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Abstract

The all pairs shortest path problem (APSP) is one of the foundational problems in computer
science. For weighted dense graphs on n vertices, no truly sub-cubic algorithms exist to compute
APSP exactly even for undirected graphs. This is popularly known as the APSP conjecture and
has played a prominent role in developing the field of fine-grained complexity. The seminal
results of Seidel and Zwick show that using fast matrix multiplication (FMM) it is possible to
compute APSP on unweighted undirected graphs exactly in Õ(n!) time, and can be approxi-
mated within (1 + ✏) factor in weighted undirected graphs in time Õ(n!) respectively. Here !

is the exponent of FMM, which currently stands at ! = 2.37188. Moreover even for unweighted
undirected graphs, it is not possible to obtain a (2 � ✏)-multiplicative approximation of APSP
for any ✏ > 0 in o(n!) time. Since 2000, a result by Dor, Halperin, and Zwick gave the best
2 approximation algorithm for APSP in unweighted undirected graphs in time Õ(n7/3). This
result was recently improved by Deng, Kirkpatrick, Rong, Williams and Zhong to Õ(n2.2593)
using fast min-plus product for bounded-difference matrices which uses FMM as a subroutine
(the stated bound here uses new results for computing such min-plus products by Durr). In
fact both these results obtain a +2-additive approximation. Recently, Roditty (STOC, 2023)
improved the previous bounds for multiplicative 2-approximation of APSP in unweighted undi-
rected graphs giving the best known bound of Õ(n2.25). All these algorithms are deterministic.
Roditty also considers estimating shortest paths for all paths of length � k for k � 4, and gives
improved bounds when the underlying graph is sparse using randomization. Though for dense
graphs, the best known bounds still remained at those provided by Dor et al. more than two
decades back.

In this paper, we provide a multitude of new results for multiplicative and additive approxi-
mations of APSP in undirected graphs for both unweighted and weighted cases. We provide new
algorithms for multiplicative 2-approximation of unweighted graphs: a deterministic one that
runs in Õ(n2.072) time and a randomized one that runs in Õ(n2.0318) on expectation improving
upon the best known bound of Õ(n2.25). The algorithm uses FMM as well as new combinatorial
insights. For 2-approximating paths of length � k, k � 4, we provide the first improvement
after Dor et al. for dense graphs even just using combinatorial methods, and then improve it
further using FMM. We next consider additive approximations, and provide improved bounds
for all additive �-approximations, � � 4. For example, we achieve a running time of Õ(n2.155)
for +4 additive approximation improving over the previously known bound of Õ(n2.2), and for
a +6 additive approximation, our algorithm has a running time of Õ(n2.103) as opposed to the
Õ(n2.125) time that was previously known. For weighted graphs, we show that by allowing small
additive errors along with an (1+✏)-multiplicative approximation, it is possible to improve upon
Zwick’s Õ(n!) algorithm. For example, it is possible to obtain a bi-criteria (1 + ✏, 2wu,v) ap-
proximation in Õ(n2.152) time for the shortest path distance between all vertex pairs u, v where
wu,v is the highest weight edge on the u-v shortest path. Additionally, we provide a landscape
of such bi-criteria approximations for weighted and unweighted graphs. Our results point out
the crucial role that FMM can play even on approximating APSP on unweighted undirected
graphs, and reveal new bottlenecks towards achieving a quadratic running time to approximate
APSP.

∗University of California, San Diego. The authors are partially supported by NSF grants 1652303, 1909046,
2112533, and HDR TRIPODS Phase II grant 2217058.
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1 Introduction

Computing All Pairs Shortest Path (APSP) on graphs is a landmark problem in computer science.
It is both one of the foundational problems of fine grained complexity, as well as one that directly or
indirectly aids in the computation of many important graph and matrix problems. A large variety
of graph and matrix problems can be fine-grained reduced to either unweighted or weighted APSP
showing that a better algorithm for APSP will lead to a better algorithm for all those problems
[WW10]. The classic approaches like Floyd-Warshall computes APSP on weighted dense graphs,
G = (V,E), |V | = n, |E| = m, in O(n3) time; whereas the best result known by Williams has
a running time of O

⇣
n3

2
p
logn

⌘
[Wil14] which is still not sub-cubic. Indeed the weighted APSP

conjecture states that there does not exist any truly subcubic algorithm, that is one running in
O(n3�") time for some constant " > 0. However, for unweighted undirected graphs, a seminal result
of Seidel showed that APSP can be computed in O(n!) time [Sei95] where ! is the exponent of fast
matrix multiplication, and currently stands at ! = 2.37188 [DWZ22]. More generally, when weights
are bounded integers in the range [�M,M ], APSP can be solved in O(Mn

!) time for undirected
graphs [SZ99, AGM97] and in subcubic time in directed graphs [Zwi02].

In this paper, we concentrate on undirected graphs, and henceforth all references to graphs
indicate undirected graphs if not explicitly mentioned otherwise. Interest in computing APSP
has naturally led to the study of approximation algorithms. An estimate �̂ : V ⇥ V ! R is an
(↵,�)-approximation of the actual shortest path metric � : V ⇥ V ! R if �(u, v)  �̂(u, v) 
↵�(u, v) + � for all u, v 2 V ⇥ V . Therefore an (↵, 0)-approximation implies a pure multiplicative
approximation whereas a (1,�)-approximation implies a pure additive approximation. There is a
huge body of literature on approximating APSP, from multiplicative and additive approximation
in sub-cubic time [ACIM99, DHZ00, CZ01, BK10, BK07, DKR+22, Rod23], computing distance
oracle that trades off preprocessing with query time, to developing space efficient data structures
[MN07, BK10, PR10, WN12, AG13, Che14, Che15, EP16, ENWN16, Som16, AR20, CZ22]. In a
seminal work, Zwick gave an ((1 + ✏), 0)-approximation algorithm for weighted APSP that runs
in Õ(n

!

✏ logW ) time [Zwi98] where W is the largest edge weight. Dependency on W was later
removed to obtain a strong polynomial running time of O

�
n!

✏ polylog
�
n
✏

��
[BKW19]. Moreover, even

for unweighted graphs, a better than (2, 0)-approximation in o(n!) time is not possible [DHZ00].
Naturally this leads to the question whether a (2, 0) approximation is possible in o(n!) time and
even better in O(n2) time. While designing an Õ(n2) time algorithm for a (2, 0)-approximation still
remains open, it is possible to get a (3, 0)-approximation in Õ(n2) time [DHZ00, CZ01].

Let us first consider unweighted graphs. So far, the best running time to achieve a (2, 0)-
approximation is due to Roditty [Rod23]. Roditty gave an algorithm with a running time of Õ(n2.25)
for a (2, 0) approximation which improves upon the Õ(n2.2593) running time previously known
[DKR+22, Dür23]. In fact, both these results are based on Dor et al.’s work [DHZ00]. Dor,
Halperin and Zwick gave an algorithm to achieve a (1, 2)-approximation that runs in Õ(n7/3) time
and a (1, 4)-approximation that runs in Õ(n9/4) time among other results. Roditty utilizes the
Õ(n9/4) time algorithm and brings in new ideas to show that on paths of length 3, it is possible to
get a +2-additive approximation. Moreover, paths of length 1 can trivially be found exactly in O(m)
time, and paths of length 2 can be approximated within +2-additive errors from Dor et al.’s work
[DHZ00]. All, these together imply a (2, 0)-approximation in Õ(n9/4) time by Roditty [Rod23]. On
the other hand, Deng et al. showed the first step of the Õ(n7/3) time algorithm of Dor et al. can be
made faster by utilizing fast algorithms for bounded-difference (min,+) product [CDXZ22, CDX22,
WX20, BGSW19], therefore essentially giving a faster (1, 2)-approximation algorithm. These lead
to several interesting open questions.
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Can we use algebraic methods to get a faster (2, 0)-approximation?

Using bounded-difference (min,+) product in the first step of Õ(n9/4) does not help, as that
running time itself is quite large. Dor et al. provided an entire trade-off between running time
and additive error. They showed for every even �, it is possible to approximate APSP within +�

additive error in time Õ(min(n2� 2
�+2m

2
�+2 , n

2+ 2
3��2 )). While Deng et al.’s work [DKR+22] improved

the running time for a (1, 2)-approximation, it left open the scope of improving the running time
for algorithms that allow higher additive errors. The best known bounds for those still stand at
where they were more than two decades back. Employing the bounded-difference (min,+)-product
as the first step in Dor et al.’s algorithm for higher additive errors provide no improvements.

Can we use algebraic methods to get faster (1,�)-approximation for all � > 0?

As will become apparent, the challenge in computing a fast (2, 0)-approximation lies in handling
paths of short lengths, for which a multiplicative 2-approximation implies a good additive approx-
imation. Another interesting contribution of Roditty’s work [Rod23] is to provide an improved
running time when a (2, 0)-approximation is sought only for path lengths greater than a certain
threshold. In particular, they show that a (2, 0)-approximation can be obtained for vertex pairs
at distance at least k in time Õ

⇣
min

⇣
n
2� 2

k+4m
2

k+4 , n
2+ 2

3k�2

⌘⌘
. This improves upon the previous

bound of Õ
⇣
min

⇣
n
2� 2

k+2m
2

k+2 , n
2+ 2

3k�2

⌘⌘
by Dor et al. for sparse graphs while leaving the same

bounds for dense graphs. Clearly, this raises the question whether it is possible to get improved
bounds for dense graphs.

Can we get a faster (2, 0)-approximation for vertex pairs at distance at least k for dense graphs?

Moving to weighted graphs, as stated before a ((1 + ✏), 0)-approximation, ✏ > 0, is possible in
O
�
n!

✏ polylog
�
n
✏

��
time [Zwi98, BKW19]. Multiple works have studied a natural question whether

a bi-criteria (↵,�)-approximation, ↵ > 0,� > 0, can have better time complexity [BK10, BGS05,
BK07, Elk05]. Baswana and Kavitha [BK10] and Berman and Kasiviswanathan [BK07] obtained
(2, wu,v)-approximations in Õ(n2) time where wu,v is the largest weight in the shortest path between
u, v. Berman and Kasiviswanathan also showed an (1 + ✏, 2w(u, v))-approximation with a running
time of Õ(n

!

✏3 log n
✏ ) [BK07]. This later result improved upon a prior work of Elkin where a (1 +

",M�(", ⇢, ⇣))-approximation is obtained in time O(mn
⇢+n

2+⇣) with M being the ratio between the
heaviest and lightest edge in the graph [Elk05]. The constant �(", ⇢, ⇣) depends on ⇣ as (1/⇣)log 1/⇣ ,
inverse exponentially on ⇢, and inverse polynomially on ". These lead to an interesting question,
if we fix ↵ = (1 + ✏), can we show a running time trade-offs with varying �? A similar question
applies for all ↵ < 2.

Can we get a faster (↵,�)-approximation for weighted graphs where ↵ = (1 + ✏) and � > 0?

1.1 Our Contributions

In this paper, we provide multitude of results on approximation APSP on undirected graphs an-
swering all of the above questions. We start with our contributions on unweighted graphs.
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1.1.1 Multiplicative Approximation on Unweighted Graphs (Section 3)

We significantly improve upon the current best known bound of Õ(n2.25) [Rod23] for a (2, 0) ap-
proximation of unweighted APSP. Specifically, we obtain the following theorems. Theorem 3.1 is
also obtained in a concurrent work by Dory, Forster, Kirkpatrick, Nazari, Vassilevska Williams, and
de Vos [DFK+23].

Theorem 3.1. Let G be an undirected, unweighted graph with n vertices. Algorithm 1 computes a
(2, 0)-approximate APSP solution in expected time Õ

�
n
2.03184039

�
.

Theorem 3.3. Let G be an undirected, unweighted graph with n vertices. Algorithm 3 determinis-
tically computes a (2, 0)-approximate APSP solution in time Õ(n2.07203166).

Our results use FMM with the current best known bounds [DWZ22, GU18] and several new
combinatorial insights to bring down the running time very close to O(n2). We also observe that a
(7/3, 0)-approximation on unweighted graphs can be computed in Õ(n2) time (see Appendix D).

1.1.2 Multiplicative Approximations for Long Paths (Section 4)

We improve the bounds for a (2, 0)-approximation on paths of length at least k, for all k � 4 on
dense graphs even just using combinatorial techniques and then further using algebraic methods.
Combining with Roditty’s results [Rod23], these imply an improvement for all cases (sparse and
dense) over Dor et al.’s result [DHZ00] for paths of length at least 4.

Below, we state the combinatorial results and the further improvements using FMM are stated
in Section 5.

(2, 0)-Multiplicative Approximation for �(u, v) � k

k [DHZ00], [Rod23] Algorithm 4 (Combinatorial) Algorithm 5 (uses FMM)
4 n

11/5 = n
2.200

n
15/7 = n

2.1429 (Algorithm 15) n
2.01973523

6 n
17/8 = n

2.125
n
21/10 = n

2.1000
n
2.01084688

8 n
23/11 = n

2.091
n
29/14 = n

2.0715
n
2.00745825

10 n
29/14 = n

2.072
n
37/18 = n

2.0556
n
2.00573823

12 n
35/17 = n

2.059
n
45/22 = n

2.0455
n
2.00462679

Table 1: Improvements in computing (2, 0)-approximate APSP for �(u, v) � k on undirected,
unweighted graphs with n vertices and m edges. For k = 4, Algorithm 15 is more efficient than
Algorithm 4. While only a few examples are shown above, we obtain improvements for all k. See
Proposition C.4 for the derivation of some running times for Algorithm 5.

Theorem 1.1 (Stated as Corollary E.11). Let k � 4 be an even integer. Then, we can compute a
(2, 0)-approximation for distances �(u, v) � k combinatorially in expected time

Õ

⇣
min

⇣
n
2� 2

k+4m
2

k+4 , n
2+ 1

2(k�1) , n
2+ 2

3k+2

⌘⌘

In particular, we output �̂ such that �(u, v)  �̂(u, v) for all u, v and �̂(u, v)  2�(u, v) whenever
�(u, v) � k.

In contrast, Roditty achieves a bound of

Õ

⇣
min

⇣
n
2� 2

k+4m
2

k+4 , n
2+ 2

3k�2

⌘⌘
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(Corollary 2.6 of Roditty [Rod23]).
Table 1 illustrates the comparison in running time between our algorithms and the previous

results of Roditty [Rod23] and Dor et al. [DHZ00] for dense graphs.

1.1.3 Additive Approximation (Section 5)

We show it is possible to get better additive approximations (1,�) for all � > 0. Previously such a
result was known only for � = 2 [DKR+22].

Theorem 5.6. Let � � 4 be an even integer. Let G be an undirected, unweighted graph with n

vertices. Algorithm 6 computes �̂ such that �(u, v)  �̂(u, v)  �(u, v) + � for all u, v 2 V in time,
Õ

⇣
n
2+ 2x

�+2

⌘
where x is the solution to, !

⇣
1� ��2

�+2x, 1� x, 1� ��4
�+2x

⌘
= 1 + 4+2�

�+2 x.
1

Table 2 shows the improvement in running time for various (1,�)-approximation errors beyond
the work of Dor, Halperin, and Zwick [DHZ00]. The concurrent work [DFK+23] obtains a (1+",�)-
approximation faster than [DHZ00] for �  9. We obtain (1,�)-approximation improving upon
[DHZ00] for all � and do so without incurring any multiplicative error. Our algorithm is also faster
than the (1 + ",�)-approximation of [DFK+23] for � � 8. Due to the additional multiplicative
error, we instead compare [DFK+23] with Algorithm 9 in Table 4.

+�-Additive Approximation
� [DHZ00] Algorithm 6
4 n

11/5 = n
2.2

n
2.15506251

6 n
17/8 = n

2.125
n
2.10300405

8 n
23/11 = n

2.0909
n
2.07733373

10 n
29/14 = n

2.0715
n
2.06196791

Table 2: Improvements in computing +� approximation on undirected, unweighted graphs with n

vertices. While a few examples are shown above, we obtain improvements for all � � 4. All running
times are computed with [Bra].

1.1.4 Weighted Graphs & (↵,�)-approximations (Section 6 & Section 7)

We show new results that allow for (1+✏)-multiplicative approximation of APSP, and some additive
errors to go significantly below n

! for weighted graphs. We also show interesting new trade-offs
between ↵ < 2, and � for both unweighted and weighted graphs (see Theorem 7.1 and Theorem 7.4).

1
!(a, b, c) is the minimum value such that the product of a dnae ⇥

⌃
n
b
⌥

matrix by a
⌃
n
b
⌥
⇥ dnce matrix can be

computed in O(n!(a,b,c)+") arithmetic operations for any constant " > 0. Note ! = !(1, 1, 1).
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Approximation Algorithms on Weighted Graphs
Work Approximation Factor Time

[Zwi02] (1 + ", 0) n
!

[Elk05] (1 + ",M�(⇣, ⇢, ")) mn
⇢ + n

2+⇣

[BK07] (1 + ", 2wu,v) n
2.24

Algorithm 8 (1 + ", 2wu,v) n
2.1519

Algorithm 9 (1 + ", 2wu,v(�)) n
2+x/(�+1)

Table 3: Comparison with previous results for (↵,�)-approximations on weighted graphs. M denotes
the ratio between the heaviest and lightest edge in the graph G. wu,v(�) denotes the weight of the
� heaviest edges on the shortest path between u, v and wu,v = wu,v(1).

Theorem 6.3. Let � � 2 be an integer and " > 0. Let G be an undirected, unweighted graph with
n vertices. Algorithm 9 computes �̂ such that �(u, v)  �̂(u, v)  (1 + ")�(u, v) + 2wu,v(�) in time

Õ

✓
n
2+ x

�+1

"

◆
where x is the solution to, !

⇣
1� ��1

�+1x, 1� x, 1� ��2
�+1x

⌘
= 2 + x

�+1 . Here, wu,v(�)

denotes the total weight of the � heaviest edges of a shortest path P .

We compare Algorithm 9 with concurrent work [DFK+23]. In addition to handling weighted
graphs, our algorithm is faster than both [DHZ00] and [DFK+23] for all � � 4.

(1 + ",�)-Additive Approximation
� [DHZ00] (Weighted) [DFK+23] (Unweighted) Algorithm 9 (Weighted)
2 n

7/3 = n
2.34

n
2.152

n
2.152

4 n
11/5 = n

2.200
n
2.119

n
2.094

6 n
17/8 = n

2.125
n
2.098

n
2.058

8 n
23/11 = n

2.0909
n
2.084

n
2.043

10 n
29/14 = n

2.0715 [DHZ00] n
2.034

Table 4: Comprison with [DFK+23] of computing (1+",�) approximation on undirected, unweighted
graphs with n vertices. While a few examples are shown above, we obtain improvements for all � � 4.
[DHZ00] (with adaptions from [CZ01]) and Algorithm 9 additionally handle weighted graphs.

1.2 Other Related Work

Dor, Halperin and Zwick’s results to additively approximate APSP [DHZ00] improves upon an earlier
work of Aingworth et al. [ACIM99] where a +2 additive approximation was obtained in O(n2.5)
time. Cohen and Zwick [CZ01] observed that the algorithm of Dor et al. [DHZ00] obtain 2wu,v(�)
additive approximations for weighted graphs where wu,v(�) denote the weights of the � heaviest
edges on the shortest path. Cohen and Zwick [CZ01] obtain a variety of multiplicative approximation
algorithms for weighted graphs with stretch factors 2, 7/3, 3, which are later improved upon by
Baswana and Kavitha [BK10]. For directed graphs with real weights in [0,M ], Yuster [Yus12]
obtained an additive approximation with error "M in time O(n(3+!)/2). Building upon this work,
Chan [Cha21] improved the running time on undirected graphs to O(n(3+!2)/(!+1)).

There is a long line of work investigating approximate distance oracles, where the goal is to trade-
off the pre-processing time with query time along with further considerations such as space complex-
ity. Thorup and Zwick gave a stretch 2k�1 distance oracle with O(k) query time, O(kn1+1/k) space,
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and O(kmn
1/k) pre-processing time [TZ05]. Since then a rich literature of work has followed with

improvements in pre-processing and query time, space complexity and bi-criteria approximations
[MN07, BK10, WN12, AG13, Che14, Che15, EP16, ENWN16, PR10, Som16, AR20, CZ22].

Comparisons with the concurrent work of [DFK+23] can be found in Theorem 3.1, Table 2, and
Table 4.

2 Preliminaries

Let G = (V,E) be an undirected, unweighted graph with vertices V and edges E. Let n denote the
number of vertices and m the number of edges. Given a pair of vertices u, v, let �(G, u, v) denote
the distance in G between u, v i.e. the length of the shortest path connecting u and v. When the
underlying graph G is clear, we omit this parameter and write �(u, v). A path P can be denoted
by a sequence of vertices (u, u2, . . . , v) or by its endpoints Pu,v. Given two paths P,Q that share
an endpoint (and no other vertices), let P � Q denote the concatenation of the two paths. Let
N(u) = {v 2 V s.t. (u, v) 2 E} denote the neighborhood of u and N(u, d) = {v 2 V s.t. �(u, v) 
d} denote the depth d neighborhood of u.

Definition 2.1. Let G be an graph and �(G, u, v) denote the length of the shortest path from u to
v. A distance estimate �̂(u, v) : V ⇥ V ! R is,

1. an ↵ multiplicative approximation if �(u, v)  �̂(u, v)  ↵�(u, v) for all u, v 2 V . This
can also sometimes referred to as an ↵ stretch approximation.

2. a � additive approximation if �(u, v)  �̂(u, v)  �(u, v) + � for all u, v 2 V . This can
sometimes be denoted as a +� approximation.

3. an (↵,�) approximation if �(u, v)  �̂(u, v)  ↵�(u, v) + � for all u, v 2 V .

On an unweighted graph, let BFS(G,w) denote running breadth-first search on graph G from
root node w. When the graph G does not need to be specified, this may also be denoted BFS(w).
We also make use of a truncated BFS, which is an execution of BFS with bounded depth. A depth
bounded BFS will be denoted BFS(G,w, k) for depth k or BFS(w, k) when the graph G is clear.

Definition 2.2. Let G = (V,E) be an undirected, unweighted graph. A set of vertices D dominates
U ⇢ V if every u 2 U is either in D or has a neighbor in D.

For a given vertex u 2 U , define the representative of u in D, denoted r(u,D), be an arbitrary
vertex z 2 D \N(u).

For a given vertex z 2 D, define the constituency of z in U , denoted q(z,D), as the set
{u 2 U s.t. r(u,D) = z}.

Definition 2.3. Let G = (V,E) be an undirected, unweighted graph. Let s be a degree threshold.
Define Vs = {v 2 V s.t. deg(v) � s}. Define Es = {(u, v) 2 E s.t. min(deg(u), deg(v)) < s}.

Lemma 2.4. Let U be a universe of n elements. Let F = {S1, . . . , Sn} denote a collection of
subsets Si ⇢ U such that |Si| � s for all i. Then, there is a deterministic algorithm HittingSet

that computes a hitting set X of size O

⇣
n logn

s

⌘
of F in time Õ(ns). There is also a randomized

algorithm rHittingSet that with high probability computes a hitting set X of size O

⇣
n logn

s

⌘
of F

in time O(n).

We note that we can easily verify that a randomly sampled set is indeed a hitting set in O(ns)
time, by checking each set Si for an element in D. For any vertex v 2 Vs, we may interpret N(v) as
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a subset of V of size at least s. In particular, applying the above lemma we can immediately obtain
the following.

Lemma 2.5. Let G be a graph on n vertices. There is a deterministic algorithm Dominate and
randomized algorithm rDominate that computes a dominating set D of size O

⇣
n logn

s

⌘
of Vs in

time O(m+ ns) and O(n) respectively.

Lemma 2.6. Let G be a graph on n vertices. Given degree thresholds s1 > s2 > . . . > sk�1, there is
a deterministic algorithm Decompose and a randomized algorithm rDecompose that outputs edge
sets {Ei}ki=1, edge set E⇤, and vertex sets {Di}ki=1 satisfying,

1. Ei = {(u, v) 2 E s.t. min(deg(u), deg(v)) < si�1} is the set Esi�1 .
2. Di dominates Vsi = {v 2 V s.t. deg(v) � si} and |Di| = Õ

⇣
n
si

⌘
. For convenience, Vsi may

also be denoted Vi.
3. D1 ⇢ D2 ⇢ . . . ⇢ Dk = V and Ek ⇢ Ek�1 ⇢ . . . ⇢ E1 = E.
4. E

⇤ =
Sk

i=1E
⇤
i where each E

⇤
i ⇢ E has for every v 2 Vi, at least one edge (v, w) 2 E

⇤
i for

w 2 Di.

Furthermore, Decompose runs in Õ(kn2) time and rDecompose runs in Õ(kn) time. Note that
rDecompose satisfies the above conditions with high probability.

For a given vertex v 2 V , define the level of v, denoted `(v), as the integer i such that si 
deg(v) < si�1. For a given edge e 2 E, define the level of e, denoted `(e), as the integer i such
that e 2 Ei \ Ei+1.

For sake of completeness, these proofs are given in Appendix B.
We also quote a result from Baswana and Kavitha [BK10] that we use crucially for our random-

ized algorithms (Section 3.1 and Section 4).

Theorem 2.7 ([BK10]). There exists a randomized algorithm BK2APASP that returns a (2, 0)-
approximation of APSP on undirected unweighted graphs with an expected running time complexity
Õ
�
m
p
n+ n

2
�

and space complexity O(n2).

3 Improved (2, 0)-Approximation

In this section, we provide improved running time bounds for a (2, 0)-approximation of APSP on
unweighted, undirected graphs. We begin with a simple randomized algorithm followed by a slightly
slower deterministic algorithm.

3.1 A Randomized (2, 0)-Approximate APSP

We prove the following theorem

Theorem 3.1. Let G be an undirected, unweighted graph with n vertices. Algorithm 1 computes a
(2, 0)-approximate APSP solution in expected time Õ

�
n
2.03184039

�
.

High Level Overview We begin by briefly recapping the powerful idea of degree decomposition
in computing APSP approximations, first initiated by the work of Aingworth, Chekuri, Indyk, and
Motwani [ACIM99]. The idea is roughly as follows. If we consider all vertices with degree at least
n
1/2, there will be a small set D of size n1/2 log n such that every vertex of high degree has a neighbor

7



in D or is itself in D. D is known as a dominating set. We compute exact distances from D, and
then for each pair of vertices, we can take the minimum length path passing through a vertex in D.
On paths with at least one high degree vertex, this gives a +2 approximation as a vertex in D is
adjacent to some vertex in the shortest path P . On the other hand, for each pair of vertices whose
shortest path contains no high degree vertices, we can compute APSP in time O(n5/2) by computing
BFS (or Dijkstra) from every vertex on the graph G

0 ⇢ G containing only edges adjacent to low
degree vertices.

Dor, Halperin and Zwick extended this idea to consider three degree thresholds s0 = n
2/3

, s1 =
n
1/3

, s2 = 0 [DHZ00]. These degree thresholds are used to compute the dominating sets D0 ⇢ D1 ⇢
D2 = V according to Decompose (Lemma 2.6) where Di dominates Vi = {v 2 V s.t. deg(v) � si}
and Ei = {(u, v) 2 E s.t. min(deg(u), deg(v)) < si�1} for i = 0, 1, 2 (take s�1 = n+ 1). They use
Dijkstra(instead of BFS) from all vertices at the lowest level, i.e., in G2 = (V,E2), resulting in a
running time of Õ

�
n
2+1/3

�
= Õ

�
n
7/3
�
.

For a (2, 0)-approximation, it is enough to have a (1, 2)-approximation on paths of length up to
3. Using this crucial observation, Roditty was able to extend the decomposition to 4 levels, and
then call a (1, 4)-approximation algorithm of [DHZ00] for paths of length at least 4. This reduces
the running time from Õ

�
n
7/3
�

to Õ
�
n
2+1/4

�
= Õ

�
n
9/4
�
.

To improve the bound, we instead proceed as follows. We consider shortest paths of length
� C, and less than C separately where C is some threshold which we later set to C = 22. We
also consider another threshold x 2 (0, 1), and define V0 = {v s.t. deg(v) � n

x}. We will set x

appropriately later.

High Degree Vertices: Paths of length  C. Consider first all shortest paths P with at least
one vertex from V0 that is of degree � n

x. Moreover, concentrate only on paths of length less than
C = 22. Decompose G into (1�x) log n levels with degree thresholds tj = n

2j for 1  j  (1�x) log n
and compute dominating sets Cj of size Õ( n

tj
) and edge sets Fj of size O (ntj�1). Computing BFS

on the subgraph (V, Fj) from each vertex of Cj therefore altogether requires Õ(n2) time. Moreover
| [j Cj | = Õ

�
n
1�x
�
. For each pair of vertices, compute the estimate �̂(u, v) = minw2[jCj �(w, u) +

�(w, v) with a (min,+) product. Since, we concentrate on paths of length up to a constant C, we
can compute the above efficiently with the BoundedMinPlus algorithm (Theorem B.8). For the
value j such that P ⇢ Fj but P 6⇢ Fj+1, there is some vertex w 2 P such that tj  deg(w) < tj�1

and w
⇤ 2 Cj is a neighbor of w. Thus, the computed estimate is a +2 approximation, which is also

a (2, 0)-approximation. Computation of the BoundedMinPlus requires time Õ (!(1, 1� x, 1)).

Paths of length � C. For paths of lengths at least C = 22, we are allowed to obtain estimates
with large additive errors, which can be computed efficiently using known results from [DHZ00]. We
can choose any value of C large enough so that executing the additive approximation of [DHZ00]
does not affect the overall running time.

Lemma 3.2. ([DHZ00]) Let � � 2 be even. Let G be an undirected, unweighted graph with n

vertices and m edges. There is an algorithm computing a +�-approximate APSP solution in time

Õ(min(n2� 2
�+2m

2
�+2 , n

2+ 2
3��2 ))

Denote SparseAPASP the algorithm running in time Õ(n2� 2
�+2m

2
�+2 ) and DenseAPASP the

algorithm running in time Õ(n2+ 2
3��2 ).

Consider paths P such that at least one vertex on P has degree� n
x. We run DenseAPASP with

a running time of Õ
�
n
2+2/(3C�2)

�
= Õ (2.03125).
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Low Degree Vertices. Consider the graph Gx = (V,Enx) where Enx = {(u, v) s.t. deg(u) <

n
x or deg(v) < n

x}. Then |Enx | = O(n1+x). We simply run an algorithm by Baswana and Kavitha
that satisfies Theorem 2.7 [BK10]. This computes a (2, 0)-approximation of paths contained in Gx

with an expected time of Õ
�
n
1.5+x + n

2
�
.

Time Complexity Balancing n
1.5+x with !(1, 1 � x, 1), we get x = 0.53184039, and an overall

running time of Õ
�
n
2.03184

�
. Note that the running time bound holds on expectation.

Algorithm Algorithm 1 begins by initializing the distance matrix with adjacency matrix and
setting parameters x,C which will be chosen to optimize the running time.

Phase 1 (Lines 4-6), uses BoundedMinPlus on matrix Mt to estimate distances for paths of
length at most C containing at least one vertex of degree � n

x. To do so, Line 4 considers log n
degree thresholds, each of the form t = n

2j . Within each threshold, a dominating set Ct is computed
(Line 5) and a edge set E2n/t such that the degree of each vertex does not exceed 2n

t . Line 12 of
DominatingSetAPASP computes a BFS within the sub-graph Gt = (V,E2n/t) from each node in
the dominating set Ct, keeping only distances up to C + 1. Then, for each pair of vertices, u, v,
a bounded (min,+) product is computed in Line 15 of DominatingSetAPASP to compute the
shortest path between u, v passing through a vertex w 2 Ct. We repeat this computation for all t,
balancing the thresholds so that each BFS search can be computed efficiently. We repeat for all t
large enough such that the dominating set Ct is small.

Phase 2 uses BK2APASP to compute (2, 0) approximations for paths with maximum degree
n
x.

Phase 3 uses DenseAPASP to compute a +C approximation, which implies a (2, 0) approxi-
mation for all paths of length at least C.

Next, we give the pseudocode of Random2ApproxAPSP and its correctness proof along with
a time complexity analysis.

Correctness

Proof. First, �(u, v)  �̂(u, v) for all u, v. For each call to DominatingSetAPASP, this follows
from Lemma C.1 as �̂(u, v) � �(Gt, u, v) � �(u, v) as Gt ⇢ G. The claim then follows from the
correctness of BK2APASP and DenseAPASP.

We now show that �̂(u, v)  2�(u, v) for all u, v. Let P be a shortest path and deg(P ) =
maxv2V deg(v) be the maximum degree of a vertex in path P .

9



Algorithm 1 Random2ApproxAPSP(G)

Input : Unweighted, undirected Graph G = (V,E) with n vertices
Output: Distance estimate �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v)  2�(u, v) for all u, v 2 V

1 Fix parameters x 0.53184039 and C  22

2 �̂(u, v) 
(
1 (u, v) 2 E

1 o/w
3 Phase 1: Compute +2 Approximate Distances of High Max Degree Paths
4 for t = 2j for 0  j  d(1� x) log ne do
5 Ct  Dominate

�
G,

n
t

�
and Gt =

⇣
V,E 2n

t

⌘

6 �̂  min(�̂,DominatingSetAPASP(Gt, V, V, Ct, C + 1))

7 Phase 2: Compute Approximate Distances of Low Degree Paths
8 �̂  min(�̂,BK2APASP(Gx)) where Gx = (V,Enx)
9 Phase 3: Compute Approximate Distances of Long Paths

10 �̂  min(�̂,DenseAPASP(G,C))

Algorithm 2 DominatingSetAPASP(G, V1, V2,W,C)

Input : Unweighted, undirected Graph G = (V,E), source and target subsets V1, V2 ⇢ V and
dominating subset W ⇢ V , and distance bound C

Output: Distance estimate �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v)  minw2W �(u,w) + �(w, v)
for all u, v

11 for w 2W do
12 �̂(w) BFS(G,w)

13 Construct V1 ⇥W matrix A where A(v, w) =

(
�̂(w, v) �̂(w, v)  C

1 o/w

14 Construct W ⇥ V2 matrix B where B(w, v) =

(
�̂(w, v) �̂(w, v)  C

1 o/w
15 �̂  BoundedMinPlus(A,B,C)

Case 1: �(u, v) � C In this case, DenseAPASP computes a +C approximation so that,

�̂(u, v)  �(u, v) + C  2�(u, v)

Case 2: deg(P ) < n
x In this case, P ⇢ Gx = (V,Enx) so that BK2APASP computes,

�̂(u, v)  2�(u, v)

Case 3: deg(P ) � n
x and �(u, v)  C We handle this case with Phase 1 and obtain a +2 ap-

proximation. Note that if �(u, v) = 1, then we already computed an exact distance when initializing
�̂.

Let w be the vertex of maximum degree in P . Let j be the integer such that n
2j  deg(w) <

n
2j�1 , noting that j  d(1� x) log ne since deg(w) > n

x. Consider the iteration where t = 2j of
DominatingSetAPASP (Algorithm 2). Then, P ⇢ Gt = (V,E 2n

t
). Then, since deg(w) � n

t we
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have that there is some neighbor of w, say w
⇤ = r(w,Ct) 2 Ct. Since �(u, v)  C, by the triangle

inequality,
�(Gt, u, w

⇤)  �(u,w) + 1  C + 1

and similarly �(Gt, w
⇤
, v)  C + 1 so that both entries are finite in matrices A,B.

Then, computing the (min,+) product,

�̂t(u, v)  �(Gt, u, w
⇤) + �(Gt, w

⇤
, v)  �(u,w) + �(w, v) + 2 = �(u, v) + 2

Then, we immediately obtain,

�̂(u, v)  �(u, v) + 2  2�(u, v)

Time Complexity

Proof. We analyze the time complexity of our algorithm. x,C are parameters that will be optimized.

Phase 1 Fix some t = 2j . We compute set Ct of size |Ct| = Õ(t) in time O(m) = O(n2)

by Lemma 2.5. The graph Gt has at most 2n2

t edges, so execution of all |Ct| BFS searches re-
quires Õ(n2)-time. We can also upper bound t as t = O(n1�x). Since C = O(1), computing the
BoundedMinPlus(Mt,M

T
t , C + 1) requires time Cn

!(1,1�x,1) � n
2. Then, since there are at most

log n such j, Phase 1 requires overall time,

Õ

⇣
Cn

!(1,1�x,1)
⌘

Phase 2 In Phase 2, we call BK2APASP on the graph Gx which requires Õ(m
p
n) = Õ(n1.5+x)

expected time.

Phase 3 In Phase 3, we call DenseAPASP which requires time Õ(n2+2/(3C�2)). We can equiva-
lently use AdditiveAPASP from Section 5 but this will not affect the overall running time of our
algorithm.

Then, balancing !(1, 1 � x, 1) = 1.5 + x, we choose x = 0.53184039 [Bra], this leads to a time
complexity of Õ(n2.03184039).

Then, we simply choose C such that 2 + 2
3C�2  2.03184039, noting that C = 22 suffices.

Note. Note that if we replace the BoundedMinPlus computation by vanilla (min,+)-product,
and set x = 3

4 , then we get a combinatorial (randomized) algorithm matching Õ(n2.25) time bound
obtained by Roditty [Rod23]. However, Roditty’s algorithm is deterministic. In the following
Section 3.2, we give a deterministic algorithm that significantly improves upon Roditty’s bound.

3.2 A Deterministic (2, 0)-Approximate APSP

We now move to our deterministic algorithm which gives a slightly weaker running time bound, but
brings in many new ideas that will be useful in later sections. We prove the following theorem.

Theorem 3.3. Let G be an undirected, unweighted graph with n vertices. Algorithm 3 determinis-
tically computes a (2, 0)-approximate APSP solution in time Õ(n2.07203166).

11



We extend Roditty’s deterministic algorithm that uses 4 levels significantly to consider k+1 = 8
levels. We handle paths of length longer than twelve using a (1, 12)-approximation algorithm of
[DHZ00] which requires time n

2+1/17 and does not dominate the total running time. We consider
the following degree thresholds s0 = n

x
, s1 = n

6
7x, s2 = n

5
7x, . . . , s6 = n

1
7x and s7 = 0. We

will leave x as a parameter to be optimized later. Given these degree thresholds, we compute
dominating sets D0 ⇢ D1 ⇢ . . . ⇢ D6 ⇢ D7 = V according to Decompose (Lemma 2.6) where Di

dominates Vi = {v 2 V s.t. deg(v) � si} and Ei = {(u, v) 2 E s.t. min(deg(u), deg(v)) < si�1}
for i = 0, 1, .., 7 (take s�1 = n+ 1).

High Degree Vertices: Paths of length  C. We handle high degree vertices in a similar way
as we did for our randomized algorithm, that is we compute a dominating set of size Õ

�
n
1�x
�

in
Õ
�
n
2
�

time, and compute BoundedMinPlus to obtain a +2-additive approximation of all paths
of length at most C going through some vertex in V0. This step requires Õ

�
n
!(1,1�x,1)

�
time.

Paths of length � C. For paths of lengths at least C = 12, we will use known results from
[DHZ00]. Consider paths P such that all vertices on P have degree less than n

x. Here, we have de-
composed the remaining graph into k = 7 levels. SparseAPASP with k = 7 levels achieves a +12 ap-
proximation. So, we can simply run it. The algorithm SparseAPASP executes Dijkstra(Gi,w, w, �̂)

from all w 2 Di where Gi,w = (V,Ei [ E
⇤ [ (w ⇥ V )) is equipped with the current estimates �̂ as

edge weights, which requires Õ(n2+x
7 ) time as Di has size Õ(n1� 7�i

7 x) and the graph Gi,w has
O

⇣
n
1+ 7�(i�1)

7 x
⌘

edges. If path P has a vertex in V0, then we can run DenseAPASP with a run-

ning time of Õ
�
n
2+1/17

�
= Õ

�
n
2.0588

�
. Again, since we only need DenseAPASP to compute good

approximations on paths with high degree vertices, we can choose any constant value of C large
enough such that executing DenseAPASP does not dominate the running time.

Low Degree Vertices: Paths of length  C.

Paths of length 6 or more For paths of length at least 6, we compute a +6 approximation
following BoundedAdditiveAPASP in Section 5.3. We give a brief overview here with special
attention to the specific application required with more details provided in Section 5.3. We use fast
rectangular matrix multiplication judiciously to improve upon [DHZ00].

We compute BoundedAdditiveAPASP on the original graph G and therefore choose new
degree thresholds and use a new degree decomposition of the graph G. We first describe our
algorithm combinatorially, and then mention where fast matrix multiplication can be applied. For a
full discussion, see Section 5.3. To obtain a +6 approximation, choose 7 degree thresholds r1, . . . , r7
and decompose the vertex and edge sets of G as C1 ⇢ . . . ⇢ C8 = V and F8 ⇢ F7 ⇢ . . . ⇢ F1 = E.
At level i, compute Dijkstra from each w 2 Ci on the graph

Gi,w =

0

@V, Fi [

0

@
[

i+j1+j217

Cj1 ⇥ Cj2

1

A [ F
⇤ [ (w ⇥ V )

1

A

noting that both Fi, Cj1 ⇥ Cj2 have size O

⇣
n
1+ 8�(i�1)

8

⌘
. Here F

⇤ =
S7

i=1 F
⇤
i is output by

Decompose.
Consider a shortest path P . We use the following definition of blocking vertices and blocking

levels.
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Definition 3.4. Let u, v be vertices in a graph G and P a path between u, v. Let (D1, . . . , Dk),
(E1, . . . , Ek) be the outputs of a call to Decompose with degree thresholds s1, . . . , sk�1. If there is
an edge (a, b) 2 P such that (a, b) /2 E`(u), the blocking vertex of P from u, denoted b(u, P ), is
the closest vertex to v that is an endpoint to such an edge. If no such edge exists, then b(u, P ) = v.

Then, the blocking vertices of P is the set B(P ) = {x0, x1, . . . , xt} defined in the following
manner:

1. x0 = u

2. x1 = v

3. xi = b
�
xi�1, Pxi�1,xi�2

�
where Pxi�1,xi�2 is the sub-path of P between xi�1, xi�2.

For any j � `(v), blocking levels of P at level j is the set LB(P, j) = {`(xi) s.t. xi 2
B(P ) and `(xi) < j}. Denote LB(P ) = LB(P, `(v)).

We prove that the number of blocking levels directly determines the additive error accumulated
on a given path.

Lemma 3.5. Let u, v be vertices in a graph G and P be a shortest path between u, v. Let B(P ) be
the blocking vertices of P . Then, the distance estimate �̂ satisfies

�̂(v⇤, u)  �(v, u) + 2|LB(P )|+ 1

For any level j � `(v), if v 2 Dj,

�̂(v, u)  �̂j(v, u)  �(v, u) + 2|LB(P, j)|

The proof is deferred to Appendix A.1.
If P ⇢ F5 then we obtain a +6 additive approximation as a Corollary to Lemma 3.5 as |LB(P )| 

3. Thus, suppose P ⇢ Fj but P 6⇢ Fj+1 for some j  4.

! " # $

%∗

" # = 8 " & = 8" ' = 7 " ) ≤ 4 " , = 6

#∗"∗

%

Figure 1: Solid lines denote edges and dotted lines represent paths. Blue dashed arrows denote
distance estimates used in the (min,+) product. Black dashed arrows denote edges w ⇥ V used in
Gj,w.

For any vertex w 2 V7 and w
⇤ = r(w,C7), the graph G7,w⇤ contains edge sets F7 [ (w⇤ ⇥ V ) [⇣S4

j=1Cj ⇥ C6

⌘
. For v 2 V , let z denote the first vertex on Pw,v such that the sub-path Pz,v ⇢ F7

and y 2 Pw,v be the vertex of maximum degree. See Figure 1. Then `(z)  6, and `(y)  6.
Suppose `(z) = 6 (other cases are only easier). Let y

⇤ = r(y, Cj) where j  6 and z
⇤ = r(z, C6).

13



Then, since P ⇢ Fj , �̂(y⇤, z⇤)  �(y, z) + 2 and �̂(y⇤, w⇤)  �(y, w) + 2. Executing Dijkstra from
w

⇤, the path (w⇤
, y

⇤
, z

⇤
, z) � Pz,v ⇢ G7,w⇤ so that the distance estimate,

�̂(w⇤
, v)  �̂(w⇤

, y
⇤) + �̂(y⇤, z⇤) + 1 + �(z, v)  �(w, v) + 5

Then, returning to the shortest path P with endpoints u, v, the graph G8,u contains F8[(u⇥v).
If w denotes the closest vertex to v on P such that Pw,u ⇢ F8 and w

⇤ = r(w,C7), then the path
(v, w⇤

, w) � Pw,u ⇢ G8,v so that the distance estimate computed is at most,

�̂(v, u)  �̂(v, w⇤) + 1 + �(w, u)  �(v, u) + 6

Note that we have not actually required the use of every Cj1 ⇥ Cj2 such that i + j1 + j2  17
when executing Dijkstra from Cj . Instead, we have only used the sets Ci ⇥ C6 for i  4 when
executing Dijkstra from C7. Instead of adding these edges, we can compute the distances that
would have been obtained with these edges with a (min,+) product and encode these distances into
the smaller edge set w ⇥ V . We encode the distances Ci ⇥ C7 into a matrix Ai and the distances
Ci ⇥ C6 into a matrix Bi and compute Ai ⇤ Bi with entries bounded by 14 for i = 1, 2, 3, 4. In the
example above, this gives the estimate �̂(w⇤

, z
⇤)  �(w, z) + 4. Then, when executing Dijkstra

from w
⇤ 2 C7, the path (w⇤

, z
⇤
, z) � Pz,v ⇢ G7,w⇤ so the distance estimate is again at most,

�̂(w⇤
, v)  �̂(w⇤

, z
⇤) + 1 + �(z, v)  �(w, v) + 5

Paths of length 5 or less We now describe the most challenging cases: obtaining a (2, 0)
approximation on shortest paths Pu,v of length at most 5. Let Gx = (V,Enx) denote the graph
G pruned so that the maximum degree of Gx is strictly less than n

x. We can compute a depth 2
BFS(that is BFStree upto two levels) in time n

2x from each vertex, with a total time of n1+2x. Our
choice of x will ensure this is allowed.

As a warm-up, consider obtaining a +2 approximation on paths of length at most 3. For 2
edge paths, a depth 2 BFS computes exact distances for all paths of length 2 in Gx. For 3 edge
paths P = (u, u2, v2, v), assume deg(u) � deg(v). A depth 2 BFS from u implies �̂(u, v2) = 2 and
if u⇤ = r(u,D`(u)) then we can efficiently update �̂(u⇤, v2)  1 + �̂(u, v2) = 3. Then, in the graph
G`(u),u⇤ , there is the path (u⇤, v2, v) so Dijkstra computes a distance estimate �̂(u⇤, v)  4. Finally,
in the graph Gk,v (that is at the lowest level) there is the path (v, u⇤, u) so Dijkstra computes a
distance estimate �̂(u, v)  5, which is a +2 approximation.

Finally, we consider paths P = (u, u2, u3, v3, v2, v) of 5 edges. Paths of length 4 are easier to
handle and we will mention the necessary modifications in the full proof. Recall that we have
decomposed the graph Gx into k = 7 levels with degree thresholds s1, s2, ..., s6, s7 = 0.

Consider the case where both endpoints have low degree deg(u), deg(v) < s6, or identically
`(u), `(v) = 7. Let w.l.o.g, deg(u2) � deg(v2). Let u⇤2 = r(u2, D`(u2)). If P ⇢ E`(u2), then �̂(u⇤2, v) 
�(u2, v)+1. Otherwise, both `(u3), `(v3) < `(u2) (since even if one of them is at `(u2) or higher, we
have P ⇢ E`(u2)). Therefore, �̂(v⇤3, u⇤2)  �(v3, u2) + 2 so the path (u⇤2, v

⇤
3, v3) �Pv3,v ⇢ G`(u2),u⇤

2
and

Dijkstra computes the desired distance estimate: �̂(u⇤2, v)  �(u2, v) + 3. Then, as (v, u⇤2, u2, u) ⇢
G7,v, Dijkstra computes a +4 additive approximation. Figure 2 gives an illustration.

Then, assume at least one endpoint (say u) has degree � sk�1. Suppose there is some vertex
(say v3) with n

x
> deg(v3) � s1. Using a bounded rectangular (min,+) product for matrices of size

D1 ⇥ V and D1 ⇥D6, the (min,+) product yields an estimate �̂(u⇤, v)  �(u⇤, v) + 2  �(u, v) + 3.
Then, as (v, u⇤, u) ⇢ G7,v, Dijkstra computes a +4 additive approximation. Figure 3 gives an
illustration.
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Figure 2: Case 2.3.1: `(u) = `(v) = k. Solid lines denote edges and dotted lines represent paths.
Black dashed arrows denote edges w ⇥ V in Gj,w.

! !! !" "" ""!

!∗ ""∗

Figure 3: Case 2.3.2: deg(u) � s6 and deg(v3) > s1. Solid lines denote edges in G. Blue dashed
arrows denote distance estimates used in the (min,+) product. Black dashed arrows denote edges
w ⇥ V in Gj,w.

We can now assume that every vertex has degree < s1. We now compute depth 3 BFS in
G2 = (V,E2) from every vertex with degree at most s2. One depth 3 BFS requires s2s

2
1 = n

3k�4
k x

time (contrast to n
3x if naively applying depth 3 BFS on the graph Gx). The correctness depends

on extensive case analysis.
In Case 2.3.3, suppose deg(u2), deg(v2) � s2. Suppose deg(v) � deg(u). From our earlier

discussion, since P ⇢ E2, �̂(u⇤2, v)  �(u, v) + 1. Then, since the path (v⇤, u⇤2, u2, u) ⇢ G`(v),v⇤ ,
Dijkstra computes an estimate,

�̂(v⇤, u)  �̂(v⇤, u⇤2) + 2  �(u, v) + 3

Then, as (u, v⇤, v) ⇢ G8,u, Dijkstra computes a +4 additive approximation.
In Case 2.3.4, suppose deg(u2) � s2 but deg(v2) < s2. If deg(v) � deg(u), then we can proceed

exactly as above, so assume deg(u) > deg(v). The depth 3 BFS from v2 computes �̂(v2, u2) = 3 and
Line 36 updates �̂(v⇤2, u2) = 1 + �̂(v2, u2) = 4. If deg(v2) � deg(u), then, the path (v⇤2, u2, u, u

⇤) ⇢
G`(v2),v⇤2

, Dijkstra computes a distance estimate at most,

�̂(v⇤2, u
⇤)  �̂(v⇤2, u2) + 2  6

Since deg(u) > deg(v), (u⇤, v⇤2, v2, v) ⇢ G`(u),u⇤ , Dijkstra computes a distance estimate at most,

�̂(u⇤, v)  �̂(u⇤, v⇤2) + 2  8

Then, as (v, u⇤, u) ⇢ G7,u, Dijkstra computes a distance estimate at most 9, a +4 additive
approximation. See Figure 4a for an illustration.
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(a) Depth 3 BFS search from v2.

! !! !" "" ""!

!∗

(b) Depth 3 BFS search from u.

Figure 4: Case 2.3.4 and 2.3.5: We use depth 3 BFS in Line 31 to obtain more accurate distance
estimates. Solid lines denote edges in G. Solid arrows denote depth 3 BFS executions. Dotted
arrows denote edges w ⇥ V used in executing Dijkstra on the graph Gj,w.

On the other hand deg(u) > deg(v2). If deg(u) > s2, we obtain a +2 approximation following
the previous discussion of Case 2.3.3. Otherwise, if deg(u) < s2 then the depth 3 BFS from u

computes �̂(u, v3) = 3 and Line 36 updates �̂(u⇤, v3) = 1 + �̂(u, v3) = 4. Since deg(u) > deg(v2),
(u⇤, v3, v2, v) ⇢ G`(u),u⇤ so Dijkstra computes a distance estimate at most,

�̂(u⇤, v)  �̂(u⇤, v3) + 3  6

Then, as (v, u⇤, u) ⇢ G7,u, Dijkstra computes a distance estimate at most 7, which is a +2 additive
approximation. See Figure 4b for an illustration.

In the full proof we give a detailed argument on all possible variations of length 5 paths as well
as the modifications necessary to compute a +4 additive approximation on length 4 paths.

Time Complexity The time-complexity to compute BoundedMinPlus to handle paths with at
least one vertex in V0 is Õ(!(1, 1�x, 1)). This computation dominates the BoundedMinPlus com-
putation in Case 2.3.2 Figure 3 (see Proposition C.3). The time complexity to handle paths with
low degree vertices for paths of length at most 5 is

Õ

⇣
n
1+2x + n

1+ 3k�4
k x + n

2+x
k

⌘

where the first term is from running depth 2 BFS, the second term is from running depth 3 BFS from
vertices with degree at most s2, and the last term is from running Dijkstra. If we balance these
terms, we get we choose x = 0.4414248 and k = 7 to obtain the time complexity Õ(n2.07203166).
The non-dominating terms include time to run BoundedAdditiveAPASPon paths of length [6, 12]
which requires Õ(n2.0638) by Corollary 5.14 and DenseAPASP(G,12) that requires time Õ(n35/17) =
Õ(n2.0589) by Lemma 3.2.

Algorithm Algorithm 3 computes a deterministic (2, 0)-approximation of APSP on unweighted
graphs. Phase 1 (Lines 19-21), uses BoundedMinPluson matrix Mt to estimate distances for paths
of length at most C containing at least one vertex of degree � n

x. To do so, Line 19 considers log n
degree thresholds, each of the form t = n

2j . Within each threshold, a dominating set Ct is computed
(Line 20) and a edge set E2n/t such that the degree of each vertex does not exceed 2n

t . Line 12 of
DominatingSetAPASP computes a BFS within the sub-graph Gt = (V,E2n/t) from each node in
the dominating set Ct, keeping only distances up to C + 1. Then, for each pair of vertices, u, v,
a bounded (min,+) product is computed in Line 15 of DominatingSetAPASP to compute the
shortest path between u, v passing through a vertex w 2 Ct. We repeat this computation for all t,
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balancing the thresholds so that each BFS search can be computed efficiently. We repeat for all t
large enough such that the dominating set Ct is small.

Phase 2 handles paths with low degree vertices. Line 24 uses Decompose on the remaining
sparse graph into k = 7 degree levels specified in Line 23.

Phase 2.1, computes BFS from each vertex in D1 (Lines 26-27) and use a bounded (min,+)
product to find approximate distances between each pair of vertices V ⇥Dk�1 that goes through a
vertex in D1 in Line 15 of DominatingSetAPASP.

In Phase 2.2, a depth 2 BFS is computed from each vertex in Gx (Line 30), as well as depth 3
BFS from each vertex of degree at most s2 in the graph G2 = (V,E2) (Line 31).

Algorithm 3 2ApproxAPSP(G)

Input : Unweighted, undirected Graph G = (V,E) with n vertices
Output: Distance estimate �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v)  2�(u, v) for all u, v 2 V

16 Fix parameters x 0.45509125 and C  12

17 �̂(u, v) 
(
1 (u, v) 2 E

1 o/w
18 Phase 1: Compute +2 Approximate Distances of High Max Degree Paths
19 for t = 2j for 0  j  d(1� x) log ne do
20 Ct  Dominate

�
G,

n
t

�
and Gt =

⇣
V,E 2n

t

⌘

21 �̂  min(�̂,DominatingSetAPASP(Gt, V, V, Ct, C + 1))

22 Phase 2: Compute Approximate Distances of Low Degree Paths
23 si  n

k�i
k x for all 1  i  k � 1 = C

2
24 (D1, D2, . . . , Dk), (E1, E2, . . . , Ek), E⇤  Decompose(Gx, (s1, s2, . . . , sk�1)) where Gx  (V,Enx)
25 Phase 2.1: Computing Approximate Distances of Paths with Vertex in Vs1

26 Gs1  (V,Enx [ E
⇤)

27 �̂  min(�̂,DominatingSetAPASP(Gs1 , V,Dk�1, D1, C + 2))
28 Phase 2.2: Compute Approximate Distances for �(u, v)  5
29 for v 2 V do
30 Mv,2  BFS(Gx, v, 2)
31 if deg(u)  s2 then Mu,3  BFS(G2, u, 3) where G2 = (V,E2);
32 �̂(v, u) min(�̂(u, v),Mv,2(u),Mv,3(u))

33 Phase 2.3: Compute Approximate Distances of Low Degree Paths
34 for 1  i  k do
35 for w 2 Di do
36 �̂(w, v) min(�̂(w, v),minu2q(w,Di) 1 + �̂(u, v)) for all v 2 V

37 �̂  Dijkstra(Gi,w, w, �̂) where Gi,w  (V,Ei [ (w ⇥ V ) [ E
⇤)

38 Phase 3: Compute Approximate Distances of Long Paths
39 �̂  min(�̂,BoundedAdditiveAPASP(G, 6, C),DenseAPASP(G,C))

Phase 2.3 (Lines 26-29), performs Dijkstra from each vertex w 2 Di on the graph (V,Ei[E⇤[
(w⇥ V )) with the current estimates �̂ equipped as edge weights. Before Dijkstra is executed, the
distances from a vertex w 2 Di in the dominating set is updated by examining distances from its
constituency (see Definition 2.2).

Finally, Line 31 handles paths of distance between 6 and 12 with a call to
BoundedAdditiveAPASP and all paths of distance larger than 12 with a call to DenseAPASP.
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Note that we can also easily use Algorithm 6 in place of DenseAPASP, although this will not affect
the asymptotic performance of our final algorithm.

Proof of Theorem 3.3

We start with the correctness proof, followed by a run time analysis.

Correctness.

Proof. Consider a vertex pair u, v 2 V ⇥V . Let �(u, v) denote the length of a shortest path between
u, v. From Lemma C.2, we have that �(u, v)  �̂(u, v) for all u, v. We therefore focus on proving
�̂(u, v)  2�(u, v) for all u, v. We can assume �(u, v) � 2 since 1 edge paths can easily be found by
examining the adjacency matrix.

Case 1: deg(P ) � n
x Suppose �(u, v) � C. By the correctness of DenseAPASP, we have

�̂(u, v)  �(u, v) + C  2�(u, v). Thus, in the following, assume �(u, v)  C

The remaining proof is similar to Case 3 of the randomized algorithm.

Case 2: deg(P ) < n
x We now prove the correctness of Algorithm 3 on low-degree paths.

Case 2.1: �(u, v) � C Correctness immediately follows from DenseAPASP. In particular,

�̂(u, v)  �(u, v) + C  2�(u, v)

Case 2.2: 6  �(u, v)  C Correctness immediately follow from BoundedAdditiveAPASP. In
particular,

�̂(u, v)  �(u, v) + 6  2�(u, v)

Case 2.3: 4  �(u, v)  5 Denote the path P = (u, u2, u3, v3, v2, v). Note that if �(u, v) = 4, we
in fact have u3 = v3.

Recall that for any vertex, we define the level of vertex v as `(v) to be the index i where
si  deg(v) < si�1. For any path P , define `(P ) = minv2P `(v) to be the minimum level of any
vertex in P , or alternatively the level of the maximum degree vertex of P . Let �̂j denote the estimate
after executing Dijkstra from all w 2 Dj . We now proceed by case analysis on the levels of the
vertices comprising shortest path P .

Case 2.3.1: `(u) = `(v) = k We show a +4 additive error in this case. Without loss of generality,
assume `(u2)  `(v2). Then, for length 4 paths when u3 = v3, we actually have P ⇢ E`(u2)

so that after the execution of Dijkstra at the `(u2) iteration, �̂`(u2)(u
⇤
2, v)  �(u2, v) + 1 where

u
⇤
2 = r

�
u2, D`(u2)

�
. Then, in the k-th iteration, when we execute Dijkstra from v, we have access

to the edges (v, u⇤2), (u
⇤
2, u2), (u2, u) to find a path of length at most �(u, v) + 2.

Now, suppose we have a length 5 path so that u3 6= v3. If P /2 E`(u2) then `(u3), `(v3) < `(u2).
Then, P ⇢ E`(v3) so that from v

⇤
3 = r

�
v3, D`(v3)

�
the path (v⇤3, v3) � Pv3,u2 � (u2, u⇤2) ⇢ G`(v3),v⇤3

and
Dijkstra computes an estimate,

�̂`(v3)(v
⇤
3, u

⇤
2)  �(v3, u2) + 2
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Then, from u
⇤
2, since (u⇤2, v

⇤
3, v3) � Pv3,v ⇢ G`(u2),u⇤

2
, Dijkstra computes,

�̂`(u2)(u
⇤
2, v)  �̂`(v3)(u

⇤
2, v

⇤
3) + 1 + �(v3, v)  �(u2, v3) + 3 + �(v3, v)  �(u2, v) + 3

Finally, in the k-th iteration (v, u⇤2, u2, u) ⇢ Gk,v so Dijkstra finds a path of length at most
�(u, v) + 4.

Case 2.3.2: `(P ) = 1 and min(`(u), `(v))  k � 1 Recall that P = (u, u2, u3, v3, v2, v). For
�(u, v) = 4, note that u3 = v3.

This case is handled by Phase 2.1. Without loss of generality, assume deg(u) � deg(v) so
that deg(u) � sk�1. Since `(P ) = 1, there is some vertex w such that deg(w) � s1. Then, let
w

⇤ = r(w,D1) 2 D1 and u
⇤ = r(u,Dk�1) 2 Dk�1. Since P ⇢ Gx,

B(w⇤
, u

⇤) = �̂s1(w
⇤
, u

⇤)  �(w, u) + 2  C + 2

A(w⇤
, v) = �̂s1(w

⇤
, v)  �(w, v) + 1  C + 1

Therefore, since both entries are finite, we obtain in the (min,+) product an estimate at most,

�̂(u⇤, v)  �(w, u) + �(w, v) + 3  �(u, v) + 3

Then, in Phase 2.3, when we executing Dijkstra from Gk,v, we take the edge (v, u⇤) and (u⇤, u)
to find,

�̂(v, u)  �̂(u⇤, v) + 1  �(u, v) + 4  2�(u, v)

Case 2.3.3: `(P ) � 2 and `(u2) = `(v2) = 2 Recall that P = (u, u2, u3, v3, v2, v). For �(u, v) = 4,
note that u3 = v3.

We handle this special case by noting that the number of distinct levels in the path P is small.
Without loss of generality, suppose `(v)  `(u). Then, after the 2nd iteration,

�̂2(u
⇤
2, v)  �(u2, v) + 1

as P ⇢ E2 and E2[E⇤ ⇢ G2,u⇤
2
. Then, after the `(v)-th iteration, we take the path (v⇤, u⇤2, u2, u)

to obtain,
�̂`(v)(v

⇤
, u)  �̂2(v

⇤
, u

⇤
2) + 2  �(u2, v) + 4  �(u, v) + 3

In the final iteration, we take the path (v, u⇤, u) to obtain a +4 approximation.

Case 2.3.4: `(P ) � 2 and min(`(u2), `(v2)) = 2,max(`(u2), `(v2)) � 3 Recall that P =
(u, u2, u3, v3, v2, v). For �(u, v) = 4, note that u3 = v3.

Without loss of generality, assume `(u2) = 2 and `(v2) � 3. If `(v)  `(u), then we can proceed
in the above case to obtain a +4 approximation. Thus, assume `(u) < `(v). We can now break our
analysis into two sub-cases. In the remaining cases, we use the Depth 3 BFS search from Line 31
to ensure correctness.

Suppose `(v2)  `(u) < `(v). This case is illustrated in Figure 4a. Since `(v2) � 3, we have
deg(v2) < s2. Then, BFS(G2, v2, 3) finds u2 so that �̂(v2, u2) = �(v2, u2) = 3. Then, denote
v
⇤
2 = r(v2, D`(v2)). After Line 36 since v2 2 q(v⇤2, D`(v2)), we obtain �̂`(v2)(v

⇤
2, u

⇤)  �(v⇤2, u) + 1 via
the path (v⇤2, u2, u, u

⇤). Then in the `(u)-th iteration, since `(u) < `(v), we execute Dijkstra from
u
⇤ and use the path (u⇤, v⇤2, v2, v) to find �̂`(u)(u

⇤
, v)  �(u, v) + 3. Then, executing Dijkstra from

v in the k-th iteration, we take the path (v, u⇤, u) and find an estimate, �̂(u, v)  �(u, v) + 4.
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Finally, suppose `(u) < `(v2). First, if `(u) = 2 = `(P ), then from Lemma A.3 we have that
after the second iteration �̂2(u⇤, v)  �(u, v)+1 and obtain a +2 approximation in the k-th iteration
via the path (v, u⇤, u). We can therefore assume `(u) � 3.

Then, we execute a Depth 3 BFS from u as illustrated in Figure 4b so that after Line 31 we
have Mu,3(v3) = 3 (for length 4 paths, we in fact obtain Mu,3(v2) = 3). In particular, after Line 36,
�̂(u⇤, v3)  �(u, v3) + 1 where u

⇤ = r(u,D`(u)).
Since `(u) < `(v2), `(v), in the `(u)-th iteration, we find v from u

⇤ via the path (u⇤, v3, v2, v) so
that �̂`(u)(u

⇤
, v)  �(u, v) + 1. Finally, in the k-th iteration, from v we take the path (v, u⇤, u) to

find,
�̂(u, v)  �(u, v) + 2

and obtain a +2 approximation.

Case 2.3.5: `(P ) � 2 and min(`(u2), `(v2)) � 3 Recall that P = (u, u2, u3, v3, v2, v). For
�(u, v) = 4, note that u3 = v3.

Without loss of generality, assume `(u2)  `(v2). Since u, u2, v2, v all have degree at most s2,
we can freely afford Depth 3 BFS from any of these vertices in the graph G2.

Without loss of generality, suppose `(u)  `(v). For length 4 paths, we have computed a
�̂(u, v2) = 3 after Line 31 so that after `(u)-th iteration, �̂(u⇤, v)  �(u, v) + 1 and we obtain a +2
approximation in the k-th iteration via the path (v, u⇤, u). Similarly, if `(u)  `(v2), we obtain a
+2 approximation for length 5 paths.

Thus, we have `(v2) < `(u). Then, as in the above case, we compute a Depth 3 BFS from v2

so that after the `(v2)-th iteration, �̂`(v2)(v
⇤
2, u)  �(v2, u) + 1. Then, after the `(u)-th iteration,

�̂`(u)(u
⇤
, v)  �(u, v) + 3 and we obtain a +4 approximation in the k-th iteration.

Case 2.4: �(u, v) = 3 For length 3 paths, we prove that we find a +2 approximation. Denote the
path P = (u, u2, v2, v).

We can assume that the maximum degree vertex of P is either u2, v2. Otherwise, let u be the
endpoint of maximum degree. We compute �̂`(u)(u

⇤
, v)  �(u, v)+1 and obtain a +2 approximation

in the k-th iteration via path (v, u⇤, u).
Suppose without loss of generality `(u)  `(v). Then, Mu,2(v2) = 2 so that after Line 36,

�̂(u⇤, v2)  3

where u
⇤ = r(u,D`(u)). Executing Dijkstra from u

⇤, we can take the path (u⇤, v2, v) and obtain
�̂`(u)(u

⇤
, v)  �(u, v) + 1. Then, in the k-th iteration, we take the path (v, u⇤, u) and obtain a +2

approximation.

Case 2.5: �(u, v) = 2 For length 2 paths, we in fact find the exact distance. Since P ⇢ Gx, in
Line 30 we compute depth 2 BFS from each vertex, and therefore find �̂(u, v) = �(u, v) = 2.

Time Complexity

Proof. We analyze the time complexity of our algorithm. x,C are parameters that will be optimized.

Phase 1 Following the same arguments as Phase 1 of the randomized algorithm, we can bound
the running time of Phase 1 as,

Õ

⇣
n
!(1,1�x,1)

⌘
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Phase 2 In Phase 2, we have a graph Gx of maximum degree n
x and therefore m  n

1+x. From
Lemma 2.6, the execution of Decompose requires O(m) = O(n1+x) time.

In Phase 2.1, we can upper bound |D1| = Õ(n1� (k�1)
k x) by Lemma 2.6. Likewise, |Dk�1| =

Õ(n1�x
k ). Executing BFS on graph Gs1 with O(n1+x) edges from each w 2 D1 requires Õ(n2+x

k )
time.

Now, computing the (min,+) product of A,B requires time,

Õ

⇣
n
!(1,1� k�1

k x,1�x
k )
⌘
= Õ

⇣
n
!(1,1�x,1)

⌘

by Proposition C.3.
In Phase 2.2, computing Line 30 requires time O(n2x) while computing Line 31 requires time

O

⇣
n

3k�4
k x
⌘
. Overall, Phase 2.2 requires time,

O

⇣
n
1+2x + n

1+ 3k�4
k x
⌘

Finally, we turn our attention to Phase 2.3. Fix some iteration i. Since the sets q(w,Di) are
disjoint,

P
w2Di

|q(w,Di)|  n so that Line 36 requires time O(n2) over all w 2 Di. We bound
|Di|  Õ(n1� k�i

k x) by Lemma 2.6. Each invocation of Dijkstra requires time |Ei| = O(n1+ k�i+1
k x)

so that across all w 2 Di, all invocations of Dijkstra can be completed in time Õ(n2+x
k ).

We ignore Phase 3 for now as we will find that it is not the computational bottleneck. Phases
1 and 2 require time,

Õ

⇣
n
!(1,1�x,1) + n

1+2x + n
1+ 3k�4

k x + n
2+x

k

⌘

Using [Bra], we choose x = 0.4414248 and k = 7 to obtain the time complexity Õ(n2.07203166) for
Phase 1 and 2. Finally, we conclude the proof by noting that BoundedAdditiveAPASP(G, 6, C)
requires time Õ(n2.05794292) by Corollary 5.14 and DenseAPASP(G,C) requires time Õ(n35/17) =
Õ(n2.0589) by Lemma 3.2.

4 (2, 0)-Multiplicative Approximations for Long Paths

In this section, we present algorithms for computing (2, 0) approximations for paths of at least some
length. We begin with a combinatorial result that gives a (2, 0) multiplicative approximation for
paths of length at least k for even values of k � 4.

4.1 Multiplicative Approximation for Long Paths

Theorem 4.1. Let k � 4 be an even integer. Algorithm 4 computes a (2, 0) approximation for all
paths of length �(u, v) � k in expected time Õ

⇣
n
2+ 1

2(k�1)

⌘
.

In Appendix E, we improve the above bound for k = 4 and 5.

High Level Overview As a simple example, we begin with by showing that we can obtain a
(2, 0) approximation for �(u, v) � 4 in time Õ(n13/6). Decompose the graph with degree thresholds
s1 = n

5/6
, s2 = n

4/6
, . . . , s5 = n

1/6. Let P be a shortest path of length at least 4. If P ⇢ E3, then
we execute BK2APASP(G3) in time n

13/6 where G3 = (V,E3) has maximum degree s2 = n
4/6.

Otherwise, P 6⇢ E3 and vertex w 2 P of maximum degree has deg(w) � s2 and is dominated by
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w
⇤ = r(w,D`(w)). Suppose deg(v) � deg(u). Let z = b(v, P ) be the blocking vertex so deg(z) � s5

and z
⇤ = r(z,D`(z)) 2 D5. From w

⇤, since P ⇢ E`(w),

�̂(w⇤
, z

⇤)  �(w, z) + 2

�̂(w⇤
, v)  �(w, v) + 1

Since D`(w) ⇢ D2, and 2 + 5 + 6  13, the path (v, w⇤
, z

⇤
, z) � Pz,u exists in G6,v (see Line 49 of

Algorithm 4) and Dijkstra computes a +4 approximation.
For the remaining overview, assume k � 6. We want to obtain a (2, 0) approximation for paths

of length at least k. Of course, it suffices to compute a +k approximation. Let P be a path. We
will choose l levels with degree thresholds s1, s2, . . . , sl�1 (note that sl = 0). In order to compute a
+k approximation, it suffices to have for all w with deg(w) � sl� k�4

2
and for all v 2 V , an estimate

�̂(w⇤
, v)  �(w, v) + 5

Then, following a similar argument to Lemma A.2, we obtain a +k additive approximation at the
l-th level. In order to guarantee a +5 error at the (l� k�4

2 ) level, we require the edge set Dl0⇥Dl� k�2
2

for some choice of l0.
Suppose P ⇢ El0+1. Then, we run BK2APASP(Gl0+1) and compute a (2, 0) approximation on

P . Otherwise, P 6⇢ El0+1 so the maximum degree vertex z 2 P has deg(z) � sl0 and there is some
vertex z

⇤ = r(z,D`(z)). Let Pw,v be the sub-path from w to v and let y = b(w,Pw,v) be the blocking
vertex so that `(y)  l � k�2

2 and there is y
⇤ = r(y,Dl� k�2

2
). Since D`(z) ⇢ Dl0 and P ⇢ E`(z),

�̂(w⇤
, z

⇤)  �(w, z) + 2

�̂(z⇤, y⇤)  �(z, y) + 2

If Dl0 ⇥ Dl� k�2
2
⇢ Gl� k�4

2 ,w⇤ , the path (w⇤
, z

⇤
, y

⇤
, y) � Py,v ⇢ Gl� k�4

2 ,w⇤ and Dijkstra computes
an estimate at most,

�̂(w⇤
, v)  �(w, v) + 5

The only restriction on l0 therefore is that

l0 +

✓
l � k � 4

2

◆
+

✓
l � k � 2

2

◆
 2l + 1

or
l0  k � 2

which justifies our choice of l0 = k � 2. We then choose l to optimize the running time trade-off
between the executions of Dijkstra which requires time Õ(n2+1/l) and BK2APASP which requires
time Õ

�
n
1.5

sl0

�
= Õ

�
n
1.5

sk�2

�
= Õ

⇣
n
2.5� k�2

l

⌘
.

Algorithm Our algorithm begins by initializing the distance estimates with the adjacency matrix
and setting parameters l0, l. Next, Line 45 decomposes the graph with l � 1 degree thresholds.

In Phase 1, at each level j, we compute Dijkstra from w 2 Dj on the graph Gj,w in Line 50.
The graph Gj,w consists of edge set Ej [ E

⇤ [ (w ⇥ V ) and Dj1 ⇥Dj2 for all j + j1 + j2  2l � 1.
Finally, we take the minimum between the estimate computed above and the estimate given by

BK2APASP on the graph Gk0+1 = (V,Ek0+1).
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Algorithm 4 LongMultiplicativeAPASP(G, k)

Input : Unweighted, undirected graph G = (V,E) with n vertices; even integer k

Output: Distance estimate �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v) for all u, v 2 V and
�̂(u, v)  2�(u, v) whenever �(u, v) � k

40 Phase 0: Set up and Decompose Graph

41 �̂(u, v) 
(
1 (u, v) 2 E

1 o/w
42 l 2(k � 1)
43 l0  k � 2

44 si  n
1� i

l for all 1  i  l � 1
45 (D1, D2, . . . , Dl), (E1, E2, . . . , El), E⇤  Decompose(G, (s1, s2, . . . , sl�1))
46 Phase 1: Compute Distance Estimates on High Degree Paths
47 for 1  j  l do
48 for w 2 Dj do
49 Gj,w  

⇣
V,Ej [

⇣S
j+j1+j22l+1Dj1 ⇥Dj2

⌘
[ E

⇤ [ (w ⇥ V )
⌘

50 �̂  Dijkstra(Gj,w, w, �̂)

51 �̂  min
⇣
�̂,BK2APASP(Gl0+1)

⌘
where Gl0+1  (V,El0+1)

Warm-Up: k = 4 We first show that we can obtain a Õ(n13/6) algorithm for computing (2, 0)
approximation for paths of length at least 4.

Proof. Since k = 4, we have l = 6 and l0 = 2. We decompose the graph with degree thresholds
s1 = n

5/6
, s2 = n

4/6
, . . . , s5 = n

1/6.
We execute BK2APASP on G3 = (V,E3). Therefore, if P ⇢ E3, we obtain a (2, 0) approxima-

tion via BK2APASP.
Otherwise, P 6⇢ E3. In this case, we claim to compute a +4 approximation, which implies a

(2, 0) approximation for �(u, v) � 4. The vertex w 2 P of maximum degree has deg(w) � s2 and is
dominated by w

⇤ = r(w,D`(w)).
Without loss of generality, suppose deg(v) � deg(u). Let z = b(v, P ) be the blocking vertex

from v. Since P 6⇢ E3, z 6= u and deg(z) � s5.
If w = z then since P ⇢ E`(w), B(P ) = {u, v, w} (Definition 3.4) and we obtain a +4 approxi-

mation. In particular,
�̂`(w)(w

⇤
, v)  �(w, v) + 1

where w
⇤ = r(w,D`(w)). If `(v) = 6, then,

�̂(v, u)  �̂`(w)(v, w
⇤) + 1 + �(w, u)  �(u, v) + 2

Otherwise, if v⇤ = r(v,D`(v)),

�̂`(v)(v
⇤
, u)  �̂`(w)(v

⇤
, w

⇤) + 1 + �(w, u)  �(v, u) + 3

Of course, this implies a +4 approximation when executing Dijkstra on G6,u by taking the path
(u, v⇤, v).

Therefore, w 6= z. From w
⇤, since P ⇢ E`(w),

�̂(w⇤
, z

⇤)  �(w, z) + 2
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�̂(w⇤
, v)  �(w, v) + 1

Since D`(w) ⇢ D2 and z
⇤ 2 D5, and 2 + 5 + 6  13, the path (v, w⇤

, z
⇤
, z) � Pz,u exists in G6,v and

Dijkstra computes a +4 approximation.

�̂(v, u)  �̂(v, w⇤) + �̂(w⇤
, z

⇤) + 1 + �(z, u) = �(v, u) + 4

To analyze the running time, it suffices to observe that for each i, |Di| = Õ(ni/6) while Gi,w has
O(n2�(i�1)/6) edges so that the computation of Dijkstra requires Õ(n13/6). Finally, computing
BK2APASP on G3 = (V,E3) requires Õ(m

p
n) = Õ(n13/6).

Correctness Finally, we prove Theorem 4.1 for general k � 6.

Proof. First, we note that �(u, v)  �̂(u, v) since BK2APASP is correct and every edge weight in
Gj,w is a distance estimate computed by some path in the original graph G.

Suppose P ⇢ El0+1. By the correctness of BK2APASP, �̂(u, v)  2�(u, v).
Then, suppose P 6⇢ El0+1. Suppose `(v)  `(u). Recall from Lemma A.2 the blocking vertices

B(P ) = {x0, x1, . . . , xt} and levels LB(P ) of path P .
Let a = min

`(xi)l� l0
2 +1

i be the minimum index of an element in the blocking set such that

`(xi)  l� l0
2 +1. Since P is not contained in El0+1, we can assume a exists and a � 1. Otherwise,

every edge is in E
l� l0

2 +2
= E(3k+2)/2 ⇢ Ek�1 = El0+1. Since l � `(x1) > `(x2) > . . . > `(xt) � 1

(Lemma A.1), we can upper bound,

a  l �
✓
l � l0

2
+ 1

◆
=

l0

2
� 1 =

k

2
� 2

Let xa 2 B(P ) be the corresponding vertex in B(P ). Since P has an edge not in El0+1, the last
blocking vertex of minimum level must have `(xt)  l0. Recall that we denote v

⇤ = r
�
v,D`(v)

�
for

any vertex v. Since P ⇢ E`(xt), we again have �̂`(xt)(x
⇤
t , x

⇤
a)  �(xt, xa) + 2 and �̂`(xt)(x

⇤
t , x

⇤
a+1) 

�(xt, xa+1) + 2.
Consider the `(xa)-th iteration. The edges D`(xt) ⇥D`(xa+1) are in G`(xa),xa

as,

`(z) + `(xa+1) + `(xa)  l0 +

✓
l � l0

2

◆
+

✓
l � l0

2
+ 1

◆
= 2l + 1

Next observe that xt 2 Pxa,xa+1 (Lemma A.1), as each blocking vertex xi+1 = b(xi, Pxi,xi�1) is by
definition in the sub-path Pxi,xi�1 . Therefore we have the path (x⇤a, x

⇤
t , x

⇤
a+1, xa+1) � Pxa+1,xa�1 so

Dijkstra computes an estimate at most,

�̂`(xa)(x
⇤
a, xa�1)  �̂`(xt)(x

⇤
a, x

⇤
t ) + �̂`(xt)(x

⇤
t , x

⇤
a+1) + 1 + �(xa+1, xa�1)

 �(xa, xt) + �(xt, xa+1) + �(xa+1, xa�1) + 5

 �(xa, xa�1) + 5

Then, following a similar argument to the inductive step of Lemma A.2, we claim the following
for all 1  j  a.

�̂`(xj)(x
⇤
j , xj�1)  �(xj , xj�1) + 2(2 + (a� j)) + 1

where we have established the base case j = a above. We now proceed by induction for j < a.
Consider an execution of Dijkstra from x

⇤
j in G`(xj),x⇤

j
. Let xj+1 be the blocking vertex from the
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previous iteration. We take the edges (x⇤j , x
⇤
j+1), (x⇤j+1, xj+1) 2 E

⇤, and the remaining edges in
E`(xj). By induction, we have,

�̂`(xj)(x
⇤
j , xj�1)  �̂`(xj+1)(x

⇤
j , x

⇤
j+1) + 1 + �(xj+1, xj�1)

 �(xj , xj+1) + 2(2 + (a� (j + 1))) + 3 + �(xj+1, xj�1)

 �(xj , xj�1) + 2(2 + (a� j)) + 1

Thus, we have,
�̂`(v)(v

⇤
, u) = �̂`(x1)(x

⇤
1, x0)  �(v, u) + 2(a+ 1) + 1

From u, we take the edge (u, v⇤), followed by (v⇤, v) 2 E
⇤ so that,

�̂(u, v)  �̂`(v)(u, v
⇤) + 1

 �(u, v) + 2(a+ 1) + 2

 �(u, v) + k

Time Complexity

Proof. We set l0 = k � 2 and leave l to be optimized.
Decompose requires Õ(ln2) time. Over all Dj , the invocations of Dijkstra requires Õ(n2+1/l)

time, as for each i, |Di| = Õ(n/si) and |Ei| = O(nsi�1) while |Dj1 ⇥ Dj2 | = Õ

⇣
n
sj1
⇥ n

sj2

⌘
=

Õ

⇣
n

j1+j2
l

⌘
= Õ

⇣
n
2� j�1

l

⌘
as j1 + j2  2l + 1� j.

BK2APASP on Gl0+1 requires sl0n
1.5 = n

1.5+1� k�2
l time. Balancing,

2 +
1

l
= 2.5� k � 2

l

we solve to obtain,

2l + 1 =
5

2
l � k + 2

l

2
= k � 1

l = 2(k � 1)

Thus, the algorithm runs in time Õ(n2+1/l) = Õ(n2+ 1
2k�1 )

4.2 Faster Multiplicative Approximations for Long Paths with FMM

In this section, we improve upon Theorem 4.1 using fast matrix multiplication.

Theorem 4.2. Let k � 4 be an even integer. Algorithm 4 computes a (2, 0) approximation for all
paths of length �(u, v) � k in expected time Õ(n2+ x

l�k+2 ) where x, l are chosen to minimize,

max

✓
!

✓
1� k � 2

2(l � k + 2)
x, 1� x, 1� k � 4

2(l � k + 2)
x

◆
, 2 +

x

l � k + 2
, 1.5 + x

◆

In Table 1 and Proposition C.4, we exhibit a few running times for 6  k  10.
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High Level Overview We begin by showing that we can obtain a (2, 0) approximation for
�(u, v) � 4 in time Õ(n2.01973523). Set parameters x = 0.51973523,M = 35 and l = 29 so that
l0 = 2. Decompose the graph with degree thresholds s2 = n

x
, s3 = n

26x/27
, . . . , s28 = n

x/27. Let
P be a shortest path of length at least 4. If P ⇢ E3, then we execute BK2APASP(G3) in time
n
1.5+x = n

2.01973523 where G3 = (V,E3) has maximum degree s2 = n
x. If �(u, v) � M , then

DenseAPASP computes a +M approximation and we obtain a (2, 0) approximation. Otherwise,
P 6⇢ E3 is of length at most M and vertex w 2 P of maximum degree has deg(w) � s2. Suppose
deg(v) � deg(u). Let z = b(v, P ) be the blocking vertex so deg(z) � s28 and z

⇤ = r(z,D`(z)) 2 D28.
Let n

2i  deg(w)  n
2i�1 . Since P ⇢ Fi, we obtain the estimates from w

⇤,

�̂(w⇤
, z

⇤)  �(w, z) + 2 M + 2

�̂(w⇤
, v)  �(w, v) + 1 M + 1

Then, the bounded (min,+) product computes,

�̂(v, z⇤)  �(v, z) + 3

as v 2 V, z
⇤ 2 D28, w

⇤ 2 Ci. Finally, the path (v, z⇤, z)�Pz,u exists in G6,v and Dijkstra computes
a +4 approximation.

For the remaining overview, assume k � 6. In Algorithm 4, we obtained a +5 approximation
after the

�
l � k�4

2

�
iteration by including edge sets Di⇥Dl� k�2

2
for all i  l0 in the edges of Gl� k�4

2 ,w

for w 2 Dl� k�4
2

. Using fast matrix multiplication, we will pre-compute the distances obtained from
these edges and instead encode them in smaller edge set w ⇥ V .

Consider a shortest path P . If P ⇢ El0+1, then we again invoke BK2APASP to compute a
(2, 0) approximation. Therefore, suppose P 6⇢ El0+1. For a large enough constant M , we can
invoke DenseAPASP(G,M) (Lemma 3.2) or AdditiveAPASP (Theorem 5.6) to compute a +M

approximation without affecting the overall running time. Therefore, we can also assume that
�(u, v) M .

We decompose the graph G into (1�x) log n levels with each degree threshold defined as ti = n
2i .

We compute dominating sets Ci of size Õ(n/ti) and edge sets Fi of size at most O(nti�1) = O(nti).
Again, to obtain a +k additive approximation, it suffices to have a +5 approximation after the
l � k�4

2 iteration of computing Dijkstra. Consider the blocking vertices B(P ) = {x0, x1, . . . , xt}
(Definition 3.4). Let a be the minimum index such that `(xa)  l � k�4

2 so that `(xa+1)  l � k�2
2

and `(xt)  l0 as we have P 6⇢ Ek0+1. Then, if n
2i⇤
 deg(xt)  n

2i⇤�1 , we have P ⇢ Fi⇤ and in the
i
⇤-th call to DominatingSetAPASP,

�̂(x⇤t , x
⇤
a)  �(xt, xa) + 2

�̂(x⇤t , x
⇤
a+1)  �(xt, xa+1) + 2

By our assumption �(u, v) M both entries in the matrices constructed by DominatingSetAPASP

are finite. Furthermore, xt 2 Pxa,xa+1 (Lemma A.1) so the bounded (min,+) product computes,

�̂(x⇤a, x
⇤
a+1)  �(xa, xa+1) + 4

Then, in the graph G`(xa),x⇤
a

there exists the path (x⇤a, x
⇤
a+1, xa+1) �Pxa+1,xa�1 and we obtain an

estimate at most,
�̂(x⇤a, x

⇤
a�1)  �(xa, xa�1) + 5
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Algorithm Algorithm 4 and Algorithm 5 are similar overall, so we only highlight the differences
here. In Phase 1, we use a bounded (min,+) product to replace the edge sets Dj1 ⇥Dj2 .

In Line 61, we decompose the graph G into (1�x) log n degree thresholds and at each threshold
invoke DominatingSetAPASP to compute approximate distances between D

l� l0
2

and D
l� l0

2 +1
in

Line 63. In Phase 2, for each level j � l0 + 1, we execute Dijkstra from each vertex w 2 Dj on
the graph Gj,w = (V,Ej [ E

⇤ [ (w ⇥ V )) in Line 68.
Finally, we take the minimum of our estimate with the estimate produced by BK2APASP and

DenseAPASP.

Analysis We briefly argue that Algorithm 5 equipped with fast matrix multiplication should
outperform the combinatorial Algorithm 4. Indeed, suppose we use naive matrix multiplication,
so that the largest matrix multiplication contains matrices of size D

l� l0
2
⇥Dl0 and Dl0 ⇥D

l� l0
2 +1

which requires time,

Õ

 
n
3

sl0sl� l0
2
s
l� l0

2 +1

!
= Õ

✓
n
3�
⇣
1+

l0
2(l�l0))

+
l0�2
2(l�l0

⌘
x
◆

= Õ

✓
n
3�
⇣

2l�2
2(l�l0)

⌘
x
◆

Balancing the running times,

3� l � 1

l � l0
x = 2 +

x

l � l0

we obtain,

x =
l � l0

l

so that the overall running time is 2+ 1
l , which matches the combinatoiral algorithm Algorithm 4.

Warm-Up: k = 4 We begin by showing that we can obtain a (2, 0) approximation for �(u, v) � 4
in time Õ(n2.01973523).

Proof. Using [Bra], we set parameters x = 0.51973523 and l = 29 so that l0 = 2. Choosing M = 35
suffices to ensure DenseAPASP requires time Õ

�
n
2.0195

�
(Lemma 3.2).

Decompose the graph with degree thresholds s2 = n
x
, s3 = n

26x/27
, . . . , s28 = n

x/27. Let P

be a shortest path of length at least 4. If P ⇢ E3, then we execute BK2APASP(G3) in time
n
1.5+x = n

2.01973523 where G3 = (V,E3) has maximum degree s2 = n
x. If �(u, v) � M , then

DenseAPASP computes a +M approximation and we obtain a (2, 0) approximation.
Then, assume P 6⇢ E3 is of length at most M and vertex w 2 P of maximum degree has

deg(w) � s2. Suppose deg(v) � deg(u). Let z = b(v, P ) be the blocking vertex so deg(z) � s28 and
z
⇤ = r(z,D`(z)) 2 D28. If z = w, we obtain a +4 approximation as in Algorithm 4.

Assume z 6= w. Let n
2i  deg(w)  n

2i�1 . Since P ⇢ Fi, we obtain the estimates,

�̂(w⇤
, z

⇤)  �(w, z) + 2 M + 2

�̂(w⇤
, v)  �(w, v) + 1 M + 1

Then, the bounded (min,+) product computes,

�̂(v, z⇤)  �(v, z) + 3
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Algorithm 5 FMMLongMultiplicativeAPASP(G, k)

Input : Unweighted, undirected graph G = (V,E) with n vertices; approximation parameter k

Output: Distance estimate �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v) for all u, v 2 V and
�̂(u, v)  2�(u, v) whenever �(u, v) � k

52 Phase 0: Set up and Decompose Graph

53 �̂(u, v) 
(
1 (u, v) 2 E

1 o/w
54 Parameters x, l chosen to minimize

tmax = max

✓
!

✓
1� k � 2

2(l � k + 2)
x, 1� x, 1� k � 4

2(l � k + 2)
x

◆
, 2 +

x

l � k + 2
, 1.5 + x

◆

55 M chosen so that 2 + 2
3M�2  tmax

56 l0  k � 2

57 sl�i  n
i

l�l0
x for all 1  i  l � l0

58 (Dl0 , Dl0+1, . . . , Dl), (El0 , El0+1, . . . , El), E⇤  Decompose(G, (sl0+1, sl0+2, . . . , sl�1))
59 Phase 1: Compute Intermediate Distance Estimates on High Degree Paths
60 ti  n

2i for all 1  i  b� 1 = d(1� x) log ne
61 (C1, C2, . . . , Cb), (F1, F2, . . . , Fb), F ⇤  Decompose(G, (t1, t2, . . . , tb�1))
62 for 1  i  b do
63 �̂  min

⇣
�̂,DominatingSetAPASP

⇣
Gi, Dl� l0

2
, D

l� l0
2 +1

, Ci,M + 2
⌘⌘

where Gi = (V, Fi).

64 Phase 2: Compute Distance Estimates
65 for l0 + 1  j  l do
66 for w 2 Dj do
67 Gj,w  (V,Ej [ E

⇤ [ (w ⇥ V ))

68 �̂  Dijkstra(Gj,w, w, �̂)

69 �̂  min
⇣
�̂,BK2APASP(Gl0+1)

⌘
where Gl0+1  (V,El0+1)

70 �̂  min
⇣
�̂,DenseAPASP(G,M)

⌘

as v 2 V, z
⇤ 2 D28, w

⇤ 2 Ci. Finally, the path (v, z⇤, z)�Pz,u exists in G6,v and Dijkstra computes
a +4 approximation.

The computation of every invocation of Dijkstra requires time Õ(n2+x/27), since l � l0 =
27. The computation of BK2APASP requires time Õ(n1.5+x). The overall complexity of
DominatingSetAPASP is dominated by the computation of bounded (min,+) products, which
requires time,

Õ

⇣
n
!(1� x

27 ,1�x,1)
⌘

where we have again plugged in l = 29, l0 = 2. Plugging in x = 0.51973523 yields the desired
complexity.

Correctness We prove Theorem 4.1 for general k � 6.

Proof. Let u, v be vertices and P a shortest path of length �(u, v).

28



First, note �(u, v)  �̂(u, v) for all u, v as DominatingSetAPASP returns �̂(u, v) � �(Gi, u, v) �
�(u, v) by Lemma C.1. In Phase 2, every edge weight in Gj,w is the length of some path previously
found in the original graph G. Finally, BK2APASP and DenseAPASP return estimates �̂(u, v) �
�(u, v).

Now, we only need to show �̂(u, v)  2�(u, v) If P ⇢ El0+1, this immediately follows from the
correctness of BK2APASP. If �(u, v) �M , then we have correctness by DenseAPASP, since,

�̂(u, v)  �(u, v) +M  2�(u, v)

Therefore, assume P 6⇢ El0+1 and �(u, v) M . Without loss of generality, suppose `(v)  `(u).
Recall from Lemma A.2 the blocking vertices B(P ) = {x0, x1, . . . , xt} and levels LB(P ) of path P .

Let a = min
`(xi)l� l0

2 +1
i be the minimum index of an element in the blocking set such that

`(xi)  l � l0
2 + 1. Since l � `(x1) > `(x2) > . . . > `(xt) � 1, we can upper bound,

a  l �
✓
l � l0

2
+ 1

◆
=

l0

2
� 1 =

k

2
� 2

Since P is not contained in El0+1, we can assume a exists and a � 1.
Let xa 2 B(P ) be the corresponding vertex in B(P ). Since P has an edge not in El0+1, the last

blocking vertex of minimum level must have `(xt)  l0. Recall that we denote v
⇤ = r

�
v,D`(v)

�
for

any vertex v.
Let n

2i⇤
 deg(xt) <

n
2i⇤�1 and x

⇤
t = r(xt, Ci⇤). Since P ⇢ Fi⇤ , the i

⇤-th invocation of
DominatingSetAPASP computes

�̂i⇤(x
⇤
t , x

⇤
a)  �(xt, xa) + 2 M + 2

�̂i⇤(x
⇤
t , x

⇤
a+1)  �(xt, xa+1) + 2 M + 2

These entries are finite in the matrices Ai⇤ , Bi⇤ constructed by DominatingSetAPASP.
Note that xt 2 Pxa,xa+1 (Lemma A.1). Furthermore, `(xa)  l � l0

2 + 1 implies x
⇤
a 2 D

l� l0
2 +1

and `(xa+1) < `(xa) implies x
⇤
a+1 2 D

l� l0
2
. Then, the bounded (min,+) product computes,

�̂i⇤(x
⇤
a, x

⇤
a+1)  �̂i⇤(x

⇤
a, x

⇤
t ) + �̂i⇤(x

⇤
t , x

⇤
a+1)

 �(xa, xt) + �(xt, xa+1) + 4

 �(xa, xa+1) + 4

Then, in the `(xa)-th iteration, we can take the edge sequence (x⇤a, x⇤a+1, xa+1) and the remaining
edges in E`(xa) to compute a distance estimate at most,

�̂(x⇤a, x
⇤
a�1)  �̂i⇤(x

⇤
a, x

⇤
a+1) + 1 + �(xa+1, xa�1)  �(xa, xa�1) + 5

The remaining proof follows exactly as in Theorem 4.1.

Time Complexity

Proof. We set l0  k � 2 and leave x, l,M to be optimized. Phase 0 requires Õ(ln2) time overall
as we only invoke Decompose. Invoking Dijkstra requires Õ(n

2+ x
l�l0 ) time as |Dj | = Õ(n/sj)

and |Ej |  O(nsj�1). BK2APASP requires Õ(m
p
n) = Õ(n1.5

sl0) = Õ(n1.5+x) time as we call
BK2APASP on graph Gl0+1, a graph with maximum degree sl0 = n

x.
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Phase 1 calls DominatingSetAPASP b = Õ(1) times. In each call, we call BFS on the graph
(V, Fi) from dominating set Ci in time Õ (|Ci||Fi|) = Õ

⇣
n
ti
2nti

⌘
= Õ

�
n
2
�
. Then, we compute a

BoundedMinPlus on matrices of size at most
���Dl� l0

2

��� ⇥ |Ci| and |Ci| ⇥
���Dl� l0

2 +1

���. Since |Ci| =

O(|Cb|) = Õ

⇣
n
tb

⌘
= Õ

�
2b
�
= Õ

�
n
1�x
�
, all computations of BoundedMinPlus require time at

most,

Õ

0

B@n

!

 
1�

l0
2

l�l0
x,1�x,1�

l0
2 �1

l�l0
x

!1

CA = Õ

✓
n
!
⇣
1� l0

2(l�l0)
x,1�x,1� l0�2

2(l�l0)
x
⌘◆

= Õ

✓
n
!
⇣
1� k�2

2(l�k+2)x,1�x,1� k�4
2(l�k+2)x

⌘◆

To optimize, we use [Bra] and choose x, l minimizing,

tmax = max

✓
!

✓
1� k � 2

2(l � k + 2)
x, 1� x, 1� k � 4

2(l � k + 2)

◆
, 2 +

x

l � k + 2
, 1.5 + x

◆

Finally, note that DenseAPASP requires Õ(n2+ 2
3M�2 ) time. Given our choice of x, l, we simply

choose M to be a large enough constant such that the running time of DenseAPASP does not
exceed 2+ 2

3M�2  Tmax. We give a few example running times in Proposition C.4 and Table 1.

5 Additive Approximation via Monotone (min,+) Product

In the following section, we will use the fast monotone (min,+) product of Chi, Duan, Xie, and
Zhang [CDXZ22] to the additive approximation framework of Dor et al. [DHZ00]. In particular, this
will generalize the result of Deng et al. [DKR+22] to all distances. Whereas Deng et al. [DKR+22]
use fast rectangular matrix multiplication for bounded difference matrices, we will require a more
general fast rectangular matrix multiplication. To do so, let us begin by designing a fast algorithm
for multiplying rectangular matrices, of which only one is monotone.

5.1 Rectangular Monotone (min,+) Product

Following the algorithm of [CDXZ22], we give a simple extension of their result for monotone
matrices to rectangular monotone matrices. This result slightly extends the work of Durr [Dür23]
to handle the most general case of rectangular matrices, which is required in our application.

Theorem 5.1. Let A be a n
a ⇥ n

b integer matrix with non-negative entries bounded by O(nµ). Let
B be a n

b ⇥ n
c row-monotone integer matrix with non-negative entries bounded by O(nµ). Then,

there is an algorithm MonotoneMinPlus computing C = A ⇤B in time,

Õ

⇣
n

(a+b+µ)+!(a,b,c)
2

⌘

Since the algorithm and proof remain largely unchanged, we only provide a sketch of the proof.
Let ↵ 2 [0, 1] be a parameter to be fixed, and let p be a uniformly random prime chosen

in [40n↵
, 80n↵]. We make the same simplifying assumption as in [CDXZ22]. By Lemma 3.4 of

[CDXZ22], this assumption is justified.
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Assumption 5.2. (Assumption 3.1 of [CDXZ22]) Let i 2 [na], k 2 [nb], j 2 [nc]. For all i, k, Aik

is either 1 or (Aik mod p) < p
3 . For all k, j, Bkj is either 1 or (Bkj mod p) < p

3 . Each row of
B is monotone.

Lemma 5.3. (Lemma 3.4 of [CDXZ22]) Let A be a n
a⇥nb integer matrix with non-negative entries

bounded by O(n). Let B be a n
b⇥nc row-monotone integer matrix with non-negative entries bounded

by O(n). The computation A⇤B can be reduced to a constant number of Ai ⇤Bi where A
i
, B

i satisfy
Assumption 5.2.

Proof. We only define the relevant matrices, leaving the proof to [CDXZ22]. Define for i 2 {1, 2, 3},

A
((i)
ik =

(
Aik

(i�1)p
3 < (Aik mod p) < ip

3

1 o/w

B
(1)
kj =

8
><

>:

Bkj (Bkj mod p) < p
3

p bBkj/p+ 1c p
3  (Bkj mod p) < 2p

3

p bBkj/p+ 1c 2p
3  (Bkj mod p)

B
(2)
kj =

8
><

>:

p bBkj/pc+ dp/3e (Bkj mod p) < p
3

Bkj
p
3  (Bkj mod p) < 2p

3

p bBkj/p+ 1c 2p
3  (Bkj mod p)

B
(3)
kj =

8
><

>:

p bBkj/pc+ d2p/3e (Bkj mod p) < p
3

p bBkj/pc+ d2p/3e p
3  (Bkj mod p) < 2p

3

Bkj
2p
3  (Bkj mod p)

Then, the matrices,

A
(1)

, A
(2) � dp/3e , A(3) � d2p/3e , B(1)

, B
(2) � dp/3e , B(3) � d2p/3e

all satisfy Assumption 5.2.

Define h such that 2h�1  p < 2h. For all 0  l  h, define A
(l)
ik =

j
Aik mod p

2l

k
if Aik

is finite and 1 otherwise. Define B
(l)
kj =

j
Bkj mod p

2l

k
if Bkj is finite and 1 otherwise. Define

A
⇤
ik = bAik/pc if Aik is finite and 1 otherwise. Define B

⇤
kj = bBkj/pc if Bkj is finite and 1

otherwise. Since A
⇤
, B

⇤ are monotone, C⇤ = A
⇤ ⇤B⇤ can be computed in Õ(n(a+b+µ)�↵) time using

segment trees as described in [CDXZ22]. If Cij is finite, then by Assumption 5.2 Cij mod p <
2p
3

so that C
⇤
ij = bCij/pc.

In the next phase, we compute C
(l) for l = h, h � 1, . . . , 0. Note that C

(l) is not necessarily
A

(l) ⇤B(l). We require C
(l) to satisfying the following properties if Cij is finite:

1.
j
(Cij mod p)�2(2l�1)

2l

k
 C

(l)
ij 

j
(Cij mod p)+2(2l�1)

2l

k

2. If C
⇤
i,j0 = C

⇤
i,j1 for j0 < j1, the elements C

(l)
i,j0

, C
(l)
i,j0+1, . . . , C

(l)
i,j1

are monotonically non-
decreasing.

Notice that when l = 0, we have C
(0)
ij = Cij mod p, which combined with C

⇤
ij allows us to

recover Cij .
The entries of A

(l)
, B

(l)
, C

(l) are therefore non-negative integers at most O
�
n↵

2l

�
or 1. Since

B
(l) is monotone, every row is composed of at most O

�
n↵

2l

�
intervals, where all the values in each
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interval are identical. Now, C⇤ has O(nµ�↵) intervals in each row. Within each interval, C(l) has
O
�
n↵

2l

�
intervals, so that C

(l) has O
�
nµ

2l

�
such intervals in each row.

Definition 5.4. (Definition 3.1 of [CDXZ22]) A segment (i, k, (j0, j1)) with respect to B
(l)
, C

(l)

where i 2 [na], k 2 [nb], j0, j1 2 [nc] and j0  j1 satisfies that for all j0  j  j1, B
(l)
kj = B

(l)
k,j0

,
B

⇤
kj = B

⇤
k,j0

, C(l)
ij = C

(l)
i,j0

, and C
⇤
ij = C

⇤
i,j0 .

We will also maintain sets T
(l)
b for �10  b  10 where T

(l)
b consists of segments (i, k, (j0, j1))

satisfying Aik < 1 and A
⇤
ik + B

⇤
kj 6= C

⇤
ij and A

(l)
ik + B

(l)
kj = C

(l)
ij + b for all j 2 [j0, j1]. Finally, we

turn to the computation of each C
(l) matrix.

Computing C
(l)

1. Since p < 2h, A(h)
, B

(h) are zero-matrices. Likewise, C(h) = 0 satisfies the required properties.
For b 6= 0, T (h)

b = ; and T
(h)
0 includes all segments (i, k, (j0, j1)) where Aik < 1 and A

⇤
i,k +

B
⇤
k,j0
6= C

⇤
i,j0 .

2. Let l < h. We will construct C
(l)
, T

(l)
b from C

(l+1)
, T

(l+1)
b .

(a) Polynomial Matrix Multiplication
Construct Ap

ik = x
A

(l)
ik �2A

(l+1)
ik y

A
(l+1)
ik if Aik finite and 0 otherwise. Define Bp

kj analogously.
Compute C

p = A
p
B

p. Since the x degree is either 0 or 1, and the y degree is at most
n
↵, this phase requires Õ(n!(a,b,c)+↵) time.

(b) Subtracting Error Terms
If Cp

ij = 0, then C
(l)
ij = 1. Otherwise, for all b, we collect all monomials �x

c
y
d where

d = C
(l+1)
ij + b and let C

p
ijb(x) be the sum of all such �x

c. Next, we compute,

R
p
ijb(x) =

X

(i,k,(j0,j1))2T (l+1)
b ,j2[j0,j1]

x
A

(l)
ik �2A

(l+1)
ik +B

(l)
kj �2B

(l+1)
kj

Let sijb be the minimum degree of x in C
p
ijb(x) � R

p
ijb(x) and compute cijb = 2d + sijb

(or cijb =1 if sijb = 0). Finally, output C
(l)
ij = minb cijb.

Constructing C
p
ijb(x) requires Õ(na+c+↵) time. Notice each T

(l+1)
b has at most 2 different

B
(l)
kj and thus two R

p
ijb(x). Since each interval in B

(l+1)
kj is broken into at most 2 intervals,

we can compute C
p
ijb(x) � R

p
ijb(x) using segment trees in Õ(|T (l+1)

b |)-time. The overall
time required in this stage is therefore Õ(na+c+↵ + |T (l+1)

b |).
(c) Computing Triples T

(l)
b

It is shown in [CDXZ22] that each segment with respect to B
(l+1)

, C
(l+1) splits into O(1)

segments with respect to B
(l)
, C

(l) and furthermore
S

b T
(l)
b ⇢

S
b T

(l+1)
b , so it suffices to

enumerate T
(l+1)
b , breaking each segment into O(1) sub-segments. The time required is

Õ(|T (l+1)
b |).

It then suffices to bound the size of the sets T
(l)
b , which we do below in Lemma 5.5. Finally,

we can optimize parameter ↵ and compute the overall running time. Note that the overall running
time is,

Õ

⇣
n
(a+b+µ)�↵ + n

!(a,b,c)+↵ + n
a+c+↵

⌘
= Õ

⇣
n
(a+b+µ)�↵ + n

!(a,b,c)+↵
⌘
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giving the desired result. The proof of correctness follows exactly as in [CDXZ22].

Lemma 5.5. The expected number of segments in T
(l)
b is Õ(n(a+b+µ)�↵)

Proof. Suppose first 2l > p
100 . Then, B(l), C(l) have at most O

�
nµ

2l

�
= O

⇣
nµ

p

⌘
= O (nµ�↵) intervals

in a given row. The overall number of intervals is therefore bounded by O
�
n
(a+b+µ)�↵

�

Consider a segment (i, k, (j0, j1)) and arbitrarily pick j 2 [j0, j1] where Aik finite and A
⇤
ik+B

⇤
kj 6=

C
⇤
ij . Then, by Assumption 5.2, we have |Aik +Bkj �Cij | � p

3 . We now bound the probability that
(i, k, (j0, j1)) 2 T

(l)
b . By definition, this implies that,

�
Aik mod p

2l

⌫
+

�
Bkj mod p

2l

⌫
= C

(l)
ij + b

Since
j
(Cij mod p)�2(2l�1)

2l

k
 C

(l)
ij 

j
(Cij mod p)+2(2l�1)

2l

k

�4  Aik mod p

2l
+

Bkj mod p

2l
� Cij mod p

2l
� b  4

Let Cij = Aiq +Bqj , so that,

�4 · 2l  (Aik +Bkj �Aiq �Bqj) mod p� b · 2l  4 · 2l

so that (Aik +Bkj �Aiq �Bqj) mod p takes one of O(2l) values r in the range [2l(b� 4), 2l(b+4)].
Since |b|  10, the largest such value is bounded by |r|  14 · 2l < p

6 
1
2 |Aik + Bkj � Aiq � Bqj |

where we used 2l < p
100 .

Then, if Bkj , Bqj are from B in Lemma 5.3, then,

|(Aik +Bkj �Aiq �Bqj)� r| = O(nµ)

The number of primes larger than 40n↵ that divide this quantity is therefore at most µ
↵ = O(1). In

particular, such a p is chosen with probability n
�↵.

On the other hand, if Bkj , Bqj may have been set artificially to some number congruent to
0, dp/3e , d2p/3e in Lemma 5.3. We can still bound the probability that p divides |(Aik + Bkj �
Aiq �Bqj)� r|, as in [CDXZ22].

Finally, we have O(2l) such remainders r, and in total O
⇣
na+b+µ

2l

⌘
segments, so that in expec-

tation we can upper bound |T (l)
b | = Õ(n(a+b+µ)�↵).

5.2 Framework for Additive Approximations via Monotone (min,+) Product

We now give an improvement on the generalized algorithm of Dor et al. [DHZ00], using fast matrix
multiplication to give a better trade-off between additive approximation error and running time.
This extends the work of Deng et al. [DKR+22] to additive error beyond +2.

Theorem 5.6. Let � � 4 be an even integer. Let G be an undirected, unweighted graph with n

vertices. Algorithm 6 computes �̂ such that �(u, v)  �̂(u, v)  �(u, v) + � for all u, v 2 V in time,
Õ

⇣
n
2+ 2x

�+2

⌘
where x is the solution to, !

⇣
1� ��2

�+2x, 1� x, 1� ��4
�+2x

⌘
= 1 + 4+2�

�+2 x.
2

2
!(a, b, c) is the minimum value such that the product of a dnae ⇥

⌃
n
b
⌥

matrix by a
⌃
n
b
⌥
⇥ dnce matrix can be

computed in O(n!(a,b,c)+") arithmetic operations for any constant " > 0. Note ! = !(1, 1, 1).
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Before we present a high level overview of Theorem 5.6, let us recall some useful definitions.

Definition 5.7. For a spanning tree T ⇢ E of a connected graph G = (V,E) on n vertices, an
Euler Tour of T is a sequence of vertices v1, v2, . . . , v2n�1 where each vertex of G appears at least
once and the edges (vi, vi+1) 2 T for all 1  i  2n� 2.

Given a spanning tree T , an Euler tour of T can be found in O(|T |) time by conducting depth
first search on T .

Definition 5.8. Let G = (V,E) be a graph on n vertices and D ⇢ V . Consider an arbitrary Euler
Tour on G, denoted v1, . . . , v2n�1. X is an Euler Tour Distance Matrix of D on V if A is a
|D|⇥ (2n� 1) matrix where X(w, i) = �(w, vi) for w 2 D and vi as ordered in the Euler Tour.

It was first observed by Deng, Kirkpatrick, Rong, Vassilevska-Williams, and Zhong [DKR+22]
that it is possible to encode the results of a BFS search in a row bounded difference matrix by
ordering the vertices according to an Euler tour.

We now present a high level description of our algorithm.

High Level Overview First, we recap the algorithm of Deng et al. [DKR+22] and explain why
it does not generalize to additive approximations beyond +2. Consider a +4 approximation. The
natural approach is to use a bounded difference matrix multiplication to compute a +2 additive
approximation on paths with some vertex of degree at least nx and to invoke SparseAPASP(G, 4) on
paths where all vertices have degree at most n

x. If !BD(1, 1� x, 1) denotes the exponent required
to compute a rectangular bounded difference (min,+) matrix product with input n ⇥ n

1�x and
n
1�x⇥n, then this algorithm requires time n

2+x
3 where x is the solution to !BD(1, 1�x, 1) = 2+ x

3 .
For current bounds on !BD, this is larger than the 11

5 given by the combinatorial algorithm of Dor,
Halperin, and Zwick [DHZ00]. Why? The DenseAPASP algorithm decomposes the graph G into
5 levels, whereas the above algorithm has only decomposed G into 4 levels.

Indeed, only using rectangular matrix multiplication !BD(1, y, 1) for some y 2 [0, 1], we will not
be able to obtain any improvement on DenseAPASP(G, 4). For example, recall that the degree
thresholds are s1 = n

4/5
, s2 = n

3/5
, s3 = n

2/5
, s4 = n

1/5. In order to improve the overall running
time, we must decrease s4 so that the final iteration of computing Dijkstra on E5 from all D5 = V

does not require Õ(n11/5) time. If we wish to decrease s4, then the size of D4 increases. To limit the
overall time of running Dijkstra from D4 on E4, we must therefore decrease s3. Following the same
reasoning, we must decrease s2 and s1. However, the combinatorial algorithm DenseAPASP also
includes the edge set D2 ⇥D4 when executing Dijkstra from D5 = V . In particular, either D2 or
D4 needs to reduce in size, which implies that at least one of s2, s4 needs to increase, contradicting
our previous conclusions.

We cannot hope to succeed simply by using fast (min,+) matrix multiplication to replace the
first level D1. However, we use fast (min,+) matrix multiplication to replace the edge set D2 ⇥D4

and more generally Dj1 ⇥ Dj2 for j + j1 + j2  2k + 1. Consider +4 approximation as a basic
example. Let P be a shortest path between u, v. If P ⇢ E3, then we compute a +4 approximation
as in SparseAPASP. Therefore, suppose P ⇢ Ej and P 6⇢ Ej+1 for some j 2 {1, 2}. Let y be
the vertex closest to v such that Pu,y ⇢ E5. Let z be the vertex of maximum degree in P . Let
y
⇤ = r(y,D4) and z

⇤ = r(z,D`(z)). In the combinatorial algorithm, since D2 ⇥ D4 ⇢ G5,v, we
find the path (v, z⇤, y⇤, y) � Py,u and compute a +4 approximation. Instead, we use a fast (min,+)
product to find,

�̂(v, y⇤)  min
w2D2

�̂(v, w) + �̂(w, y⇤)  �̂(v, z⇤) + �̂(z⇤, y⇤)  �̂(v, y) + 3
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to obtain the same approximation. To utilize fast matrix multiplication, let x be some parameter to
be optimized. Since P ⇢ E3 is handled by SparseAPASP, we decompose the graph Gx = (V,Enx)
into 3 levels. Then, for 1  j  (1 � x) log n thresholds tj = n

2j , we compute a dominating set
Cj and edge set Fj . For each j, we construct matrix Aj of dimension D4 ⇥ Cj and matrix Bj

of dimension Cj ⇥ V where we ensure Bj is a monotone matrix by using the Euler tour distance
matrix construction and the transformation BDtoMonotone. Filling in these matrices with the
results computed by BFS from Cj on the graph (V, Fj), we compute the correct distance estimate
required in Section 5.2. Since overall the BFS require time Õ(n2), the running time of (min,+)
matrix multiplication dominates.

! " #

$∗

" # = 5

We use a (min, +) product to replace the edge set &!×&".
From (∗, we compute )* (∗, # ≤ * (, # + 1 and )* (∗, /∗ ≤ * (, / + 2	
The (min, +) product yields )* #, /∗ ≤ * #, / + 3
Then, #, /∗, / ∘ 4 $,& ⊂ 6 ',(  so )* #, 7 ≤ * #, 7 + 4

"∗

$

" / = 4 " ( ≤ 2" 7 = 5

Figure 5: Using (min,+) product to replace edge set D2 ⇥ D4. Solid lines represent eges in G.
Dotted black lines represent paths in G. Dashed blue arrows represent distance estimates used in
the (min,+) product. Dashed black arrows represent edges w ⇥ V in the graph Gj,w.

We have already discussed +6 approximation in Section 3.2.
For general +� approximation, let k = 3��2

2 and k0 = k�bk/3c�2. By Lemma A.3, if any path
P ⇢ Ek0+1, then we already obtain a +�-approximation as in SparseAPASP. Then, to ensure a
+� approximation for paths containing a higher degree vertex, we need to ensure that we have a
+5 approximation after the (k0 + 3)-th iteration, we can follow the arguments of Lemma A.3 to
obtain a +� additive approximation from this point.

We demonstrate this case in Figure 6. In this example, a is a vertex on the shortest path P

between u, v such that `(a) = k0+3. While the diagram only shows �̂(a⇤, v)  �(a, v)+ 5, a similar
argument holds for all x 2 P .

Let b be the vertex closest to a such that Pb,v ⇢ Ek0+3. Let z be the highest degree vertex in
Pa,b. Suppose n

2j  deg(z) < n
2j�1 . Then, after computing the (min,+) product Aj ⇤ Bj , we have

an estimate
�̂(a⇤, b⇤)  �(a, b) + 4

given by the blue arrows. In particular from a
⇤, the path (a⇤, b⇤, b) � Pb,v ⇢ Gk0+3,a⇤ so that

�̂(a⇤, v)  �(a, v) + 5

We next argue that our algorithm has an improved running time. Suppose we use naive matrix
multiplication. Then, the time exponent to compute a MonotoneMinPlus combinatorially is,
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$∗
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%∗"∗

Figure 6: Computing a distance estimate between u, v. Solid black lines denote edges in G. Dotted
black lines represent paths in G. Blue dashed arrows denote distance estimates used in the (min,+)
product (Phase 1). Black dashed arrows denote edges w ⇥ V in the graph Gj,w (Phase 2).
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◆
+ (1� x) +

✓
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� + 2
x

◆
= 3� 3� � 4

� + 2
· x

Then, balancing this with the 2 + 2x
�+2 exponent required to execute SparseAPASP,

3� 3� � 4

� + 2
· x = 2 +

2x

� + 2

so that,

x =
� + 2

3� � 2

and obtain running time exponent 2 + 2
�+2

�+2
3��2 = 2 + 2

3��2 , thus recovering the approximation
algorithm of Dor, Halperin, and Zwick [DHZ00]. In particular, by using fast matrix multiplication
instead, we obtain a faster running time for all values of �.

Algorithm We are now ready to describe our algorithm. We begin our algorithm by initializing
the distance estimate matrix as the adjacency matrix of the graph G, as well as setting parameters
x, k. Then, we decompose our graph into bk/3c + 3 levels according to the degree thresholds
sk0 , sk0+1, . . . , sk�1.

In Phase 1, we further decompose the top level into roughly (1 � x) log n levels. At each level,
we execute BFS from every vertex w in the dominating set Ci on the graph (V, Fi). We construct
two matrices Ai, Bi encoding the computed distances between Dk0+2, Ci and Ci, Dk0+3 respectively.

In order to apply the MonotoneMinPlus algorithm of [CDXZ22], we define B
0
i to be the Euler

tour distance matrix of Ci on Gi (see Definition 5.8) observing that this is a row-bounded difference
matrix. Then, we modify this matrix into a row-monotone matrix by adding j to each column j

and taking a sub-matrix of the columns corresponding to Dk0+3 to obtain a monotone matrix, as
discussed in Section B.2. In the pseudocode, this is contained in the invocation of BDtoMonotone.
Then, we compute the (min,+) product of Ai, Bi using MonotoneMinPlus.

In Phase 2, we execute Dijkstra from each Di for i � k0 + 1. In each iteration, we search the
graph Gj,w consisting of Ej [ E

⇤ [ (w ⇥ V ).
We now present the algorithm and proof of Theorem 5.6.
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Algorithm 6 AdditiveAPASP(G,�)

Input : Unweighted, undirected Graph G = (V,E) with n vertices; approximation parameter �

Output: Distance estimate �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v)  �(u, v) + � for all u, v 2 V

71 Phase 0: Set up and Decompose Graph

72 �̂(u, v) 
(
1 (u, v) 2 E

1 o/w
73 k  3��2

2

74 x solution to !

⇣
1� ��2

�+2x, 1� x, 1� ��4
�+2x

⌘
= 1 + 4+2�

�+2 x

75 sk�i  n
i· x

bk/3c+2 for all 1  i  bk/3c+ 2
76 k0  k � (bk/3c+ 2) = k � bk/3c � 2
77 (Dk0 , Dk0+1, . . . , Dk), (Ek0 , Ek0+1, . . . , Ek), E⇤  Decompose(G, (sk0 , sk0+1, . . . , sk�1))
78 Phase 1: Estimate Distances on High-Degree Paths
79 ti  n

2i for all 1  i  l � 1 = d(1� x) log ne
80 (C1, C2, . . . , Cl), (F1, F2, . . . , Fl), F ⇤  Decompose(G, (t1, t2, . . . , tl�1))
81 for 0  i  l do
82 for w 2 Ci do
83 Xi(w) BFS(w) on Gi = (V, Fi)

84 �̂(w, v) min(�̂, Xi(w, v)) for all v 2 V

85 Construct |Dk0+2|⇥ |Ci| matrix Ai where Ai(v, w) = Xi(w, v)
86 Construct |Ci|⇥ (2n� 1) Euler tour distance matrix B

0
i of Ci on Gi

87 Bi  BDtoMonotone(B0
i)[Ci, Dk0+3]

88 �̂  min(�̂(w, v),MonotoneMinPlus(Ai, Bi))

89 Phase 2: Estimate Distances on Low-Degree Paths
90 for k0 + 1  j  k do
91 for w 2 Dj do
92 Gj,w  (V,Ej [ (u⇥ V ) [ E

⇤)

93 �̂  Dijkstra(Gj,w, w, �̂)

Warm-Up: � = 4

We begin by showing a proof of correctness for the case of � = 4. The somewhat simplified argument
in this case will be generalized to arbitrary � � 6 below.

Lemma 5.9. Algorithm AdditiveAPASP(G, 4) returns an estimate �̂ such that �(u, v)  �̂(u, v) 
�(u, v) + 4 for all u, v.

Proof. Let P be a shortest path between u, v. Note that k = 5, k0 = 2.
Suppose P ⇢ E3 = Ek0+1. Then, L(P, 5) ⇢ {3, 4} and |L(P, 5)|  2. By Lemma A.3, since

D5 = Dk = V , we obtain a +4 approximation in Phase 2.
Thus, P has some vertex with degree at least s2 = n

x. Let y denote the vertex in P with degree
at least s4 closest to v. Let z be a vertex of maximum degree on P and i

⇤ be the integer 1  i  l

such that n
2i⇤
 deg(z) <

n
2i⇤�1 . Since P ⇢ Fi⇤ , we have in the i

⇤-th iteration of Phase 1 that
Xi⇤(z⇤, u)  �(z, u)+1 and Xi⇤(z⇤, y⇤)  �(z, y)+2 where z

⇤ = r(z, Ci⇤), y⇤ = r(y,D4). Therefore,
after Line 88,

�̂i⇤(u, y
⇤)  Xi⇤(u, z

⇤) +Xi⇤(z
⇤
, y

⇤)  �(u, z) + �(z, y) + 3 = �(u, y) + 3

37



Now, in the 5-th iteration in Phase 2, when we execute Dijkstra from u, we have an edge (u, y⇤)
with weight at most �(u, y) + 3, an edge (y⇤, y) 2 E and the remaining edges in E5 = Ek, so that,

�̂(u, v)  �̂i⇤(u, y
⇤) + 1 + �(y, v)  �(u, y) + �(y, v) + 4  �(u, v) + 4

General Case: � � 6

We now present the proof of Theorem 5.6.

Proof. (Correctness) Let u, v 2 V be a pair of vertices and P be a shortest path between u, v. Let
deg(P ) = maxv2P deg(v) be the maximum degree of any vertex on P .

Note by the definition of k  3��2
2 and � is an even integer,

2 (bk/3c+ 1) = 2

✓�
�

2
� 1

3

⌫
+ 1

◆
 �

By Lemma 5.10, we only need to show �̂(u, v)  �(u, v) + 2(bk/3c+ 1).
Recall that Vs = {v 2 V s.t. deg(v) � s} from Definition 2.3.

Case 1: deg(P ) < sk0 In this case, we have P ⇢ Ek0+1, and we may follow the proof of
SparseAPASP by Dor, Halperin, and Zwick [DHZ00]. By assumption L(P, k) ⇢ {k0 + 1, k0 +
2, . . . , k � 1} so that |L(P, k)|  bk/3c + 1. From Lemma A.3, it immediately follows that
�̂(u, v)  2(bk/3c+ 1).

Case 2: deg(P ) � sk0 By assumption, there is a vertex w 2 P with deg(w) � sk0+3. Then, with
Lemma 5.11, we have that for all x 2 P ,

�̂k0+3(w
⇤
, x)  �(w, x) + 5

Then, following the same argument as the inductive step of Lemma A.2, consider any vertex
w 2 P such that `(w) � j for j > k0 + 3. We claim the following for all j,

�̂j(w
⇤
, x)  �(w, x) + 2(j � (k0 + 1)) + 1

where above we have shown the base case for j = k0+3. We now proceed by induction for j > k0+3.
Consider an execution of Dijkstra from w

⇤ in Gj,w. For any vertex x 2 P , let y be the last vertex
on the sub-path Pw,x with `(y)  j � 1.

If no such vertex exists, then Pw,x ⇢ Ej and we compute an exact distance from w
⇤ so that

�̂(w⇤
, x)  �(w, x) + 1.

In particular, deg(y) � sj�1 so let y
⇤ = r(y,Dj�1). We take the edges (w⇤

, y
⇤), (y⇤, y) 2 E

⇤,
and the remaining edges in Ej . By induction, we have,

�̂j(w
⇤
, x)  �̂j�1(w

⇤
, y

⇤) + 1 + �(y, x)

 �(w, y) + 2((j � 1)� (k0 + 1)) + 3 + �(y, x)

 �(w, x) + 2(j � (k0 + 1)) + 1

Then, on the final iteration, let w be the closest vertex to v on P such that deg(w) � sk�1.
From u, we take the edge (u,w⇤), followed by (w,w⇤) 2 E

⇤ and the remaining path in Ek, so that,

�̂(u, v)  �̂k�1(u,w
⇤) + 1 + �(w, v)
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 �(u,w) + 2(k � 1� (k0 + 1)) + 2 + �(w, v)

 �(u, v) + 2(bk/3c+ 1)

completing the proof.

Proof. (Time Complexity)
Recall that k = O(1) is a constant.
Phase 0 requires O(m) time, as Decompose requires O(k(m+ n))-time.
We examine Phase 1. Constructing the Euler Tours and BFS trees require Õ(n2)-time over all

iterations, as |Ci||Fi| = Õ(n2). The expensive step therefore is the (min,+) product, which we
compute with an invocation to MonotoneMinPlus. By Theorem 5.1, this requires,

Õ

⇣
n

(a+b+µ)+!(a,b,c)
2

⌘

where we apply

a = 1� bk/3c
bk/3c+ 2

x

b = 1� x

c = 1� bk/3c � 1

bk/3c+ 2
x

µ = 1

since all distances in G are bounded by n.
In Phase 2, each |Dj | = Õ

⇣
n
1�(k�j) x

bk/3c+2

⌘
and |Ej |  O

⇣
n
1+(k�j+1) x

bk/3c+2

⌘
. Therefore, each

invocation of Dijkstra in Phase 2 requires time Õ

⇣
n
2+ x

bk/3c+2

⌘
.

Finally, we balance terms to optimize,
⇣
3� 2bk/3c+2

bk/3c+2 x

⌘
+ !

⇣
1� bk/3c

bk/3c+2x, 1� x, 1� bk/3c�1
bk/3c+2x

⌘

2
= 2 +

x

bk/3c+ 2

To get the exact expression, we plug in k = 3��2
2 and in particular bk/3c = �

2 � 1.

⇣
3� 2�

�+2x

⌘
+ !

⇣
1� ��2

�+2x, 1� x, 1� ��4
�+2x

⌘

2
= 2 +

2x

� + 2✓
3� 2�

� + 2
x

◆
+ !

✓
1� � � 2

� + 2
x, 1� x, 1� � � 4

� + 2
x

◆
= 4 +

4x

� + 2

!

✓
1� � � 2

� + 2
x, 1� x, 1� � � 4

� + 2
x

◆
= 1 +

4 + 2�

� + 2
x

Table 2 exhibits the running times for a few values of � utilizing [Bra].

In the following lemma, we show that every distance estimate produced is feasible. That is, each
distance estimate can be attained by some path in G.

Lemma 5.10. Algorithm 6 returns �̂ such that �(u, v)  �̂(u, v) for all u, v 2 V .
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Proof. This holds simply by observing that every distance estimate is produced by some path in
the original graph G.

Every estimate in Phase 1 found by concatenating two paths in Gi, a subgraph of G.
In Phase 2, the only edges added are of the form u ⇥ V . However, the weights of these edges,

if finite, are computed by a previous step as the length of some path from u to the relevant vertex
w 2 V .

We present the key lemma for correctness below. In particular, we prove that we have a good
additive approximation after the (k0 + 3)-th iteration.

Lemma 5.11. Let P be a shortest path between u, v. In Phase 2 of Algorithm 6, let w be a vertex
of P with deg(w) � sk0+3. Then, for every vertex x 2 P , the (k0 + 3)-th iteration of Phase 2 finds
a path of length �(w, x) + 5 from w

⇤ to x where w
⇤ = r(w,Dk0+3).

Proof. Let Pw,x denote the sub-path of P between w and x.

Case 1: deg(Pw,x)  sk0 Consider the path Pw,x. By Lemma A.3, since deg(w) � sk0+3, we have
that, L(Pw,x) ⇢ {k0 + 1, k0 + 2} so that,

�̂k0+3(w
⇤
, x)  �(w, x) + 5

Case 2: deg(Pw,x) > sk0 We now arrive at the key case depending on Phase 1. Let y denote the
vertex in Pw,x closest to x with degree deg(y) � sk0+2 and z be a vertex of maximum degree on
Pw,x. Then, let i

⇤ be the integer 1  i  l such that n
2i⇤
 deg(z) < n

2i⇤�1 . Let y
⇤ = r(y,Dk0+2)

and z
⇤ = r(z, Ci⇤).

In particular, since P ⇢ Fi⇤ we have in the i
⇤ iteration of Phase 1 that Xi⇤(z⇤, w⇤)  �(z, w)+2

and Xi⇤(z⇤, y⇤)  �(z, y) + 2. Now, since B
0
i is an Euler tour distance matrix, it is therefore a 1-

bounded difference matrix by the triangle inequality. Then, the procedure BDtoMonotone creates
a row-monotone matrix keeping values bounded in O(n). Finally, Bi is a row-monotone matrix as
the sub-matrix of a row-monotone matrix. Thus, we can use MonotoneMinPlus(Ai⇤ , Bi⇤) to
compute,

�̂i⇤(w
⇤
, y

⇤)  Xi⇤(w
⇤
, z

⇤) +Xi⇤(z
⇤
, y

⇤)  �(w, z) + �(z, y) + 4 = �(w, y) + 4

Now, in the (k0 + 3)-th iteration in Phase 2, when we execute Dijkstra from w
⇤, we have an

edge to y
⇤ with weight at most �(w, y)+4. If deg(x) > sk0+2, and therefore y = x, we take an extra

edge (x⇤, x) 2 E
⇤ to find a path of length at most �(w, y) + 4 + 1 = �(w, x) + 5. Otherwise, after

using the edge (y⇤, y) 2 E
⇤, the remaining edges of Pw,x are in Ek0+3 and we can conclude,

�̂k0+3(w
⇤
, x)  �̂i⇤(w

⇤
, y

⇤) + 1 + �(y, x)  �(w, y) + �(y, x) + 5 = �(w, x) + 5

5.3 Additive Approximations for Constant Length Paths

In this section, we give a simpler algorithm that uses fast matrix multiplication to obtain fast
algorithms for general additive approximations on small distances. We employ this result in the
proof of Theorem 3.3.
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Theorem 5.12. Let � � 4 be an even integer and C > 0 be a constant. Let G be an undirected,
unweighted graph with n vertices. Algorithm 7 computes �̂ in time,

Õ

⇣
n
2+ 2x

�+2

⌘

x is the solution to,

!

✓
1� � � 2

� + 2
x, 1� x, 1� � � 4

� + 2
x

◆
= 2 +

2x

� + 2

such that �(u, v)  �̂(u, v) for all u, v and whenever �(u, v)  C, �̂(u, v)  �(u, v) + �.

The above result also implies a more efficient algorithm for approximating distances up to small
polynomials.

Corollary 5.13. Let " > 0. Then, there is an algorithm computing �̂ in time

Õ

⇣
n
2+ 2x

�+2

⌘

x is the solution to,

!

✓
1� � � 2

� + 2
x, 1� x, 1� � � 4

� + 2
x

◆
+ " = 2 +

2x

� + 2

such that �(u, v)  �̂(u, v) for all u, v and whenever �(u, v)  n
", �̂(u, v)  �(u, v) + �.

Proof. The only difference with the proof of Theorem 5.12 is the setting of x and the complexity
analysis. For bounded C, the computation of the (min,+) product requires time,

Cn
!
⇣
1���2

�+2x,1�x,1���4
�+2x

⌘

Now, since the entries are bounded instead by n
", we bound the computation of the (min,+)

product by,

n
!
⇣
1���2

�+2x,1�x,1���4
�+2x

⌘
+"

We now present a high level overview of Theorem 5.12.

High Level Overview The algorithm is essentially a simplification of the previous Algorithm
6. Indeed, we can invoke BoundedMinPlus in place of MonotoneMinPlus, which is a faster
algorithm and does not require the transformation BDtoMonotone.

Algorithm Algorithm 7 is identical to Algorithm 6. The only modification is the invocation of
BoundedMinPlus in place of AdditiveAPASP, as the entries to the matrices are now bounded
by constant C.

Below, we exhibit some running times for specific choices of �, using [Bra].

Corollary 5.14. We obtain the following running times for an additive approximation on distances
�(u, v)  C.

� time
4 n

2.09314841

6 n
2.05794292

8 n
2.04220679

10 n
2.03322582

We now present the algorithm and proof of Theorem 5.12.
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Warm-Up: � = 4

We begin by showing a proof of correctness for the case of � = 4. The proof is almost identical to
Lemma 5.9.

Lemma 5.15. Algorithm BoundedAdditiveAPASP(G, 4, C) returns an estimate �̂ satisfying:

1. �(u, v)  �̂(u, v) for all u, v
2. �̂(u, v)  �(u, v) + 4 for all �(u, v)  C

Proof. Let P be a shortest path between u, v. Note that k = 5, k0 = 2.
Suppose P ⇢ E3 = Ek0+1. Then, L(P, 5) ⇢ {3, 4} and |L(P, 5)|  2. By Lemma A.3, since

D5 = Dk = V , we obtain a +4 approximation in Phase 2.
Thus, P has some vertex with degree at least s2 = n

x. Let y denote the vertex in P with
degree at least s4 closest to v. Let z be a vertex of maximum degree on P and i

⇤ be the integer
1  i  l such that n

2i⇤
 deg(z) < n

2i⇤�1 . Since P ⇢ Fi⇤ , we have in the i
⇤-th iteration of Phase 1

that Xi⇤(z⇤, u)  �(z, u) + 1  C + 1 and Xi⇤(z⇤, y⇤)  �(z, y) + 2  C + 2 where z
⇤ = r(z, Ci⇤),

y
⇤ = r(y,D4). Therefore, since the entries in Ai⇤ , Bi⇤ are finite, we compute in Line 110,

�̂i⇤(u, y
⇤)  Xi⇤(u, z

⇤) +Xi⇤(z
⇤
, y

⇤)  �(u, z) + �(z, y) + 3 = �(u, y) + 3

Now, in the 5-th iteration in Phase 2, when we execute Dijkstra from u, we have an edge (u, y⇤)
with weight at most �(u, y) + 3, an edge (y⇤, y) 2 E and the remaining edges in E5 = Ek, so that,

�̂(u, v)  �̂i⇤(u, y
⇤) + 1 + �(y, v)  �(u, y) + �(y, v) + 4  �(u, v) + 4
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Algorithm 7 BoundedAdditiveAPASP(G,�, C)

Input : Unweighted, undirected Graph G = (V,E) with n vertices; approximation parameter �;
distance bound C

Output: Distance estimate �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v) for all u, v 2 V and
�̂(u, v)  �(u, v) + � whenever �(u, v)  C.

94 Phase 0: Set up and Decompose Graph

95 �̂(u, v) 
(
1 (u, v) 2 E

1 o/w
96 k  3��2

2

97 x solution to !

⇣
1� bk/3c

bk/3c+2x, 1� x, 1� bk/3c�1
bk/3c+2x

⌘
= 2 + x

bk/3c+2

98 sk�i  n
i· x

bk/3c+2 for all 1  i  bk/3c+ 2
99 k0  k � (bk/3c+ 2) = k � bk/3c � 2

100 (Dk0 , Dk0+1, . . . , Dk), (Ek0 , Ek0+1, . . . , Ek), E⇤  Decompose(G, (sk0 , sk0+1, . . . , sk�1))
101 Phase 1: Estimate Distances on High-Degree Paths
102 ti  n

2i for all 1  i  l � 1 = d(1� x) log ne
103 (C1, C2, . . . , Cl), (F1, F2, . . . , Fl), F ⇤  Decompose(G, (t1, t2, . . . , tl�1))
104 for 0  i  l do
105 for w 2 Ci do
106 Xi(w) BFS(w) on Gi = (V, Fi)

107 �̂(w, v) min(�̂, Xi(w, v)) for all v 2 V

108 Construct |Dk0+2|⇥ |Ci| matrix Ai where Ai(v, w) =

(
Xi(w, v) Xi(w, v)  C + 2

1 o/w

109 Construct |Ci|⇥ |Dk0+3| matrix Bi where Bi(w, v) =

(
Xi(w, v) Xi(w, v)  C + 2

1 o/w
110 �̂  min(�̂,BoundedMinPlus(Ai, Bi, C + 2))

111 Phase 2: Estimate Distances on Low-Degree Paths
112 for k0 + 1  j  k do
113 for w 2 Dj do
114 Gj,w = (V,Ej [ (w ⇥ V ) [ E

⇤)

115 �̂  Dijkstra(Gj,w, w, �̂)

General Case: � � 6

We now present the proof of Theorem 5.12.

Proof. (Correctness) We will ignore cases that are too similar to Theorem 5.6. Note by the definition
of k  3��2

2 and � is an even integer,

2 (bk/3c+ 1) = 2

✓�
�

2
� 1

3

⌫
+ 1

◆
 �

By Lemma 5.16, it suffices to check that for �(u, v)  C, we have �̂(u, v)  �(u, v)+2(bk/3c+1).
Let u, v 2 V be a pair of vertices such that �(u, v)  C. Let P be a shortest path between u, v.

Let deg(P ) = maxv2P deg(v) be the maximum degree of any vertex on P .
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Case 1: deg(P ) < sk0 Since L(P, k) ⇢ {k0 + 1, . . . , k � 1}, correctness holds as in Theorem 5.6.

Case 2: deg(P ) � sk0 By assumption, there is a vertex w 2 P with deg(w) � sk0+3. Then, with
Lemma 5.17, we have that for all x 2 P ,

�̂k0+3(w
⇤
, x)  �(w, x) + 5

The remaining proof follows as in Theorem 5.6.

Proof. (Time Complexity)
As the only modifications are in Phase 1, we examine only the complexity of this phase. Each

|Ci| = Õ( nti ) = Õ(2i) Each graph Fi has O(nti) edges. Thus, each BFS requires Õ(n2)-time. Over
k iterations, this is again Õ(n2)-time.

Now, |Dk0+2| = Õ

⇣
n

sk0+2

⌘
= Õ

⇣
n

sk�bk/3c

⌘
= Õ

✓
n
1� bk/3c

bk/3c+2x
◆

. Similarly, we can upper bound

the size of Dk0+3 as |Dk0+3| = Õ

⇣
n

sk�(bk/3c�1)

⌘
= Õ

✓
n
1� bk/3�1c

bk/3c+2x
◆

. Finally, |Ci| = Õ(2l) =

Õ(n1�x). Thus, each BoundedMinPlus requires time,

!

✓
1� bk/3c
bk/3c+ 2

x, 1� x, 1� bk/3c � 1

bk/3c+ 2
x

◆

Recall that Phase 2 requires time Õ

⇣
n
2+ x

bk/3c+2

⌘
. Finally, we balance terms to optimize,

!

✓
1� bk/3c
bk/3c+ 2

x, 1� x, 1� bk/3c � 1

bk/3c+ 2
x

◆
= 2 +

x

bk/3c+ 2

To get the exact expression, we plug in k = 3��2
2 and in particular bk/3c = �

2 � 1.

In the following lemma, we show that every distance estimate produced is feasible. That is, each
distance estimate can be attained by some path in G.

Lemma 5.16. Algorithm 7 returns �̂ such that �(u, v)  �̂(u, v) for all u, v 2 V .

Proof. This holds simply by observing that every distance estimate is produced by some path in
the original graph G, as argued in Lemma 5.10.

We present the key lemma for correctness below. In particular, we prove that we have a good
additive approximation after the (k0 + 3)-th iteration.

Lemma 5.17. Let P be a shortest path between u, v. In Phase 2 of Algorithm 7, let w be a vertex
of P in Vk0+3. Then, for every vertex x 2 P , the (k0 + 3)-th iteration of Phase 2 finds a path of
length �(w, x) + 5 from w

⇤ to x.

Proof. Let Pw,x denote the sub-path of P between w and x.

Case 1: deg(Pw,x)  sk0 This is identical to Case 1 of Lemma 5.11.
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Case 2: deg(Pw,x) > sk0 We now arrive at the key case depending on Phase 1. Let y denote the
vertex in Pw,x closest to x with degree deg(y) � sk0+2 and z be a vertex of maximum degree on
Pw,x. Then, let i

⇤ be the integer 1  i  l such that n
2i⇤
 deg(z) < n

2i⇤�1 . Let y
⇤ = r(y,Dk0+2)

and z
⇤ = r(z, Ci⇤).

Since P ⇢ Fi⇤ , in the i
⇤ iteration of Phase 1 Xi⇤(z⇤, w⇤)  �(z, w)+2  C+2 and Xi⇤(z⇤, y⇤) 

�(z, y) + 2  C + 2. Since the entries are finite, we use BoundedMinPlus(Ai⇤ , Bi⇤) to compute,

�̂i⇤(w
⇤
, y

⇤)  Xi⇤(w
⇤
, z

⇤) +Xi⇤(z
⇤
, y

⇤)  �(w, z) + �(z, y) + 4 = �(w, y) + 4

Now, in the (k0 + 3)-th iteration in Phase 2, when we execute Dijkstra from w
⇤, we have an

edge to y
⇤ with weight at most �(w, y)+4. If deg(x) > sk0+2, and therefore y = x, we take an extra

edge (x⇤, x) 2 E
⇤ to find a path of length at most �(w, y) + 4 + 1 = �(w, x) + 5. Otherwise, after

using the edge (y⇤, y) 2 E
⇤, the remaining edges of Pw,x are in Ek0+3 and we can conclude,

�̂k0+3(w
⇤
, x)  �̂i⇤(w

⇤
, y

⇤) + 1 + �(y, x)  �(w, y) + �(y, x) + 5 = �(w, x) + 5

6 Weighted Approximation via Approximate (min,+) Product

In this section, we generalize our results to graphs with arbitrary non-negative weights. Let wt(e)
denote the weight of an edge e 2 E. For any subset of edges S ⇢ E, let wt(S) =

P
e2S wt(e) denote

the total weight of edges in S. Throughout, we assume all weights are non-negative.

Preliminaries We first require some preliminary results analogous to unweighted graphs for com-
puting dominating sets, and degree decompositions. Note that this decomposition is slightly different
than what is used in previous sections.

Lemma 6.1. Let G be a weighted, undirected graph on n vertices. For a given edge e incident to
vertex v, let rankv(e) be the order of e among all edges incident to v when ranked in increasing
order of weight. For example, if e is the lightest edge incident to v, rankv(e) = 1. For a neighbor
w 2 N(v), we also denote rankv(w) = rankv(v, w) to be the rank of the edge (v, w).

Given thresholds s1 > s2 > . . . > sk�1, there is an algorithm WeightedDecompose that outputs
edge sets {Ei}ki=1, edge set E⇤, and vertex sets {Di}ki=1 satisfying,

1. Ei = {(u, v) 2 E s.t. min(ranku(u, v), rankv(u, v)) < si�1}.
2. Di dominates Vsi = {v 2 V s.t. deg(v) � si} and |Di| = Õ

⇣
n
si

⌘

3. E
⇤ =

Sk
i=1E

⇤
i where each E

⇤
i ⇢ E has for every v 2 Vsi at least one edge (v, w) 2 E

⇤
i where

w 2 Di and rankv(v, w) < si.

Furthermore, WeightedDecompose runs in Õ(kn2)-time.
We define the level of a vertex and edge analogously as in the unweighted case. For a given

vertex v 2 V , define the level of v, denoted `(v), as the integer i such that si  deg(v) < si�1. For
a given edge e 2 E, define the level of e, denoted `(e), as the integer i such that e 2 Ei \ Ei+1.

6.1 (1 + ", 2w) Approximation

For a given path P , let h(P ) denote the weight of the heaviest edge in P . For a pair of vertices u, v,
let wu,v denote the minimum h(P ) over all shortest paths P between u, v.
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For any integer k � 1, let h(P, k) denote the weight of the k-th heaviest edge in P and h(P, k)
denote the sum of the weights of the k heaviest edges in P . We analogously define wu,v(k) =
minP h(P, k) over shortest paths P between u, v.

Using combinatorial methods, Cohen and Zwick [CZ01] gave a O(n7/3) algorithm for +2wu,v

approximation. They in fact prove a stronger result and gain a (7/3, 0) multiplicative approxima-
tion. With Fast Matrix Multiplication, Berman and Kasiviswanathan [BK07] gave a (1 + ", 2wu,v)
algorithm in time O(n2.25). In this work, we use our techniques to improve upon their algorithm
and design a (1 + ", 2wu,v) algorithm with running time roughly Õ(n2.152).

Theorem 6.2. Let " > 0. Let G be an undirected, weighted graph with n vertices and weight
function w : E ! R+. Algorithm 8 computes �̂ in time,

Õ

✓
n
2.15195331

"

◆

such that �(u, v)  �̂(u, v)  (1 + ")�(u, v) + 2wu,v.

Throughout, we use the approximate (min,+) product of Bringmann et al. [BKW19].

Theorem B.12. Let A,B be two integer n ⇥ n matrices with non-negative entries. Let " > 0.
There is an algorithm ApproximateMinPlus that returns C in time Õ (n!

/") such that for all
1  i, j  n,

(A ⇤B)ij  Cij  (1 + ")(A ⇤B)ij

We provide the proof in Appendix B.2 for completeness.

High Level Overview Let x be a parameter to be set later. Let s1 = n
x and s2 = n

x/2 and
D1 ⇢ D2 ⇢ D3 = V and E3 ⇢ E2 ⇢ E1 = E be the output of WeightedDecompose. There are
3 cases to consider. Let P be a shortest path between u, v. If P ⇢ E3, then we compute an exact
distance from u in the graph G ⇢ G3,u.

Suppose P ⇢ E2 but P 6⇢ E3. Let e = (a, b) be the closest edge to u such that e /2 E3 and let
a be the vertex closer to u so that Pa,u ⇢ E3. Then, deg(a) � s2 so there is a

⇤ = r(a,D2) such
that ranka(a⇤) < s2. Since P ⇢ E2, �̂(a⇤, v)  wt(a⇤, a) + �(a, v). Then, (v, a⇤, a) � Pa,u ⇢ G3,v so
Dijkstra computes an estimate,

�̂(v, u)  �̂(v, a⇤) + wt(a⇤, a) + �(a, u)  �(v, u) + 2wt(a⇤, a)  �(v, u) + 2wt(a, b)  �(v, u) + 2wu,v

as ranka(a⇤) < s2  ranka(b).
Finally, suppose P 6⇢ E2. Let P ⇢ Fi and P 6⇢ Fi+1. Let e = (a, b) 2 Fi \ Fi+1. Since P ⇢ Fi,

�̂(a⇤, u)  wt(a⇤, a) + �(a, u)

�̂(a⇤, v)  wt(a⇤, a) + �(a, v)

Then, from the ApproximateMinPlus product,

�̂(u, v) 
⇣
1 +

"

3

⌘
(�(u, v) + wt(a⇤, a)) 

⇣
1 +

"

3

⌘
(�(u, v) + 2wt(a, b))  (1 + ")�(u, v) + 2wu,v

where ranka(a⇤) < tj < tj�1  ranka(b).
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Algorithm 8 Weighted2AdditiveAPASP(G)

Input : Weighted, undirected Graph G = (V,E) with n vertices
Output: Distance estimate �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v)  �(u, v) + 2wu,v for all

u, v 2 V

116 Phase 0: Set up and Decompose Graph

117 �̂(u, v) 
(
1 (u, v) 2 E

1 o/w
118 x solution to ! (1, 1� x, 1) = 2 + x

2

119 s1, s2  n
x
, n

x
2

120 (D1, D2, D3), (E1, E2, E3), E⇤  WeightedDecompose(G, (s1, s2))
121 Phase 1: Estimate Distances on High-Degree Paths
122 ti  n

2i for all 1  i  l � 1 = d(1� x) log ne
123 (C1, C2, . . . , Cl), (F1, F2, . . . , Fl), F ⇤  WeightedDecompose(G, (t1, t2, . . . , tl�1))
124 for 0  i  l do
125 for w 2 Ci do
126 Xi(w) Dijkstra(w) on Gi = (V, Fi)

127 �̂(w, v) min(�̂, Xi(w, v)) for all v 2 V

128 Construct V ⇥ Ci matrix Ai where Ai(v, w) = Xi(w, v)

129 �̂  min
⇣
�̂,ApproximateMinPlus

�
Ai, A

T
i , 1 +

"
3

�⌘

130 Phase 2: Estimate Distances on Low-Degree Paths
131 for 2  j  3 do
132 for w 2 Dj do
133 Gj,w = (V,Ej [ (u⇥ V ) [ E

⇤)

134 �̂  Dijkstra(Gj,w, w, �̂)

Proof. (Correctness) We follow a similar proof to that of Cohen and Zwick [CZ01]. Fix a pair of
vertices u, v and let P be a shortest path between u, v.

Case 1: P 6⇢ E2 Let e0 2 P be edge such that e0 /2 E2. Let 1  j  l � 1 such that P ⇢ Fj

but P \ (Fj \ Fj+1) = ;. Such a j must exist as F1 = E and Fl contains edges with rank at most
tl�1 =

n
2l�1  n

x so e0 /2 Fl.
In particular, we now choose a specific e = (a, b) such that e 2 Fj \ Fj+1. By the correctness of

WeightedDecompose, ranka(e), rankb(e) � tj . Since both a, b have degree at least tj , let x 2 Dj

such that (x, a) 2 E
⇤
j so that ranka(x, a) < tj  ranka(e). Now, since (x, a), P ⇢ Fj , when we

execute Dijkstra from x, we have

�̂(x, u)  �(a, u) + wt(x, a)  �(a, u) + wt(a, b)

�̂(x, v)  �(a, v) + wt(x, a)  �(a, v) + wt(a, b)

Then, from the ApproximateMinPlus product,

�̂(u, v) 
⇣
1 +

"

3

⌘⇣
�̂(x, u) + �̂(x, v) + 2h(P )

⌘
 (1 + ")�(u, v) + 2h(P )

where the second inequality follows as 2
3wu,v  2

3�(u, v).
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Case 2: P ⇢ E2 and P 6⇢ E3 Let e = (a, b) 2 E2 \ E3 be the closest such edge to v so that
ranka(e), ranka(b) � s2. Let b be the closest vertex to v. Then, there is x 2 D2 such that (x, b) 2 E

⇤
2

and rankb(x, b) < s2  rankb(e). When we execute Dijkstra from x, since P ⇢ E2, we find,

�̂(x, u)  �(b, u) + wt(x, b)  �(b, u) + wt(a, b)

Then, when we execute Dijkstra from u, we use the edge (u, x) and obtain,

�̂(u, v)  �̂(x, u) + wt(x, b) + �(b, v)  �(u, v) + 2wt(a, b)  �(u, v) + 2h(P )

Case 3: P ⇢ E3 Note D3 = V . In this case, P ⇢ E3 so that when we execute Dijkstra from
u 2 D3 we find exactly the path P and therefore �̂(u, v)  �(u, v).

In all cases, we obtain an approximation �̂(u, v)  (1+ ")�(u, v)+ 2h(P ) for some shortest path
P . We complete the proof by taking the minimum over all shortest paths P .

Proof. (Time Complexity)
The analysis of time complexity is extremely similar to that of Deng et al. [DKR+22].
From Lemma 6.1, both calls to WeightedDecompose require time Õ(n2). In Phase 1, for a

fixed i 2 [l], we can bound |Ci| = Õ(ti) and each graph Fi has at most O

⇣
n2

ti

⌘
edges so that all

invocations of Dijkstra require Õ(n2) time over all l. Since |Ci|  Õ(ti) = Õ(n1�x), the invocations
of ApproximateMinPlus requires Õ

⇣
n!(1,1�x,1)

"

⌘
time.

In Phase 2, |D2| = Õ(n1�x/2), |E2| = O(n1+x) and |D3| = Õ(n1�x), |E3| = O(n1+x/2) so that
both invocations of Dijkstra require Õ(n2+x/2) time.

Thus, we solve for x as the solution to,

!(1, 1� x, 1) = 2 +
x

2

Using [Bra], we choose x = 0.30390661 and obtain the running time Õ(n2.15195331).

6.2 (1 + ", �w) Approximation for � � 4

We now extend Algorithm 6 to handle weighted graphs, proving the following analogue of Theorem
5.6.

Theorem 6.3. Let � � 2 be an integer and " > 0. Let G be an undirected, unweighted graph with
n vertices. Algorithm 9 computes �̂ such that �(u, v)  �̂(u, v)  (1 + ")�(u, v) + 2wu,v(�) in time

Õ

✓
n
2+ x

�+1

"

◆
where x is the solution to, !

⇣
1� ��1

�+1x, 1� x, 1� ��2
�+1x

⌘
= 2 + x

�+1 . Here, wu,v(�)

denotes the total weight of the � heaviest edges of a shortest path P .

High Level Overview The weighted approximation differs from AdditiveAPASP in two key
points. First, we use a weighted decomposition of the graph computed by WeightedDecompose

in place of Decompose. Second, we compute an approximate (min,+) product with in place of an
exact (min,+) product.

Whereas Decompose returns edge sets Ei which require that at least one endpoint is of low
degree, WeightedDecompose returns edge sets Ei which contain the si�1 edges of least weight
incident to each vertex. In particular, for a given vertex v of level j, there is an edge (v, v⇤) to
v
⇤ 2 Dj that is among the sj�1 lightest edges incident to v. This ensures that when we encounter
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a blocking vertex, the edge that we take from its dominating vertex is lighter than the edge on the
path we would have traversed, ensuring that the additive error incurred is at most twice the weight
of some edge in the path. Since the blocking vertices are distinct, this allows us to bound our overall
error in terms of the weights of the k heaviest edges on the path P .

However, since weights can be large and not necessarily bounded by O(n), in order to compute
a fast (min,+) product, we must make a sacrifice in the accuracy of the (min,+) product and settle
for an approximate product. By choosing an appropriate error parameter ", we can compute an
efficient approximate (min,+) product while incurring only a (1 + ")-multiplicative factor in our
approximation.

Analysis Following Theorem 5.6, we exhibit an (1 + ", 2wu,v(2)) as an example, and note that
the general algorithm for � � 2 follows similarly.

For � = 2, we set k = 5 and k0 = 2. If P ⇢ E3, then the SparseAPASP algorithm obtains a
+2wu,v(2) approximation following Lemma 6.4. Suppose therefore P 6⇢ E3. As in the unweighted
case, we decompose G into log n levels with degree thresholds ti = n

2i
and compute dominating sets

Ci of size Õ(n/ti) and edge sets Fi of size O(nti�1) so that all invocations of Dijkstra require
Õ(n2) time.

Let P ⇢ Fj but P 6⇢ Fj+1 and let e = (a, b) 2 Fj \Fj+1. Then, a⇤ = r(a, Cj) and ranka(a⇤)  tj .
Let e

0 = (c, d) be the edge closest to u such that e
0
/2 E5 and c the endpoint closest to u. Let

c
⇤ = r(c,D4) so rankc(c⇤) < s4. In the overview, we will assume e

0 6= e as otherwise we obtain a
+2wu,v approximation.

�̂(a⇤, c⇤)  wt(a⇤, a) + �(a, c) + wt(c, c⇤)

�̂(a⇤, v)  wt(a⇤, a) + �(a, v)

Then, the approximate (min,+) product computes,

�̂(v, c⇤) 
⇣
1 +

"

3

⌘
(�(v, c) + 2wt(a⇤, a) + wt(c, c⇤))

Then, (v, c⇤, c) � Pc,u ⇢ G5,u so that Dijkstra computes,

�̂(v, u)  �̂(v, c⇤) + wt(c⇤, c) + �(c, u)


⇣
1 +

"

3

⌘
(�(v, c) + 2wt(a⇤, a) + wt(c, c⇤)) + wt(c⇤, c) + �(c, u)


⇣
1 +

"

3

⌘
(�(v, u) + 2wt(a⇤, a) + 2wt(c, c⇤))


⇣
1 +

"

3

⌘ �
�(v, u) + 2wt(e) + 2wt(e0)

�

 (1 + ")�(u, v) + 2wu,v(2)

We note that the general argument follows from a similar adaptation to Theorem 5.6.

Algorithm Algorithm 9 closely follows Algorithm 6. Observe that the only differences are the
usage of WeightedDecompose in place of Decompose and the usage of ApproximateMinPlus

in place of MonotoneMinPlus.
We present the algorithm pseudocode and detailed analysis below.
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Algorithm 9 WeightedAdditiveAPASP(G,�)

Input : Unweighted, undirected Graph G = (V,E) with n vertices; approximation parameter �

Output: Distance estimate �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v)  �(u, v) + � for all u, v 2 V

135 Phase 0: Set up and Decompose Graph

136 �̂(u, v) 
(
1 (u, v) 2 E

1 o/w
137 k  3� � 1

138 x solution to !

⇣
1� bk/3c

bk/3c+2x, 1� x, 1� bk/3c�1
bk/3c+2x

⌘
= 2 + x

bk/3c+2

139 sk�i  n
i· x

bk/3c+2 for all 1  i  bk/3c+ 2
140 k0  k � (bk/3c+ 2) = k � bk/3c � 2
141 (Dk0 , Dk0+1, . . . , Dk), (Ek0 , Ek0+1, . . . , Ek), E⇤  WeightedDecompose(G, (sk0 , sk0+1, . . . , sk�1))
142 Phase 1: Estimate Distances on High-Degree Paths
143 ti  n

2i for all 1  i  l � 1 = d(1� x) log ne
144 (C1, C2, . . . , Cl), (F1, F2, . . . , Fl), F ⇤  WeightedDecompose(G, (t1, t2, . . . , tl�1))
145 for 0  i  l do
146 for w 2 Ci do
147 Xi(w) Dijkstra(w) on Gi = (V, Fi)

148 �̂(w, v) min(�̂, Xi(w, v)) for all v 2 V

149 Construct |Dk0+2|⇥ |Ci| matrix Ai where Ai(v, w) = Xi(w, v)
150 Construct |Ci|⇥ |V | matrix Bi where Bi(w, v) = Xi(w, v)

151 �̂  min
⇣
�̂,ApproximateMinPlus

�
Ai, Bi, 1 +

"
3

�⌘

152 Phase 2: Estimate Distances on Low-Degree Paths
153 for k0 + 1  j  k do
154 for w 2 Dj do
155 Gj,w = (V,Ej [ (u⇥ V ) [ E

⇤)

156 �̂  Dijkstra(Gj,w, w, �̂)

To verify the correctness of our algorithm, we will require the following analog of Lemma A.3.
Note that this is equivalent to Lemma 5.2 in Cohen and Zwick [CZ01].

Lemma 6.4. Let G be an undirected, weighted graph with n vertices and m edges and weight function
w : E ! R. Let n = sk0 > sk0+1 > . . . > sk�1 > sk = 0 be degree thresholds.

For k0 + 1  j  i, let �j denote the estimate after the j-th iteration. Let P be a path between
u 2 Dj and v 2 V such that P ⇢ Ek0+1. Define the set L(P, j) = {k0 + 1  i  j � 1 s.t. P \
(Ei \ Ei+1) 6= ;}. Then, there is a set Ej ⇢ P such that |Ej |  |L(P, j)|, Ej \ Ej = ;, and
�j(u, v)  wt(P ) + 2wt(Ej).

Proof. We proceed by induction. In the base case, let |L(P, j)| = 0 so that P ⇢ Ej . In particular,
since u 2 Dj , when we execute Dijkstra in the j-th iteration, we find P so that �̂j(u, v) = wt(P ).

Now, let |L(P, j)| > 0. Let e0 be the closest edge to v not in Ej . Then, e0 2 El\El+1 for some l <
j. Let w be the endpoint of e0 closest to v. Since deg(w) � sl, there is some w⇤ = r(w,Dl) 2 Dl such
that rankw(w⇤

, w) < sl so that (w⇤
, w) 2 El+1 ⇢ El. In particular, rankw(w⇤

, w) < sl < rankw(e0).
If we consider the sub-path Pu,w ⇢ P , we have L(Pu,w, l) ⇢ L(P, j) \ {k0 + 1, k0 + 2, . . . , l � 1}.
Now, applying the inductive hypothesis to the path Pu,w [ (w,w⇤),

�̂l(w
⇤
, u)  w(Pu,w) + wt(w⇤

, w) + 2wt(El)
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where El ⇢ Pu,w [ (w,w⇤), |El|  |L(Pu,w [ (w,w⇤), l)| and El \ El = ;. Note since (w,w⇤) 2 El,
L(Pu,w, l) = L(Pu,w [ (w,w⇤), l).

Now, in the j-th iteration, we use the path (u,w⇤), (w⇤
, w) and the remaining sub-path Pw,v ⇢ Ej

so that,

�̂j(w
⇤
, u)  wt(Pu,w) + 2wt(El) + 2wt(w⇤

, w) + wt(Pw,v)  wt(P ) + 2wt(El) + 2wt(e0)

Note e0 ⇢ El so that e0 /2 El and we can define Ej = El [ {e0}. Finally, it is easy to check
|Ej | = |El|+ 1  |L(Pu,w, l)|+ 1  |L(P, j)| as l 2 L(P, j) \ L(Pu,w, l).

We are now ready to prove Theorem 6.3.

Proof. (Correctness)
Recall that � � 2. We prove the following for all j � k0 + 3. Let �̂j be the estimate �̂ after the

j-th iteration of Phase 2 in Algorithm 9. For u 2 Dj , v 2 V and P a shortest path from u to v,

�̂j(u, v)  �(u, v) + 2wt(Ej)

where Ej ⇢ P , Ej \Ej = ; and |Ej |  j � (k0 + 1). From Lemma 6.5, we have proved the base case
for j = k0 + 3. Let j > k0 + 3 and e = (a, b) be the closest edge in P to v not in Ej and b the
endpoint closer to v.

Then, ranka(e), rankb(e) � sj�1 and j � k0+3. In particular, deg(b) � sj�1 so there is a vertex
b
⇤ = r(b,Dj�1) satisfying rankb(b, b⇤) < sj�1 and therefore wt(b, b⇤)  wt(e) and (b⇤, b) 2 Ej , By

induction,
�̂j�1(b

⇤
, u)  �(b⇤, u) + 2wt(Ej�1)

Then,

�̂j(u, v)  �̂j�1(b
⇤
, u) + wt(b⇤, b) + �(b, v)  �(u, b) + �(b, v) + 2wt(Ej�1) + 2wt(b, b⇤)

Thus, define Ej = Ej�1[{(b, b⇤)} which satisfies the desired conditions since (b, b⇤) 2 Ej ⇢ Ej�1

and is therefore not in Ej�1. Furthermore, with induction, |Ej |  j � (k0 + 1). In particular, for
j = k, since Dk = V ,

�̂(u, v)  �(u, v) + 2wt(Ek)  �(u, v) + 2h(P, bk/3c+ 1) = �(u, v) + 2h(P,�)

as desired, since k � (k0 + 1) = bk/3c+ 1.

Proof. (Time Complexity)
Phase 0 requires O(m) time, as Decompose requires O(k(m+ n))-time.
We now examine Phase 1. Each |Ci| = Õ

⇣
n
ti

⌘
= Õ(2i) Each graph Fi has O(nti) edges. Thus,

each Dijkstra requires Õ(n2)-time. Over k iterations, this is again Õ(n2)-time.

Now, |Dk0+2| = Õ

⇣
n

sk0+2

⌘
= Õ

⇣
n

sk�bk/3c

⌘
= Õ

✓
n
1� bk/3c

bk/3c+2x
◆

. Similarly, we can upper bound

the size of Dk0+3 as |Dk0+3| = Õ

⇣
n

sk�(bk/3c�1)

⌘
= Õ

✓
n
1� bk/3c�1

bk/3c+2x
◆

. Finally, |Ci| = Õ(2l) =

Õ(n1�x). Thus, each ApproximateMinPlus requires time,

1

"
n
!
⇣
1� bk/3c

bk/3c+2x,1�x,1� bk/3c�1
bk/3c+2x

⌘
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In Phase 2, each |Dj | = Õ

⇣
n
1�(k�j) x

bk/3c+2

⌘
and |Ej |  O

⇣
n
1+(k�j+1) x

bk/3c+2

⌘
. Therefore, each

invocation of Dijkstra in Phase 2 requires time Õ

⇣
n
2+ x

bk/3c+2

⌘
. Finally, we balance terms to

optimize,

!

✓
1� bk/3c
bk/3c+ 2

x, 1� x, 1� bk/3c � 1

bk/3c+ 2
x

◆
= 2 +

x

bk/3c+ 2

To get the exact expression, we plug in k = 3� � 1 and in particular bk/3c = � � 1.

Lemma 6.5. Let u 2 Dk0+3 and v 2 V and P be a shortest path between u, v. Then, after the
(k0 + 3)-th iteration of Phase 2 of Algorithm 9,

�(u, v)  �̂(u, v)  �(u, v) + 2wt(Ek0+3)

for some Ek0+3 ⇢ P of size at most 2 and Ek0+3 \ Ek0+3 = ;.

Proof. We proceed by case analysis.

Case 1: P ⇢ Ek0+1 By Lemma 6.4 and we have �̂(u, v)  �k0+3(u, v)  �(u, v) + 2wt(Ek0+3)
where |Ek0+3|  |L(P, k0 + 3)|  2 and Ek0+3 \ Ek0+3 = ;.

Case 2: P 6⇢ Ek0+1 Finally, suppose P contains some edge not in Ek0+1. Let e0 be the closest
edge in P to v not in Ek0+3 and w0 be the endpoint closer to v. Then, both endpoints of e0

have degree at least sk0+2 so that there is w
⇤
0 = r(w0, Dk0+2) such that rankw(w0, w) < sk0+2 and

therefore wt(w⇤
0, w)  wt(e0).

Note that there is some 1  j  l � 1 such that P ⇢ Fj \ Fj+1 as tl =
n
2l
 n

x = sk0 . Let
e = (a, b) 2 P such that e 2 Fj \ Fj+1. Then, ranka(a, b), rankb(a, b) � tj . Since deg(a) > sj , there
is vertex a

⇤ = r(a,Dj) such that ranka(a, a⇤) < sj and (a, a⇤) 2 Fj+1 ⇢ Fj . Since P ⇢ Fj , in the
j-th iteration and w

⇤
0 2 Dk0+2,

Xj(a
⇤
, u)  wt(a⇤, a) + �(a, u)  �(a, u) + wt(a, b)

Xj(a
⇤
, w

⇤
0)  wt(a⇤, a) + �(a,w0) + wt(w0, w

⇤
0)  �(a,w0) + wt(a, b) + wt(e0)

From the ApproximateMinPlus, we have,

�̂(u,w⇤
0) 

⇣
1 +

"

3

⌘
(�(a, u) + �(a,w0) + 2wt(a, b) + wt(e0))  (1 + ")�(u,w0) + 2wt(a, b) + wt(e0)

If e = e0, then we automatically have Xj(w⇤
0, u)  �(w0, u) + wt(w⇤

0, w0)  �(w0, u) + wt(e0).
Thus, we can assume e 6= e0.

Then, when we execute Dijkstra from u in the (k0 + 3)-th iteration, we use the edges (u,w⇤
0),

(w⇤
0, w0) and the remaining edges in Ek0+3, so that,

�̂(u, v)  �̂(u,w⇤
0) + wt(e0) + �(w0, v)  (1 + ")�(u, v)+  (1 + ")�(u, v) + 2(wt(a, b) + wt(e0))

We claim {(a, b), e0} satisfies the desired conditions. Clearly Ek0+3 has size 2. By definition,
e0 /2 Ek0+3. Recall ranka(e), rankb(e) � tj � tl � nx

4 > sk0+2 so that (a, b) /2 Ek0+3.
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7 (↵, �)-Approximate APSP

In Section 3, we showed the best known algorithm for (2, 0)-multiplicative approximation on gen-
eral graphs, as well as observed that (73 , 0)-approximation can be done in quadratic time, building
on a quadratic (2, 1)-approximation due to Baswana and Kavitha [BK10] and Berman and Ka-
siviswanathan [BK07]. Furthermore, it is well known that any (2 � ", 0)-approximation is as hard
as Boolean Matrix Multiplication for any " > 0, and therefore requires ⌦(n!) time. However, it is
possible to obtain (↵,�) approximations for ↵ < 2 if we allow sufficient additive error �. We will
briefly describe the trade-off in this section.

7.1 (↵, �)-Approximation for Unweighted Graphs

Since our algorithms on unweighted graphs generally provide additive guarantees, the limiting fac-
tors are the pairs of vertices with short distances. The following result shows the running time
required to obtain an (↵,�) approximation using our previous results for ↵ < 2.

Theorem 7.1. Let � � 2 and 1 < ↵ < 2. Let T (�) denote the running time of Algorithm 7 when
given approximation parameter �.

Then, Algorithm 10 produces a (↵,�)-approximate �̂ such that for all u, v,

�(u, v)  �̂(u, v)  ↵�(u, v) + �

in time Õ (T (�)) where � is the largest even integer satisfying,

�  1 +
� � 1

2� ↵

Before discussing the algorithm and proof, we give a high level overview and discuss our param-
eter choices.

High Level Overview Our goal in this section is to use our previous algorithms to obtain good
bi-criteria approximations for the APSP Problem. The idea is that by increasing the tolerance for
additive error, we can in fact obtain approximations where the multiplicative factor is less than 2.

The key component of our algorithm is running Algorithm 7. We will ensure small error on
short paths by invoking (2,1)-APASP and ensure accuracy on long paths with AdditiveAPASP

(or alternatively DenseAPASP) since we can choose an arbitrary constant k such that executing
AdditiveAPASP or DenseAPASP is not the computational bottleneck. The constant C is chosen
so that any path incurring the larger additive error k is long enough to ensure that the multiplicative
error component ↵ is small.

Why do we require � � 2? Let � be the approximation parameter used in the invocation of
Algorithm 7. Then for all paths of length � � 1  �(u, v)  C, we obtain a +� additive error.
Therefore, for a fixed �, the paths of length � � 1 have the worst multiplicative error. Let P be a
path of length � � 1. On such paths, we incur an error of � and thus �̂(u, v)  2� � 1. If � = 1,
then we must have ↵ � 2, whereas we are interested in ↵ < 2. Thus, we require � � 2 in the input
of our algorithm.

As a sub-routine, we will require the (2, 1)-approximation algorithm of Baswana and Kavitha
[BK10] and Berman and Kasiviswanathan [BK07].

Lemma 7.2. There is an algorithm (2,1)-APASP that runs in time Õ(n2) and outputs estimate �̂

satisfying,
�(u, v)  �̂(u, v)  2�(u, v) + 1

for all u, v 2 V .
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We will briefly remark that Algorithm (2,1)-APASP in fact returns a (2, 0)-approximation for
paths of even length, only returning a (2, 1)-approximation for paths of odd length.

Algorithm 10 MultAddAPASP(G,↵,�)

Input : Unweighted, undirected Graph G = (V,E) with n vertices; approximation parameters
↵,�

Output: Distance estimate �̂ : U⇥V ! Z such that �(u, v)  �̂(u, v)  ↵�(u, v)+� for all u, v 2 V

157 �  maximum even � such that �  1 + ��1
2�↵

158 k  minimum k such that AdditiveAPASP(G, k) requires O(T (�)) time
159 C  k��

↵�1

160 �̂(u, v) 
(
1 (u, v) 2 E

1 o/w
161 �̂  min(�̂, (2,1)-APASP(G))

162 �̂  min(�̂,BoundedAdditiveAPASP(G, �, C))

163 �̂  min(�̂,AdditiveAPASP(G, k))

Proof. (Correctness) Let u, v 2 V .

Case 1: �(u, v) � C Then, from AdditiveAPASP,

�̂(u, v)  �(u, v) + k = (↵� 1)C + �  ↵�(u, v) + �

Case 2: �  �(u, v)  C Then, from BoundedAdditiveAPASP(G, �, C),

�̂(u, v)  �(u, v) + �

Note that if � � �, we have in fact already obtained a (1,�) approximation. Thus, in the
following, assume � < �.

For now, assume �(u, v) = �. Then,

�̂(u, v)  2�(u, v)

= (2�(u, v)� �) + �

=
2�(u, v)� �

�(u, v)
�(u, v) + �

=

✓
2� �

�

◆
�(u, v) + �

noting that 2� �
�  2� ��1

��1  ↵ as � < �. We conclude the proof by noting that for all larger
paths, an additive error of � implies an (↵,�) approximation, as desired.

Case 3: �(u, v)  � � 1 From (2,1)-APASP,

�̂(u, v)  2�(u, v) + 1 = 2�(u, v)� (� � 1) + � 
✓
2� � � 1

� � 1

◆
�(u, v) + �

By our choice of �,

2� � � 1

� � 1
 ↵
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Proof. (Time Complexity) Throughout, we use the fact that �,� are constants. Then, we chose
a constant k to satisfy T

0(k) = O(T (�)) where T
0(k) is the running time of AdditiveAPASP

when required to produce additive error k. Since C is a function of constants, C is a constant
as well. In particular, BoundedAdditiveAPASP requires O(T (�)) time, (2,1)-APASP requires
Õ(n2) = O(T (�)) time, and AdditiveAPASP requires O(T (�)) time, proving the desired time
complexity.

We give some examples for � = 6.

Corollary 7.3. In time T (6) = n
2.06382 (Corollary 5.14), we can obtain any of the following

approximations.
✓
9

5
, 2

◆
,

✓
8

5
, 3

◆
,

✓
7

5
, 4

◆
,

✓
6

5
, 5

◆

7.2 Extension to Weighted Graphs

In this section, we give the simple observation that a good additive approximation can imply a
multiplicative approximation even for weighted graphs, if given sufficient additional additive error.

Theorem 7.4. Let 1  ↵ < 3 and � � 1 be an integer. Let T (�) be the running time of Theorem
6.3 when asked to produce a (1 + ", 2wu,v(�)) approximation. Let � =

l
↵(�+1)+(��1)

2

m
� 1. Then,

Algorithm 9 produces an (↵, 2wu,v(�))-approximation in time T (�).

Suppose for some integer � � 1 we have a (1 + ", 2wu,v(�)) approximation from Theorem 6.3.
Given an integer value � < �, suppose we want a (↵, 2wu,v(�)) approximation for APSP on weighted
graphs. Consider the edges that are the � + 1,� + 2, . . . , �-th heaviest edges in a given shortest
path P . Then,

�X

i=�+1

h(P, i)  (� � �)h(P,� + 1)  � � �

� + 1
wt(P )

as the weight of the � + 1-heaviest edge is at most a 1
�+1 fraction of the path’s total weight. In

particular, if �̂ is the distance estimate given by Theorem 6.3,

�̂(u, v)  (1 + ")wt(P ) + 2h(P, �)

 (1 + ")wt(P ) + 2
� � �

� + 1
wt(P ) + 2h(P,�)


✓
2� � � + 1

� + 1
+ "

◆
�(u, v) + 2h(P,�)

Then, let us express � in terms of ↵,�. In particular, we require � such that,

↵ � 2� � � + 1

� + 1
+ "

�  (↵� ")(� + 1) + (� � 1)

2
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Since � is an integer, we conclude that to give any (↵, 2wu,v(�)) approximation, it suffices to
find a (1 + ", 2wu,v(�)) approximation for � =

j
(↵�")(�+1)+(��1)

2

k
. In particular, since we are free

to choose ", we can define,

� =

(↵(�+1)+(��1)
2 � 1 ↵(�+1)+(��1)

2 2 Zj
↵(�+1)+(��1)

2

k
o/w

or equivalently,

� =

⇠
↵(� + 1) + (� � 1)

2

⇡
� 1

As an example, suppose we want a
�
4
3 + ", 2wu,v(2)

�
approximation. Then, define � = 3 and

apply Theorem 6.3.
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A Additive Approximation Algorithms of [DHZ00] with a Different

Analysis

In this appendix, we state the approximation algorithms of Dor, Halperin and Zwick [DHZ00],
proving some useful properties about the algorithms that we require in our algorithm design.

Lemma 3.2. ([DHZ00]) Let � � 2 be even. Let G be an undirected, unweighted graph with n

vertices and m edges. There is an algorithm computing a +�-approximate APSP solution in time

Õ(min(n2� 2
�+2m

2
�+2 , n

2+ 2
3��2 ))

Denote SparseAPASP the algorithm running in time Õ(n2� 2
�+2m

2
�+2 ) and DenseAPASP the

algorithm running in time Õ(n2+ 2
3��2 ).

The pseudocode for DenseAPASP and SparseAPASP are provided in Algorithms 11 and 12
respectively. Although we never explicitly call SparseAPASP, we implicitly run it as a sub-routine
in many of our algorithms.

Algorithm 11 DenseAPASP(G,�)

Input : Unweighted, undirected Graph G = (V,E) with n vertices and even integer �

Output: �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v)  �(u, v) + � for all u, v 2 V

164 �̂  
(
1 (u, v) 2 E

1 o/w
165 k  3��2

2

166 si  n
1� i

k for all 1  i  k � 1
167 (D1, D2, . . . , Dk), (E1, E2, . . . , Ek), E⇤  Decompose(G, (s1, s2, . . . , sk�1))
168 for 1  i  k do
169 for w 2 Di do
170 Gi,w  

⇣
V,Ei [ (u⇥ V ) [ E

⇤ [
⇣S

i+j1+j22k+1Dj1 ⇥Dj2

⌘⌘

171 �̂  Dijkstra(Gi,w, w, �̂)

Algorithm 12 SparseAPASP(G,�)

Input : Unweighted, undirected Graph G = (V,E) with n vertices, m edges, and even integer �

Output: �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v)  �(u, v) + � for all u, v 2 V

172 �̂  
(
1 (u, v) 2 E

1 o/w
173 k  �+2

2

174 si  (m/n)1�
i
k for all 1  i  k � 1

175 (D1, D2, . . . , Dk), (E1, E2, . . . , Ek), E⇤  Decompose(G, (s1, s2, . . . , sk�1))
176 for 1  i  k do
177 for w 2 Di do
178 �̂  Dijkstra(Gi,w, w, �̂) where Gi,w  (V,Ei [ (u⇥ V ) [ E

⇤)
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A.1 Closer Analysis of SparseAPASP

Instead of bounding the approximation error simply by using the number of thresholds used in the
degree decomposition, we perform a more fine-grained analysis to bound the approximation error
based on the structure and degrees of a given path P . Recall the definition of blocking vertices and
blocking levels.

Definition 3.4. Let u, v be vertices in a graph G and P a path between u, v. Let (D1, . . . , Dk),
(E1, . . . , Ek) be the outputs of a call to Decompose with degree thresholds s1, . . . , sk�1. If there is
an edge (a, b) 2 P such that (a, b) /2 E`(u), the blocking vertex of P from u, denoted b(u, P ), is
the closest vertex to v that is an endpoint to such an edge. If no such edge exists, then b(u, P ) = v.

Then, the blocking vertices of P is the set B(P ) = {x0, x1, . . . , xt} defined in the following
manner:

1. x0 = u

2. x1 = v

3. xi = b
�
xi�1, Pxi�1,xi�2

�
where Pxi�1,xi�2 is the sub-path of P between xi�1, xi�2.

For any j � `(v), blocking levels of P at level j is the set LB(P, j) = {`(xi) s.t. xi 2
B(P ) and `(xi) < j}. Denote LB(P ) = LB(P, `(v)).

We begin with some simple properties to note about the blocking vertices and blocking levels of
a given path P .

Lemma A.1. Let P be a shortest path and B(P ) = {x0, x1, . . . , xt} be the set of blocking vertices.
Then,

1. k � `(x1) > `(x2) > . . . > `(xt) � 1.
2. For all 2  i  t, xi�1 /2 Pxi,xi�2 .
3. B(Pxi,xi+1) ⇢ B(P ) and LB(Pxi,xi+1) ⇢ LB(P ) for 1  i  t� 1.
4. Pxt�1,xt ⇢ Pxt�2,xt�1 ⇢ . . . ⇢ Px0,x1 = P

Proof. Property 1 follows as for any edge (a, b), `(a, b) = min(`(a), `(b)).
Property 2 follows as for all i � 2, xi 2 Pxi�1,xi�2 .
B(Pxi,xi+1) ⇢ B(P ) follows by the construction of the blocking vertices, noting that xi, xi+1

determine the remaining blocking vertices. Then, LB(Pxi,xi+1) ⇢ LB(P ) follows as the blocking
levels are constructed from the blocking vertices.

Property 4 follows as xi is chosen as a vertex on the path Pxi�2,xi�1 .

We now give the deferred proof that the number of blocking levels directly determines the
additive error accumulated on a given path when executing SparseAPASP (Algorithm 12).

Lemma A.2. Let u, v be vertices in a graph G and P be a shortest path between u, v. Let B(P ) be
the blocking vertices of P . Then, Algorithm 12 in the `(v)-th iteration computes distance estimate
�̂ such that,

�̂(v⇤, u)  �̂`(v)(v
⇤
, u)  �(v, u) + 2|LB(P )|+ 1

For any level j � `(v), if v 2 Dj,

�̂(v, u)  �̂j(v, u)  �(v, u) + 2|LB(P, j)|

Proof. We proceed by induction. Suppose |LB(P )| = 0. Then, B(P ) = {x0, x1} = {u, v}. In
particular, P ⇢ E`(v) so that Algorithm 12 finds the exact distance in the `(v)-th iteration.
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Therefore, assume |LB(P )| > 0 and denote B(P ) = {x0, x1, . . . , xt}. Since `(v)  `(u), x2 6= u.
Consider the sub-path Pv,x2 = Px1,x2 . Then, the set LB(Pv,x2) ⇢ LB(P ) by Lemma A.1 and
`(x2) 2 LB(P ) \ LB(Pv,x2) so that LB(P ) is strictly larger. By the inductive hypothesis, in the
`(v)-th iteration of Algorithm 12,

�̂`(v)(v
⇤
, u)  (�̂`(x2)(x

⇤
2, v) + 1) + �(x2, u) + 1

 �(x2, v) + 2|LB(Pv,x2)|+ �(x2, u) + 3

 �(u, v) + 2|LB(P )|+ 1

When v 2 D`(v),

�̂(v, u)  �̂`(x2)(x
⇤
2, v) + 1 + �(x2, u)

 �(x2, v) + 2|LB(Px1,x2)|+ �(x2, u) + 2

 �(v, u) + 2|LB(P )|

Now, let j � `(v) and v 2 Dj . If |LB(P, j)| = 0, then P ⇢ Ej and we compute an exact distance
in the j-th iteration. Otherwise, let b = b(v, P ) and b

⇤ 2 D`(b) where `(b) < j so that,

�̂j(v, u)  �̂`(b)(v, b
⇤) + 1 + �(b, u)

 �(v, b) + 2|LB(Pb,v)|+ 2 + �(b, u)

 �(u, v) + 2|LB(P, j)|

where we have used the inductive hypothesis and LB(Pb,v) ⇢ LB(P, j) and `(b) 2 LB(P, j) \
LB(Pb,v).

In many cases for our algorithms, it suffices to use the following weaker lemma. Here, we bound
the additive error simply by the number of levels occurring in the shortest path, whereas above the
notion of blocking vertices takes into account the specific positions where each level occurs.

Lemma A.3. Let u, v be vertices in a graph G and P be a shortest path between u, v. Suppose
`(v)  `(u).

For j � `(v), let L(P, j) = {`(w) s.t. w 2 P and `(w) < j} and let L(P ) = L(P, `(v)) =
{`(w) s.t. w 2 P and `(w) < `(v)}. Then, Algorithm 12 in the `(v)-th iteration computes distance
estimate �̂ such that,

�(v⇤, u)  �̂`(v)(v
⇤
, u)  �(v, u) + 2|L(P )|+ 1

Furthermore, for j � `(v) such that v 2 Dj,

�̂j(v, u)  �(v, u) + 2|L(P, j)|

Proof. This follows from Lemma A.2 as LB(P, j) ⇢ L(P, j) for all paths P and iterations j.

B Dominating Sets and Degree Decomposition

In this section, we give the proofs of Lemmas 2.4, 2.5, 2.6 and 6.1.

Lemma 2.4. Let U be a universe of n elements. Let F = {S1, . . . , Sn} denote a collection of
subsets Si ⇢ U such that |Si| � s for all i. Then, there is a deterministic algorithm HittingSet

that computes a hitting set X of size O

⇣
n logn

s

⌘
of F in time Õ(ns). There is also a randomized

algorithm rHittingSet that with high probability computes a hitting set X of size O

⇣
n logn

s

⌘
of F

in time O(n).
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Algorithm 13 HittingSet(U,F , s)

Input : Universe U of n elements and a collection F of n subsets of size at least s

Output: Hitting set X of size O (n log n/s)

179 X  ;
180 c(j) |{Si 2 F s.t. j 2 Si}| for all j 2 U

181 while F 6= ; do
182 v  argmaxj2U c(j)
183 X  X [ {v}
184 F  {Si 2 F s.t. v /2 Si}
185 c(j) |{Si 2 F s.t. j 2 Si}| for all j 2 U

Proof. We begin with the deterministic algorithm HittingSet with pseudocode provided in Algo-
rithm 13. Without loss of generality, assume all |Si| = s. Otherwise, drop all but the first s elements
of each subset Si and observe that any hitting set of the resulting collection must also be a hitting
set for the original collection.

Now, initially we have
P

j2U c(j) =
P

Si2F |Si| = ns. When the algorithm terminates, we have
an empty collection F so that

P
j2U c(j) = 0. In each iteration, the most expensive operation is

to update F and c(j). By keeping {Si 2 F s.t. j 2 Si} in addition to the count c(j) alone, we can
update F and c(j) in Õ(1) time for each decrement of c(j). Thus, the overall running time can be
bounded by Õ(ns).

We now bound the size of output set X. Let Tj denote the number of sets remaining in F after j
elements have been added to X. Then, T0 = |F| = n, |X| = minj�0 s.t. Tj=0 j, and Tj = Tj�1�c(uj)
where uj is the j-th element added to X. By our choice of c(uj), we have c(uj) � Tj�1s

n�j+1 since there
are Tj�1 sets of size s and n� (j � 1) = n� j + 1 elements not in X. Then,

Tj 
✓
1� s

n� j + 1

◆
Tj�1  T0

j�1Y

l=0

✓
1� s

n� l

◆
< n

⇣
1� s

n

⌘j
 ne

� sj
n

When j = n logn
s we have Tj < 1 so Tj = 0. In particular, |X|  n logn

s .

Proof. The randomized algorithm rHittingSet simply samples each element with probability p.
Clearly this algorithm runs in time O(n).

First, we bound the probability that X is not a hitting set. For each subset of size s, the
probability that no element is sampled can be bounded as,

(1� p)s  e
�ps

By the union bound, the probability some subset has no element sampled can be bounded as,

ne
�ps

so if p = c log n/s, we upper bound this as n
1�c for some constant c > 1.

Then, to upper bound the size of X, we apply a standard Chernoff bound to see that |X| =
O (n log n/s) with high probability.

Lemma 2.5. Let G be a graph on n vertices. There is a deterministic algorithm Dominate and
randomized algorithm rDominate that computes a dominating set D of size O

⇣
n logn

s

⌘
of Vs in

time O(m+ ns) and O(n) respectively.
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Proof. Given the previous result, we simply apply HittingSet or rHittingSet on the subsets
N(v) [ {v} for all v 2 Vs. Since |Vs|  n, note that our previous result is also correct for all
collections F of at most n subsets as we can augment F with n � |F| subsets and any hitting set
of the augmented collection is also a hitting set for the original collection.

Lemma 2.6. Let G be a graph on n vertices. Given degree thresholds s1 > s2 > . . . > sk�1, there is
a deterministic algorithm Decompose and a randomized algorithm rDecompose that outputs edge
sets {Ei}ki=1, edge set E⇤, and vertex sets {Di}ki=1 satisfying,

1. Ei = {(u, v) 2 E s.t. min(deg(u), deg(v)) < si�1} is the set Esi�1 .
2. Di dominates Vsi = {v 2 V s.t. deg(v) � si} and |Di| = Õ

⇣
n
si

⌘
. For convenience, Vsi may

also be denoted Vi.
3. D1 ⇢ D2 ⇢ . . . ⇢ Dk = V and Ek ⇢ Ek�1 ⇢ . . . ⇢ E1 = E.
4. E

⇤ =
Sk

i=1E
⇤
i where each E

⇤
i ⇢ E has for every v 2 Vi, at least one edge (v, w) 2 E

⇤
i for

w 2 Di.

Furthermore, Decompose runs in Õ(kn2) time and rDecompose runs in Õ(kn) time. Note that
rDecompose satisfies the above conditions with high probability.

For a given vertex v 2 V , define the level of v, denoted `(v), as the integer i such that si 
deg(v) < si�1. For a given edge e 2 E, define the level of e, denoted `(e), as the integer i such
that e 2 Ei \ Ei+1.

We first discuss the deterministic algorithm Decompose.

Proof. By Lemma 2.5, we can compute each Di with Dominate in Õ(nsi) = Õ(n2) time, so that
overall we can compute all Di in Õ(kn2) time. Furthermore, we can ensure D1 ⇢ D2 ⇢ . . . ⇢ Dk = V

by augmenting the Di as necessary. Of course, when constructing Di, we can easily construct E
⇤
i

by choosing the appropriate edges when we add a vertex to v to Di. Finally, we can construct Ei

in O(m) time by examining each edge for the degrees of its endpoints.

Next, we discuss the randomized algorithm rDecompose.

Proof. Using the randomized construction rDominate, we can likewise choose pi =
c logn
si

for large
enough c to ensure correctness by the union bound.

Lemma 6.1. Let G be a weighted, undirected graph on n vertices. For a given edge e incident to
vertex v, let rankv(e) be the order of e among all edges incident to v when ranked in increasing
order of weight. For example, if e is the lightest edge incident to v, rankv(e) = 1. For a neighbor
w 2 N(v), we also denote rankv(w) = rankv(v, w) to be the rank of the edge (v, w).

Given thresholds s1 > s2 > . . . > sk�1, there is an algorithm WeightedDecompose that outputs
edge sets {Ei}ki=1, edge set E⇤, and vertex sets {Di}ki=1 satisfying,

1. Ei = {(u, v) 2 E s.t. min(ranku(u, v), rankv(u, v)) < si�1}.
2. Di dominates Vsi = {v 2 V s.t. deg(v) � si} and |Di| = Õ

⇣
n
si

⌘

3. E
⇤ =

Sk
i=1E

⇤
i where each E

⇤
i ⇢ E has for every v 2 Vsi at least one edge (v, w) 2 E

⇤
i where

w 2 Di and rankv(v, w) < si.

Furthermore, WeightedDecompose runs in Õ(kn2)-time.
We define the level of a vertex and edge analogously as in the unweighted case. For a given

vertex v 2 V , define the level of v, denoted `(v), as the integer i such that si  deg(v) < si�1. For
a given edge e 2 E, define the level of e, denoted `(e), as the integer i such that e 2 Ei \ Ei+1.
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Proof. As before, constructing Ei can easily be done in O(m) = O(n2) time. To construct Di,
for every vertex with degree at least si, we compute a hitting set for its neighborhood restricted
to the si � 1 lightest neighbors. In particular, we compute a hitting set for the sets {v} [ {w 2
N(v) s.t. rankv(w) < si} of size si for each v 2 Vsi . Then, this guarantees that the edge (v, w) 2 E

⇤
i

satisfies the additional constraint rankv(v, w) < si for v 2 Vsi . By our previous arguments, Di

dominates Vsi and has size Õ

⇣
n
si

⌘
. Note that as before computing Di requires Õ(n2) time.

B.1 Useful Results on Fast Matrix Multiplication

We will extensively use various algorithms for efficiently computing matrix products. We lay out
some of the key results used below. The matrix multiplication exponent !(a, b, c) denotes infimum
over all constants t such that we can multiply two matrices of dimension n

a⇥nb and n
b⇥nc in O(nt)

time. Denote !(1, 1, 1) as the constant !. As the results given in this section are quite involved, we
omit them for brevity and instead provide references to the relevant proofs.

Theorem B.1. ([DWZ22]) The matrix multiplication exponent !  2.37188.

See Duan, Wu, and Zhou [DWZ22] for the appropriate proof. The dual matrix multiplication
exponent ↵ is the supremum over all constants k such that !(1, k, 1)  2.

Theorem B.2. ([GU18]) The dual matrix multiplication exponent ↵ � 0.31389.

Lemma B.3. ([Gal12]) For any fixed value 0  k0 < 1 and k0  k  1,

!(1, k, 1)  !(1, k0, 1) + (! � !(1, k0, 1))
k � k0

1� k0

We refer the reader to Le Gall and Urrutia [GU18] and Le Gall [Gal12] for the proofs of the
above two results. We will also use some useful properties of !, in particular that it is convex,
symmetric and linear.

Lemma B.4. (Corollary 5.1 of [LR83]) Suppose !(1, a, b) = !(1, a0, b0) = c. Then, for t 2 [0, 1],

!(1, t ⇤ a+ (1� t) ⇤ a0, t ⇤ b+ (1� t) ⇤ b0)  c

Lemma B.5. Let t, a, b, c � 0. Then,

!(a, b, c) = !(a, c, b) = !(b, a, c) = !(b, c, a) = !(c, a, b) = !(c, b, a)

and
!(ta, tb, tc) = t!(a, b, c)

See, for example, Lotti and Romani [LR83] for the former result and Huang and Pan [HP98]
for the latter. The following theorem of Huang and Pan [HP98] gives improved bounds on general
rectangular matrix multiplication for matrix products where a, b, c are distinct.

Theorem B.6. (Theorem 8.1 of [HP98]) Suppose r > 1 > t > 0. Then,

!(t, 1, r) 
(
r + 1 t  ↵

r(1�↵)+(1�t)+(!�1)(t�↵)
1�↵ ↵ < t  1

See Huang and Pan [HP98] for the proof of the above result. We will use the following corollary
as a generalization,
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Corollary B.7. Suppose 0 < a < b < c. Then,

!(a, b, c) 
(
b+ c

a
b  ↵

a(!�2)+b(1+↵�↵·!)+c(1�↵)
1�↵ ↵ <

a
b  1

Proof. By linearity (Lemma B.5), we have,

!(a, b, c) = b · !
⇣
a

b
, 1,

c

b

⌘


(
b ·
�
c
b + 1

�
a
b  ↵

b ·
c
b (1�↵)+(1�a

b )+(!�1)(a
b�↵)

1�↵

=

(
b+ c

a
b  ↵

a(!�2)+b(1+↵�↵!)+c(1�↵)
1�↵

B.2 Fast (min,+) Matrix Multiplication

Recall that for two matrices A,B, their (min,+) product, denoted A ⇤B, is defined as,

(A ⇤B)ij = min
k

Aik +Bkj

While computing (min,+) product in general is difficult, there are several structured instances
in which efficient algorithms are known beyond the trivial Õ(n3) algorithm. We describe a few that
we will require here. First, we begin with the case that all entries are bounded.

Theorem B.8. ([AGM97]) Let A,B be two n⇥n integer matrices with entries bounded in absolute
value by M . Then, there is an algorithm BoundedMinPlus computing the (min,+) product C =
A ⇤B in time Õ(Mn

!).

Proof. Without loss of generality, we can assume the entries of A,B are in fact non-negative and
therefore in the range [0,M ]. Otherwise, define non-negative matrices A

0
ik = Aik +M and B

0
kj =

Bkj +M with values in the range [0, 2M ]. Given the product A
0 ⇤ B0, we can easily recover A ⇤ B

as,
(A0 ⇤B0)ij � 2M = min

k
A

0
ik +B

0
kj � 2M = min

k
Aik +Bkj = (A ⇤B)ij

Given A, we define the polynomial matrices Ap
ik = x

Aik if Aik is finite and 0 otherwise. We define
B

p analogously, and compute C
p = A

p
B

p using fast matrix multiplication in Õ(Mn
!) time. Then,

for each entry in C
p, if Cp

ij = 0, we set Cij =1 and otherwise, we compute the lowest degree term
x
c and set Cij = c. Now, we prove that that C = A ⇤ B. Recall that (A ⇤ B)ij = mink Aik + Bkj .

(A ⇤ B)ij is infinite if and only if all Aik + Bkj are infinite. If either Aik, Bkj is infinite, then the
corresponding entry in A

p
, B

p is zero. Thus, if all Aik +Bkj are infinite, Cp
ij = 0 so Cij =1.

Suppose (A ⇤ B)ij is finite. Then C
p
ij =

P
k x

Aik+Bkj where the sum ranges over all k where
Aik +Bkj is finite. Taking the minimum degree, we have (A ⇤B)ij , proving correctness.

Let us now analyze the performance of the above algorithm. Constructing A
p from A, Bp from

B, and C from C
p requires time at most Õ(Mn

2). Computing C
p = A

p
B

p requires Õ(Mn
!) as

each multiplication of at most M degree polynomials requires Õ(M) time.

More generally, there is also a sub-cubic algorithm when the entries have bounded differences
[BGSW19].
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Definition B.9. An n⇥n matrix is called b-bounded difference if for all i, j, |Ai,j �Ai,j+1|  b

and |Ai,j �Ai+1, j|  b. If only the former holds, the matrix is row bounded difference. If only
the latter holds, the matrix is column bounded difference.

A more general requirement may be that the entries are monotone. That is, the values of each
row (or column) are monotonically increasing.

Definition B.10. An n⇥n matrix is called row-monotone if all entries are non-negative integers
bounded by O(n) and each row of this matrix is non-decreasing. A column-monotone matrix is
defined similarly.

Theorem B.11. ([CDXZ22]) Let A,B be two n⇥ n integer matrices with entries Aij , Bij = O(n).
Suppose furthermore that B is either row-monotone or column-monotone. Then, there is an algo-
rithm MonotoneMinPlus computing the (min,+) product C = A ⇤B in time Õ

⇣
n

3+!
2

⌘

See Chi, Duan, Xie, and Zhang [CDXZ22] for a detailed proof. We also provide a proof overview
in the proof of Theorem 5.1. Given a b-bounded difference matrix, it is easy to construct a row-
monotone matrix, by adding the b · j to the j-th column. To recover the (min,+) product, sim-
ply subtract the same constant from each column in the result. We describe this procedure as
BDtoMonotone. By a similar argument, we can convert row-bounded difference matrices to row-
monotone matrices, and column-bounded difference matrices to column-monotone matrices. We
will also use the simple observation that the sub-matrix of a monotone matrix (chosen by selecting
a subset of rows or columns) is a monotone matrix.

We also require the approximate (min,+) product of Zwick [Zwi02].

Theorem B.12. Let A,B be two integer n ⇥ n matrices with non-negative entries. Let " > 0.
There is an algorithm ApproximateMinPlus that returns C in time Õ (n!

/") such that for all
1  i, j  n,

(A ⇤B)ij  Cij  (1 + ")(A ⇤B)ij

Proof. Suppose the entries of A,B are in the range [0,M ]. Let the resolution R be a parameter to
be set later. Initialize Cij  1 for all i, j. For every blogRc  r  dlogMe, define,

A
(r)
ik  

(
dRAik/2re 0  Aik  2r

1 o/w

B
(r)
kj  

(
dRBkj/2re 0  Bkj  2r

1 o/w

and compute C
(r)  BoundedMinPlus(A(r)

, B
(r)

, R). Update Cij  min
�
Cij ,

2r

RC
(r)
�
. The

inequality (A ⇤ B)ij  Cij follows as A
(r)

, B
(r) always round its entries up. Suppose (A ⇤ B)ij =

Aiq + Bqj and without loss of generality Aiq  Bqj . Let 1  s  dlogMe where 2s�1  Bkj  2s.
If s  logR, then the C

logR computes (A ⇤B)ij exactly. Thus, assume s � logR. Then,

2r

R
C

(r)
ij 

2r

R

⇣
A

(r)
iq +B

(r)
qj

⌘
 Aiq +Bqj +

2r+1

R

✓
1 +

4

R

◆
(A ⇤B)ij

Then, if we set R = O (1/"), we obtain the approximation error (1+") and note that each invocation
of BoundedMinPlus requires Õ(n!

/") time.
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C Missing Proofs

Lemma C.1. Let G be an unweighted, undirected graph on n vertices. Let �̂ be the estimate output
by Algorithm 2. Then, �(u, v)  �̂(u, v) for all u, v 2 V .

Proof. Consider some t = 2j . Then,

�̂(u, v) = min
w2W

�̂(u,w) + �̂(w, v)�(u, v)

so that Algorithm 2 outputs �(u, v)  �̂(u, v) for all u, v.

Lemma C.2. Let G be an unweighted, undirected graph on n vertices. Let �̂ be the estimate output
by Algorithm 3. Then, �(u, v)  �̂(u, v) for all u, v 2 V .

Proof. We will show for all vertex pairs (u, v) that �(u, v)  �̂(u, v). To do so, it suffices to observe
that every estimated distance is witnessed by some path in the graph G.

Initially, the only finite entries of �̂ are edges (u, v) in the graph G. Phase 1 calls
DominatingSetAPASP(Gt, V, V, Ct, C + 1) so that �̂(u, v) � �(Gt, u, v) � �(u, v) for all u, v since
Gt ⇢ G is a sub-graph and Lemma C.1.

Similarly, Phase 2.1 calls DominatingSetAPASP(Gs1 , V,Dk�1, D1, C + 2) so that after Phase
2.1, �̂(u, v) � �(Gs1 , u, v) � �(u, v) as Gs1 ⇢ G.

In Phase 2.2, any path found by BFS in subgraphs Gx, G2 ⇢ G is naturally also a path in G.
In Phase 2.3, since for any u 2 q(w,Di), (u,w) 2 E, by the triangle inequality,

1 + �̂(u, v) � 1 + �(u, v) � �(w, v)

Thus, any distance in Gi,w is witnessed by some path in G. Therefore, executing Dijkstra on Gi,w

with weight function �̂ will not return any distance �̂ smaller than the shortest distance between
u, v.

Finally, we conclude by noting the correctness of BoundedAdditiveAPASP and DenseAPASP

implies �(u, v)  �̂(u, v).

Proposition C.3. For any x 2 [0, 1] and any integer k � 1,

!

✓
1, 1� (k � 1)

k
x, 1� x

k

◆
 !(1, 1� x, 1)

Proof. Recall that by symmetry of !, !(1, 1�x, 1) = !(1, 1, 1�x). The claim follows from applying
Lemma B.4 with t = 1

k .

Proposition C.4. We obtain the running times in Table 1 for (2, 0) approximation on paths of
length �(u, v) � k from Theorem 4.2.

Proof. Recall from Theorem 4.2 we wish to minimize the following,

max

✓
!

✓
1� k � 2

2(l � k + 2)
x, 1� x, 1� k � 4

2(l � k + 2)
x

◆
, 2 +

x

l � k + 2
, 1.5 + x

◆

In all cases, we can set M to be some arbitrary constant without affecting the asymptotic running
time.
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k = 6 We minimize,

max

✓
!

✓
1� 2x

l � 4
, 1� x, 1� x

l � 4

◆
, 2 +

x

l � 4
, 1.5 + x

◆

Using [Bra], we set l = 51, x = 0.50980335 and obtain the running time Õ(n2.01084688).

k = 8 We minimize,

max

✓
!

✓
1� 3x

l � 6
, 1� x, 1� 2x

l � 6

◆
, 2 +

x

l � 6
, 1.5 + x

◆

Using [Bra], we set l = 74, x = 0.50716126 and obtain the running time Õ(n2.00745825).

k = 10 We minimize,

max

✓
!

✓
1� 4x

l � 8
, 1� x, 1� 3x

l � 8

◆
, 2 +

x

l � 8
, 1.5 + x

◆

Using [Bra], we set l = 96, x = 0.50496404 and obtain the running time Õ(n2.00573823).

k = 12 We minimize,

max

✓
!

✓
1� 5x

l � 10
, 1� x, 1� 4x

l � 10

◆
, 2 +

x

l � 10
, 1.5 + x

◆

Using [Bra], we set l = 119, x = 0.50432041 and obtain the running time Õ(n2.00462679).

D A Quadratic (73 , 0)-Approximate APSP on Unweighted Graphs

In the section, we briefly observe that a 7
3 -approximate APSP solution can be obtained in Õ(n2)-

time. This follows simply from a Õ(n2)-time (2, 1)-approximate APSP algorithm due to Baswana
and Kavitha [BK10] and Berman and Kasiviswanathan [BK07] along with the result of [DHZ00]

Lemma D.1. Given an undirected, unweighted graph, Algorithm 14 outputs a (2, 0) approximation
for paths of length �(u, v)  2. in Õ(n2)-time.

Algorithm 14 Distance2APASP(G)

Input : Unweighted, undirected Graph G = (V,E) with n vertices
Output: Distance estimate �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v) for all u, v and �̂(u, v)  4

for all �(u, v) = 2

186 d̂(u, v) 
(
1 (u, v) 2 E

1 o/w
187 si  n

2i for all 1  i  k � 1 = blog nc
188 (D1, D2, . . . , Dk), (E1, E2, . . . , Ek), E⇤  Decompose(G, (s1, s2, . . . , sk�1))
189 for 1  i  k = blog nc+ 1 do
190 for w 2 Di do
191 Xi(w) Dijkstra(w) on graph

⇣
V,Ei [ (w ⇥ V ) [ E

⇤
, �̂

⌘

192 �̂(w, v) min(�̂(w, v), Xi(w, v))

193 �̂(u, v) min(�̂(u, v), �̂(v, u))
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Proof. First we analyze the running time. Note k = Õ(1) so that Decompose requires Õ(n2) time.
Fix an iteration i. Then |Di| = Õ

⇣
n
si

⌘
, Ei has nsi�1 edges, while E

⇤ [ (w ⇥ V ) have size Õ(n).

Thus, each iteration i requires Õ(n2) time. Over log n iterations, Algorithm 14 requires Õ(n2) time.
Consider now �(u, v) = 2 and a path P = (u,w, v). Without loss of generality, assume deg(u) �

deg(v) so that P ⇢ E`(u). Let u
⇤ 2 D`(u) be its representative r(u,D`(u)). Then, the execution of

Dijkstra from u
⇤ returns �̂(u⇤, v)  3 via the path (u⇤, u, w, v). Now, in the final iteration, we

have �̂(v, u)  4 via the path (v, u⇤, u) when executing Dijkstra from vertex v.
Finally, it is easy to observe that �̂(u, v) � �(u, v) for all u, v (without any assumption on the

distance) since all traversed paths exist in the original graph G.

Combining Lemma D.1 with the algorithm of Baswana et al. [BK10] or Berman et al. [BK07]
gives the desired result.

Corollary D.2. There is an Õ(n2)-time algorithm that computes a
�
7
3 , 0
�
-approximate APSP so-

lution in undirected, unweighted graphs.

Proof. Of course length 1 paths can be directly deduced from the adjacency matrix in time O(n2).
From Lemma D.1, all distance 2 paths can be approximated within (2, 0)-approximation in Õ

�
n
2
�

time. For paths of length 3 or more, a (2, 1)-approximation is at least as good as a (73 , 0) approxi-
mation.

E Faster Combinatorial (2, 0)-approximation for path lengths � 4.

In this section, we give an improved combinatorial algorithm for finding (2, 0) approximations for
paths with length k � 4. We obtain a +�-additive approximations for paths of length at most �+1
for every even � on dense graphs. In particular, we apply the algorithm with � = 4 to compute a
+4 approximation on paths with length at most 5. This implies a (2, 0) approximation for paths of
length at least 4.

Theorem E.1. Let G be an undirected, unweighted graph with n vertices. Let � � 4 be an even
odd integer. Algorithm 15 computes in expected time Õ

⇣
n
2+ 2

3�+2

⌘
a distance estimate �̂ such that

�(u, v)  �̂(u, v) for all u, v 2 V and �̂(u, v)  �(u, v) + � for all �(u, v)  � + 1.

Notation and Definitions We define some notation that will be useful in this section. Let G

be an undirected, unweighted graph. Let � be an even integer, k = 3�+2
2 and k0 = � � 2. Let

si, s2, . . . , sk�1 be degree thresholds. For k0 +1  k  k0 +
�
2 � 1 define ri =

�
2 � (i� (k0 +1)) and

let N(u, ri) = {v 2 V s.t. �(u, v)  ri} be the ri-neighborhood of u.

Definition E.2. For a vertex u 2 V and set S ⇢ V , let p(u, S) = argminv2S �(u, v) be the closest
vertex in S to u.

We note that p(u, S) can be efficiently computed by executing Dijkstra on the graph G

augmented with a dummy vertex w with 0 weight edges to every vertex v 2 S. For a given
i, X(u, i) is an arbitrary subset of N(u, ri) if |N(u, ri)| � si and C(ui) = N(u, ri) \ Di+1 if
|N(u, ri)\Di+1|  12sk�1 log n. Roughly speaking, X(u, i) is the first si vertices encountered when
conducting a BFS from u. For details on how X(u, i), C(u, i) are computed see Lemma E.3.
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High Level Overview To illustrate our algorithm, we walk through an overview of how to com-
pute a +4 approximation for paths of length at most 5. For a +4 approximation, the DenseAPASP

algorithm decomposes graph G into 5 levels. Instead, we will show that we can decompose the graph
G into 7 levels. Thus, define thresholds s1 = n

6/7
, s2 = n

5/7
, . . . , s6 = n

1/7. As length 5 paths are
the most challenging to handle, let u, v be vertices and P a shortest path of length at exactly 5.
If P has a vertex of degree at least s2, since 2 + 6 + 7 = 15 = 2 ⇤ 7 + 1, we may include the edge
sets

S2
i=1Di ⇥D6 = Õ(|E9|). we can include these edges and obtain a +4 approximation following

similar arguments to DenseAPASP (Figure 1).
Thus, let us assume P ⇢ E3. If P ⇢ E5, then the blocking levels L(P, 7) ⇢ {5, 6} (Definition 3.4)

so that we can obtain a +4 approximation via Lemma A.3. Then, assume P 6⇢ E5, so P has some
edge in Ej \ Ej+1 for j 2 {3, 4}. Denote the length 5 path P = (u, u2, u3, v3, v2, v).

We will argue that if `(u2)  4, then we obtain a good additive approximation. Suppose
|N(u, 2)| � s3, so that from p(u,D3) 2 N(u, 2) (Definition E.2) we compute an exact distance
�̂(p(u,D3), v) = �(p(u,D3), v)  �(u, v) + 2. When we add 2, we obtain a +4 approximation.
Figure 7 gives an illustration

! "

#(!, &!)

Figure 7: Estimate when |N(u, 2)| � s3. Solid lines denote edges and dotted lines denote paths in
G. Black dashed arrows denote computed distances estimates. Blue solid arrows denote a constant
additive term.

ShortAdditiveAPASP (Algorithm 15) samples each dominating set Di randomly with the
algorithm rDominate, rather than following the greedy deterministic construction of Dominate.
With high probability, if |N(u, 2)|  s3, then |C(u, 3)| = |N(u, 2) \D4| = Õ(s6) and if `(u2)  4,
then Lemma A.3 guarantees that �̂(u⇤2, v)  �(u2, v) + 3 = �(u, v) + 2. We efficiently iterate over
C(u, 3) and update �̂(u, v)  2 + minw2C(u,3) �̂(w, v) to obtain a +4 approximation. Figure 8 gives
an illustration.

We can compute the sets X(u, i), C(u, i) efficiently as we will terminate our BFS whenever si

distinct vertices are encountered, which requires time at most s
2
i  s

2
3 = Õ(n8/7).

Then, we can assume deg(u2), deg(v2) < s4. In particular, only one edge (u3, v3) is not in E5.
We now execute Dijkstra from every vertex w 2 Dj on graph Gi,w containing (at least) the edges
Ej [ E

⇤ [ (w ⇥ V ).
Since only one edge is not in E5, the blocking levels of P (Definition 3.4), LB(P ) cannot contain

both {3, 4}. If the blocking levels LB(P ) do not contain every level from {5, 6}, then we obtain a
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!! !" "!""

"!∗

! "

Suppose $ ⊂ &!. Suppose ℓ )" = 4. Let , = 7 so the degree thresholds are .#, .", … , .$
There are two cases:
1. If 1 ), 2 ≥ .!, we augment 4!	to include some vertex 6 ), 4! ∈ 1 ), 2 ∩ 4%	and 2 + :; 6 ), 4! , < ≤ ; ), < + 4	
2. Otherwise, 1 ), 2 ∩ 4& ≤ .$, and )"∗ ∈ > ) = 1 ), 2 ∩ 4&.	Then, :; )"∗, < ≤ ; )"∗, < + 2 ≤ ; )", < + 3	so that 2 +

:; )"∗, < ≤ ; ), < + 4. Since 1 ), 2 ∩ 4& is small, and we can iterate through all candidate vertices of >()). 
Thus, we can assume ℓ )" ≥ 5.

C < = 6 C <" = 5 C ) = 6C )" = 4

!"∗

Figure 8: Imposing the degree restriction `(v2) � 5

good additive approximation from Lemma A.2 as there are at most 2 blocking levels. On the other
hand, suppose {5, 6} ⇢ LB(P ). Note `(u3), `(v3) < 5, otherwise we obtain a +4 approximation as
LB(P ) = {5, 6}. Assume without loss of generality that `(v)  `(u) as in Definition 3.4. If `(v) = 5,
then since P ⇢ E`(u3), �̂(u

⇤
3, v)  �(u3, v). Since the remaining edges are in E5, G5,v⇤

Otherwise, `(v) � 6. If `(v) = 7, then `(u) = `(v) = 7 and we obtain a +4 approximation
following the same argument as Theorem 3.3. Therefore, assume `(v) = 6. If `(u2) � 6, then the
blocking vertex b(v, P ) = u3 and we obtain a +4 approximation as B(P ) = {u, v, u3}.

We can therefore assume `(u2) = 5. However, since this vertex has degree at most s4, we use a
depth 2 BFS in Line 209 to bypass the middle edge entirely, therefore obtaining a +4 approximation,
as illustrated in Figure 9. The depth 2 BFS requires time s2s4 = Õ(n8/7).

!! !" "!""

"!∗

! "

We have assumed ℓ %! , ℓ '! ≥ 5.
However, naively applying the DHZ algorithm we still obtain a +6 approximation if using 7 levels.
In this case, we use a depth 2 BFS from %! and therefore avoid the blocking vertex '"when conducting Dijkstra from %!∗ 	in the 
ℓ %!  iteration. 
This allows us to obtain a +4 approximation. 

, % = 6 , %! = 5 , ' = 6, '! = 5

!!∗ "∗

Figure 9: Using depth 2 BFS to bypass the central edge.

Algorithm In Phase 0, we initialize the distance estimates to the adjacency matrix, set parameters
k, k0 and decompose the graph G into k degree thresholds. To compute the dominating sets, we use
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a random construction rDecompose which samples all vertices with identical probability. Finally,
we check that the dominating sets are computed correctly and are not too large. If there is an error
in the sample dominating sets, we return an exact APSP solution.

In Phase 1, we compute the sets X(u, i), C(u, i). For a given i, if |N(u, ri)| � si is large,
we let X(u, i) be an arbitrary subset of size si within this neighborhood. On the other hand, if
|N(u, ri)| < si is small, we let C(u, i) = N(u, ri) \Di+1 given |N(u, ri) \Di+1| is small. If we are
unable to compute either X(u, i) or C(u, i), we return an exact APSP computation.

Then, for vertices u with degree at most sk0+2, we compute a depth 2 BFS in the graph Gk0+1.
Finally, we augment Di with a hitting set for X(u, i) for all u with large N(u, ri). Note that when
we augment Di, this does not affect the sets r(u,Di) for deg(u) � si or q(w,Di) for w 2 Di. These
relationships are fixed at the computation of rDecompose.

In Phase 2, we begin by iteratively executing Dijkstra from each vertex w 2 Dj on the graph
Gj,w consisting of edges Ej , E

⇤ as well as w ⇥ V and Dj1 ⇥Dj2 for all indices j + j1 + j2  2k + 1.
Before the execution of Dijkstra, each vertex w 2 Dj examines its constituency (Definition 2.2)
and updates its distance estimates where an improvement can be found.

Finally, each vertex u examines p(u,Di) and C(u, i) where appropriate to update its distance
estimates for all other vertices v 2 V .

Preliminaries for Proving Theorem E.1

A key ingredient of our algorithm is computing small neighborhoods of each vertex. In the following
lemma, we describe how to compute X(u, i), C(u, i) efficiently.

Lemma E.3. Suppose � � 4. Let u 2 V and k0 + 1  i  k0 +
�
2 � 1. Algorithm 15 computes

X(u, i), C(u, i) in time O

⇣
n
2+ 1

k

⌘
such that,

1. X(u, i) ⇢ N(u, ri) and |X(u, i)| � si if |N(u, ri)| � si.
2. C(u, i) = N(u, ri) \Di+1 if |N(u, ri) \Di+1| < 12sk�1 log n.

Proof. Fix some iteration i and vertex u. We conduct a BFS on the graph G from u until we either
encounter a vertex at depth ri + 1 or si distinct vertices. If we encounter si distinct vertices first,
then |N(u, ri)| � si, so define X(u, i) to be the distinct vertices encountered thus far. Otherwise,
if we encounter a vertex at depth ri + 1 first, then |N(u, ri)| < si and we can efficiently compute
C(u, i) = N(u, ri)\Di+1 by iterating over the distinct vertices found and querying their membership
in Di+1.

To bound the time required to compute these sets, note that finding si distinct vertices requires
time at most s

2
i . In particular, we can bound the time consumed by computing the BFS as,

s
2
i  s

2
k0+1 = n

2� 2(k0+1)
k

Note k0 = � � 2 = 2
3(k � 1) � 2 = 2

3k �
8
3 . Summing over all vertices u and iterations i, the total

time consumed is,

O

⇣
n
3� 2(k0+1)

k

⌘
= O

⇣
n
3� 4k/3�10/3

k

⌘
= O

⇣
n

5
3+

10
3k

⌘
= O

⇣
n
2+ 1

k

⌘

The last inequality holds whenever k � 7 or alternatively � = 2
3(k � 1) � 4. Computing C(u, i)

requires only si time as we only need to iterate over the vertices found in N(u, ri).

73



Algorithm 15 ShortAdditiveAPASP(G,�)

Input : Unweighted, undirected graph G = (V,E) with n vertices; approximation parameter �

Output: Distance estimate �̂ : U ⇥ V ! Z such that �(u, v)  �̂(u, v) for all u, v 2 V and
�̂(u, v)  �(u, v) + � whenever �(u, v)  � + 1

194 Phase 0: Set up and Decompose Graph

195 �̂(u, v) 
(
1 (u, v) 2 E

1 o/w
196 k  3�+2

2 and k0  � � 2.
197 si  n

1� i
k for all 1  i  k � 1

198 (D1, D2, . . . , Dk), (E1, E2, . . . , Ek), E⇤  rDecompose(G, (s1, s2, . . . , sk�1))
199 for 1  i  k do
200 if Di does not dominate all neighborhoods |N(v)| � si or |Di| � 12n logn

si
then

201 return APSP(G)

202 Phase 1: Compute X(u), C(u) for all u 2 V

203 for u 2 V do
204 for k0 + 1  i  k0 +

�
2 � 1 do

205 ri  �
2 � (i� (k0 + 1))

206 if |N(u, ri)| � si then compute X(u, i) (see Lemma E.3);
207 else if |N(u, ri) \Di+1|  12sk�1 log n then compute C(u, i) N(u, ri) \Di+1;
208 else return APSP(G);
209 if deg(u)  sk0+2 then �̂(u, v) min(�̂(u, v),BFS(Gk0+1, u, 2)) where Gk0+1 = (V,Ek0+1);
210 for k0 +1  i  k0 +

�
2 � 1 do Di  Di [HittingSet({X(u, i)}) for all u such that |X(u, i)| � si;

211 Phase 2: Compute Distance Estimates
212 for 1  j  k do
213 for w 2 Dj do
214 Gj,w  

⇣
V,Ej [

⇣S
j+j1+j22k+1Dj1 ⇥Dj2

⌘
[ E

⇤ [ (w ⇥ V )
⌘

215 �̂(w, v) min(�̂(w, v),minu2q(w,Dj) 1 + �̂(u, v)) for all v 2 V

216 �̂  Dijkstra(Gj,w, w, �̂)

217 for u, v 2 V do
218 for k0 + 1  i  k0 +

�
2 � 1 do

219 if �(u, p(u,Di))  ri then �̂(u, v) min(�̂(u, v), ri + �̂(p(u,Di), v));
220 if |C(u, i)|  12sk�1 log n then �̂(u, v) min(�̂(u, v),minw2C(u,i) ri + �̂(w, v));

The following lemma bounds the probability that we must compute an exact APSP solution.

Lemma E.4. Let u 2 V and k0 + 1  i  k0 +
�
2 � 1 Define the following events for each u, i.

A(u, i) = {|N(u, ri)| � si}
B(u, i) = {|N(u, ri) \Di+1| � 12sk�1 log n}

For all u, let E(u, i) denote the error event E(u, i) = ¬A(u, i) ^B(u, i).
For each 1  i  k, let E(i) denote the event that either Di fails to dominate some neighborhood

of size at least si or |Di| � 12n logn
si

.
Let E = (

Sk
i=1E(i)) [ (

S
i,uE(u, i)) denote the event that any error event occurs.

Then, Pr(E) = O
�

1
n2

�
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Proof. Fix u 2 V and k0 + 1  qi  k0 +
�
2 � 1, Consider the event E(u, i).

Pr(E(u, i)) = Pr(¬A(u, i) ^B(u, i)  Pr(B(u, i) | ¬A(u, i))

Conditioned on ¬A(u, i), define the random variable X = |N(u, ri)\Di+1|. Since Di+1 is constructed
by sampling each vertex probability p = 3 logn

si+1
, X is the sum of at most si Bernoulli random

variables. Let Y be the sum of si Bernoulli random variables with the same probability p so that
Y stochastically dominates X. Note that E[X]  3 lognsi

si+1
= 3sk�1 log n. By a standard Chernoff

bound,
Pr(X > 12sk�1 log n)  Pr(Y > 12sk�1 log n) < exp(�3sk�1 log n)

Thus, we can easily union bound over O(n) events E(u, i) as each occurs with inverse exponential
probability. Note that C(u, i) is defined from the randomly chosen Di, and these sets are constructed
before Di is augmented by a deterministic hitting set of X(u, i) in Line 210.

From Lemma 2.6, rDominate with high probability satifies the necessary requirements. To see
this, consider some threshold si and vertex deg(v) � si. The probability Di fails to dominate si

with P chosen above is at most,

(1� p)si  exp (�3 log n)  n
3

We union bound over all u, i to obtain the probability Õ(1/n2).
Second, the probability that |Di| � 12n logn

si
is small by an identical argument to the error bound

for Ei. Since we bound over O(1) events, these also occur with negligible probability. We conclude
the proof by union bounding over all the error events.

Lemma E.5. Suppose that the error event E does not occur. Then, Algorithm 15 outputs �̂ such
that,

�(u, v)  �̂(u, v)  �(u, v) + �

for all �(u, v)  � + 1.

We delay the proof of Lemma E.5, instead beginning with a few useful lemmas that will be
crucial to our proof. In the following lemma, we prove that a reasonable additive approximation is
obtained whenever A(u, i) is true. That is, we assume |N(u, ri)| � si is large.

Lemma E.6. Let k0+1  i  k0+
�
2 �1. Let u, v be a pair of vertices and P ⇢ Ek0+1 be a shortest

path. Suppose |N(u, ri)| � si where ri =
�
2 � (i� (k0 + 1)). Then, after Line 219 we have,

�̂(u, v)  �(u, v) + �

Proof. Suppose |N(u, ri)| � si, then there is some vertex w 2 X(u, i) \Di ⇢ N(u, ri) \Di so that
�(u, p(u,Di))  ri. In particular,

�̂(u, v)  ri + �̂(p(u,Di), v)

Let us examine the quantity �̂(p(u,Di), v). Since after Line 210 the shortest path in G between
u, p(u,Di) is at most ri, we begin by showing that the path between u, p(u,Di) exists in the graph
Gi,u. If there is an edge missing from Ei, let w be the vertex closest to u such that deg(w) > si�1.
Therefore, N(w) \ Di�1 6= ; and N(w) \ Di 6= ;. If w is not the vertex immediately preceding
p(u,Di), then this violates the property that p(u,Di) is the nearest vertex in Di to u. Otherwise,
if w is the vertex immediately preceding p(u,Di), then the edge (w, p(u,Di)) is accessible in the
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graph Gi,p(u,Di). Thus, the shortest path of length ri between p(u,Di), u is available in the i-th
iteration.

Consider now the a path P
0 from p(u,Di) to v of length at most |P | + ri. By our arguments

above and P ⇢ Ek0+1, the path P
0 is also in Ek0+1. From Lemma A.3, L(P 0) ⇢ {k0 + 1, . . . , i� 1}

has size at most i� (k0 + 1), so we can conclude the total error is at most,

�̂i(p(u,Di), v)  �(u, v) + ri + 2(i� (k0 + 1))

Then,

�̂(u, v)  ri + �̂(p(u,Di), v)

 �(u, v) + 2ri + 2(i� (k0 + 1))

= �(u, v) + 2 (ri + (i� (k0 + 1)))

 �(u, v) + �

Next, we prove correctness under the assumption that B(u) is false. In particular, assume the
set |C(u, i)| = |N(u, ri) \Di+1|  12sk�1 log n is small.

Lemma E.7. Suppose that the error event E does not occur.
Let k0 + 1  i  k0 + �

2 � 1. Let u, v be a pair of vertices with a shortest path P =
(u, u2, u3, . . . , v3, v2, v) with all edges in Ek0+1. Suppose |N(u, ri) \ Di+1|  12sk�1 log n. If
`(uri)  i+ 1 then, after Line 220 we have,

�̂(u, v)  �̂(u, v) + �

Proof. Since `(uri)  i + 1, there is some vertex z 2 N(u, ri) \Di+1 such that z = r(uri , Di+1) as
uri 2 N(u, ri � 1). Since P ⇢ Ek0+1, then after the (i+ 1)-th iteration,

�̂(z, v)  �(uri , v) + 2(i� k0) + 1

where we apply Lemma A.3 with L(P ) ⇢ {k0 + 1, . . . , i} has size at most i� k0.
Then, after Line 220, since z 2 N(u, ri) \Di+1 = C(u, i),

�̂(u, v)  ri + �̂(z, v)  �(uri , v) + ri + 2(i� k0) + 1

Now, �(uri , v) = �(u, v)� ri + 1 so that,

�̂(u, v)  �(u, v) + 2(i� k0 + 1)  �(u, v) + �

as i+ 1  k0 +
�
2 .

From Lemmas E.6 and E.7 we can place an upper bound on the levels of many vertices of the
shortest path. The following lemma shows that we obtain a good additive approximation when
these bounds hold.

Lemma E.8. Let P = (u, u2, . . . , v2, v) be a shortest path of length at most � + 1 such that P ⇢
Ek0+1. Suppose the degrees `(uri), `(vri) > i+ 1 for all k0 + 1  i  k0 +

�
2 � 1.

Then, Algorithm 15 obtains an approximation such that �̂(u, v)  �(u, v) + �.
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Proof. As before, let deg(P ) = maxv2P deg(v) be the maximum degree of any vertex in P and
`(P ) = minv2P `(v) the minimum level of any vertex in P . In the following, we will frequently use
(some variant of) the following equality,

k � k0 =

✓
3

2
� + 1

◆
� (� � 2) =

�

2
+ 3 (1)

Let us begin by assuming P has length exactly � + 1 so that we can label the vertices P =
(u, u2, . . . , u�/2+1, v�/2+1, . . . , v2, v).

If P ⇢ Ek0+3, then L(P, k) ⇢ {k0 + 3, . . . , k � 1} is a set of size at most k � k0 � 3 = �
2 , so we

may apply Lemma A.3 and obtain a +�-approximation. Thus, in the following, assume P has an
edge in Ek0+1 \ Ek0+3. In particular, there are at least two vertices x 2 P with deg(x) > sk0+2.

Suppose |LB(P, k)|  �
2 . In the k-th iteration, as Dk = V , we have by A.2, �̂k(u, v)  �(u, v)+�.

Thus, we can assume |LB(P, k)| > �
2 .

By assumption, the levels of vertices uri , vri are restricted. Recall that ri =
�
2 � (i � (k0 + 1))

so that,

rk0+1 =
�

2
� ((k0 + 1)� (k0 + 1)) =

�

2

rk0+
�
2�1 =

�

2
� ((k0 +

�

2
� 1)� (k0 + 1)) = 2

In particular, other than the two middle vertices, u�
2+1, v�

2+1, the remaining vertices have level
at least i + 2 � k0 + 3, so that we can assume both central vertices have degree at least sk0+2.
Furthermore, at most one of these vertices can be a blocking vertex. Suppose for contradiction that
both are, so that one, for example u�

2+1, has level k0 + 1 and the other level k0 + 2. However, in
this case P ⇢ Ek0+2 so that u�

2+1 cannot be a blocking vertex. In particular, if L(P, k) does not
contain all levels {k0 +3, . . . , k� 1} then we can already obtain a � approximation by Lemma A.3.

Therefore, let LB(P ) denote the blocking vertices of P . Since k0 + 3 2 LB(P ), we have either
u�/2, v�/2 2 B(P ). Without loss of generality, suppose u�/2 2 B(P ).

In Line 209, since deg(u�/2) < sk0+2 and P ⇢ Ek0+1, we compute �̂(u�/2, v�/2+1) = 2. Then, if
u
⇤
�/2 = r(u�/2, Dk0+3), in Line 215, we have �̂(u⇤�/2, v�/2+1)  3. We claim that,

�̂k0+3(u
⇤
�/2, x)  �(u�/2, x) + 1

for all x 2 P . We have shown this already for x 2 {u�/2+1, v�/2+1}. For x 2 {u, u2, . . . , u�/2},
this follows simply from the assumption that all these vertices have level at least k0 + 3 so that
Pw,x ⇢ Ek0+3. For x 2 {v�/2, . . . , v2, v}, when executing Dijkstra we take the edge (u⇤�/2, v�/2+1)
and the remaining edges of P in Ek0+3.

This allows us to make the following claim stronger than Lemma A.2. For any w, x 2 P where
`(w) � k0 + 3,

�̂`(w)(w
⇤
, x)  �(w, x) + 2|LB(Pw,x)|� 1 (2)

where we have shown the base case for `(u�/2) = k0 + 3. The inductive step will follow similarly.
Let j � k0 + 3 and `(w) = j. Let y = b(w,Pw,x) be the blocking vertex so that `(y) < `(w). Then,

�̂`(w)(w
⇤
, x)  �̂`(y)(w

⇤
, y

⇤) + 1 + �(y, x)

 �(w, y) + 2|LB(Py,w)|+ 1 + �(y, x)

 �(w, x) + 2|LB(Pw,x)|� 1
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where we have used |LB(Pw,x)| > |LB(Py,w)| as `(y) 2 LB(Pw,x) \ LB(Py,w). Then, in the k-th
iteration, let w be the closest vertex to v such that deg(w) � sk�1 so that,

�̂(u, v)  �̂k�1(u,w
⇤) + 1 + �(w, v)  �(u, v) + 2|LB(Pw,u)|  �(u, v) + �

as LB(Pw,u) = {k0 + 3, . . . , k � 2} [ {min(`(u�/2+1), `(v�/2+1)} has size �
2 .

To conclude, if P has length less than �, then P ⇢ Ek0+3, so we obtain a � approximation by
Lemma A.3.

Finally, we claim that all the estimates produced by Algorithm 15 are feasible.

Lemma E.9. Suppose error event E does not occur. Then, Algorithm 15 obtains an approximation
such that �(u, v)  �̂(u, v) for all u, v 2 V .

Proof. We analyze each instance where the distance estimates are updated. In Phase 0, we ini-
tialize the distance estimates to the adjacency matrix. In Phase 1, we compute length 2 paths
in a sub-graph Gk0+1 ⇢ G. Next, the distance estimates are updated in Phase 2 in computing
Dijkstra(Gj,w, w, �̂) for all w 2 Dj . Note that this is identical to Algorithm DenseAPASP, and
produces feasible distance estimates.

Line 36 does not violate feasibility as if u 2 q(w,Dj) then (u,w) 2 E so that,

�̂(w, v) � 1 + �̂(u, v) � 1 + �(u, v) � �(w, v)

by the triangle inequality, where we have also used that the previous estimates were feasible.
Finally, since p(u,Di) 2 N(u, ri) and C(u, i) ⇢ N(u, ri), the final distance estimates are feasible

as for any z 2 N(u, ri), the updated distance estimate,

�̂(u, v) = ri + �̂(z, v) � ri + �(z, v) � �(u, v)

where in the first inequality we used that the previous estimates are feasible and in the second we
used the triangle inequality.

Proof of Theorem E.1

To prove the correctness of Algorithm 15, it suffices to prove Lemma E.5. Indeed, whenever E

occurs, we compute an exact APSP solution, which is obviously correct. If E does not occur,
Lemma E.9 guarantees that each estimate is feasible, and is produced by some path in G.

Proof. Let u, v be a pair of vertices with shortest path P length at most �+1. We proceed by case
analysis.

Case 1: P ⇢ Ek0+1 Suppose the assumptions of Lemma E.8 are not met, otherwise we obtain an
accurate approximation. That is, for some i, `(uri)  i+ 1. In particular, u⇤ = r(u,Di+1) must be
in N(u, ri)\Di+1. Then, if |N(u, ri)\Di+1|  12sk�1 log n, we obtain a correct estimate by Lemma
E.7. Otherwise, since E(u, i) does not occur, |N(u, i)| � si, and we obtain a correct estimate by
Lemma E.6.

Case 2: P 6⇢ Ek0+1 We begin with the special case � = 4, generalizing to � � 6 later.
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Warm up: � = 4 Note k = 7, k0 = 2. Let z be the vertex of maximum degree. Let w = b(u, P )
be the vertex closest to v such that deg(w) � sk0+4 = s6. Since P = Pu,w · Pw,v, the sub-path
Pu,w must contain the vertex z. Let z

⇤ = r(z,D`(z)), w
⇤ = r(w,Dk0+4). Since P ⇢ E`(z), we have

�̂`(z)(z
⇤
, u)  �(z, u)+1 and �̂`(z)(z

⇤
, w

⇤)  �(z, w)+2. Furthermore, since `(z)+(k0+4)+(k0+5) 
3k0 + 9 = 2k + 1, in the k0 + 5-th iteration,

�̂(u, v)  �̂`(z)(u, z
⇤) + �̂`(z)(z

⇤
, w

⇤) + 1 + �(w, v)  �(u, v) + 4

as desired.

Generalization to � � 6 Suppose `(v)  `(u). Recall from Lemma A.2 the blocking vertices
B(P ) = {x0, x1, . . . , xt} and levels LB(P ) of path P .

Let a = min`(xi)k0+5 i be the minimum index of an element in the blocking set such that
`(xi)  k0 + 5. Since k � `(x1) > `(x2) > . . . > `(xt) � 1, we can upper bound,

a  k � (k0 + 5) =
�

2
� 2

Since P is not contained in Ek0+1, we can assume a exists and a � 1.
Let xa 2 B(P ) be the corresponding vertex in B(P ). Since P has an edge not in Ek0+1, the

last blocking vertex of minimum level must have `(xt)  k0. Let v
⇤ = r

�
v,D`(v)

�
for any vertex v.

Since P ⇢ E`(xt), we again have �̂`(xt)(x
⇤
t , x

⇤
a)  �(xt, xa) + 2 and �̂`(xt)(x

⇤
t , x

⇤
a+1)  �(xt, xa+1) + 2.

Consider the `(xa)-th iteration. The edges D`(xt) ⇥D`(xa+1) are in G`(xa),xa
as,

`(z) + `(xa+1) + `(xa)  k0 + (k0 + 4) + (k0 + 5) = 3k0 + 9 = 3

✓
k � �

2
� 3

◆
+ 9 = 2k + 1

Then, since xt 2 Pxa,xa+1 ,

�̂`(xa)(x
⇤
a, xa�1)  �̂`(xt)(x

⇤
a, x

⇤
t ) + �̂`(xt)(x

⇤
t , x

⇤
a+1) + 1 + �(xa+1, xa�1)

 �(xa, xt) + �(xt, xa+1) + �(xa+1, xa�1) + 5

 �(xa, xa�1) + 5

Then, following a similar argument to the inductive step of Lemma A.2, we claim the following
for all 1  j  a.

�̂`(xj)(x
⇤
j , xj�1)  �(xj , xj�1) + 2(2 + (a� j)) + 1

where we have established the base case j = a above. We now proceed by induction for j < a.
Consider an execution of Dijkstra from x

⇤
j in G`(xj),x⇤

j
. Let xj+1 be the blocking vertex from the

previous iteration. We take the edges (x⇤j , x
⇤
j+1), (x⇤j+1, xj+1) 2 E

⇤, and the remaining edges in
E`(xj). By induction, we have,

�̂`(xj)(x
⇤
j , xj�1)  �̂`(xj+1)(x

⇤
j , x

⇤
j+1) + 1 + �(xj+1, xj�1)

 �(xj , xj+1) + 2(2 + (a� (j + 1))) + 3 + �(xj+1, xj�1)

 �(xj , xj�1) + 2(2 + (a� j)) + 1

Thus, we have,
�̂`(v)(v

⇤
, u) = �̂`(x1)(x

⇤
1, x0)  �(v, u) + 2(a+ 1) + 1
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From u, we take the edge (u, v⇤), followed by (v⇤, v) 2 E
⇤ so that,

�̂(u, v)  �̂`(v)(u, v
⇤) + 1

 �(u, v) + 2(a+ 1) + 2

 �(u, v) + �

Thus, to prove Theorem E.1, it only remains to analyze the performance of Algorithm 15.

Proof. (Time Complexity)
We separately analyze the complexity of each phase. By Lemma E.4, E occurs with probability

O
�

1
n2

�
. Since in this case Algorithm 15 requires Õ(n3) time, this contributes at most Õ(n) to the

expected run-time. Thus, in the following assume that E does not occur.

Phase 0 rDecompose requires O(m+ n) = O(n2) time to sample each vertex set randomly and
construct the edge sets Ei. Verifying that Di is of the appropriate size and dominates |N(v)| � si

requires time Õ(n2).

Phase 1 By Lemma E.3, computing the sets X(u, i), C(u, i) require time at most Õ

⇣
n
2+ 1

k

⌘
. By

Lemma 2.4, augmenting Di in Line 210 requires time Õ(n2).
Line 209 requires time,

Õ (nsk0+2sk0) = Õ

⇣
n
3� 2k0+2

k

⌘
= Õ

⇣
n
2+ 1

k

⌘

whenever � � 4 as shown in Lemma E.3.

Phase 2 First, we bound the complexity of each call to Dijkstra as in the proof of Lemma 3.2
for DenseAPASP. Fix some j. Then, |Ej |  nsj�1 = n

2� j�1
k and |Dj1 ⇥Dj2 | = Õ

⇣
n
sj1
⇥ n

sj2

⌘
=

Õ

⇣
n

j1+j2
k

⌘
= Õ

⇣
n
2� j�1

k

⌘
as j1 + j2  2k+ 1� j. Note for any fixed w that (w⇥ V )[E⇤ has size

Õ(n). Summing over |Dj | = Õ

⇣
n
sj

⌘
= Õ

⇣
n

j
k

⌘
, all invocations of Dijkstra require time Õ

⇣
n
2+ 1

k

⌘
.

Line 215 requires time Õ(n2) as every vertex u is in at most one q(w,Dj) for any fixed j.
Finally, Line 219 requires time Õ(n2) over all u, v, i. By the bound on |C(u, i)| = Õ(n1/k), Line

220 requires time Õ

⇣
n
2+ 1

k

⌘
. In particular, this is the overall time bound when E does not occur,

giving the desired result by substituting k = 3�
2 + 1.

We have the following Corollary.
Recall the following result of Roditty [Rod23].

Lemma E.10 (Theorem 5.1 of Roditty [Rod23]). Let k
0 � 6 be an even integer. There is an

algorithm that computes an additive k
0 � 2 approximation in Õ(n2� 2

k0+2m
2

k0+2 ) expected time, for
every u, v 2 V for which �(u, v)  k

0.
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Corollary E.11. Let k � 4 be an even integer. Then, we can compute a (2, 0)-approximation for
distances �(u, v) � k combinatorially in expected time

Õ

⇣
min

⇣
n
2� 2

k+4m
2

k+4 , n
2+ 1

2(k�1) , n
2+ 2

3k+2

⌘⌘

In particular, we output �̂ such that �(u, v)  �̂(u, v) for all u, v and �̂(u, v)  2�(u, v) whenever
�(u, v) � k.

Proof. We combine Theorem 4.1, Theorem E.1, Lemma 3.2 and Lemma E.10. If n
2� 2

k+4m
2

k+4 is
the minimum term, we invoke the algorithm of Lemma E.10 with k

0 = k + 2 and the algorithm
SparseAPASP of Lemma 3.2 with � = k + 2. For paths of length k  �(u, v)  k + 2, we
obtain a +k approximation from Lemma E.10. For paths of length �(u, v) � k + 2, we obtain a
+(k + 2) approximation from SparseAPASP. In either case, we obtain a (2, 0) approximation for
all �(u, v) � k. The overall running time is,

Õ(n2� 2
k+4m

2
k+4 )

On the other hand, if n2+ 1
2(k�1) is the minimum term, we invoke Algorithm 4 and obtain a (2, 0)

approximation for paths of length at least k following Theorem 4.1.
Finally, if n2+ 2

3k+2 is the minimum term, we call Theorem E.1 with k
0 = k+1 and DenseAPASP

with � = k + 2. For any path of length at least k + 2, the estimate from DenseAPASP is a (2, 0)-
approximation. For paths of length k  �(u, v)  k+1, the estimate from ShortAdditiveAPASP

is a (2, 0)-approximation. The overall computation time can be bounded by,

Õ

⇣
n
2+ 2

3k+2 + n
2+ 2

3(k+2)�2

⌘
= Õ

⇣
n
2+ 2

3k+2

⌘

Note that for k = 6, n2+ 1
2(k�1) = n

21/10 = n
2+ 2

3k�2 . For larger k, the former term is smaller and
we apply Theorem 4.1. However, for k = 4, 5, Algorithm 15 gives the best bound (see Table 1).
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