
Vulcan: Automatic Query Planning for Live ML Analytics
Yiwen Zhang†, Xumiao Zhang†, Ganesh Ananthanarayanan‡, Anand Iyer§,
Yuanchao Shu††, Victor Bahl‡, Z. Morley Mao†¶, Mosharaf Chowdhury†

†University of Michigan, ‡Microsoft, §Georgia Institute of Technology, ††Zhejiang University, ¶Google

Abstract
Live ML analytics have gained increasing popularity with
large-scale deployments due to recent evolution of ML tech-
nologies. To serve live ML queries, experts nowadays still
need to perform manual query planning, which involves
pipeline construction, query configuration, and pipeline place-
ment across multiple edge tiers in a heterogeneous infrastruc-
ture. Finding the best query plan for a live ML query requires
navigating a huge search space, calling for an efficient and
systematic solution.

In this paper, we propose Vulcan, a system that automati-
cally generates query plans for live ML queries to optimize
their accuracy, latency, and resource consumption. Based on
the user query and performance requirements, Vulcan deter-
mines the best pipeline, placement, and query configuration
for the query with low profiling cost; it also performs fast on-
line adaptation after query deployment. Vulcan outperforms
state-of-the-art ML analytics systems by 4.1×-30.1× in terms
of search cost while delivering up to 3.3× better query latency.

1 INTRODUCTION
Recent years have witnessed a growing demand for machine
learning (ML) analytics. Live ML analytics – with appli-
cations in edge-assisted autonomous driving [62, 71, 72],
live traffic analysis [1, 43], and real-time speech recogni-
tion [18, 66] – stands out due to its large-scale deploy-
ments [1,2,4]. Live ML analytics involves ML pipelines at its
core, where each pipeline consists of a series of operators to
perform specific ML tasks. For example, an autonomous driv-
ing perception query that detects surrounding objects of an
autonomous vehicle may contain filtering operators for road
surface removal [23] and 3D data compression [22,53], along
with a 3D object detector to perform object detection [37, 68].

Live ML analytics differentiates itself from ML on stored
data in two key characteristics. First, live ML pipelines are
deployed across heterogeneous infrastructure, spanning multi-
ple tiers such as device edges, on-premise edges, public MEC,
and cloud datacenters [1–3, 6]. Second, live ML queries have
latency requirements besides accuracy targets as the analytics
is based on real-time data. Some analytics, such as object
detection in autonomous vehicles, may have more stringent
requirements than others depending on the priority of the task.
Therefore, before deploying live ML analytics, each query
describing the ML task must go through careful query plan-
ning. Specifically, this involves (i) constructing the pipeline

by selecting a series of operators and ordering them; (ii) de-
termining the physical placement of pipeline operators across
infrastructure tiers; and (iii) selecting configurations of the
pipeline operators, to optimize for query performance. A joint
optimization of the three aspects is required for optimal per-
formance and resource consumption.

Recent research on these topics have been piecemeal, fo-
cused on compute alone, and hence largely sub-optimal for
live ML analytics. Although declarative query languages (e.g.,
SQL) have been proposed for ML queries, there exists no sys-
tematic approach to automatically construct pipelines based
on query’s end-to-end latency requirement. This includes se-
lecting and ordering the filtering modules during pipeline
construction, which have a great impact on the performance
characteristics of ML pipelines. Furthermore, when choosing
physical placement of pipeline components, one cannot af-
ford to exhaustively search for the optimal placement through
real-world deployments. As a result, deployments often rely
on past experience with simple heuristics [3,67]. While recent
solutions have focused largely on selecting query configura-
tions [12,27,28,63,70], they assume the ML analytics compo-
nent to be a monolithic module instead of a pipeline. As such,
they are profiled for compute alone, assuming they are run-
ning in a homogeneous datacenter. In the process, networking
resources are ignored, and the complexities of multi-resource
planning of compute and network are overlooked altogether.
Finally, these solutions rely heavily on domain-specific in-
sights of video content, which are not applicable to general
ML scenarios beyond video analytics [28, 45, 70].

After deploying the query in the wild, one must also adapt
the query plan based on runtime dynamics such as data con-
tent and/or resource changes [12, 28, 52, 54]. Prior solutions
in providing online adaptation [28, 70] focus on data content
changes alone but do not adapt to compute and network re-
source changes, which are common in edge environments [52].
An ideal solution should change query configuration and
placement during online adaption.

In this work, we consider how to perform automatic query
planning – i.e., constructing, placing, and configuring ML
pipelines, along with adapting to runtime dynamics – for
live ML queries based on user-provided performance require-
ments. The goal is to find query plans that optimize latency
and accuracy, while minimizing the network and compute
resource consumption. Generating such query plans, however,
is challenging as jointly optimizing pipeline construction,

Device Edge Public MEC CloudOn-premise Edge

2

3 4

Configure Pipeline

Ground
Distance

Voxel
Size

Model
Selection, ,

Select Placement Online Adaptation

Data Content

Resource

3D Point
Cloud

Voxelization
Ground
Removal

3D Object
Detector

Return
Qualified
Objects

1
Live ML Query

Construct Pipeline

Query = ‘AD Perception’
Input = ‘on-board LiDAR’
Objects_of_interest = ‘all’
ML_Model = [‘PointPillars’]
Filter = [‘gnd_removal’,
‘voxelization‘]
max_Latency_ms = 400
min_Accuracy_mAP = 0.8

Figure 1: The existing workflow of query planning for a live ML query.

placement, and query configuration leads to a much larger
search space. Moreover, as query performance is resource and
data dependent, considering all possible resource and data dy-
namics that may or may not happen in the future can explode
the search space. Clearly, a more efficient online adaptation
technique is needed for faster convergence and lower cost.

We present Vulcan, an ML analytics system that performs
automatic query planning for live ML queries. Its design
includes the following key ideas to overcome the aforemen-
tioned challenges:

(1) Vulcan defines a novel metric to quantify each filter-
ing operator in the pipeline by combining query precision,
recall, resource usage, and latency (§4.2). This converts the
complexity of filter ordering from exponential to linear.

(2) Vulcan carefully identifies components of ML pipelines
that are independent of placement. This allows Vulcan to
dramatically prune the search space of placement options.

(3) Vulcan efficiently explores the best combination of con-
figuration knobs using Bayesian Optimization (BO) [14, 51].
It designs BO’s priori assumptions and acquisition function
to jointly optimize placement and configuration selection.

(4) Vulcan adapts quickly to dynamic changes in data and
resources by (i) designing programming interfaces that allow
for dynamic updates to live pipelines modules without dis-
rupting them, and (ii) leveraging prior knowledge to make
faster decisions on modifying configurations and placement.

We evaluate Vulcan using real-world datasets on a
wide range of applications including traffic monitoring, au-
tonomous driving perception, and automatic speech recog-
nition. Experiments are conducted under an edge hierarchy
that represents real compute and network resource setting of
our production infrastructure. Vulcan generates query plans
with better profiling cost by 4.1×-30.1× over state-of-the-art
ML analytics systems while delivering 3.3× better query la-
tency performance. Vulcan outperforms existing solutions for
ML query configuration and placement selection with up to
2.8× better query latency and 174× lower network resource
consumption. Vulcan also achieves consistently better 99th-p
latency by up to 2.5× by adapting to both data and resource
changes during online adaptation (§6).

In summary, we make the following research contributions:
• We provide an end-to-end system design for live ML

queries for a wide range of real-world ML applications.
• We propose novel solutions on search space reduction for

constructing, placing, and configuring ML pipelines.
• We implement interfaces and control loop for online adap-

tion for fast re-profiling and dynamic re-configuration.

2 BACKGROUND AND MOTIVATION

We start with an overview of the workflow of live ML query
processing, followed by motivating examples to highlight the
key aspects when choosing query plans.

2.1 Processing Live ML Queries
We explain the query planning workflow by walking through
an example query which detects surrounding objects in edge-
assisted autonomous driving, as shown in Figure 1. The input
query specifies input data, object of interests, pipeline opera-
tors, and performance requirements on accuracy and latency.

1 Constructing the pipeline. The first step is constructing
the ML pipeline by choosing a series of operators to perform
the task. Specifically, it involves choosing filtering operators,
such as voxelization and ground removal, to be deployed for
substantial resource efficiency prior to the ML models, such
as the 3D object detector [37, 68] in the case of Figure 1. The
ordering of the filtering operators has a significant impact
on performance. The best ordering is dependent on the data,
resource availabilities, and performance requirements.

2 Configuring the pipeline. After the operators are chosen
in the pipeline, the next step is selecting configuration knobs
to achieve the best tradeoff between query performance and
resource consumption [12, 26, 28, 45, 70]. In our example,
configuration knobs include ground distance, the voxel size,
and the choice of a 3D object detection model.

3 Selecting physical placement. The next step is placing
pipeline operators across the heterogeneous edge infrastruc-
ture, starting from the device edge and to the cloud (Figure 1).
This heterogeneity introduces complexity in placement of the
operators and influences the end-to-end latency performance
of the ML pipeline.

4 Performing online adaptation. After a query is deployed,
its performance is affected by runtime dynamics due to re-
source changes and data variations. Resource changes are

𝑳𝒓𝒆𝒒 (ms)𝑨𝒓𝒆𝒒
4000.8

(a) Performance Requirement

I G V D O

(b) Pipeline

Size (MB)𝑳 (ms)	𝑨Config

6|4.4|3.22600.85𝐶!
6|3.6|2.22700.8𝐶"

(c) Query Configuration Results

Figure 2: (a) Performance requirement on accuracy (AAAreq) and la-
tency (LLLreq) of the example query. (b) Query’s pipeline (Input →
GroundRemoval → V oxelization → Ob jectDetector → Out put).
(c) Offline profiling results. The last column records the size of
the data at different stages of the pipeline: data at the source | after
’G’ | after ’V’. Data after ’D’ is not shown due to negligible size.

G V D

G V D

Placement 1 (𝑃!) Placement 2 (𝑃")

Placement 4 (𝑃#)Placement 3 (𝑃$)

G V D

G V D

(a) Placement Choices

𝑳 (ms)𝑨PlacementConfig

4500.8𝑃!𝐶"
3800.8𝑃"𝐶"
5400.8𝑃#𝐶"
5700.8𝑃$𝐶"

𝑳 (ms)𝑨PlacementConfig

4800.85𝑃!𝐶!
4200.85𝑃"𝐶!
5200.85𝑃#𝐶!
5600.85𝑃$𝐶!

(b) End-to-end Performance Results

Figure 3: Placement choices and corresponding end-to-end perfor-
mance. (a) All four feasible placement choices in a two-tier setting
(Device Edge→Datacenter). (b) The baseline approach which first
acquires the optimal combinations of configuration knobs during
offline profiling (C1) and then selects placement fails to meet the
latency target. An ideal solution should select C2 & P2 by jointly
optimizing configuration and placement. Note accuracy does not
depend on placement and remains unchanged.

common because of other workloads on the edge infrastruc-
ture (e.g., 5G RAN containers) or network outages [39, 52].
The content of the data, such as lighting or object densi-
ties [12,28], can also change during the lifetime of a query. An
ideal solution should adapt to runtime dynamics by adjusting
the pipeline’s filters, its configurations, and placement.

2.2 Motivating Examples
We now highlight some of the key challenges toward perform-
ing query planning for live ML queries using toy examples.

Jointly optimizing configuration and placement. Current
practice considers pipeline placement and query configura-
tion separately [12, 28, 33, 49, 67]. Designers first perform
offline profiling to determine the optimal query configuration,
and then select placement based on heuristics (prioritize net-
work or compute, etc.) or greedy algorithms [67]. Such an
approach fails to consider additional query latency introduced
by pipeline placement, leading to sub-optimal query plans.

𝑳𝒓𝒆𝒒 (ms)𝑨𝒓𝒆𝒒
3000.6

(a) Performance Requirement

I V G D O

(b) Pipeline

Size (MB)𝑳 (ms)	𝑨Config

6|4|2.71800.7𝐶!
6|2.8|21900.6𝐶"

(c) Query Configuration Results

𝑳 (ms)	𝑨PlacementConfig

2900.6𝑃!𝐶!

(d) Optimal Query Plan

Figure 4: Given an updated performance requirement, a new pipeline
is required to meet the latency target. The new pipeline swaps the or-
der of the two filters (’V’ & ’G’), delivering a different performance
characteristic than the old one in Figure 2b.

To illustrate this, take an example autonomous driving
query, whose performance requirements and pipeline are
shown in Figure 2a and 2b. Figure 2c records the offline
profiling results assuming only 2 sets of configuration knobs
(C1 and C2) exist. In this case, the baseline approach identifies
C1 as the optimal configuration since it performs better both
in terms of accuracy and latency than C2. It then pairs C1
with one of the placement choices in our simplified two-tier
infrastructure shown in Figure 3a.

However, as shown in Figure 3b, none of placement choices
would satisfy the query’s end-to-end latency requirement if
C1 is selected. The end-to-end latency is composed of the
compute latency (time spent in the object detector) and addi-
tional network latency occurred over the edge. For example,
the additional network latency in P1 is computed as the time
it takes to transmit the output data of the ground removal
module using the link bandwidth, which is set to 20MBps in
this example.1 An ideal solution should select C2 by jointly
considering both placement and configuration.

Constructing pipelines based on performance require-
ments. Different orderings of filtering operators lead to differ-
ent performance characteristics of ML pipelines. Therefore,
an ideal solution must construct the pipeline based on query-
specific performance requirements. For instance, if we change
the performance requirements of the original example query
to a lower latency target with more tolerance on accuracy
(shown in Figure 4a), then none of the query plans in Fig-
ure 3b can satisfy the new latency target as long as they use
the pipeline from Figure 2b. Instead, we need to use a new
pipeline which swaps the order of the two filters (Figure 4b).
As filters are not independent to each other, placing ‘V’ be-
fore ‘G’ reduces more data, leading to better latency but lower
accuracy (Figure 4c). Figure 4d shows the end-to-end results
with the optimal query plan using the new pipeline. We omit
for brevity the same process of finding the optimal placement
and configuration as we did earlier.

Building an ideal solution that handles all the aforemen-
tioned aspects of live ML query planning is non-trivial, as se-
lecting the right pipeline, placement, and configuration jointly

1In this example, the compute latency is assumed to be doubled when
placing the detector on the device edge (i.e., in P3).

Pipeline &
Edge Tier Info

Vulcan Profiler
Pipeline Construction

(§4.2)

Placement Selection
(§4.3)

Query Configuration
(§4.4)

Config Knob
Search Space

Next Placement Next Config

Launch Pipeline
UtilityPipeline Results

Deploy to Edge w/
Optimal Query Plan

Vulcan Monitor
Online Adaptation

(§5)
Runtime

Dynamics

Detect Perform
Reprofiling

Figure 5: High-level workflow of Vulcan.

leads to a huge search space both during offline profiling and
online adaptation. We next describe how Vulcan overcomes
these challenges in a high-level system overview.

3 SYSTEM OVERVIEW

Vulcan is an ML analytics system that provides automatic
query planning for live ML queries. It takes charge of the
entire lifecycle of a ML query by constructing, configuring,
and placing its ML pipeline, and performing online adaptation
after the query is deployed.

Figure 5 presents a high-level system diagram of Vulcan.
A user launches a live ML analytics task by submitting an
input query to Vulcan, along with performance requirements.
An example of Vulcan input queries can be found in Figure 1.
Upon parsing the query, Vulcan Profiler generates its query
plan by determining the query pipeline, placement of pipeline
operators, and pipeline configuration. In Vulcan, query plans
are evaluated using a utility function we define that combines
the query performance and resource consumption (§4.1). To
determine which pipeline to use for a query, Vulcan first con-
structs an initial pipeline by mapping user query specification
to a general template optimized for performance and resource
efficiency, and then determines the best ordering of filtering
operators based on a new metric we define to capture the
impact of filters on query latency and accuracy (§4.2).

Given a constructed pipeline, Vulcan jointly searches for
the best placement and query configuration which, when
combined, gives the highest utility. To explore placement
choices with low cost, Vulcan reuses intermediate results from
pipeline runs, such that a pipeline with the same configuration
only needs to be offline profiled once. In the meantime, it also
early prunes unpromising placement choices to further reduce
the profiling cost (§4.3). For each placement, Vulcan searches
for the best query configuration by leveraging Bayesian Opti-
mization to explore a large number of query configurations
with a small number of trials (§4.4).

After query deployment, Vulcan continues to monitor query
performance to detect runtime dynamics. During such events,
Vulcan reprofiles the pipeline in a quick and low-cost fashion
by leveraging prior knowledge (§5).

4 VULCAN: PROFILER DESIGN
This section introduces the utility function we define to com-
pare query plans, followed by how Vulcan construct, place,
and configure the ML pipelines for live ML queries.
4.1 Defining Utility of Query Plans
We start by defining a utility function to evaluate the value
of a query plan as we explore the search space. Existing
literature has proposed various utility functions [9, 29, 50, 61]
to combine query accuracy and latency. We build on top
of these works and extend the utility function introduced
in VideoStorm [70] to make it resource-aware. Resource
consumption for live ML queries is as important as query
performance, because each ML pipeline is deployed over edge
infrastructure, where limited network and compute resources
must be shared between applications. A query plan with good
performance but excessive resources is undesirable.

Given a pipeline q with placement p and pipeline configura-
tions c, we define Uq,p,c, the utility function of a query plan, as
the ratio of the query performance to resource consumption:

Uq,p,c = Pq,p,c/Rq,p,c (1)

such that the higher the utility value is, the better performance
and cost for the query plan. Pq,p,c combines query accuracy (A)
and end-to-end latency (L) by calculating the reward (penalty)
for achieving good (bad) performance based on a minimum
accuracy target (Am) and a maximum latency target (Lm):

Pq,p,c(A,L) = γ ·αA · (A−Am)+(1− γ) ·αL · (Lm−L) (2)

, where γ ∈ (0,1). γ allows users to express their preference
between accuracy and latency. Rq,p,c combines the compute
and network resource consumption of the pipeline:

Rq,p,c = αgpu ·Rgpu +αnet ·Rnet (3)

The consumption of the compute (Rgpu) is calculated as the
fraction of the GPU processing time used by the query. In
Vulcan, we assume compute cost is dominated by GPU cost,
as the queries we tackle rely heavily on GPU-based DNN
models. The network resource consumption (Rnet) is calcu-
lated as the sum of the fraction of the network bandwidth
used by the pipeline on each network path between the edges.
The constants αA, αL, αgpu, and αnet are set by the operator
to balance query performance and resource usage. Note that
Vulcan’s solution is orthogonal to the utility function and
works for any utility function defined by the operator.
4.2 Determining the Query Pipeline
The first step in profiling is to construct the query pipelines.
Vulcan performs pipeline construction by first generating
an initial pipeline, and then determines the best ordering of
pipeline operators to carry to the later profiling stages.

Filters
ML

Model
Specialized

Tasks

(A) (B) (C)

Input
Data

Qualified
Results

Figure 6: Template used by Vulcan to construct the initial pipeline.

4.2.1 Constructing the Initial Pipeline
Given a user query, Vulcan generates an initial pipeline us-
ing a general template with several types of building blocks,
as shown in Figure 6. Starting from the data source, Vulcan
constructs the initial pipeline by inserting (A) filtering mod-
ules which reduce the data size or data rate via sampling or
filtering techniques, (B) the ML model to perform the actual
inference task such as object detection, and (C) specialized
modules for additional tasks required by the query, such as
an object tracker (e.g., re-identification modules [31, 38, 40]),
which can be performed only after the major ML inference
task. Vulcan uses a pool of filter and ML modules that are
readily available, provided by users, infrastructure providers,
or third-party developers and organizations (e.g., public ML
model zoos) to handle user queries. Filters and the ML model
to use for the query is specified by the user in the input query
(Figure 1). Based on the chosen operators, Vulcan generates a
list of configuration knobs among which the profiler searches
for an optimal set of configurations (§4.4).

The key insight behind arranging the building blocks in
this way is to reduce the amount of data transfer across the
edge earlier in the pipeline and leave operators with higher
computation cost in later pipeline stages. This maximizes
the savings in both network and compute resource as less
data is transmitted and processed across the edge tiers. The
design can improve end-to-end query latency by reducing the
network latency as well as the GPU processing delay with
potentially smaller data size for ML inference.

This initial pipeline leaves us with a follow-up given the
impact of filter ordering on query performance (§2.2): In what
order should we place the filters?

4.2.2 Selecting the Ordering of Filters
A naïve solution for selecting the filter ordering is to explore
pipeline placement and configuration for all possible order-
ings; this, however, does not scale as the number of filters
increases. In Vulcan, we propose a new solution that compares
the impact of different filter orderings on query’s accuracy,
latency, and resource consumption by evaluating recall and
precision of filters. We first explain how it works for a single
filter before moving on to the multi-filter scenario. We define
recall of a filter as the fraction of samples in the original data
that contains the objects of interest (i.e., relevant data) that
passes through the filter. On the other hand, precision of a
filter is the fraction of data samples in its output that contains
relevant data. For a given filter, we would expect its recall to
be high such that it still captures most of the desired data, and
query accuracy is preserved. A filter with low recall drops
true positive samples which cannot be recovered later in the
pipeline. Among filters with the same recall, we prefer the

ones with higher precision because these filters provide higher
data reduction rate by picking up fewer irrelevant samples,
leading to better latency and resource savings.

We can now define the metric to evaluate how a given filter
affects a query plan’s utility (Uq,p,c). The metric should also
handle a query’s preference between latency and accuracy,
based on the parameter γ defined in Eq (2) in our utility func-
tion. To this end, we leverage a variation of the F-measure
in information retrieval theory [58] to encode this preference.
Denote Fγ as the score for a given filter with its precision and
recall measurements:

Fγ = (1+β
2) · precision · recall

(β2 ·precision)+ recall
(4)

where β = γ/(1− γ). In the F-measure definition, the value
of β captures how many times recall is considered more im-
portant than precision. As we explained earlier, recall and
precision corresponds to query accuracy and latency respec-
tively, and thus the value of γ/(1− γ) (see Eq (2)) is used to
capture our accuracy-latency preference.

Measuring Fγ tells us how well a single filter fits into a
query’s optimal query plan. However, two challenges remain.
First, directly applying Fγ to sort a sequence of filters does not
work well as the recall of a filter can change based on its pre-
ceding filter. Second, filters may have their own configuration
knob that leads to different precision or recall measurements.
Applying one set of configuration for all filters oversimplifies
the problem with inaccurate estimation, whereas evaluating
too many configuration sets increases profiling cost.

We address multiple filters by treating a sequence of filters
as a bulk filter with input being the data source and the output
being the one from the last filter, and measure the overall Fγ

using representative data for each permutation of the avail-
able filters. To deal with filters with various configurations,
we choose a few representative configuration settings to cap-
ture the effect of configuration knobs on filters, where in each
setting all the filters are configured at the x-th percentile in
the range of their configuration knob. Filters with no config-
uration parameter remain unchanged. We empirically find x
= 20-th, 50-th and 80-th good enough at picking promising
pipelines, which results in {3× total number of filter ordering}
Fγ values to collect. Vulcan then picks the ordering which
achieves the highest Fγ to complete the pipeline construction.

4.3 Determining Placement Choices
After constructing the pipeline, the next step is placing each
of the pipeline operators across the edge infrastructure (see
Figure 5). On the one hand, rule-based solutions are good
at reducing search cost but may fail to explore all promising
placement choices. On the other hand, exhaustively searching
through all placement choices requires high search cost during
profiling as we deploy the query across the edge. Vulcan
combines the benefits of the two approaches by (i) reducing
search cost by reusing intermediate results from pipeline runs,
and (ii) early pruning unpromising placement choices.

Algorithm 1: Placement Selection
1 Notation:

q: constructed pipeline (from §4.2.1),
P : all feasible placement choices given q,
Am: accuracy target, Lm: latency target, U : utility,
res: pipeline results used to calculate utility

2 Function SelectBestPlacement(q, Am, Lm):
3 P ← GenerateAllPlacementChoices(q)
4 foreach placement p ∈ P do
5 c← NextCon f ig() ▷ from §4.4
6 count = 0 ▷ reset early pruning counter
7 if c.hasExplored() then
8 res = LoadFromCache(q, c)
9 else

10 res← LaunchPipeline(q, c)
11 CachePipelineResults(res)

12 Up,c =CalculateUtility(q, p, res)
13 if Up,c ≤Up,c(Am,Lm) then
14 count← count +1
15 if count ≥ EarlyPruneCount then
16 continue

17 return argmaxp∈P ,c U(p,c)

4.3.1 Reusing Pipeline Results

The idea of reusing pipeline results is based on two key ob-
servations we make in live ML pipelines. First, query accu-
racy does not depend on the placement choices of a pipeline
with the same query configuration. Second, the amount of
data generated after each pipeline operator is independent of
placement choices. These observations allow us to deploy the
pipeline offline in the datacenter only once per selected query
configuration during the profiling stage to collect pipeline
operator results, and reuse those results to evaluate a new
placement choice by calculating additional latency and re-
source consumption components introduced by the placement,
while reusing the same query accuracy result. Given a total of
M placement choices and N combinations of pipeline config-
urations, our solution improves the search complexity from
O(MN) to O(N) for a given pipeline.

Algorithm 1 describes how Vulcan evaluates placement
choices. Given a pipeline, we begin with generating a collec-
tion of all feasible placement choices. Obviously infeasible
choices where operators are placed in a different order than
they appear in the pipeline (e.g., placing the DNN model in
front of the filters) are excluded from the collection. For each
placement choice, Vulcan explores promising query configu-
rations to evaluate the utility of the query plan (details of how
Vulcan picks query configurations are in Section 4.4). For
every new set of pipeline configurations, Vulcan launches the
pipeline inside the datacenter. In this case, Vulcan not only
collects query performance and resource consumption for
utility calculation but also caches intermediate results from
each pipeline operator, including the operator’s output size,

AData B C D

Figure 7: An example of how additional network latency is calcu-
lated for a pipeline with 4 operators placed across the edge infras-
tructure (i.e., device edge→ on-premise edge→ public MEC→
cloud). Output sizes of shaded operators are used to calculate the
additional latency introduced by the placement.

output bandwidth, and data processing time (i.e., time spent
in a filtering module or GPU inference time)2 (Algorithm 1
lines 10-11). If a chosen pipeline configuration c has been ex-
plored by a previous placement choice, Vulcan calculates the
utility for the new placement p by estimating the new query
end-to-end latency Lp,c and resource consumption Rp,c with-
out launching the pipeline (lines 7-8,12). Lp,c is estimated
by summing up the total processing time of each operator
measured offline excluding the DNN module, the additional
network latency introduced by placement, and the updated
GPU inference latency as shown below:

Lp,c = Loffline,total−Loffline,gpu +∑Lp,net +Lp,gpu (5)

The network component of the new latency, ∑Lp,net , is calcu-
lated by summing up the network latency going across two
adjacent tiers. Figure 7 illustrates how this process works.
The latency is calculated by taking the ratio of a component’s
output size (cached per configuration) to the assigned link
bandwidth capacity the query data traverse through. Note that
only the components sending data to the next tier in the infras-
tructure are considered. The GPU inference latency, Lgpu, is
updated by multiplying with a coefficient based on the GPU
type to reflect the performance difference, which we deter-
mined by profiling all GPUs available in our cluster. Rp,c is
estimated in a similar way by including additional network
bandwidth and GPU processing time introduced by the place-
ment. After all placement choices are explored, Vulcan selects
the placement (together with the optimal configuration) that
achieves the highest utility (line 17).

4.3.2 Pruning Unpromising Placement Choices
Although caching intermediate results allows Vulcan to never
re-launch a pipeline with the same configuration, exhaustively
exploring all feasible placement choices may still incur large
search cost as the profiler strives to find a good configuration
for an unpromising placement. For example, a query prefer-
ring latency performance will not favor the placement that
places the filtering module too far away from the data source.

To apply early pruning, we set a utility threshold which is
equal to the utility value when both minimum performance
metrics is used for the given query configuration and place-
ment, namely U(Qm,Lm), which is evaluated to zero in our
utility definition (§4.1). When the profiler obtains N utility val-
ues below the threshold, we early prune the current placement

2Vulcan also collects the size and bandwidth of the data source to account
for the case where only the data source is placed on the first tier.

choice (Algorithm 1 lines 13-16). Compared to other alter-
native pruning solutions, such as building a statistical model
for pruning decisions, this simple scheme works well because
Vulcan profiler is designed to always pick more promising
configuration than its last attempt (§4.4), and consecutive bad
utility values indicate a high probability of unpromising place-
ment. This also allows us to set N to a small value (N = 3
in our implementation) as otherwise the profiler would have
already terminated itself after a small number of attempts.

Placing split ML models. Recent research [21] has proposed
the idea of splitting the layers of a large DNN model and
placing them at different edge tiers. Vulcan can handle such
design as long as the split layers are properly specified in the
input queries as individual modules.

4.4 Determining Query Configuration
For each placement choice, Vulcan leverage Bayesian Opti-
mization (BO) [14, 51] to efficiently explore pipeline config-
urations that achieve the best performance with minimized
resource consumption (see Figure 5).

4.4.1 Why Do We Choose BO?
BO is a methodology for optimizing expensive objective
functions and is widely applied to many computer sys-
tems [8, 13, 35, 42, 48, 64]. At a high level, it learns the shape
of the objective function by picking inputs that has the highest
probability of reaching the global maximum of the function.
As BO accumulates more observations, it becomes more con-
fident on the actual shape of the objective function. This is a
good fit for our solution as we need to quickly find the opti-
mal configuration that maximizes the utility function without
exploring too many choices.

More importantly, we observe BO has many advantages
over other popular optimization schemes in the context of live
ML queries. Greedy Hill Climbing has been applied in query
configuration for video analytics queries [70], but it is purely
exploitative and cannot perform as efficient global exploration
as BO does (§6.3 provides detailed evaluation). Multi-Armed
Bandit (MAB) [25] is another popular optimization scheme
for sequential decision making, but it is designed for optimiz-
ing cumulative rewards, contrasting our goal of finding the
one configuration with the highest utility. In addition, BO
tunes the entire set of input configurations all together for
each iteration no matter how large the input vector is, whereas
MAB can only adjust one knob at a time. We also prefer BO
over population-based optimization scheme such as Particle
Swarm Optimization (PSO), as applying PSO in query con-
figuration requires launching many ML pipelines in parallel,
leading to a much high computation cost (e.g., GPU resourse).

4.4.2 Applying BO to Query Configuration
We define the objective function of BO as f (⃗x), which models
how good a given query plan is based on a given pipeline
and a physical placement choice. The input x⃗ is the set of
query configuration knobs, and the output of f is the utility
value, Uq,p,c for a given pipeline q with placement p and a set

of configurations c. For each iteration, Vulcan launches the
pipeline with the configurations suggested by BO (i.e., x⃗), and
collects the measurements to compute Uq,p,c, which is then
fed back to BO as the new observation.

Choice of prior and acquisition functions. Internally, BO
learns an objective function by leveraging a prior function
and an acquisition function. The former represents the belief
about the space of possible objective functions, whereas the
latter guides BO to choose the next promising input where
the value of acquisition function is maximized. We choose
Gaussian Process as the prior function and use Matern 5/2
as its covariance function to describe the smoothness of the
prior distribution, which is known to perform well among sys-
tems applying BO [8, 64]. Among three major choices of the
acquisition function, namely probability of improvement [36]
(PI), expected improvement [30] (EI), and upper confidence
bound [65] (UCB), we select UCB as it works the best for
our workloads. We defer a dynamic approach of selecting
acquisition functions [15] to future work.

Starting and stopping BO. We start with N random sets of
input query configurations as initial observations for BO to
learn the rough shape of the objective function. We set N = 3
in all of our experiments and found it works well for various
workload settings. Vulcan stops BO when the improvement
of the utility value is less than a threshold for a few consecu-
tive runs (i.e., 10% for 5 consecutive runs, which empirically
works well). We include a sensitivity analysis on how the
parameters we use in the starting and stopping conditions
affect BO’s performance in Section 6.7.

One alternative design which seems promising but we do
not consider is to directly apply BO for placement selection
and pipeline construction by treating available placement
choices and pipelines as another two knobs in the total con-
figuration space. In BO, input parameters are specified in
a continuous range. For example, the voxel size in the vox-
elization module of an AD perception pipelines is chosen
between 0.1 and 0.5. As BO moves within this range, the
behavior of the module changes with the size of the voxel,
leading to a smoother shape of the objective function with
more predictable outputs. In contrast, the behavior of different
placement choices or filter orderings is hard to predict, and
going through the configuration space of those (i.e., place-
ment or pipeline choices indexed by numbers) leads to very
rough shape of the objective function for BO to grasp; thus it
becomes much more difficult to find the global optimum.

5 ONLINE ADAPTATION

This section describes how Vulcan performs online adaptation
to handle runtime dynamics after query deployment. Vulcan
currently does not support concurrent execution of different
ML queries, and we defer the support of multi-resource shar-
ing among concurrent live ML pipelines to future work.

Figure 8: Scenes taken during different time of day from a video
query detecting red vehicles.

5.1 Detecting and Handling Runtime Dynamics
Vulcan leverages two design ideas to quickly converge back
to the best query plan during online adaption: (i) monitor
utility change to detect runtime dynamics, and (ii) leverage
prior knowledge during reprofiling.

Detecting runtime dynamics. Vulcan detects runtime dynam-
ics by monitoring the change in a query’s utility values, as any
runtime dynamics (content, network, or compute based) leads
to a change in utility. This includes all the measurements
required to calculate up-to-date utility (i.e., latency, accuracy,
module output size and bandwidth), and they are periodically
reported to Vulcan monitor via HTTP requests. To obtain
real-time ground truth on query accuracy given unlabeled live
data, Vulcan launches a duplicated pipeline with the most
expensive configuration inside the cloud, which only receives
live data periodically to minimize network cost. A substantial
change in the utility triggers reprofiling which deploys the
query in the cloud similar to the case of offline profiling. We
set the threshold of utility change empirically (10% in our
implementation) via profiling.

Leveraging prior knowledge in reprofiling. We observe that
most of the query, such as the object of interest and where
the query takes place, remains the same after deployment;
meaning, we can take the advantage of prior knowledge from
offline profiling. Figure 8 shows two example scenes taken by
the same camera during different time of the day from a query
that detects red vehicles. We observe a high level of similarity
between the two scenes except for environment illumination.
Let us define the distance between two configurations, CA and
CB, to be the total number of steps needed for each config-
uration knob in CA to change to each knob value in CB. In
this example, applying the same configuration from daytime
to nighttime scenes leads to an average 26.2% utility drop
among all placement choices, but it requires only an average
distance of 2.47 steps to converge back to the query plan with
the highest utility (figures omitted in the interest of space).

To apply prior knowledge, Vulcan makes the following
changes to the normal profiling process. Vulcan keeps track
of the most recent top-K and worst-K configuration per place-
ment choices (K = 3), and applies them as initial data points in
BO such that BO can quickly grasp the shape of the objective
function. We also tune up the exploitation factor in the acqui-
sition function (κ in UCB [65]) to 1/10 of its original value to
focus more on exploitation than exploration. Note that Vulcan

1 HttpProcessor _httpProcessor = new HttpProcessor(
Config.ENDPOINT_URL_SAMPLING);

2 Int sampling_rate = 3; // selecting 1 out of 3 frames
3 var form = new MultipartFormDataContent();
4 form.Add(new StringContent(sampling_rate.ToString()),

"frameSamplingRate");
5 var result = await _httpProcessor.PostAsync(form);

(a) Sending Configuration Updates

1 // POST: api/Config
2 [Produces("application/json")]
3 [HttpPost]
4 public async Task <IActionResult > PostConfig([FromQuery

] string frameSamplingRate = null)
5 {
6 if (frameSamplingRate != null)
7 {
8 Config.FRAME_SAMPLING_RATE = Int32.Parse(

frameSamplingRate);
9 /* sampling rate updated for subsequent frames */

10 }
11 return Ok();
12 }

(b) Posting Configuration Updates

Figure 9: Code snippets of Vulcan APIs on dynamically updating
query configuration. (a) Vulcan Profiler sending the configuration
updates to deal with runtime dynamics. (b) Vulcan Controller at the
container updates the configuration to use the updated value.

does not just stick to the best placement choice but choose
to re-perform placement selection. As runtime dynamics can
involve network and compute resource changes, this allows
Vulcan to change the placement of the pipeline when merely
adjusting query configuration makes little impact on recov-
ering query performance. We evaluate how Vulcan performs
under different types of runtime dynamics in Section 6.6.

5.2 Enabling Online Adaptation
After identifying the right query plan upon runtime dynamics,
we must also enforce this at production scale. Unfortunately,
existing frameworks for large-scale deployment, such as Ku-
bernetes [7], do not support container modification during
execution. Therefore, Vulcan adds its own implementation.

Dynamically updating query configuration. Figure 9 shows
the example interfaces of Vulcan sending configuration up-
dates and posting them inside the container upon a change
in the frame sampling rate of a traffic monitoring query. In
Vulcan, each pipeline module is installed and launched by
a container. Query configurations are updated in real time
without stopping the containers. If any configuration knobs
need to be updated after reprofiling, Vulcan sends out up-
dated configuration using HTTP requests to the containers
that launch the corresponding modules (Figure 9a). The exact
location (ENDPOINT_URL_SAMPLING) of the containers
is acquired when Vulcan first deploys the pipeline. The con-
tainers receiving the request update the configuration right
away, without stopping the current ML task (Figure 9b).

Handling placement changes. If the new query plan involves
a placement change (e.g., during network or compute resource
change), Vulcan migrates the container of the corresponding
module to the updated tier. To perform the migration, Vulcan

Table 1: ML model variations used in evaluation.

Model # Parameters (Million)

YOLO [56] v5n6 v5s6 v5m6 v5l6 v5x6
3.2 12.6 35.7 76.8 140.7

PointPillars [37] SECFPN SECFPN (FP16)
4.9 4.9

SSN [73] SECOND RegNet
6.2 7.1

CenterPoint [68] DCN Circular NMS
6.0 6.1

wav2vec2 [10] base large_10m large_960h
94.4 315.5 315.5

HuBERT [69] large xlarge
315.5 962.5

first launches the module with the same query configuration
on the target tier. It then updates the location of the new
container to the upstream module via the same API for con-
figuration updates described in §5.1, before removing the old
container on the current tier. The new location of the container
is also updated in Vulcan monitor for future adaptation.

6 EVALUATION

We evaluate the effectiveness of Vulcan in performing auto-
matic query planing in terms of profiling time, query perfor-
mance, and query resource consumption. Our key findings:

(1) Vulcan generates query plan with better profiling cost by
4.1×-30.1× over state-of-the-art ML analytics systems
while delivering up to 2.0×-3.3× better latency (§6.2).

(2) Vulcan performs better query configuraiton, placement
selection, and pipeline construction by outperforming ex-
isting solutions with up to 2.8× better query latency and
174× lower network resource consumption (§6.3-§6.5).

(3) Vulcan achieves consistently better 99th-p latency per-
formance (by up to 2.5×) during online adaptation over
the-state-of-the-art (§6.6).

6.1 Experiment Setup

Live ML Queries. We illustrate Vulcan’s performance in
performing query planning for three example live ML queries:

• Video Monitoring: monitors the traffic volume by exam-
ining live video frames and counting the vehicles of a
specific color (white color in our examples).

• Autonomous Driving Perception: takes 3D point cloud as
input and generates a real-time perception (represented as
3D bounding boxes) surrounding a vehicle.

• Automatic Speech Recognition: converts live human
speech (with background noises) into written text.

Datasets. We adopt several real-world datasets for each query
example to perform a comprehensive evaluation. The video
monitoring queries use videos captured by traffic cameras
among different metropolitan areas in Bellevue and Wash-
ington D.C. The autonomous driving queries use LiDAR
sensor data from nuScenes [16]. Automatic speech recogni-
tion queries use the VOiCES dataset [57] with background
noise enabled. Appendix A.1 has more details.

Pipelines. Unless otherwise specified, video monitoring
queries in our evaluation experiments use the same pipeline
which consists of the following components in order: a back-
ground subtractor to detect moving vehicles, a color filter, and
a variations of YOLOv5 [5] object detector. The autonomous
driving pipeline feeds 3D point clouds into a ground removal
module, followed by a voxelization module and a variations
of PointPillars [37], SSN [73], or CenterPoints [68] 3D ob-
ject detector. The speech recognition queries use a pipeline
that consists of an audio sampler, a noise reduction module,
a variation of wav2vec2 [10] or HuBERT [69] model, and
a decoder. Table 1 records all ML model variations we use
in the evaluation. Appendix A.1 describes the details of the
query configuration knobs for all queries.

Baselines. We consider the following baselines for Vulcan.
• Exhaustive search. To determine the optimal placement and
configuration for a ML pipeline, we use exhaustive search to
explore all possible placement choices and configurations.
•ML analytics systems. We implement four state-of-the-art
ML analytics systems: VideoStorm [70], Chameleon [28],
JellyBean [67], and LLAMA [60]. Both VideoStorm and
Chameleon adopt a variant of greedy-hill climbing during
query profiling, and Chameleon applies spatial and temporal
correlations to reduce the search cost during online adaptation.
JellyBean selects models with target accuracy and lowest
cost, and applies beam search to determine query placement
in a greedy fashion. LLAMA dynamically explores query
configuration by computing per-invocation pipeline latency.
• Pipeline placement strategies. Besides JellyBean’s greedy
placement, we implement the following commonly-adopted
placement strategies: (1) prioritizing network (PN) which
places operators closer to the device edge, (2) prioritizing
compute (PC) which places operators closer to the cloud,
and (3) balancing network and compute (NC) which places
filtering modules closer to the device edge and the remaining
operators to the cloud.

Emulation Setup. We emulate a setup of 4 edge tiers consist-
ing of the device edge, the on-prem edge, the public MEC,
and the cloud, which is consistent with our production edge
infrastructure by adding additional network latency and com-
pute overhead. The network bandwidth and compute cost are
emulated based on the real network and hardware settings in
our production infrastructure.

We run all experiments 20 times with different random
seeds, and collect 10th, 50th, and 90th percentiles of data to
include the effect of randomness in Vulcan and other baselines.
The 10th and 90th percentiles are plotted via error bars un-
less otherwise specified. We set Lm for video monitoring, au-
tonomous driving, and speech recognition queries as 2000ms,
400ms, and 500ms, respectively. Qm is set at 0.8 × the accu-
racy achieved by the most expensive configuration for each
type of queries. We set γ (preference of query accuracy over
latency) to be 0.5 for all queries unless otherwise specified.

�% !)��)(%-)+%(#

	�
�

	�
	

	�

�
+)
"%&
%(
#�
�%
'
!

��
)+
'
�&
%2
!
� ���

���

��� ���

	

�.-)()').,��+%/%(#

	�
�

	�
	

	�

�
+)
"%&
%(
#�
�%
'
!

��
)+
'
�&
%2
!
� 	���

���	

��� ��	

	

�*!!�$��!�)#(%-%)(

	�
�

	�
	

	�

�
+)
"%&
%(
#�
�%
'
!

��
)+
'
�&
%2
!
�

��

�

��	 ���

	

�0$�.,-%/! �% !)�-)+' �% !)�-)+'� �!&&1�!�(�.&��(

Figure 10: Comparing the profiling cost of video monitoring, autonomous driving, and speech recognition queries.

���(%��)
���
��

���
���
���
	��

��
�(

%�
�)

������	 ������	
�

	���

���
����
����

���
����

��
'�

"�
)�

�!
&�

��
����� �����
�

	�
�

	�
	

	�

�
�&

#(
%�

�
��

#%
!

�
�*

��
�

	 	����

	����

���

����

	���
���	

	�
	 ���

�$'�!�
����#�'#%!

����#�'#%!�
��)���"

�(��"

Figure 11: Comparing end-to-end performance and resource con-
sumption for video monitoring queries.

6.2 End-to-End Improvement
We start with showing the end-to-end improvement of Vulcan
over other baselines in generating query plans for all three
types of queries. We compare exhaustive search, original
VideoStorm that explores all placement choices, VideoStorm+
that explores a combination of all three baseline placement
strategies (i.e., PN, PC and NC) on top of VideoStorm, and
JellyBean. We compare Vulcan with Chameleon and LLAMA
during online adaptation in §6.6 as their query configuration
by design happens in the online phase.

We record profiling time normalized by the time spent by
Vulcan, which achieves the smallest value in both types of
queries. We also record performance (accuracy, median la-
tency, and 99th-p latency) and resource consumption (network
and compute) achieved by the query plan and normalize the
results based on the optimal query plan generated by exhaus-
tive search. For VideoStorm, VideoStorm+, and JellyBean,
we record the query plan achieved with highest utility given
the same profiling time as Vulcan.

Figure 10 records the profiling cost for all types of queries,
and Figure 11 summarizes the performance and resource
consumption for video monitoring queries. Results for au-
tonomous driving and speech recognition queries are sim-
ilar and moved to Appendix A.2 in the interest of space.
Vulcan achieves significantly lower profiling cost than ex-
haustive search, VideoStorm, VideoStorm+, and JellyBean
by at least 60×, 22.2×, 4.1×, and 6.9× respectively across
all three types of queries, and its query performance and re-
source consumption are very close to the optimal one achieved

�!��%
�%$!)%'!$�

�*)%$%#%*(
�'!+!$�

�&���
���%�$!)!%$

�

��

	�

�'
%�
!"!$

��
�!
#
�

��
%'
#
�"
!-
��
�

���

���

��

��
��
��

� � �

�, �*()!+� �!��%�)%'# �*"��$

Figure 12: Profiling cost of query configuration given the same
pipeline and placement.

�"�"����"������'�

� �
�

�
��

��
%�'
�!�
���
�&"
$

���
��

���
���
� �$

�
��
��

#�
�!
��
�
�&
�

���
��	
��

���
���

���
���

���

�	�

�
����

Figure 13: BO’s search path in selecting configurations. The new
maximum in utility is marked in green. The initial random configu-
rations are shown in black.

through exhaustive search, achieving up to 2.0×-3.3× bet-
ter tail latency than other baseline approaches. Vulcan’s per-
formance improvement comes from its joint optimization
of pipeline placement and configuration with low cost. Vul-
can avoids exhaustively searching for optimal placement by
reusing pipeline results. VideoStorm+ improves profiling time
by only exploring a few placement choices, at the cost of
worse latency and network resource consumption, and it is still
outperformed by Vulcan by at least 4.4×. JellyBean’s place-
ment algorithm greedily finds promising placement choices
but separately optimizes query configuration and placement,
leading to sub-optimal latency, accuracy, and resource usage.

6.3 Selecting Better Query Configurations
We next delve into the performance of each profiling compo-
nents in Vulcan, starting with query configuration. Figure 12
shows the profiling cost among Vulcan and other baselines
with the same pipeline and the best placement choice. Even
without the benefits achieved in efficient placement selection,
Vulcan can still outperform VideoStorm, which leverages
greedy hill climbing, by 3.5× in profiling time. To illustrate
how Vulcan achieves this, we plot one of Vulcan’s example

���(%��)
���
��	
���
��

���
���

�
��

(%
��

)

������	 ������	
�

����
	���

���
����
����

���

��
'�

"�
)�

�!
&�

��
����� �����
�

��
�

��
�

��
	

�
�&

#(
%�

�
��

#%
!

�
�*

��
�

� �����

�
��

	�

��
�

����
����

���� ���	��	� ���

�$'�!�
��

��
��

��)���"
�(��"

Figure 14: Comparing Vulcan with different placement strategies
on serving video monitoring queries.

BO search path in the video monitoring query in Figure 13.
BO focuses its exploration on larger resizing factor after veri-
fying that smaller values lead to worse performance, and finds
the optimal query configuration at the 6th step. BO takes 5
more steps to confirm we are not likely to encounter better
results before stopping, which we do not plot for legibility.

6.4 Selecting Better Placement
We evaluate Vulcan’s placement decisions by comparing with
common placement strategies (§6.1) and JellyBean. Each
baseline placement strategy uses exhaustive search to find the
optimal pipeline configuration, and all comparisons use the
same pipeline. We ignore the profiling time improvement of
Vulcan over other baselines and only focus on comparing the
achieved performance and resource consumption. Figure 14
illustrates the results of video monitoring queries. Results
for autonomous driving and speech recognition queries are
similar and shown in Appendix A.3. We observe that PN pri-
oritizes network latency but fails to consider the large ML
inference latency on slower compute nodes, resulting in worse
end-to-end query latency. PC optimizes ML inference latency,
which does not always lead to better latency. Moreover, it con-
sumes significantly more network resources. NC tries to strike
a balance between PN and PC but still achieves worse latency.
JellyBean’s placement algorithm is based on a fixed query
configuration that is determined in a prior stage, leading to a
sub-optimal placement choice. In comparison, Vulcan always
achieves the same placement choices as the exhaustive search
and delivers up to 2.8× better query latency and 174× network
resource consumption than other baselines, thanks to its joint
optimization between placement and configuration. The per-
formance gap between Vulcan’s query plan and the optimal
query plan is caused by Vulcan picking a different pipeline
configuration, in which case Vulcan takes much less profiling
time with similar performance and resource consumption.

6.5 Selecting Better Pipelines
We now evaluate how well Vulcan selects the filter ordering
during pipeline construction based on performance require-

0.1 0.3 0.5 0.7 0.9
γ

0.0

0.5

1.0

N
or

m
al

iz
ed

 U
til

ity

BGS First
Color Filter First

Vulcan

Figure 15: Compare Vulcan’s selection of filter ordering with fixed
pipeline settings in video monitoring queries.

	
 � �
 �
��������

�
	
��
����
�
��
����

��
"�

��
��

�"
��

�$
���

!� ��������� ����� �#����

	
 � �
 �
��������

���
��

	��

��
�#

 �
�$

��������� ����� �#����

Figure 16: Comparing Vulcan with Chameleon during online adap-
tation for video monitoring queries.

ments of the queries. We compare the performance of fixed
pipelines with Vulcan’s choices, which is dynamically deter-
mined based on Fγ in Eq 4 (§4.2). To focus on whether Vulcan
makes the correct choice of filter ordering, we remove the
potential noise of BO by using the best pipeline configuration
determined by exhaustive search. We sweep γ and record the
utility value achieved by picking the corresponding pipeline.
Figure 15 shows that Vulcan is able to select the best pipeline
in 8 out of 9 cases. On the other hand, sticking to the other
two fixed pipeline settings leads to only 6 out of 9 cases and
3 out of 9 cases for selecting the correct filter ordering.

6.6 Handling Runtime Dynamics
To evaluate Vulcan’s online adaptation, we compare it with
Chameleon and LLAMA, the state-of-the-art solution in
adapting runtime dynamics in ML queries. We took a contin-
uously running 6-hour long video from our Washington D.C.
video dataset to monitor red vehicles. Performance (99th-p
latency and accuracy) was collected and reported at the end
of every hour. All three systems started with the same video
monitoring pipeline and placement, where the background
subtractor and the color filter are placed on the device edge,
and the object detector is placed on the public MEC. At the
end of the 3rd hour, we reduced the link capacity from the
on-premise edge to the Public MEC by 20× to simulate a
network outage. We see in Figure 16 that Vulcan achieves
consistently better latency than Chameleon and LLAMA by
up to 2.5×. Neither Chameleon nor LLAMA updates pipeline
placement upon resource changes, causing worse latency after
the outage. On the other hand, Vulcan adjusted the pipeline

	 � � 	�
��
��������������

���
���
	��
	��

��

��

��
��
����

��
��
�
�

��
��
�
��
�
��

�

(a) Starting Condition

	 � � 	�
��������
 ����������

���
���
	��
	��

��

��

��
��
����

��
��
�
�

��
��
�
��
�!
��

�

(b) Stopping Condition

Figure 17: Sensitivity analysis of BO’s parameters.

placement by placing the object detector onto the on-premise
edge after the outage, thus mitigating the latency hikes.

6.7 Sensitivity Analysis
We analyze the sensitivity of two parameters used in BO
during pipeline configuration in Figure 17. We use the same
experiment setting in Figure 12 with video monitoring queries.
Figure 17a plots the profiling time normalized by the value
picked in Vulcan implementation when sweeping the number
of initial random configurations passed to BO. The number of
random configurations does affect the profiling time but has a
negligible impact on the quality of the query plan achieved.
Figure 17b sweeps the stopping threshold of BO, which is the
number of consecutive rounds without significant improve-
ment. BO needs at least 3 rounds to obtain a good chance of
finding optimal configurations, but adding more rounds won’t
further improve the quality of profiling.

7 RELATED WORK

Configuration management for ML analytics. Finding bet-
ter configurations for ML analytics is a well studied research
topic [28,70]. VideoStorm [70] investigates query’s accuracy-
latency profile and applies a greedy hill-climbing approach to
search for query configurations. Chameleon [28] applies spa-
tial and temporal correlations of video frames to reduce the
search cost of query configurations during online adaptation.
Although VideoStorm and Chameleon works well for ML
quries with fixed pipeline placement, Vulcan jointly explores
placement and configurations for live ML queries deployed
across a heterogeneous infrastructure.

Constructing ML pipelines with declarative queries. Re-
searchers have proposed declarative query languages, espe-
cially for video analytics, to construct ML pipelines [11, 19,
44, 59]. MIRIS [11] provides a declarative interface to select
video object tracks and selects corresponding modules based
on user specification. Viva [59]’s declarative interface allows
users to specify relational hints to express the relationship
among different modules, which helps Viva to construct and
optimize the pipeline. However, those works only consider
accuracy requirement when optimizing pipelines and ignore
the resource demands especially network usage, providing no
guarantees to end-to-end latency performance.

Domain-specific optimization for ML analytics Applying
domain-specific knowledge to perform optimization for ML

analytics is an active research area spanning many use cases
including video analytics [11,19,28], autonomous driving per-
ception [55,71,72], and automatic speech recognition [20,41].
BlazeIt [19] leverages spatiotemporal information of ob-
jects in video to optimize aggregation and limit queries. VI-
Eye [72] achieves better accuracy and latency performance by
exploiting domian knowledge in autonomous driving scenar-
ios to recognize key semantic objects that can be used to align
vehicle-infrastructure point cloud pairs. Vulcan’s design is
orthogonal to domain-specific techniques and can be applied
to different use cases without additional changes.

Continuous learning for ML analytics. Another line of work
that gets increasingly more attention nowadays is continuous
learning in ML analytics [12, 34, 46]. Ekya [12] jointly sched-
ules and allocate resources to ML retraining and inference to
handle data drift. RECL [34] integrates model reusing with
model retraining to quickly adapt to a lightweight expert DNN
model for each specific video scenes. Techniques leveraging
continuous learning is complementary to Vulcan and can be
applied to Vulcan’s online adapation phase. On the other
hand, Vulcan’s design can be applied to those works as well,
including dynamically updating query configurations and fast
detection of data changes by monitoring utility changes.

Reducing cost of ML analytics via filtering. There have
been recent studies on applying different types of filtering
techniques to reduce the resource consumption of ML an-
alytics without compromising accuracy [17, 24, 26, 32, 47].
NoScope [32] searches for and trains a cascade of models that
preserves the accuracy of the ML inference but with far less
computation cost. Focus [26] uses cheap convolutional net-
work classifiers (CNNs) to construct an approximate index of
all possible object classes in the video frame, which reduces
the use of expensive CNNs during query time. Probabilistic
Predicates [47] constructs and applies binary classifiers to
filter out data blob that will not pass query predicate and thus
accelerate queries with expensive user-defined functions. Vul-
can builds up on the idea of applying filtering and propose a
novel technique to order the filters for ML pipelines.

8 CONCLUSION

Serving live ML analytics involves constructing, placing,
and configuring ML pipelines as well as their online adapta-
tion. However, existing query planning solutions for live ML
queries remain elusive with piecemeal and sub-optimal. We
present Vulcan, an ML analytics system that performs auto-
matic query planning for live ML analytics. Vulcan automati-
cally construct the pipeline and determine the best ordering
of filtering operators for query performance. It efficiently ex-
plores placement choices by reusing of intermediate pipeline
profiling results, and leverage Bayesian optimization with
prior knowledge to handle query configuration and online
adaptation. Vulcan outperforms state-of-the-art solutions on
profiling time, query latency, and resource consumption when
serving queries with real-world datasets.

ACKNOWLEDGEMENTS

We would like to thank Jae-Won Chung, the anonymous NSDI
reviewers, and our shepherd, Danyang Zhuo, for providing
valuable feedback. This work was supported in part by NSF
grants CNS-1845853, CNS-2104243, and CNS-2106184.

REFERENCES

[1] Microsoft rocket for live video analytics.
https://www.microsoft.com/en-us/research/
project/live-video-analytics/, 2020.

[2] Build modern connected applications at the edge with
5g. https://azure.microsoft.com/en-us/blog/
how-developers-can-benefit-from-the-new-
5g-paradigm/, 2022.

[3] Edge video service (evs). https://
azure.microsoft.com/en-us/blog/microsoft-
and-att-demonstrate-5gpowered-video-
analytics/, 2022.

[4] Microsoft rocket for live video analytics. https:
//azure.microsoft.com/en-us/blog/microsoft-
and-att-are-accelerating-the-enterprise-
customer-s-journey-to-the-edge-with-5g/,
2022.

[5] Yolov5. https://github.com/ultralytics/
yolov5, 2022.

[6] Azure public multi-access edge compute (mec).
https://azure.microsoft.com/en-us/solutions/
public-multi-access-edge-compute-mec/, 2023.

[7] Kubernetes. https://github.com/kubernetes/
kubernetes, 2023.

[8] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
Cherrypick: Adaptively unearthing the best cloud con-
figurations for big data analytics. In NSDI, 2017.

[9] Lisa Amini, Navendu Jain, Anshul Sehgal, Jeremy Sil-
ber, and Olivier Verscheure. Adaptive control of
extreme-scale stream processing systems. In ICDCS,
2006.

[10] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. wav2vec 2.0: A framework for self-
supervised learning of speech representations, 2020.

[11] Favyen Bastani, Songtao He, Arjun Balasingam, Karthik
Gopalakrishnan, Mohammad Alizadeh, Hari Balakrish-
nan, Michael Cafarella, Tim Kraska, and Sam Madden.
Miris: Fast object track queries in video. In SIGMOD,
2020.

[12] Romil Bhardwaj, Zhengxu Xia, Ganesh Anantha-
narayanan, Junchen Jiang, Yuanchao Shu, Nikolaos Kar-
ianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica.
Ekya: Continuous learning of video analytics models on
edge compute servers. In NSDI, 2022.

[13] Eric Brochu, Tyson Brochu, and Nando de Freitas. A
bayesian interactive optimization approach to procedu-
ral animation design. In SCA, 2010.

[14] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A
tutorial on bayesian optimization of expensive cost func-
tions, with application to active user modeling and hier-
archical reinforcement learning, 2010.

[15] Eric Brochu, Matthew W. Hoffman, and Nando de Fre-
itas. Portfolio allocation for bayesian optimization. In
UAI, 2011.

[16] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh
Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes:
A multimodal dataset for autonomous driving. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 11621–11631, 2020.

[17] Christopher Canel, Thomas Kim, Giulio Zhou, Cong-
long Li, Hyeontaek Lim, David G Andersen, Michael
Kaminsky, and Subramanya Dulloor. Scaling video ana-
lytics on constrained edge nodes. In MLSys, 2019.

[18] Google Cloud. Speech-to-text: Automatic speech
recognition. https://cloud.google.com/speech-
to-text, 2022.

[19] Matei Zaharia Daniel Kang, Peter Bailis. Blazeit: Op-
timizing declarative aggregation and limit queries for
neural network-based video analytics. In VLDB, 2020.

[20] Nilaksh Das, Monica Sunkara, Dhanush Bekal,
Duen Horng Chau, Sravan Bodapati, and Katrin
Kirchhoff. Listen, know and spell: Knowledge-infused
subword modeling for improving asr performance of
oov named entities. In ICASSP 2022 - 2022 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7887–7891, 2022.

[21] John Emmons, Sadjad Fouladi, Ganesh Anantha-
narayanan, Shivaram Venkataraman, Silvio Savarese,
and Keith Winstein. Cracking open the dnn black-
box: Video analytics with dnns across the camera-cloud
boundary. In HotEdgeVideo, 2019.

[22] Alireza Ghasemieh and Rasha Kashef. 3d object de-
tection for autonomous driving: Methods, models, sen-
sors, data, and challenges. Transportation Engineering,
8:100115, 2022.

https://www.microsoft.com/en-us/research/project/live-video-analytics/
https://www.microsoft.com/en-us/research/project/live-video-analytics/
https://azure.microsoft.com/en-us/blog/how-developers-can-benefit-from-the-new-5g-paradigm/
https://azure.microsoft.com/en-us/blog/how-developers-can-benefit-from-the-new-5g-paradigm/
https://azure.microsoft.com/en-us/blog/how-developers-can-benefit-from-the-new-5g-paradigm/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-demonstrate-5gpowered-video-analytics/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-demonstrate-5gpowered-video-analytics/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-demonstrate-5gpowered-video-analytics/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-demonstrate-5gpowered-video-analytics/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-are-accelerating-the-enterprise-customer-s-journey-to-the-edge-with-5g/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-are-accelerating-the-enterprise-customer-s-journey-to-the-edge-with-5g/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-are-accelerating-the-enterprise-customer-s-journey-to-the-edge-with-5g/
https://azure.microsoft.com/en-us/blog/microsoft-and-att-are-accelerating-the-enterprise-customer-s-journey-to-the-edge-with-5g/
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://azure.microsoft.com/en-us/solutions/public-multi-access-edge-compute-mec/
https://azure.microsoft.com/en-us/solutions/public-multi-access-edge-compute-mec/
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text

[23] Tiago Gomes, Diogo Matias, André Campos, Luís
Cunha, and Ricardo Roriz. A survey on ground segmen-
tation methods for automotive lidar sensors. Sensors,
23(2), 2023.

[24] Seungyeop Han, Haichen Shen, Matthai Philipose,
Sharad Agarwal, Alec Wolman, and Arvind Krishna-
murthy. Mcdnn: An approximation-based execution
framework for deep stream processing under resource
constraints. In MobiSys, 2016.

[25] Daniel N Hill, Houssam Nassif, Yi Liu, Anand Iyer, and
S V N Vishwanathan. An efficient bandit algorithm for
realtime multivariate optimization. In KDD, 2017.

[26] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B. Gibbons, and Onur Mutlu. Focus: Query-
ing large video datasets with low latency and low cost.
In OSDI, 2018.

[27] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Anan-
thanarayanan, Junchen Jiang, Yuanchao Shu, Paramvir
Bahl, and Joseph Gonzalez. Spatula: Efficient Cross-
camera Video Analytics on Large Camera Networks.
In ACM/IEEE Symposium on Edge Computing (SEC),
2020.

[28] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik,
Siddhartha Sen, and Ion Stoica. Chameleon: Scalable
adaptation of video analytics. In SIGCOMM, 2018.

[29] Ramesh Johari and John N. Tsitsiklis. Efficiency loss
in a network resource allocation game. Mathematics of
Operations Research, pages 29(3):407–435, 2004.

[30] Donald R. Jones, Matthias Schonlau, and William J.
Welch. Efficient global optimization of expensive black-
box functions. Journal of Global Optimization, page
13(4):455–492, 1998.

[31] Kai Kai Jüngling and Michael Arens. Local fea-
ture based person reidentification in infrared image se-
quences. In IEEE AVSS, 2010.

[32] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis,
and Matei Zaharia. Noscope: Optimizing neural network
queries over video at scale. In PVLDB, 2017.

[33] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovin-
ski, Trevor Mudge, Jason Mars, and Lingjia Tang. Neu-
rosurgeon: Collaborative intelligence between the cloud
and mobile edge. In ASPLOS, 2017.

[34] Mehrdad Khani, Ganesh Ananthanarayanan, Kevin
Hsieh, Junchen Jiang, Ravi Netravali, Yuanchao Shu,
Mohammad Alizadeh, and Victor Bahl. Recl: Respon-
sive resource-efficient continuous learning for video an-
alytics. In NSDI, 2023.

[35] Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo
Igarashi. Sequential line search for efficient visual de-
sign optimization by crowds. In ACM Transactions on
Graphics, 2017.

[36] Harold J. Kushner. A new method of locating the
maximum point of an arbitrary multipeak curve in the
presence of noise. Journal of Basic Engineering, page
86:97–106, 1964.

[37] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing
Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars: Fast
encoders for object detection from point clouds. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 12697–12705, 2019.

[38] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang.
Deepreid: Deep filter pairing neural network for per-
son re-identification. In CVPR, 2014.

[39] Zhuqi Li, Yuanchao Shu, Ganesh Ananthanarayanan,
Longfei Shangguan, Kyle Jamieson, and Paramvir Bahl.
Spider: A Multi-Hop Millimeter-Wave Network for Live
Video Analytics. In ACM/IEEE Symposium on Edge
Computing (SEC), 2021.

[40] Giuseppe Lisanti, Iacopo Masi, Andrew D. Bagdanov,
and Alberto Del Bimbo. Person re-identification by iter-
ative re-weighted sparse ranking. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2014.

[41] Linda Liu, Yi Gu, Aditya Gourav, Ankur Gandhe,
Shashank Kalmane, Denis Filimonov, Ariya Rastrow,
and Ivan Bulyko. Domain-aware neural language mod-
els for speech recognition. In ICASSP 2021, 2021.

[42] Daniel Lizotte, Tao Wang, Michael Bowling, and Dale
Schuurmans. Automatic gait optimization with gaussian
process regression. In IJCAI, 2007.

[43] Franz Loewenherz. Video analytics towards vision
zero. https://bellevuewa.gov/sites/default/
files/media/pdf_document/video-analytics-
presentation-ITE-conference-021317.pdf, 2017.

[44] Chenglang Lu, Mingyong Liu, and Zongda Wu. Svql:
A sql extended query language for video databases. In
IJDTA, 2015.

[45] Yan Lu, Shiqi Jiang, Ting Cao, and Yuanchao Shu.
Turbo: Opportunistic Enhancement for Edge Video An-
alytics. In ACM Conference on Embedded Network
Sensor Systems (SenSys), 2022.

[46] Yan Lu, Zhun Zhong, and Yuanchao Shu. Multi-View
Domain Adaptive Object Detection in Surveillance Cam-
eras. In AAAI Conference on Artificial Intelligence
(AAAI), 2023.

https://bellevuewa.gov/sites/default/files/media/pdf_document/video-analytics-presentation-ITE-conference-021317.pdf
https://bellevuewa.gov/sites/default/files/media/pdf_document/video-analytics-presentation-ITE-conference-021317.pdf
https://bellevuewa.gov/sites/default/files/media/pdf_document/video-analytics-presentation-ITE-conference-021317.pdf

[47] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and
Surajit Chaudhuri. Accelerating machine learning infer-
ence with probabilistic predicates. In SIGMOD, 2018.

[48] Ruben Martinez-Cantin, Nando de Freitas, Eric Brochu,
Jose Castellanos, and Arnaud Doucet. A bayesian
exploration-exploitation approach for optimal online
sensing and planning with a visually guided mobile
robot. Autonomous Robots, pages 27(2):93–103, 2009.

[49] Massimo Merenda, Carlo Porcaro, and Demetrio Iero.
Edge machine learning for ai-enabled iot devices: A
review. Sensors, 20(9), 2020.

[50] Robert C. Merton. Continuous-Time Finance. Black-
well, 1990.

[51] Jonas Mockus. Bayesian Approach to Global Optimiza-
tion. Kluwer Academic, 1989.

[52] Shadi Noghabi, Landon Cox, Sharad Agarwal, and
Ganesh Ananthanarayanan. The emerging landscape
of edge-computing. In ACM SIGMOBILE GetMobile,
2020.

[53] Pirouz Nourian, Romulo Gonçalves, Sisi Zlatanova,
Ken Arroyo Ohori, and Anh Vu Vo. Voxelization algo-
rithms for geospatial applications: Computational meth-
ods for voxelating spatial datasets of 3d city models con-
taining 3d surface, curve and point data models. Meth-
odsX, 3:69–86, 2016.

[54] Arthi Padmanabhan, Neil Agarwal, Anand Iyer, Ganesh
Ananthanarayanan, Yuanchao Shu, Nikolaos Karianakis,
Guoqing Harry Xu, and Ravi Netravali. GEMEL: Model
Merging for Memory-Efficient, Real-Time Video Ana-
lytics at the Edge. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2023.

[55] Hang Qiu, Pohan Huang, Namo Asavisanu, Xiaochen
Liu, Konstantinos Psounis, and Ramesh Govindan. Au-
tocast: Scalable infrastructure-less cooperative percep-
tion for distributed collaborative driving. In Proceedings
of the 20th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’22, 2022.

[56] Joseph Redmon and Ali Farhadi. Yolo9000: Better,
faster, stronger. In CVPR, 2017.

[57] Colleen Richey, Maria A. Barrios, Zeb Armstrong, Chris
Bartels, Horacio Franco, Martin Graciarena, Aaron Law-
son, Mahesh Kumar Nandwana, Allen Stauffer, Julien
van Hout, Paul Gamble, Jeff Hetherly, Cory Stephenson,
and Karl Ni. Voices obscured in complex environmental
settings (voices) corpus, 2018.

[58] Van Rijsbergen. Information Retrieval. Butterworth-
Heinemann, 1979.

[59] Francisco Romero, Johann Hauswald, Aditi Partap,
Daniel Kang, Matei Zaharia, and Christos Kozyrakis.
Optimizing video analytics with declarative model re-
lationships. Proc. VLDB Endow., 16(3):447–460, nov
2022.

[60] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar,
and Christos Kozyrakis. Llama: A heterogeneous &
serverless framework for auto-tuning video analytics
pipelines. In SoCC, 2021.

[61] sBrian T. Ratchford. Cost-benefit models for explain-
ing consumer choice and information seeking behavior.
Management Science, 28, 1982.

[62] Shuyao Shi, Jiahe Cui, Zhehao Jiang, Zhenyu Yan, Guo-
liang Xing, Jianwei Niu, and Zhenchao Ouyang. Vips:
Real-time perception fusion for infrastructure-assisted
autonomous driving. In MobiCom, 2021.

[63] Jiang Shiqi, Lin Zhiqi, Li Yuanchun, Shu Yuanchao, and
Liu Yunxin. Flexible High-resolution Object Detec-
tion on Edge Devices with Tunable Latency. In ACM
International Conference on Mobile Computing and
Networking (MobiCom), 2021.

[64] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
Practical bayesian optimization of machine learning al-
gorithms. In NIPS, 2012.

[65] Niranjan Srinivas, Andreas Krause, Sham M. Kakade,
and Matthias Seeger. Gaussian process optimization in
the bandit setting: No regret and experimental design.
In ICML, 2010.

[66] Voci. Voci: Real-time speech recognition.
https://www.vocitec.com/ads/real-time-
speech-to-text, 2022.

[67] Yongji Wu, Matthew Lentz, Danyang Zhuo, and Yao Lu.
Serving and optimizing machine learning workflows on
heterogeneous infrastructures. In VLDB, 2023.

[68] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl.
Center-based 3d object detection and tracking. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 11784–11793, 2021.

[69] Ji Won Yoon, Beom Jun Woo, and Nam Soo Kim.
Hubert-ee: Early exiting hubert for efficient speech
recognition, 2022.

[70] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J. Freed-
man. Live video analytics at scale with approximation
and delay-tolerance. In NSDI, 2017.

https://www.vocitec.com/ads/real-time-speech-to-text
https://www.vocitec.com/ads/real-time-speech-to-text

[71] Xumiao Zhang, Anlan Zhang, Jiachen Sun, Xiao Zhu,
Y. Ethan Guo, Feng Qian, and Z. Morley Mao. Emp:
Edge-assisted multi-vehicle perception. In MobiCom,
2021.

[72] Xumiao Zhang, Anlan Zhang, Jiachen Sun, Xiao Zhu,
Y. Ethan Guo, Feng Qian, and Z. Morley Mao. Emp:
Edge-assisted multi-vehicle perception. In MobiCom,
2021.

[73] Xinge Zhu, Yuexin Ma, Tai Wang, Yan Xu, Jianping
Shi, and Dahua Lin. Ssn: Shape signature networks for
multi-class object detection from point clouds. In Com-
puter Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXV 16, pages 581–597. Springer, 2020.

�

	�
�

	�
	

	�

�
#"
���
�!
��
��

�

��
"#

��
�*
��
� 	���

���	

��
 ��	

	

�(��&$%�'�
����"�%"#

����"�%"# �
����)���!

�&���!

(a) Profiling Cost

���(%��)
���
��

���
���
���
	��

�
��

(%
��

)

������	 ������	
�

��
���
���
���

	���
	
��

��
'�

"�
)�

�!
&�

��
����� �����
�

	�
�

	�
	

	�

�
�&

#(
%�

�
��

#%
!

�
�*

��
�

	 	
���

��	

���

����
����

���

���� 	���

�$'�!�
����#�'#%!

����#�'#%!�
��)���"

�(��"

(b) Performance and Resource Consumption

Figure 18: End-to-end performance when exploring the best placement and query configuration for autonomous driving queries.

�

	�
�

	�
	

	�

�"
!�
���

��
��
�
�

��
!"
�
��
�)
��
�

��

�

��	 ��

	

�'��%#$�&�
����!�$!"�

����!�$!"��
����(���

�%���

(a) Profiling Cost

���)&��*
���
��

���
���
���
	��

�
$&

��
�&

&$
&��

�(
�

������	 ������	
�

��
���
���
���

	���
	
��

��
(�

#�
*�

�"
'�

��
����� �����
�

�

�

�

�
�'

$)
&�

�
��

$&
"

�!
 +

��
�

	 		

����
��

���

�

����

	�

����

�%("�!
� ��$�($&"

� ��$�($&"�
��!!*���#

�)!��#

(b) Performance and Resource Consumption

Figure 19: End-to-end performance when exploring the best placement and query configuration for speech recognition queries.

���(%��)
���
��	
���
��

���
���

�
��

(%
��

)

������	 ������	
�

	��
���

��
���

����
�	��

��
'�

"�
)�

�!
&�

��
����� �����
�

��
�

��
�

��
	

�
�&

#(
%�

�
��

#%
!

�
�*

��
�

� �
	��

��
���
�

	���

��

����
��� �������� ����

�$'�!�
��

��
��

��)���"
�(��"

Figure 20: Comparing Vulcan with different placement strategies
on serving AD perception queries.

A ADDITIONAL EVALUATION RESULTS
A.1 Datasets and Query Configuration
We describe below the details of the datasets and query con-
figuration we used in the paper.

Datasets:
The traffic monitoring queries use videos captured by traf-

fic cameras among different metropolitan areas in Bellevue
and Washington D.C. The videos are encoded in MP4 for-
mat (1280x720p, 30fps, and 120 seconds long) and randomly
sampled from two-hour long videos among 24 days.

For autonomous driving perception queries, we use LiDAR
sensor data from nuScenes [16], a large-scale autonomous
driving dataset. The dataset features 1000 20-second driving
scenes collected over months, in Boston and Singapore en-
compassing a diverse range of challenging driving situations.

Automatic speech recognition queries use the VOiCES
dataset [57], an English speech audio dataset by male and

���)&��*
���
��	
���
��

���
���

�
$&

��
�

&&
$&

��
�(

�

������	 ������	
�

	��
���

��
���

����
�	��

��
(�

#�
*�

�"
'�

��
����� �����
�

�

	

�

�
�'

$)
&�

�
��

$&
"

�!
 +

��
�

� �

��	�

��
	
�

���

�

	�

� ����

	��
����

�%("�!
��

��
��

��!!*���#
�)!��#

Figure 21: Comparing Vulcan with different placement strategies
on serving ASR queries.

female speakers. The dataset contains 3903 audio files (total
15 hours long) containing different room settings, simulated
head movement, and various background noise patterns.

Configuration Knobs. Besides the variation of ML models
described in §6.1, our queries in Evaluation configure the
following additional configuration knobs.

• Video monitoring queries configure input frame sampling
rate (1/2, 1/3, 1/4, 1/5, 1/6) and frame resizing factor (0.6,
0.7, 0.8, 0.9, 1) for frame resolution.

• Autonomous driving queris configure the ground removal
factor3 and voxel size, each with 5 configuration values
(0.1, 0.2, 0.3, 0.4, 0.5).

• Speech recognition queires configure audio sampling rate
(8k, 10k, 12k, 14k, 16k) and frequency mask width (500,

3corresponds to the maximum distance between a ground point and the
estimated 2D ground plane.

1000, 2000, 3000, 4000) of the noise reduction module.

A.2 End-to-End Improvement
Figure 18 and Figure 19 shows the comparison between Vul-
can and other baselines in the end-to-end performance of au-
tonomous driving and speech recognition queries. The same
conclusion can drawn as mentioned in §6.2.

A.3 Selecting Better Placement
Figure 20 and Figure 21 records the performance and resource
consumption of autonomous driving and speech recognition
queries, where PN, PC, and NC use the optimal query plan
achieved by exhaustive search. Similar to §6.4, Vulcan al-
ways achieves the best placement choice, outperforming other
baselines in query performance and resource consumption.

	Introduction
	Background and Motivation
	Processing Live ML Queries
	Motivating Examples

	System Overview
	Vulcan: Profiler Design
	Defining Utility of Query Plans
	Determining the Query Pipeline
	Constructing the Initial Pipeline
	Selecting the Ordering of Filters

	Determining Placement Choices
	Reusing Pipeline Results
	Pruning Unpromising Placement Choices

	Determining Query Configuration
	Why Do We Choose BO?
	Applying BO to Query Configuration

	Online Adaptation
	Detecting and Handling Runtime Dynamics
	Enabling Online Adaptation

	Evaluation
	Experiment Setup
	End-to-End Improvement
	Selecting Better Query Configurations
	Selecting Better Placement
	Selecting Better Pipelines
	Handling Runtime Dynamics
	Sensitivity Analysis

	Related Work
	Conclusion
	Additional Evaluation Results
	Datasets and Query Configuration
	End-to-End Improvement
	Selecting Better Placement

