Selective Perception: Learning Concise State Descriptions
for Language Model Actors

Kolby Nottingham and Yasaman Razeghi and Kyungmin Kim and JB Lanier and
Pierre Baldi and Roy Fox and Sameer Singh
University of California Irvine
{knotting,yrazeghi,kyungk7, jblanier,pfbaldi,royf,sameer}Quci.edu

Abstract

The latest large language models (LMs) sup-
port increasingly longer contexts. While this
trend permits using substantial amounts of text
with SOTA LMs, requiring these large LMs
to process potentially redundant or irrelevant
data needlessly increases inference time and
cost. To remedy this problem, we propose
BLINDER, a method that leverages a small
finetuned LM to sample the minimal set of in-
put features that maximizes the performance
of a downstream LM. BLINDER trains an LM
with a value head to estimate the likelihood of
optimal outputs from a downstream LM given
an input. We evaluate BLINDER on embodied
decision making tasks with notoriously verbose
state descriptions: NetHack and robot planning.
BLINDER reduces the length of LM actor in-
put by 87% and 99% while improving task suc-
cess rates by 158% and 54% on NetHack and
robot planning respectively which represents
substantial inference cost savings while actu-
ally increasing performance.

1 Introduction

Large language models (LMs) continue to scale in
both number of parameters and supported context
length. This trend has given rise to LMs that are
able to solve complex problems across many large
documents. However, this comes at a price (often
literally) as context length contributes directly to
the time and compute cost of LM inference.
While previous work has optimized fewshot ex-
amples (Rubin et al., 2022; Wang et al., 2023) or
prompt instructions (Shi et al., 2022; Fernando
et al., 2023), the remaining input is left unmod-
ified. Also, previous work has focused on improv-
ing performance rather than conciseness. The goal
of this work is to develop a method for cheaply
reducing input length while maintaining or improv-
ing downstream task performance. We choose to
explore learning concise inputs in the context of

[Environment]

v

Task: Your task is to pick up and wear a robe.
You have a potion,
Position 37|9,

State Description: [
-«
You see a robe very near east,

You have a club,
You see a stairs up adjacent southwest,

BLINDER

Task: Your task is to pick
up and wear a robe.

State Description: You
see a robe very near east

\ 4 v
[LM ictor é [LM ictor §

Action: Action:
Drink potion Move east
Figure 1: BLINDER reduces context length and re-
moves distracting information for downstream LMs.

embodied decision making which exacerbates the
problem of input length with verbose scene infor-
mation (Huang et al., 2022b; Singh et al., 2022).

Embodied decision making tasks evaluate LMs
as actors by generating actions given a task and
state description. While an exhaustive list of state
features is often used as a description for an LM
actor (Huang et al., 2022b), such inputs can contain
many features that are irrelevant to or distract from
the current task. LMs are adept summarizers (Liu
and Lapata, 2019; Stiennon et al., 2020a), and an
LM summarizer could be used to summarize the in-
put to a much larger LM for a difficult downstream
task. However, this comes with an obvious trade
off as better summaries will come from larger LMs
that do not satisfy our primary objective: reducing
overall compute requirements.

327

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pages 327-341
June 16-21, 2024 ©2024 Association for Computational Linguistics

BLINDER Training

foofoosooeesosemessseeasssanaas Task [~""77mmmTTomommTommmmooes {
< Demonstrations v
Task Target
Description Action (a*)
v
FulState |] 1 g NDER Selected Statel| |)\ actor
Description Description

A

Reward

Figure 2: BLINDER is trained to produce minimal descriptions that maximize target action probability.

In this work, we develop a method for using
a small finetuned LM (780M parameters) as a
value function to select concise task-conditioned
state descriptions from a set of provided state fea-
tures (Figure 1). We call our method BLINDER*
(Brief Language INputs for DEcision-making
Responses). To learn concise inputs, BLINDER
finds the minimal set of state features that max-
imizes task performance as predicted by a value
function. We approximate task performance using
an LM actor’s alignment with several task demon-
strations (~5). Given a task demonstration and an
LM actor, we assign rewards to state descriptions
using the likelihood of target actions from the LM
actor (Figure 2). We use these rewards to finetune
an LM with a value head and, at inference time,
sample minimal state descriptions that maximize
the learned value function.

We evaluate our method on the grid-based video
game environment NetHack (Kiittler et al., 2020)
and a real world robotic item arrangement task.
BLINDER decreases the size of LM actor inputs
by 87% and 99% while improving LM actor suc-
cess rate by 158% and 54% on each task respec-
tively. We also explore the trade off between
summary quality and the size of a summarization
model by comparing BLINDER to zeroshot sum-
maries from pretrained LMs. Finally, we show that
BLINDER’s learned state descriptions are intuitive
enough to generalize across LM actors, allowing us
to train with an open-source LM actor and transfer
to a larger black-box actor. Overall, our research
demonstrates that small finetuned LMs are well
equipped to produce concise and helpful inputs, of-
ten beating larger zeroshot summzarization models
in both metrics.

“https://kolbytn.github.io/blinder/

2 BLINDER

We explore learning to select a concise state de-
scription from a set of state features given a task.

Algorithm 1 State Description Selection

Require: S, Vy, 7
X0
while |S| > 0 and max.es(Vo(X + s,7)) > Vo(X, 1)
do
s < argmax,cg(Vo(X +5,7))

X<+ X+s

S+ S-—s
end while
return X

Algorithm 1 defines our policy for selecting state
descriptions using BLINDER, where S is the set
of all available state features, 7 is the task descrip-
tion, and Vj is a state description value function.
The resulting state description X is a minimal
state description that maximizes the value estimate
Vp(X, 7). Note that the worst case time complexity
of Algorithm 1 is O(|S|?). However, in our experi-
ments, the selection process always ended after 3-5
state features were selected.

We train Vj to estimate downstream performance
by leveraging a small set of trajectory demonstra-
tions (~ 5), composed of state features, task de-
scriptions, and target actions D = {(S,7,a%), ...}.
For each trajectory step, we sample state descrip-
tions X for training and define a sparse reward
function Ry s for assigning rewards for X,

RLM(X,T,G*):LM((Z*’X,T). (1)

R maximizes the likelihood that X elicits the
target action ¢ from a pretrained LM actor. Note
that, although Ry, is defined for a specific LM
actor, we find that BLINDER selects intuitive state
features and generalizes well to other LM actors.

328

NetHack Environment

Robot Environment

@ All State Features
0.5 0.30 A .
Flan-T5 Summarizer*
o ® GPT3.5-Turbo Summarizer*
S 0.4 0.25 1 BLINDER* (Ours)
wn
wn
o] * Area is proportional to
|9}
9 0.3 1 0.20 1 summarizer model size.
"
[J
0.2 1 ® 0.15 1
10! 10? 103 10! 10?2 103

Avg. State Description Length

Avg. State Description Length

Figure 3: Success rate vs. average state description length vs. summarizer model size on NetHack and Robot
environments. For visualization purposes, we approximate gpt3.5-turbo as 25x the size of BLINDER. Better
performance and lower compute is represented by smaller circles up and to the left.

Finally, we define the loss function of a single
state description

L(X,S,T,a%) =
X

2
Z <V9(X:t,7') — X R (X, T, a*)) ()

t=0

and the overall loss function for Vjy

Ly, = E
0 S,r,a*~D
X~m|S, T

{E(X, S,T,a") + (;5] . Q)
where -y is a discount factor and ¢ is a Kullback-
Leibler penalty for normalizing Vy, common when
finetuning LMs with RL (Stiennon et al., 2020b;
Leblond et al., 2021). At inference time, X is al-
ways sampled using Algorithm 1. However, when
training Vjp, we found sampling from a random
policy to be sufficient and more efficient.

3 Experimental Results

3.1 Setup

We train BLINDER using NetHack tasks from
the Minihack environment zoo (Samvelyan et al.,
2021) with the recommended natural language
wrapper (Goodger et al., 2023). We then evalu-
ate on more complex variations of the Minihack
zoo tasks (Appendix C).

We also train BLINDER on a real-world robotic
object arrangement task. In this task, several ob-
jects must be rearranged on a table within a 2x5
grid in order from left to right. Distractor objects

are also placed in this grid to complicate the state
space. We evaluate on unseen items (Appendix D).

Our experiments use three baselines to evalu-
ate BLINDER. First, we compare with the full
set of state features that includes all S. We also
compare against zeroshot summarization from a
flan-t5-x1 and gpt3.5-turbo model.

BLINDER finetunes a 780 million parameter
flan-t5-1large model with a value head for Vj.
It is rewarded using a 3 billion flan-t5-x1 ac-
tor (Appendix B.1). We also test BLINDER with
a larger gpt3.5-turbo actor (Appendix B.2) to
demonstrate its ability to generalize to large actors
and reduce compute costs.

3.2 Analysis

Figure 3 compares success rate to the state descrip-
tion length for each task domain. Success rates are
averaged over a set of held out test tasks in each do-
main, and state description lengths are the average
number of tokens in summaries generated by each
summarizer model and BLINDER. The number of
tokens in the state descriptions directly increases
the compute costs of the downstream actor.

BLINDER consistently improves state descrip-
tions composed of all state features and samples
shorter and better summaries than those generated
by the flan-t5-x1 summarizer. BLINDER also
remains competitive with summaries generated by
gpt3.5-turbo despite the latter being significantly
larger. It is also worth noting that BLINDER is the
only method we test that never requires having the
entire state in context at once since it iteratively
evaluates features. This is helpful in situations in
which the exhaustive state description would ex-
ceed LM context limits.

329

Generalization to GPT3.5-Turbo Actor

1.01 0.91

0.8 1
0.67
0.60 057

0.47 0.49
0.4 0.37

0.6

Success Rate

0.2

NetHack
Environment

Robot

B GPT3.5-Turbo Summarizer
BLINDER (Ours)

I All State Features
Flan-T5 Summarizer

Figure 4: BLINDER generalizes to other LM actors.
Description length and model size are equal to Figure 3.

BLINDER also creates intuitive state descrip-
tions that generalize between LM actors. Although
BLINDER is trained to optimize inputs for the
flan-t5-x1 actor, its state descriptions are intu-
itive enough to generalize well to the much larger
gpt3.5-turbo actor achieving better success rate
than the LM actor it was trained with. In this
setup, the gpt3.5-turbo summarizer outperforms
BLINDER on the NetHack task. However, with
many more parameters, gpt3.5-turbo forfeits
the gains in compute efficiency that BLINDER
reaches. Also, the gpt3.5-turbo summarizer’s
performance gains are inconsistent. It still strug-
gles on the Robot arrangement task likely because
its state descriptions remain lengthy compared to
those of BLINDER as seen in Figure 3.

4 Related Work
4.1 LMs for Planning

LMs have recently become popular for planning
and high-level decision making in robotic tasks
(Ichter et al., 2022; Huang et al., 2022a, 2023; Vem-
prala et al., 2023) and other sequential decision
making benchmarks (Nottingham et al., 2023; Kim
et al., 2023; Liu et al., 2023a; Liang et al., 2023).
While learned techniques exist for grounding LM
actors in the state (Ichter et al., 2022), the most
straightforward way to ground LMs is to include
state features in the input (Huang et al., 2022b;
Liang et al., 2022; Singh et al., 2022; Skreta et al.,
2023; Zhao et al., 2023; Lin et al., 2023; Wake
et al., 2023). These state descriptions often contain
needless information, and more hand-engineered
state descriptions do not generalize between tasks.

4.2 Learned Inputs for LMs

Despite increase in supported context lengths, LMs
struggle to make use of very long inputs (Liu
et al., 2023b; Qin et al., 2023). Retrieval methods
that rely on similarity metrics are commonly used
(Nogueira and Cho, 2019; Karpukhin et al., 2020;
Lewis et al., 2020) but not helpful for selecting in-
put features that may be dissimilar to the query text.
Some retrieval methods for documents (Wang et al.,
2018) or fewshot examples (Rubin et al., 2022;
Wang et al., 2023; Gupta et al., 2023) use learned
values. However, these approaches do not consider
when to stop adding examples with the objective of
concise inputs. An extensive range of studies inves-
tigate learning instructions or prompt formats for
improving LM performance on a dataset in discrete
(Shin et al., 2020; Gao et al., 2021; Shi et al., 2022;
Deng et al., 2022; Fernando et al., 2023; ?) or
continuous (Qin and Eisner, 2021; Liu et al., 2021;
Lester et al., 2021; Zhong et al., 2021) input space.
However, the objective of previous work is only
to increase performance by modifying instructions
and ignores the problem of conciseness. Recent
methods have explored the idea of compressing
input tokens for shorter context length (Mu et al.,
2023; Chevalier et al., 2023) but require finetuning
the downstream LM.

5 Conclusion

In this work, we explore using small finetuned LMs
to select concise state descriptions that reduce com-
pute and improve performance. Rather than restrict
prompt tuning to task examples or instructions as in
previous work, we propose modifying the entire in-
put space. Our results indicate that small finetuned
LMs are well equipped to process entire inputs
for larger more powerful LMs to use on down-
stream tasks. Zeroshot summarization from large
LMs is another possible approach to decreasing
the length of input for a downstream LM. Zeroshot
summaries have the benefit of not requiring a user
to finetune a model, but they do not perform as con-
sistently and generally require larger models than
their finetuned counterparts such as BLINDER. We
find that BLINDER makes a significant difference
in both downstream performance and overall in-
ference costs. We hope to encourage continued
research into learning more efficient LM contexts
through methods such as pruning, summarization,
and retrieval.

330

6 Acknowledgment

This material is sponsored in part by the
DARPA MCS program under Contract No.
N660011924033 with the United States Office Of
Naval Research and the NSF CAREER award num-
ber IIS-2046873 and NSF CNS-1925741 fund.

Limitations

Our approach assumes a set of order invariant and
independent state features. While this is a simple
assumption for embodied decision making, where
state features are often already a set of entities and
features, this is not true for most natural language
processing tasks. Future work could go into ad-
dressing a generalized version of our approach that
supports any text input.

Additionally, BLINDER requires a small set
of labeled trajectories to approximate task perfor-
mance. This is a simpler requirement than hand
engineering state descriptions, but it still requires
some work from humans. It should be possible to
instead estimate task performance by doing several
task rollouts with the current summarizer and pol-
icy, but this requires significantly more compute
than our approach.

References

Alexis Chevalier, Alexander Wettig, Anirudh Ajith,
and Dangi Chen. 2023. Adapting language
models to compress contexts. arXiv preprint
arXiv:2305.14788.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language mod-
els.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi-
han Wang, Han Guo, Tianmin Shu, Meng Song, Eric
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing
discrete text prompts with reinforcement learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3369-3391, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Chrisantha Fernando, Dylan Banarse, Henryk
Michalewski, Simon Osindero, and Tim Rock-
taschel. 2023. Promptbreeder: Self-referential

331

self-improvement via prompt evolution. arXiv

preprint arXiv:2309.16797.

Tianyu Gao, Adam Fisch, and Danqgi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816-3830, Online. Association for Computa-
tional Linguistics.

Nikolaj Goodger, Peter Vamplew, Cameron Foale, and
Richard Dazeley. 2023. A nethack learning envi-
ronment language wrapper for autonomous agents.
Journal of Open Research Software, 11.

Agrim Gupta, Piotr Dollar, and Ross Girshick. 2019.
Lvis: A dataset for large vocabulary instance segmen-
tation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
5356-5364.

Shivanshu Gupta, Clemens Rosenbaum, and Ethan R
Elenberg. 2023. Gistscore: Learning better repre-
sentations for in-context example selection with gist
bottlenecks. arXiv preprint arXiv:2311.09606.

Kaiming He, Georgia Gkioxari, Piotr Dollér, and Ross
Girshick. 2017. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision,
pages 2961-2969.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022a. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. In International Conference on
Machine Learning, pages 9118-9147. PMLR.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess,
Andy Zeng, Yao Lu, Pete Florence, Igor Mor-
datch, Sergey Levine, Karol Hausman, et al. 2023.
Grounded decoding: Guiding text generation with
grounded models for robot control. arXiv preprint
arXiv:2303.00855.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, et al. 2022b. Inner
monologue: Embodied reasoning through planning
with language models. In 6th Annual Conference on
Robot Learning.

Brian Ichter, Anthony Brohan, Yevgen Chebotar,
Chelsea Finn, Karol Hausman, Alexander Herzog,
Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan
Julian, Dmitry Kalashnikov, Sergey Levine, Yao Lu,
Carolina Parada, Kanishka Rao, Pierre Sermanet,
Alexander T Toshev, Vincent Vanhoucke, Fei Xia,
Ted Xiao, Peng Xu, Mengyuan Yan, Noah Brown,
Michael Ahn, Omar Cortes, Nicolas Sievers, Clay-
ton Tan, Sichun Xu, Diego Reyes, Jarek Retting-
house, Jornell Quiambao, Peter Pastor, Linda Luu,
Kuang-Huei Lee, Yuheng Kuang, Sally Jesmonth,
Kyle Jeffrey, Rosario Jauregui Ruano, Jasmine Hsu,

Keerthana Gopalakrishnan, Byron David, Andy Zeng,
and Chuyuan Kelly Fu. 2022. Do as i can, not as i
say: Grounding language in robotic affordances. In
6th Annual Conference on Robot Learning.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781.

Charles C Kemp, Aaron Edsinger, Henry M Clever, and
Blaine Matulevich. 2022. The design of stretch: A
compact, lightweight mobile manipulator for indoor
human environments. In 2022 International Con-
ference on Robotics and Automation (ICRA), pages
3150-3157. IEEE.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491.

Heinrich Kiittler, Nantas Nardelli, Alexander Miller,
Roberta Raileanu, Marco Selvatici, Edward Grefen-
stette, and Tim Rocktidschel. 2020. The nethack learn-
ing environment. In Advances in Neural Information
Processing Systems, volume 33, pages 7671-7684.
Curran Associates, Inc.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre,
Miruna Pislar, Lespiau Jean-Baptiste, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals.
2021. Machine translation decoding beyond beam
search. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 8410-8434.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Pete Florence, Andy Zeng, et al. 2022.
Code as policies: Language model programs for
embodied control. In Workshop on Language and
Robotics at CoRL 2022.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu,
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. 2023. Taskmatrix. ai: Com-
pleting tasks by connecting foundation models with
millions of apis. arXiv preprint arXiv:2303.16434.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco
Pavone, and Jeannette Bohg. 2023. Text2motion:
From natural language instructions to feasible plans.
arXiv preprint arXiv:2303.12153.

Bo Liu, Yugian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023a. Llm+ p: Empowering large language models
with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023b. Lost in the middle: How lan-
guage models use long contexts. arXiv preprint
arXiv:2307.03172.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), page 3721. Association for Com-
putational Linguistics.

Pierre Manceron. 2022. Ikpy. If you use this software,
please cite it using the metadata from this file.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023.
Learning to compress prompts with gist tokens.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with bert. arXiv preprint
arXiv:1901.04085.

Kolby Nottingham, Prithviraj Ammanabrolu, Alane
Suhr, Yejin Choi, Hannaneh Hajishirzi, Sameer
Singh, and Roy Fox. 2023. Do embodied agents
dream of pixelated sheep?: Embodied decision mak-
ing using language guided world modelling. arXiv
preprint arXiv:2301.12050.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203-5212, Online. Association for Computa-
tional Linguistics.

Guanghui Qin, Yukun Feng, and Benjamin Van Durme.
2023. The nlp task effectiveness of long-range trans-
formers. In Proceedings of the 17th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 3756-3772.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655-2671, Seattle, United States.
Association for Computational Linguistics.

332

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack
Parker-Holder, Minqi Jiang, Eric Hambro, Fabio
Petroni, Heinrich Kuttler, Edward Grefenstette, and
Tim Rocktidschel. 2021. Minihack the planet: A
sandbox for open-ended reinforcement learning re-
search. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 1).

Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtzman,
Yulia Tsvetkov, and Luke Zettlemoyer. 2022. Toward
human readable prompt tuning: Kubrick’s the shining
is a good movie, and a good prompt too? arXiv
preprint arXiv:2212.10539.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222-4235.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2022. Prog-
prompt: Generating situated robot task plans using
large language models. In Second Workshop on Lan-
guage and Reinforcement Learning.

Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-
Rubach, Zhi Ji, Lasse Bjgrn Kristensen, Kourosh
Darvish, Aldan Aspuru-Guzik, Florian Shkurti,
and Animesh Garg. 2023. Errors are useful
prompts: Instruction guided task programming with
verifier-assisted iterative prompting. arXiv preprint
arXiv:2303.14100.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020a. Learn-
ing to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 3008-3021. Curran Associates,
Inc.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020b. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008—
3021.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and
Ashish Kapoor. 2023. Chatgpt for robotics: Design
principles and model abilities. Microsofft.

Naoki Wake, Atsushi Kanehira, Kazuhiro Sasabuchi,
Jun Takamatsu, and Katsushi Ikeuchi. 2023. Chat-
gpt empowered long-step robot control in various

environments: A case application. arXiv preprint
arXiv:2304.03893.

Liang Wang, Nan Yang, and Furu Wei. 2023. Learning
to retrieve in-context examples for large language
models. arXiv preprint arXiv:2307.07164.

333

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo
Wang, Tim Klinger, Wei Zhang, Shiyu Chang, Gerry
Tesauro, Bowen Zhou, and Jing Jiang. 2018. R 3:
Reinforced ranker-reader for open-domain question
answering. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32.

Yuxin Wu, Alexander Kirillov, Francisco Massa,
Wan-Yen Lo, and Ross Girshick. 2019. Detec-
tron2. https://github.com/facebookresearch/
detectron2.

Xufeng Zhao, Mengdi Li, Cornelius Weber, Muham-
mad Burhan Hafez, and Stefan Wermter. 2023. Chat
with the environment: Interactive multimodal per-
ception using large language models. arXiv preprint
arXiv:2303.08268.

Zexuan Zhong, Dan Friedman, and Dangi Chen. 2021.
Factual probing is [MASK]: Learning vs. learning
to recall. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5017-5033, Online. Association
for Computational Linguistics.

Appendix
A Method Details

Hyperparameter Value
¥ 1

Ir le-6
batch size 4

KL regularization coefficient 1
max state description length (nethack) 10
max state description length (robot) 5

Table 1: BLINDER training hyperparameters

A.1 BLINDER

Table 1 shows hyperparameters used during BLINDER training. We finetune a flan-t5-1large model
with a value head after the final hidden state in the decoder. We prompt the model with the following
instructions to take advantage of flan-T5’s instruction finetuning:

Describe the relevant information from the game state for the
current task. Your current task is to [task description].

A.2 Baselines

We prompt flan-t5-x1 and gpt3.5-turbo to zeroshot summarize the state features to compare with
BLINDER. Although these methods have some success, they require larger models than our method. We
use the following prompt for summarization:

Prune the sentences from the original text such that only
information relevant to your current task remains. Only output
sentences that appear in the original text. Your current task
is to [task description].

B Actor Details

B.1 TS5 Actor

Our flan-TS5 actor is a three billion parameter flan-t5-x1 model (Chung et al., 2022). We sample actions
from this actor by computing the geometric mean of the logits for each environment action, taking the
softmax, and sampling from the resulting distribution. This is the model that BLINDER uses for training.
We prompt a pretrined flan-t5-x1 model with the below prompts for use as an LM actor:
NetHack Domain:

You are playing the rogue-like game NetHack. Your task is to
[task description]. You can move north, south, east, west,
northeast, southeast, southwest, or northwest. You can attack
monsters adjacent to you, pick up items under you, zap wands,
eat food, wear armor, use keys, drink potions, and put on
rings. [state description]
You choose to:

Robot Domain:
You are controlling a helpful household robot. Your task is to
[task description]. You can move items from their current
positions to empty positions indicated by their cooresponding
letter. [state description]
You choose to:

At each task step, we compute the likelihood of the admissible actions, normalize the probabilities
using the softmax function, and then sample an action to execute in the environment.

334

B.2 GPT Actor

Our GPT3.5 Turbo actor uses gpt3.5-turbo-0301" to generate an action from a list of admissible
actions given a task and state description and six fewshot examples. We use this model to evaluate
BLINDER’s ability to generalize between LM actors.

gpt3.5-turbo-0301 is prompted with the below system messages:

NetHack Domain:

You are playing the rogue-like game NetHack. You can move north,
south, east, west, northeast, southeast, southwest, or
northwest. You can attack monsters adjacent to you, pick up
items under you, zap wands, eat food, wear armor, use keys,
drink potions, and put on rings.

Robot Domain:

You are controlling a helpful household robot. You can move
items from their current positions to empty positions indicated
by their cooresponding letter.

We provide fewshot examples and prompt the actor with the below prompt:

Your task is to [task description].

Game Description:
[state description]

Choose the best action:
[1list of admissible actions]

The model generates an admissible action that is executed in the environment.

Thttps://platform.openai.com/docs/models/gpt-3-5
335

Figure 5: Example lava cross task.

NetHack Task
Actor Summarizer paer shoes potion ring boots | avg
Flan-T5-x1 None 1585 1585 2575 1684 2080 | .1902
Flan-T5-x1 Flan-T5-x1 4753 4951 3268 2773 1486 | .3446

Flan-T5-x1 GPT3.5-Turbo | .4900 .6700 .3400 .1700 .3600 | .4060
Flan-T5-x1 BLINDER 4951 3961 .5700 4753 .5248 | .4923
GPT3.5-Turbo None 9785 .8315 4060 .3070 .4852 | .6016
GPT3.5-Turbo Flan-T5-xl1 J113 7576 1684 2872 .4060 | 4661
GPT3.5-Turbo GPT3.5-Turbo | .9100 .8900 .9900 .8800 .9000 | .9140
GPT3.5-Turbo BLINDER 9139 9348 4747 6436 .3862 | .6706

Table 2: All success rates on NetHack test tasks.

C NetHack Details

We evaluate BLINDER on NetHack tasks using the Minihack library (Samvelyan et al., 2021). NetHack,
recently proposed as a testbed for Al research (Kiittler et al., 2020), is a grid-based dungeon crawler with
complex dynamics and large observation and action spaces.

We obtain S for NetHack from the natural language wrapper recommended by Kiittler et al. (2020)*.
The resulting sets of state features contain an average of 35 state features.

We select a set of five training tasks from the Minihack environment zoo: Room-Monster-5x5, Eat,
Wear, LavaCross-Levitate-Potion-Inv, and LavaCross-Levitate-Ring-Inv. We use just 25 expert
trajectories for training with a total of 148 pairs of states and expert actions that required under an hour
for a human annotator to collect.

We design five difficult custom test tasks to evaluate the performance of BLINDER. Two tasks,
Eat pear and Wear shoes, are variants of the Eat and Wear training tasks but with different target items,
larger rooms, monsters, and distractor items. We also define three Lava cross test tasks. Unlike the
training variants of this task, the item needed to cross the lava does not start in the player inventory,
necessitating improved multi-step planning from the LM actor. The boots variant of the lava cross task
was not seen during training. See Table 6 for an example trajectory.

*https://github.com/ngoodger/nle-language-wrapper
336

position A | position C | position E | position G | position I

position B | position D | position F | position H | position J

(b) Labels assigned to empty cells.

position G | doughnut

ball |toothpaste| position E

water

bottle bottle

orange soda apple

(a) RGB image (left) and corresponding segmentation result (right).

(c) The grid layout corresponding to RGB
image on the left.

Figure 6
Robot Arrangement Size
Actor Summarizer 2 3 4 avg
Flan-T5-x1 None 3500 1100 .0300 .1633
Flan-T5-xl1 Flan-T5-x1 3500 2080 .0690 .2090
Flan-T5-xl1 GPT3.5-Turbo | .4800 .2600 .0600 .2667
Flan-T5-xl1 BLINDER 5600 .1480 .0496 .2525
GPT3.5-Turbo None 8812 4853 .0892 .4852
GPT3.5-Turbo Flan-T5-x1 7900 2800 .0490 .3730
GPT3.5-Turbo GPT3.5-Turbo | .8200 .4600 .0400 .4400
GPT3.5-Turbo BLINDER 9406 .6634 .1090 .5710

Table 3: All success rates on test robot arrangement tasks.

D Robot Task Details

D.1 Robot Details

For the robotics experiment, we use the Stretch RE2 (Kemp et al., 2022) from Hello Robot Inc. Stretch
is a lightweight, low-cost mobile manipulator equipped with a variety of sensors, including an RGB-D
camera and a 2D LiDAR (see Figure 7). The Stretch uses an Intel RealSense D435i camera to collect
RGB and depth images of the table and we use both the onboard RP-LiDAR A1 and an added HTC Vive
motion tracker for position estimates.

D.2 Environment Details

motion tracker |

The goal of the robot planning task is to rearrange several objects
on a table in a target order from left to right. Objects may each
occupy and be placed in predefined locations in a 2-row by 5-
column grid on the table. Target object arrangements are defined
by the horizontal order of each item, and an object’s final row
location does not affect task success. A trial is successful if the
robot arranges the objects in a specified order in 10 actions or
less.

To investigate the generalization ability of BLINDER, we test
on held-out items not seen during training. Additionally, while
agents are tasked with arranging only two or three items during
training, they are evaluated on arranging two, three, and four
items at test time.

D.2.1 Observation space
Using LMs as high-level planners requires natural language input,
however object locations are perceived by the Stretch robot with

337

Figure 7: Stretch RE2.

camera inputs. We apply a pipeline to parse image observations
to a canonical state representation and then to natural language
state descriptions.
Given an RGB image of the table, we detect table objects with
an off-the-shelf semantic segmentation mask and determine their 3D location using a corresponding depth
image. The locations of grid cells are implicitly defined relative to the table. The canonical state we
extract describes which objects are in which grid cells. For segmentation, we use a Mask R-CNN (He
et al., 2017) model with a ResNet-101-FPN backbone pre-trained on LVIS (Gupta et al., 2019) using the
Detectron?2 library (Wu et al., 2019). Figure 6a shows an example of an RGB image and its corresponding
segmentation result. Figure 6¢ shows the parsed grid state corresponding to the image in Figure 6a.
Next, we construct a natural language state description from the current grid layout by listing spatial
relationships between each grid cell and every other grid cell. Spatial relationships include left, right,
behind, and beyond. For grid cells that are populated, the residing object labels are used as identifiers for
the grid cells. Table 5 shows an example of a grid state being converted to a full natural language state
description.

D.2.2 Action space

The high-level action defined for object arrangement follows the format “move object_name to
empty_position_name”. In our experiments, the Stretch robot achieves this by using 3D object co-
ordinates obtained from segmented RGB-D camera images in combination with IKPy (Manceron, 2022),
a python library for inverse kinematics.

338

NetHack

Full State Description

“You have a +1 club (weapon in hand). You have a +2 sling (alternate weapon; not wielded).
You have 16 uncursed flint stones (in quiver pouch). You have 25 uncursed rocks. You have
an uncursed +0 leather armor (being worn). Strength: 22/19. Dexterity: 13. Constitution: 15.
Intelligence: 9. Wisdom: 10. Charisma: 6. Depth: 1. Gold: 0. HP: 16/16. Energy: 2/2. AC:
8. XP: 1/0. Time: 1. Position: 36/9. Hunger: Not Hungry. Monster Level: 0. Encumbrance:
Unencumbered. Dungeon Number: 0. Level Number: 1. Score: 0. Alignment: Neutral.
Condition: None. You see a vertical wall far east. You see a stairs down near east southeast.
You see a horizontal wall near southeast and south. You see a lava near south southeast. You
see a southwest corner near southwest. You see a vertical wall near west. You see a horizontal
wall very near north, northeast, and northwest. You see a lava very near east northeast, east,
east southeast, and southeast. You see a effervescent potion very near south southwest. Hello
Agent, welcome to NetHack! You are a neutral human Caveman”

Table 4: The “Lava Cross: Potion” NetHack task observation and full state description.

Grid

Full State Description

‘ ball |toothpaste| position E | position G | doughnut

‘ bottle orange

water

bottle soda apple

“position E is behind the water bottle. position E is to the left of and behind the apple. position
E is to the left of and behind the soda. position E is to the left of position G. position E is to
the left of the doughnut. position E is to the right of and behind the bottle. position E is to the
right of and behind the orange. position E is to the right of the ball. position E is to the right of
the toothpaste. position G is behind the soda. position G is to the left of and behind the apple.
position G is to the left of the doughnut. position G is to the right of and behind the bottle.
position G is to the right of and behind the orange. position G is to the right of and behind
the water bottle. position G is to the right of position E. position G is to the right of the ball.
position G is to the right of the toothpaste. the apple is beyond the doughnut. the apple is to the
right of and beyond position E. the apple is to the right of and beyond position G. the apple is
to the right of and beyond the ball. the apple is to the right of and beyond the toothpaste. the
apple is to the right of the bottle. the apple is to the right of the orange. the apple is to the right
of the soda. the apple is to the right of the water bottle. the ball is behind the bottle. the ball is
to the left of and behind the apple. the ball is to the left of and behind the orange. the ball is to
the left of and behind the soda. the ball is to the left of and behind the water bottle. the ball is to
the left of position E. the ball is to the left of position G. the ball is to the left of the doughnut.
the ball is to the left of the toothpaste. the bottle is beyond the ball. the bottle is to the left of
and beyond position E. the bottle is to the left of and beyond position G. the bottle is to the left
of and beyond the doughnut. the bottle is to the left of and beyond the toothpaste. the bottle is
to the left of the apple. the bottle is to the left of the orange. the bottle is to the left of the soda.
the bottle is to the left of the water bottle. the doughnut is behind the apple. the doughnut is to
the right of and behind the bottle. the doughnut is to the right of and behind the orange. the
doughnut is to the right of and behind the soda. the doughnut is to the right of and behind the
water bottle. the doughnut is to the right of position E. the doughnut is to the right of position
G. the doughnut is to the right of the ball. the doughnut is to the right of the toothpaste. the
orange is beyond the toothpaste. the orange is to the left of and beyond position E. the orange
is to the left of and beyond position G. the orange is to the left of and beyond the doughnut. the
orange is to the left of the apple. the orange is to the left of the soda. the orange is to the left of
the water bottle. the orange is to the right of and beyond the ball. the orange is to the right of
the bottle. the soda is beyond position G. the soda is to the left of and beyond the doughnut. the
soda is to the left of the apple. the soda is to the right of and beyond position E. the soda is to
the right of and beyond the ball. the soda is to the right of and beyond the toothpaste. the soda
is to the right of the bottle. the soda is to the right of the orange. the soda is to the right of the
water bottle. the toothpaste is behind the orange. the toothpaste is to the left of and behind the
apple. the toothpaste is to the left of and behind the soda. the toothpaste is to the left of and
behind the water bottle. the toothpaste is to the left of position E. the toothpaste is to the left of
position G. the toothpaste is to the left of the doughnut. the toothpaste is to the right of and
behind the bottle. the toothpaste is to the right of the ball. the water bottle is beyond position
E. the water bottle is to the left of and beyond position G. the water bottle is to the left of and
beyond the doughnut. the water bottle is to the left of the apple. the water bottle is to the left of
the soda. the water bottle is to the right of and beyond the ball. the water bottle is to the right of
and beyond the toothpaste. the water bottle is to the right of the bottle. the water bottle is to the
right of the orange"

Table 5: Robot arrangement task observation and full state description.

339

Time Image Selected State Description Action

You see a effervescent potion very near south south-
west. You see a stairs down near east southeast. You
see a lava near south southeast. You have a +2 sling
(alternate weapon; not wielded).

t=

move southwest

You see a effervescent potion very near south south-
west. You see a stairs down near east southeast.
You see a lava near south southeast. You have a +2
sling (You see a effervescent potion adjacent south.
You have a +2 sling (alternate weapon; not wielded).
Score: 0. You have an uncursed +0 leather armor
(being worn). You have 16 uncursed flint stones (in
quiver pouch).

move south

You see here an effervescent potion. You have a
+2 sling (alternate weapon; not wielded). Score: 0.
Depth: 1.

pick up an efferves-
cent potion

t=2

f - an effervescent potion. You have a +2 sling (alter-
nate weapon; not wielded). Score: 0. Encumbrance:
Unencumbered.

drink an effervescent
potion

t=3

Dexterity: 13. You have 16 uncursed flint stones (in

: move east
quiver pouch). You have 25 uncursed rocks.

Dexterity: 13. You have 16 uncursed flint stones (in
quiver pouch). You have 25 uncursed rocks.

t=5

move east

Dexterity: 13. You have 16 uncursed flint stones (in

? move east
quiver pouch). You have 25 uncursed rocks.

Dexterity: 13. You have 16 uncursed flint stones (in
quiver pouch). You have 25 uncursed rocks.

t=7

move east

You see a stairs down adjacent northeast. You have
16 uncursed flint stones (in quiver pouch). You have =~ move northeast
25 uncursed rocks.

t=8

t=9

Table 6: Here, our fewshot actor is prompted with “Your task is to pick up and drink the potion and navigate to the
stairs down.”. The table shows a NetHack visualization alongside selected state descriptions and the action selected
by the LM actor.

340

Selected

Time Image Grid L. Action
State Description
position A| bottle apple | doughnut | position I position Aistothe let} .
t=0 of the doughnut. posi- move the ball to posi-
water tion A is to the left of tion A.
soda orange |toothpaste bottle ball and behind the ball.
ball bottle apple | doughnut | position I pf)§1t10n Lis behind po-
t=1 sition J. the doughnut ~ move the doughnut to
water - is to the left of position position L.
soda orange |toothpaste bottle position J
ball bottle apple |position G| doughnut position Gistothe leﬁ .
=2 of the doughnut. posi- move the soda to posi-
1 otmaste| VT dion) tion G is to the right of ~ tion G.
soda orange 00! aste osition
8|10 bote | P the ball.
ball bottle apple soda | doughnut
t=3 - R
position B| orange |toothpaste ‘g;‘[: position J

Table 7: Successful trajectory for the task “Arrange the objects in the order: ball, soda, doughnut." The items
denotes correct alignment and

relevant to the task are highlighted —

Time Image

Grid

Selected
State Description

means incorrect alignment.

Action

apple |position C| bottle

ball toothpaste | position F

soda

orange

water
bottle

doughnut

the bottle is to the right
of position C. position
C is behind the tooth-
paste. position C is to
the right of and behind
the ball.

move the ball to posi-
tion C.

apple ball bottle

position B toothpaste position F

soda

orange

water
bottle

doughnut

position B is to the left
of the toothpaste. the
ball is behind the tooth-
paste. position F is
to the right of position
B. the orange is to the
right of position B. the
soda is to the right of
the ball.

move the toothpaste to
position B.

apple ball bottle

toothpaste | position D| position F

soda

orange

water
bottle

doughnut

Table 8: Successful trajectory for the task “Arrange the objects in the order: toothpaste, ball, bottle, soda." Notably,

BLINDER can be generalized to arranging an unseen number of items.

341

