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Abstract. This study proposes a method for knowledge distillation
(KD) of fine-tuned Large Language Models (LLMs) into smaller, more ef-
ficient, and accurate neural networks. We specifically target the challenge
of deploying these models on resource-constrained devices. Our method-
ology involves training the smaller student model (Neural Network) using
the prediction probabilities (as soft labels) of the LLM, which serves as
a teacher model. This is achieved through a specialized loss function tai-
lored to learn from the LLM’s output probabilities, ensuring that the
student model closely mimics the teacher’s performance. To validate the
performance of the KD approach, we utilized a large dataset, 7T, con-
taining 6,684 student-written responses to science questions and three
mathematical reasoning datasets with student-written responses graded
by human experts. We compared accuracy with state-of-the-art (SOTA)
distilled models, TinyBERT, and artificial neural network (ANN) mod-
els. Results have shown that the KD approach has 3% and 2% higher
scoring accuracy than ANN and TinyBERT, respectively, and compara-
ble accuracy to the teacher model. Furthermore, the student model size
is 0.03M, 4,000 times smaller in parameters and x10 faster in inferencing
than the teacher model and TinyBERT, respectively. The significance of
this research lies in its potential to make advanced AI technologies acces-
sible in typical educational settings, particularly for automatic scoring.

Keywords: large language model (LLM) · BERT · knowledge distilla-
tion · automatic scoring · education technology

1 Introduction

Artificial Intelligence (AI) in education has evolved from a theoretical concept
to a practical tool, significantly impacting classroom assessment practices and
adaptive learning systems [4,6]. AI for personalized learning and assessment pro-
vides opportunities for more tailored and e↵ective educational experiences [13].
Integrating Large Language Models (LLMs) from domains on AI like BERT [1]
into education has been a significant milestone in enhancing learning experiences,
providing personalized learning content and support, and facilitating automatic
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scoring [9,11,10,14]. Despite their potential, the deployment of LLMs in educa-
tional settings is constrained by their considerable size (714MB for 178 million
parameters and 495MB for 124 million parameters) and computational require-
ments (16 Tensor Processing Units), presenting a challenge for widespread adop-
tion in resource-constrained educational environments such as mobiles/tablets
and school-provided laptops with no GPUs or TPUs and limited memory [5].

To bridge this gap, our study explores the feasibility of distilling the knowl-
edge of LLMs into smaller neural networks, referred to as student models, with
fewer parameters and hidden layers. By training a smaller student model using
soft labels provided by a fine-tuned LLM (i.e., teacher model), we aim to achieve
a similar scoring performance to that of LLMs, but with reduced model size.

The significance of this research lies in its potential to make advanced AI
technologies accessible in typical educational settings. The study addresses the
technical challenges of deploying AI models in resource-constrained environments
and highlights the potential of AI to transform educational assessment practices.
By enabling the deployment of e�cient automatic scoring systems on less pow-
erful hardware available in school settings, we contribute to the democratization
of AI in education. The key contributions of this paper are:

– We demonstrate the successful application of a novel knowledge distillation
(KD) strategy that, while inspired by [5], is uniquely adapted and optimized
for the context of educational content.

– Our approach achieves a significant reduction in model size and compu-
tational requirements without compromising accuracy. The student model,
distilled from a fine-tuned BERT teacher model, exhibits a model size that
is 4,000 times smaller and demonstrates an inference speed that is ten times
faster than that of its teacher counterpart.

– Through comprehensive evaluations using a large dataset of 10k student-
written responses to science questions, our work not only validates the e↵ec-
tiveness of our KD method against state-of-the-art models like TinyBERT
[7] and generic ANN models [3], but also highlights its superior performance.

2 Proposed Knowledge Distillation

KD is a technique to transfer knowledge from a trained large model (teacher)
to a more compact and deployable model (student). We take inspiration from
the prominent KD approach, introduced by [5], which involves using the class
probabilities generated by the pre-trained large model as soft labels for train-
ing the smaller model, e↵ectively transferring its predictive and generalization
capabilities. Building on this concept, we develop a method for applying KD
in the context of automated scoring systems, aiming to improve the process of
evaluating educational content using AI.

Specifically, for each data point xi in the training sample D, the teacher
model predicts the class probability pi = (pi1, . . . , piK)T , where pij represents
the predicted probability that the ith data point belongs to class j. The student
model is trained using both the training sample D and the corresponding soft
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labels p = {pi}Ni=1 produced by the teacher model. We represent the student
model by a neural network f(·,✓). The discrepancy between the student and
teacher models is measured as

L̃(f(·,✓);D,p) =
1
N

NX

i=1

CE(pi, f(xi,✓)),

= � 1
N

NX

i=1

KX

k=1

pik log (fk(xi;✓)) ,

(1)

which is the sample mean of the cross-entropy CE(pi, f(xi,✓)) across i. To
leverage the information from both the training data and the teacher model’s
predictions, KD aims to solve

✓⇤
KD = argmin

✓2Rd

n
LKD(f(·,✓);D,p,�)

o

= argmin
✓2Rd

n
L(f(·,✓);D) + �L̃(f(·,✓);D,p)

o
,

(2)

where the minimized KD loss LKD(f(·,✓);D,p,�) is the linear combination
of two loss terms in KD loss and (1). The first term of the KD loss equation
measures the discrepancy between the predictions of the student model and the
actual labels. The second term assesses the prediction discrepancy between the
student and teacher models. In this context, � serves as a constant that balances
the impact of these two aspects of the loss. Setting � = 0 reduces the KD loss
to the conventional empirical risk loss.

Teacher

Student

y ~ p

Forward KDθPrompt x

Fig. 1. The architecture of the proposed KD approach uses prediction probabilities
as soft labels from the teacher model and forces the student model to achieve these
prediction probabilities through the fitting loss function.

KD enables the student model to attain performance comparable to the
teacher model while considerably reducing the computational resources required
for training. The teacher model’s predicted probability outputs p provide valu-
able insights into its data interpretation. By minimizing the discrepancy between
the outputs of the student and teacher models, the student model can e↵ectively
adopt the knowledge and insights of the teacher model. Consequently, despite
its simpler architecture and reduced computational resources, the student model
can match the performance of the more complex teacher model.

In Fig. 1, we present the architecture of the proposed KD method. With a
well-performing, fine-tuned, large teacher model and a new dataset, we run the
teacher model on the dataset and extract knowledge to guide the training of a
more compact student model. In this study, we extract the class probabilities
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predicted by the teacher model as the knowledge to be transferred to the student
model. sing both the knowledge from the teacher model and the data from
the dataset, we train the student model based on optimization, as outlined in
Equation (2).

3 Experimental Setup

Our study investigates whether a significantly smaller neural network can ef-
fectively mimic the capabilities of a fine-tuned LLM through the proposed KD
strategy. Additionally, the study explores how this approach can enhance model
performance. We apply our proposed methodology across diverse datasets to
train a compact model to achieve this goal. This model is then compared with
the SOTA TinyBERT [7] and a trained smaller ANN [3] to evaluate the perfor-
mance in terms of accuracy and e�ciency. TinyBERT stands out due to its spe-
cific design to compress the size and computational demands of BERT through a
sophisticated distillation process, making it an ideal benchmark for assessing the
e�ciency and e↵ectiveness of our distillation approach. On the other hand, ANN
represents a broader category of neural networks that, while not specialized in
natural language processing tasks to the same extent as TinyBERT, provides
a contrasting baseline to evaluate the general applicability and performance of
our distilled model in automatic scoring. The comparison against these models
allows us to validate the superiority of our approach not only against a state-of-
the-art distilled model like TinyBERT, which is directly relevant to our domain
but also against more generic neural network architectures.

3.1 Data Collection and Preprocessing

The study utilized a meticulously categorized dataset of student-written re-
sponses to a science question and three mathematical assessment items, each
falling under the multi-class category for automatic scoring. Each student re-
sponse in datasets is graded by a human expert for automatic scoring, and
human scores are used for validation. On average, each student’s written textual
response contains 15 words. The detailed composition of each assessment item’s
dataset is presented in Table 1.

Dataset Sample size Classes Teacher Student
7T 6,684 10 SciEdBERT (114M) E-LSTM (0.03M)
Bathtub 1,145 5 BERT base (110M) E-LSTM (0.03M)
Falling Weights 1,148 4 BERT base (110M) E-LSTM (0.03M)
Gelatin 1,142 5 BERT base (110M) E-LSTM (0.03M)

Table 1. Sample size and the teacher and student model used for each dataset. The
number of parameters for each model is shown in parentheses.
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Accuracy
Teacher TinyBERT ANN KD

7T 0.891±0.016 0.752±0.003 0.716±0.002 0.757±0.001*
Bathtub 0.938±0.014 0.833±0.019 0.831±0.021 0.852±0.012*
Falling Weights 0.904±0.013 0.856±0.015 0.865±0.014 0.888±0.008*
Gelatin 0.871±0.018 0.735±0.010 0.739±0.011 0.780±0.014*

F-1 Score
7T 0.842±0.017 0.749±0.009 0.706±0.001 0.751±0.005*
Bathtub 0.914±0.021 0.832±0.069 0.830±0.024 0.851±0.011*
Falling Weights 0.893±0.018 0.855±0.015 0.864±0.014 0.886±0.009*
Gelatin 0.804±0.016 0.731±0.008 0.733±0.014 0.766±0.017*
* KD has shown higher accuracy and F-1 score than TinyBERT and ANN, and is
comparable to the Teacher model for each dataset.

Table 2. Accuracy and F-1 score performance comparison of teacher, TinyBERT [7],
ANN [3], and KD model for benchmark datasets. The mean accuracies and standard
deviations are displayed.

3.2 Dataset

The 7T dataset is a large dataset consisting of seven tasks from the SR1 dataset,
including short constructed student responses and human-expert graded scores.
Overall, the 7T dataset consists of 6,684 labeled student responses from [12],
similar to the dataset used for SciEdBERT by Liu et al. [9]. We utilized three
multi-class assessment tasks from the Mathematical Thinking in Science (MTS)
project [2] responded to by high-school students: Bathtub, Falling Weights, and
Gelatin containing 1,145, 1,148, and 1,142 student-written responses respectively.
Each dataset contains a di↵erent number of classes (scores assigned by human
experts) for student-written responses. More specific details about scoring and
assessment items can be found in [8]. This comprehensive dataset facilitated a
nuanced analysis of the capacity of compact scoring models for student-written
responses, ensuring robust and broadly applicable study findings. We processed
each dataset by excluding empty responses and ensuring text-formatted student
responses and ranged labels.

3.3 Training Scheme

Model Setup This study uses SciEdBERT [9] with 114M parameters as a spe-
cialized Science Education BERT model, and the standard BERT base model [1]
contains 110M parameters as the teacher model. These models have been shown
to perform brilliantly in processing textual data. For performance comparison,
we used TinyBERT [7] with 67M parameters and small ANN [3]. For the KD
method, we constructed a compact neural network with an embedding layer
with an output dimension of 32 and a bidirectional LSTM layer with 16 units
(significantly fewer parameters than transformers), followed by a GlobalMax-
Pooling1D layer. Further, it includes two dense layers, with the first having 16
neurons and ’relu’ activation, and the final layer is equipped with a softmax ac-
tivation for multi-class classification. Additionally, dropout layers are integrated
for regularization, and the model is optimized with Adam.
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Evaluation and Validation We partition each dataset into training, valida-
tion, and testing sets in a 7 : 1 : 2 ratio. The model optimization employs
cross-entropy loss, and to prevent overfitting, an early stopping callback that
monitors the validation loss is utilized. We present the prediction accuracy on
the test set to assess the model’s performance.

The summary of the dataset and the teacher and student (KD) models used
for each dataset is detailed in Table 1. We provide the number of parameters for
each model in parentheses. The student model is much smaller than the teacher
model.

3.4 Results

The comparative analysis of model accuracy across four datasets is presented
in Table 2. Results reveal the e�cacy of KD in enhancing the performance of
a student model as compared to the SOTA TinyBERT [7] and ANN [3] for
text classification, in terms of both accuracy and F-1 score. Furthermore, it
also provides close accuracy and F-1 score as the complex teacher model. The
Falling Weights dataset serves as a typical example, with KD providing per-
formance comparable to the teacher model, suggesting that even models with
much smaller sizes can achieve similar performance to the large teacher model.
We observed that KD outperforms TinyBERT and ANN in accuracy by 2.5%
and 3.2%, respectively, and in F-1 score by 2.2% and 3.0%, respectively. This
observation highlights the superiority of KD over SOTA model distillation ap-
proaches. Considering both accuracy, F-1 score (shown in Table 2), and model
size (shown in Table 1), results highlight the practicality and applicability of the
KD approach for automatic scoring on resource constrained-devices.

Despite the success of KD, it is essential to recognize that the student mod-
els, although improved, usually do not reach the performance benchmarks set
by the teacher models. This is notably apparent in the 7T dataset; the integra-
tion of KD leads to better performance compared to the ANN and TinyBERT
but still does not match the teacher models’ accuracy. Such a discrepancy can
be attributed to the inherent limitations of the student models, which possess
simpler architectures and are trained on smaller datasets with far fewer training
parameters.

The results demonstrate that the KD strategy is a powerful tool in model
training, beneficial for applications such as automatic scoring. By e↵ectively
condensing the knowledge of a large, pre-trained model into a more compact
one, KD not only improves performance but also facilitates the deployment of
such models in resource-constrained environments.

3.5 Sensitivity Analysis

We investigated the impact of the hyperparameter � in Eq. (2) on scoring accu-
racy to learn more about the resilience of the KD approach. We assessed the KD
approach using a step size of 0.02 and a range of � values from 0.08 to 0.02 for
the Bathtub dataset. Although there were little variations in the accuracy of the
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KD technique with the modification of �, consistently outperformed the baseline
models. These findings suggest that the KD approach is comparatively resistant
to the selection of � = 0.2, demonstrating consistent performance across a range
of hyperparameter values.

4 Discussion

The results of this study highlight the revolutionary possibilities of KD in educa-
tional technology, especially in light of the limitations of standard school comput-
ing resources. The use of KD in education represents a substantial breakthrough,
particularly in automated grading systems. Nevertheless, like any emerging tech-
nology, it is important to recognize its limitations as well as its potential for
development in the future. In the traditional education system, automatic eval-
uation is yet a point of discussion [10]. Therefore, our proposed solution is a
supplementary tool designed to support and not replace traditional assessment
methods established in the education system. Further studies and educational
policy adaptations are necessary to fully integrate such technologies into formal
school environments.

The most noteworthy application of KD in education is the creation of accu-
rate and e�cient automatic scoring systems. A major challenge in many educa-
tional contexts is that traditional scoring systems can demand extensive process-
ing resources to function successfully on school-setting devices such as entry-level
laptops and tablets. This problem is addressed by KD, which enables the cre-
ation of “student models” with significantly lower processing requirements while
preserving much of the accuracy and e�ciency of larger “teacher models.

Furthermore, KD models are ideally suited for integration into tablet- and
smartphone-based learning apps due to their smaller size and reduced processing
requirements. The capacity to run complex AI models on these devices, which
are increasingly prevalent in educational contexts, creates new opportunities for
interactive and adaptable learning experiences.

5 Conclusion

This study e↵ectively illustrates how KD can be used to optimize LLMs for
usage in educational technology, especially on low-processor devices. We main-
tain great accuracy with a much smaller model size (0.03M parameters) and
processing requirements by condensing the knowledge of LLMs into smaller neu-
ral networks. The distilled models perform better than SOTA TinyBERT and
ANN models on various datasets, demonstrating the e�cacy of this approach
even though their parameter sizes are up to 100 times less than teacher models.
This work has important applications since it provides a method to incorporate
cutting-edge AI tools into conventional school environments, which frequently
have hardware constraints. The learning process and accessibility of personalized
education technology can be significantly improved by the capacity to implement
e↵ective and precise AI models for uses such as autonomous scoring. Essentially,
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this work establishes the foundation for future developments in the field and val-
idates the viability of KD in educational contexts, underscoring the significance
of ongoing research and innovation in AI for education. In the future, we will
work on processing soft-labels and prompt processing to avoid amplification of
faults of teacher models by employing more sophisticated techniques.
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