Finally, the log marginal likelihood of our noisy observations, given a set of hyperparameters ā, is found by:

log p(ė|X,ā) = −
1

2
ė⊤

(
KXX + �2

n
I
)−1

ė −
1

2

|||KXX + �2
n
I
||| −

n

2
log(2�),

where n represents the size of a training dataset.

6. Numerical experiments

In this section, we validate the performance of the proposed Lagrangian heuristic in optimizing multi-period inspection routes.
As examined in the six small instances, the proposed heuristic offers optimal solutions that achieve objectives identical to those
generated by mathematical programming software, providing us with a solid foundation for its application to more substantial
datasets. A detailed examination of this evaluation is deferred to Appendix B. Following this, we proceed to apply the developed
framework to large instances utilizing real-world data from San Francisco. These instances serve as the testing ground for evaluating
the efficacy of our novel approach to building damage assessment. To emphasize the advantages of multi-period planning over the
period-by-period planning approach, we have also applied the period-by-period planning technique in these scenarios to conduct a
comparative analysis.

6.1. Inspection experimental setup

To conduct a thorough examination of the framework, we perform 20 random selections, each using 80% of the data from
ā, generating 20 unique datasets (ā80). Within each ā80 instance, a clustering-based sampling technique is employed to identify
representative buildings for inspection and subsequent model training for damage inference.

For each of the 20 randomly selected subsets of data, the k-means++ clustering algorithm is applied and results in a total of
|Vc | = 500 buildings selected for inspection. The spatial distribution and reward assignment for the representative buildings in a
single instance is shown in Fig. 4. The inspection horizon is set at T = 10 periods, and each period has a regular working time of
8 h and a maximum working duration H of 10 h, inclusive of travel time and a 30-min inspection time per building. The selection
of a 30-min inspection time aligns with operational norms for ‘‘rapid evaluations’’ as recommended in Applied Technology Council
(ATC) Field Manual (ATC, 2005) and Federal Emergency Management Agency (FEMA) Post-disaster Building Safety Evaluation
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Table 2
Reward collection via period-by-period planning and multi-period planning.

Instance Multi-period Period-by-period Imp.

No. Reward # Inspections Reward # Inspections (%)

1 5866 172 5599 149 4.77
2 6085 179 5780 152 5.28
3 5698 177 5426 153 5.01
4 5954 176 5678 151 4.86
5 5975 179 5696 154 4.90
6 5731 173 5470 149 4.77
7 5703 174 5465 152 4.35
8 6014 176 5759 154 4.43
9 5934 177 5676 152 4.55
10 6096 176 5831 151 4.54
11 5965 178 5718 155 4.32
12 6017 177 5757 154 4.52
13 6026 176 5777 152 4.31
14 5827 177 5574 154 4.54
15 6053 178 5782 153 4.69
16 5796 179 5539 153 4.64
17 5992 177 5738 154 4.43
18 6014 177 5761 153 4.39
19 5717 178 5481 155 4.31
20 6031 178 5758 153 4.74

Guidance (FEMA, 2019). The cumulative working duration W across all periods is set to 80 h. The travel time cij between buildings
i and j is calculated by dividing the Euclidean distance between the two buildings by a constant speed of 15 kilometers per hour.

The study encompasses a detailed analysis of 20 large-scale instances, each featuring 500 buildings, with data extracted from
the San Francisco testbed. For the multi-period inspection routing, the termination criterion of the proposed Lagrangian heuristic
is established at a limit of 300 iterations for all instances. We execute the proposed heuristics and showcase the optimality gaps

related to the best solution to the Lagrangian dual, as denoted by
UB − LB
UB

× 100%.

6.2. Evaluation criteria for damage inference

In our numerical experiments, we employ three error metrics to measure the predictive performance of the GPR model, including
the standard mean squared error (SMSE), the mean absolute logarithmic error (MALE), and the mean absolute percentage error
(MAPE). For n test data points in ā 2, with predictions ŷ and ground truth values y, the error measures are defined as:

SMSE =
1

n

1n

i=1(ŷi − yi)
2

Var(ė)
,

MALE =
1

n

n1

i=1

||||
log

ŷi

yi

||||
,

MAPE =
1

n

n1

i=1

||||
ŷi − yi

yi

||||
× 100%,

where ŷ is the predictive mean of the GP, as defined in (13).
In addition to the error metrics used to measure the overall performance of the GPR model, we evaluate the percentage of

accurate predictions by considering the relative difference (RD) between predicted values and the ground truth,

RD =
||||
ė̂ − ė

ė

||||
,

where ė̂ represents the vector of predicted values while ė corresponds to the vector of ground truth values. The percentage of testing
data points for which RD is less than 0.2 (i.e., RD < 0.2) serves as a metric to quantify the precision of predictions.

6.3. Experimental results

Table 2 displays the total collected rewards achieved through both period-by-period and multi-period planning across 10 periods
for the set of 20 instances. The multi-period planning approach consistently outperforms the period-by-period planning strategy,
showcasing an average improvement of 4.62%, accompanied by a modest standard deviation of 0.26%, across all twenty instances.
It is noteworthy that the proposed algorithm exhibits impressive computational efficiency and converges rapidly. As demonstrated
in Fig. 5, it reveals a clear and absolute convergence between LB and UB across the six presented instances. Notably, when a robust
LB is established, the UB rapidly converges toward the best-found LB.
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Fig. 5. The gaps between the lower bound and upper bound in the six large-size instances.

Fig. 6. Inspection routes under multi-period and period-by-period planning for the six large-size instances.

Fig. 6 illustrates the inspection routes generated by both multi-period planning and period-by-period planning strategies. The

routes generated by the former strategy exhibit a higher level of organization, whereas the routes derived from period-by-period

planning appear considerably more chaotic. This discrepancy arises from the fact that multi-period planning devises routes from

a holistic viewpoint, while period-by-period planning prioritizes maximizing reward collection for individual periods in a myopic

manner.

The cumulative reward gained from implementing two sets of inspection routes over a 10-period span is presented in Fig. 7. It

indicates that the strategy of designing inspection routes on a period-by-period basis effectively prioritizes the inspection of high-

value buildings during each period. As a result, in the early stages, this approach facilitates the collection of a significantly greater

amount of reward. However, in the final two or three periods, due to the considerable time spent reaching high-value buildings

located far from the depot, the ability to inspect additional nodes and attain higher rewards diminishes. In contrast, the multi-period

planning approach employs a more holistic route design, ensuring a consistent rate of reward acquisition throughout all periods.
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Fig. 7. Cumulative reward collection across 10 periods under period-by-period and multi-period planning for the six large-size instances.

Fig. 8. Accuracy comparison of the GPR model trained with buildings damage data collected under period-by-period and multi-period planning, measured by
SMSE, MALE, MAPE, and RD < 0.2.

Ultimately, our multi-period routing approach leads to higher rewards by inspecting more buildings as the timeframe draws to a

close.

Using damage data collected with two distinct inspection strategies, we train separate GPR models and conduct a comparative

assessment of their estimation accuracy, as measured by SMSE, MALE, MAPE, and RD < 0.2. Fig. 8 illustrates the estimation accuracy

distribution of these two GPR models across 20 test datasets. The GPR model trained using the multi-period approach outperforms

the model trained with the period-by-period one. To quantify this improvement, we computed the average enhancements across
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Fig. 9. The inspection times are generated randomly from truncated normal distributions. The mean values for these distributions are: (a) 20 min, (b) 30 min,
and (c) 40 min. The standard deviation remains fixed at 10 min for all cases.

Fig. 10. The cumulative reward collection over all periods via period-by-period and multi-period routing strategy. The inspection time sets 1, 2, 3, and 4
correspond to inspection times generated from the uniform and truncated normal distributions with three different mean values, respectively.

the test datasets, resulting in improvements of 14.75% for SMSE, 7.01% for MALE, 14.67% for MAPE, and 1.41% for RD < 0.2,
respectively.

In our study, we address a deterministic multi-period routing problem with fixed travel speed and inspection time for each
building. Recognizing the need to test the model’s robustness against real-world variations, we conduct a sensitivity analysis on
travel speed and inspection time per building. The analysis involves three travel speeds (10 km/h, 15 km/h, and 20 km/h) and four
sets of inspection times. These times are generated from uniform and truncated normal distributions with mean values set at 20 min,
30 min, and 40 min, each with a constant standard deviation of 10 min. Inspection times are constrained within the interval of 10
to 50 min to ensure validity. The distributions of inspection times generated from the truncated normal distributions are illustrated
in Fig. 9.

We apply the proposed approach for inspection routing and building damage estimation across each combination of travel speeds
and inspection time sets, considering 20 large-size instances with 10 periods. The accumulated rewards obtained from inspection
routes determined using period-by-period and multi-period routing strategies are depicted in Fig. 10. A notable observation is that
the cumulative reward collected through multi-period routing consistently surpasses that collected via period-by-period routing.
Moreover, it can be observed that the inspection times with a smaller mean value and a faster travel speed result in greater reward
collection. This is because less time is spent on inspection and travel between buildings, enabling more buildings to be inspected,
which aligns with practical considerations.

The accuracy distribution of the trained GPR models over 20 test datasets, measured with SMSE, MALE, MAPE, and RD < 0.2,
are depicted in Fig. 11. We can find that the accuracy of building damage inference based on obtained damage data collected via the
multi-period routing strategy is more robust compared to the period-by-period routing strategy. Additionally, we understand that
the accuracy of the GPR model heavily relies on the quantity of reward collected. As demonstrated in Fig. 10, faster travel speeds
and shorter inspection times correlate with increased reward collection. Therefore, the setting of faster travel speeds and shorter
inspection times leads to more accurate damage estimation, which aligns with the trend presented in Fig. 11.

7. Conclusion

This work introduces a new framework, blending the MPOP with a GPR model for effective building damage assessment following
an earthquake. This unique combination not only improves the assessment of earthquake-induced building damage but also tackles
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Fig. 11. The accuracy of the GPR models trained using building damage data collected under period-by-period and multi-period planning is compared across
different combinations of travel speeds and inspection time setups. The evaluation metrics used include the SMSE, MALE, MAPE, and RD < 0.2.

the issues inherent to traditional inspection routes designed period by period. For handling large-scale inspection routing scenarios,
we develop a Lagrangian relaxation method paired with tailored heuristics.

Our proposed approach is validated through simulation data sourced from the San Francisco Bay Area. The integration of a
specialized inspection reward within the MPOP framework has yielded substantial enhancements in both damage data collection
and the accuracy of the GPR model in damage estimation. These improvements are consistently observed across all four evaluation
metrics, underscoring a significant advantage compared to the conventional period-by-period inspection routing strategy.

Essentially, this methodology offers a more comprehensive understanding of building damage, allowing more accurate damage
predictions. This improved knowledge is crucial for decision-makers, aiding them in formulating more effective and prioritized
recovery strategies and ensuring optimal resource allocation.

Looking ahead, there are several exciting possibilities for further research. One significant improvement could involve the use
of an active learning approach. In this method, the rewards would be adjusted after each period’s inspections, allowing the system’s
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Fig. 12. Percentage of accurate predictions across various training set sizes and reward criteria.

predictions and decisions to continuously improve and align with the most recent damage data and observations. Additionally,
adding a rolling horizon strategy for multi-period inspection planning would ensure that the model remains flexible. It would adapt
to changing situations by adjusting routes based on the latest available data. This ongoing feedback loop would further increase the
accuracy and efficiency of our framework.
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Appendix A. Further exploration of inspection reward

In our framework, we employ a clustering approach to identify representative buildings and link inspection rewards to each of
these selected representatives. As outlined in Section 3.3, the reward is determined based on the size of the cluster. Notably, this
simple method works better than other more complex strategies.
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Table 3
Inspection routes and reward collection generated with mathematical programming solver and Lagrangian heuristic for six
small-size instances.

Instance Lagrangian heuristic Mathematical programming solver

No. Total reward Inspection routes Total reward Inspection routes

1 207 0 ³ 11 ³ 10 ³ 17 ³ 9 ³ 13 ³ 0 207 0 ³ 11 ³ 10 ³ 17 ³ 9 ³ 13 ³ 0

0 ³ 15 ³ 14 ³ 0 0 ³ 14 ³ 15 ³ 0

2 582 0 ³ 18 ³ 16 ³ 13 ³ 14 ³ 0 582 0 ³ 18 ³ 16 ³ 13 ³ 14 ³ 0

0 ³ 5 ³ 17 ³ 12 ³ 0 0 ³ 5 ³ 17 ³ 12 ³ 0

3 412 0 ³ 18 ³ 5 ³ 14 ³ 17 ³ 2 ³ 0 412 0 ³ 2 ³ 17 ³ 14 ³ 5 ³ 18 ³ 0

0 ³ 9 ³ 13 ³ 16 ³ 0 0 ³ 9 ³ 13 ³ 16 ³ 0

4 528 0 ³ 9 ³ 2 ³ 20 ³ 12 ³ 0 528 0 ³ 20 ³ 12 ³ 18 ³ 8 ³ 0

0 ³ 17 ³ 8 ³ 18 ³ 0 0 ³ 2 ³ 9 ³ 17 ³ 0

5 410 0 ³ 17 ³ 2 ³ 5 ³ 3 ³ 20 ³ 0 410 0 ³ 20 ³ 3 ³ 5 ³ 2 ³ 17 ³ 0

0 ³ 19 ³ 7 ³ 16 ³ 0 0 ³ 16 ³ 7 ³ 19 ³ 0

6 466 0 ³ 4 ³ 20 ³ 15 ³ 12 ³ 0 466 0 ³ 20 ³ 15 ³ 4 ³ 0

0 ³ 18 ³ 11 ³ 0 0 ³ 18 ³ 12 ³ 11 ³ 0

One such strategy involves using ‘‘inertia’’, a measure of within-cluster variance, to refine the reward assignment. The core of
the idea is that clusters with lower inertia have more similar data points, and their candidate samples could better represent data
within those clusters for predictive modeling. We test the combination of cluster size and inertia for reward assignment.

Recalling that ñi represents the ith cluster and �i its centroid, we consider a reward based on the ratio of cluster size to its inertia.
This approach is grounded in the hypothesis that clusters with a greater number of data points and lower variance are potentially
more valuable. Defined as:

ri =
|ñi|�

[1
xj*ñi

(xj − �i)
2
]� ,

the reward ri for the ith cluster is regulated by the parameters � and �, which are introduced to adjust the relative impact of each
factor.

Using features from Table 1, we group the dataset into 500 clusters. Buildings closest to the centroids of these clusters are chosen
as potential inspection candidates. We then train the GPR model with data points prioritized by different � and � combinations.

Fig. 12 illustrates the performance of the GPR model under various reward assignment strategies. The results come from 100
tests to minimize biases from randomness in the clustering and dataset selection. In the top part of the figure, the y-axis shows
SMSE, while the bottom shows the percentage of accurate predictions (i.e., data points with RD < 0.2).

The GPR model improves with more training data. Focusing on cluster size, setting � = 1 and � = 0, consistently yields the best
results, leading to lower SMSE values and higher RD. Including inertia in our reward calculations does not give significant benefits
compared to only considering cluster size. This finding further backs our choice to prioritize cluster size as the primary factor for
the inspection reward.

Appendix B. Evaluation of the Lagrangian heuristic

In the main body of the manuscript, our proposed Lagrangian heuristic framework is primarily applied to large-scale instances,
showcasing its scalability and practical utility. However, to assess the accuracy and efficiency of the heuristic, it is paramount to
compare its performance against optimal solutions. Therefore, in this section, we evaluate the heuristic on small instances where
exact solutions can be obtained through mathematical programming software.

For each of the six randomly generated small instances, a total of |Vc | = 20 buildings are included as representative buildings.
The inspection horizon is fixed at T = 2 periods, with each period allowing a maximum working duration of 2.5 h, inclusive of
travel and a 0.25-h inspection time per building. The total working time across two periods is 4 h. Travel times cij between any
two buildings i and j, are computed using Euclidean distances and an assumed constant speed of 15 kilometers per hour.

Table 3 illustrates the inspection routes and corresponding total rewards gained across two periods. Our proposed heuristic
returns the optimal solution for these six small instances while there are some minor variations in inspection routes in comparison to
the routes generated by the mathematical programming software. The visual representation of two sets of inspection routes for each
small instance can be observed in Fig. 13. Each subfigure features a side-by-side comparison. The left panel displays the inspection
routes generated by the mathematical programming software, while the right panel showcases the inspection routes determined by
our proposed heuristic.
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Fig. 13. Inspection routes generated with mathematical programming software and Lagrangian heuristic for six small instances.
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