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Abstract

The latest large language models (LMs) sup-

port increasingly longer contexts. While this

trend permits using substantial amounts of text

with SOTA LMs, requiring these large LMs

to process potentially redundant or irrelevant

data needlessly increases inference time and

cost. To remedy this problem, we propose

BLINDER, a method that leverages a small

finetuned LM to sample the minimal set of in-

put features that maximizes the performance

of a downstream LM. BLINDER trains an LM

with a value head to estimate the likelihood of

optimal outputs from a downstream LM given

an input. We evaluate BLINDER on embodied

decision making tasks with notoriously verbose

state descriptions: NetHack and robot planning.

BLINDER reduces the length of LM actor in-

put by 87% and 99% while improving task suc-

cess rates by 158% and 54% on NetHack and

robot planning respectively which represents

substantial inference cost savings while actu-

ally increasing performance.

1 Introduction

Large language models (LMs) continue to scale in

both number of parameters and supported context

length. This trend has given rise to LMs that are

able to solve complex problems across many large

documents. However, this comes at a price (often

literally) as context length contributes directly to

the time and compute cost of LM inference.

While previous work has optimized fewshot ex-

amples (Rubin et al., 2022; Wang et al., 2023) or

prompt instructions (Shi et al., 2022; Fernando

et al., 2023), the remaining input is left unmod-

ified. Also, previous work has focused on improv-

ing performance rather than conciseness. The goal

of this work is to develop a method for cheaply

reducing input length while maintaining or improv-

ing downstream task performance. We choose to

explore learning concise inputs in the context of

Task: Your task is to pick up and wear a robe.
State Description: [
    You have a club,
    You have a potion,
    Position 37|9,
    You see a robe very near east,
    You see a stairs up adjacent southwest,
    ...
]  

Task: Your task is to pick
up and wear a robe.

State Description: You
see a robe very near east

Action:
Move east

BLINDER

LM ActorLM Actor

Action:
Drink potion

Environment

Figure 1: BLINDER reduces context length and re-

moves distracting information for downstream LMs.

embodied decision making which exacerbates the

problem of input length with verbose scene infor-

mation (Huang et al., 2022b; Singh et al., 2022).

Embodied decision making tasks evaluate LMs

as actors by generating actions given a task and

state description. While an exhaustive list of state

features is often used as a description for an LM

actor (Huang et al., 2022b), such inputs can contain

many features that are irrelevant to or distract from

the current task. LMs are adept summarizers (Liu

and Lapata, 2019; Stiennon et al., 2020a), and an

LM summarizer could be used to summarize the in-

put to a much larger LM for a difficult downstream

task. However, this comes with an obvious trade

off as better summaries will come from larger LMs

that do not satisfy our primary objective: reducing

overall compute requirements.
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Figure 2: BLINDER is trained to produce minimal descriptions that maximize target action probability.

In this work, we develop a method for using

a small finetuned LM (780M parameters) as a

value function to select concise task-conditioned

state descriptions from a set of provided state fea-

tures (Figure 1). We call our method BLINDER*

(Brief Language INputs for DEcision-making

Responses). To learn concise inputs, BLINDER

finds the minimal set of state features that max-

imizes task performance as predicted by a value

function. We approximate task performance using

an LM actor’s alignment with several task demon-

strations (∼5). Given a task demonstration and an

LM actor, we assign rewards to state descriptions

using the likelihood of target actions from the LM

actor (Figure 2). We use these rewards to finetune

an LM with a value head and, at inference time,

sample minimal state descriptions that maximize

the learned value function.

We evaluate our method on the grid-based video

game environment NetHack (Küttler et al., 2020)

and a real world robotic item arrangement task.

BLINDER decreases the size of LM actor inputs

by 87% and 99% while improving LM actor suc-

cess rate by 158% and 54% on each task respec-

tively. We also explore the trade off between

summary quality and the size of a summarization

model by comparing BLINDER to zeroshot sum-

maries from pretrained LMs. Finally, we show that

BLINDER’s learned state descriptions are intuitive

enough to generalize across LM actors, allowing us

to train with an open-source LM actor and transfer

to a larger black-box actor. Overall, our research

demonstrates that small finetuned LMs are well

equipped to produce concise and helpful inputs, of-

ten beating larger zeroshot summzarization models

in both metrics.

*https://kolbytn.github.io/blinder/

2 BLINDER

We explore learning to select a concise state de-

scription from a set of state features given a task.

Algorithm 1 State Description Selection

Require: S, Vθ, τ
X ← ∅
while |S| > 0 and maxs∈S(Vθ(X + s, τ)) > Vθ(X, τ)
do

s← argmax
s∈S

(Vθ(X + s, τ))
X ← X + s
S ← S − s

end while
return X

Algorithm 1 defines our policy for selecting state

descriptions using BLINDER, where S is the set

of all available state features, τ is the task descrip-

tion, and Vθ is a state description value function.

The resulting state description X is a minimal

state description that maximizes the value estimate

Vθ(X, τ). Note that the worst case time complexity

of Algorithm 1 is O(|S|2). However, in our experi-

ments, the selection process always ended after 3-5

state features were selected.

We train Vθ to estimate downstream performance

by leveraging a small set of trajectory demonstra-

tions (∼ 5), composed of state features, task de-

scriptions, and target actions D = {(S, τ, a∗), ...}.

For each trajectory step, we sample state descrip-

tions X for training and define a sparse reward

function RLM for assigning rewards for X ,

RLM (X, τ, a∗) = LM(a∗|X, τ). (1)

RLM maximizes the likelihood that X elicits the

target action a∗ from a pretrained LM actor. Note

that, although RLM is defined for a specific LM

actor, we find that BLINDER selects intuitive state

features and generalizes well to other LM actors.
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Limitations

Our approach assumes a set of order invariant and

independent state features. While this is a simple

assumption for embodied decision making, where

state features are often already a set of entities and

features, this is not true for most natural language

processing tasks. Future work could go into ad-

dressing a generalized version of our approach that

supports any text input.

Additionally, BLINDER requires a small set

of labeled trajectories to approximate task perfor-

mance. This is a simpler requirement than hand

engineering state descriptions, but it still requires

some work from humans. It should be possible to

instead estimate task performance by doing several

task rollouts with the current summarizer and pol-

icy, but this requires significantly more compute

than our approach.
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Appendix

A Method Details

Hyperparameter Value

γ 1
lr 1e-6
batch size 4
KL regularization coefficient 1
max state description length (nethack) 10
max state description length (robot) 5

Table 1: BLINDER training hyperparameters

A.1 BLINDER

Table 1 shows hyperparameters used during BLINDER training. We finetune a flan-t5-large model

with a value head after the final hidden state in the decoder. We prompt the model with the following

instructions to take advantage of flan-T5’s instruction finetuning:

Describe the relevant information from the game state for the

current task. Your current task is to [task description].

A.2 Baselines

We prompt flan-t5-xl and gpt3.5-turbo to zeroshot summarize the state features to compare with

BLINDER. Although these methods have some success, they require larger models than our method. We

use the following prompt for summarization:

Prune the sentences from the original text such that only

information relevant to your current task remains. Only output

sentences that appear in the original text. Your current task

is to [task description].

B Actor Details

B.1 T5 Actor

Our flan-T5 actor is a three billion parameter flan-t5-xl model (Chung et al., 2022). We sample actions

from this actor by computing the geometric mean of the logits for each environment action, taking the

softmax, and sampling from the resulting distribution. This is the model that BLINDER uses for training.

We prompt a pretrined flan-t5-xl model with the below prompts for use as an LM actor:

NetHack Domain:

You are playing the rogue-like game NetHack. Your task is to

[task description]. You can move north, south, east, west,

northeast, southeast, southwest, or northwest. You can attack

monsters adjacent to you, pick up items under you, zap wands,

eat food, wear armor, use keys, drink potions, and put on

rings. [state description]

You choose to:

Robot Domain:

You are controlling a helpful household robot. Your task is to

[task description]. You can move items from their current

positions to empty positions indicated by their cooresponding

letter. [state description]

You choose to:

At each task step, we compute the likelihood of the admissible actions, normalize the probabilities

using the softmax function, and then sample an action to execute in the environment.
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B.2 GPT Actor

Our GPT3.5 Turbo actor uses gpt3.5-turbo-0301† to generate an action from a list of admissible

actions given a task and state description and six fewshot examples. We use this model to evaluate

BLINDER’s ability to generalize between LM actors.

gpt3.5-turbo-0301 is prompted with the below system messages:

NetHack Domain:

You are playing the rogue-like game NetHack. You can move north,

south, east, west, northeast, southeast, southwest, or

northwest. You can attack monsters adjacent to you, pick up

items under you, zap wands, eat food, wear armor, use keys,

drink potions, and put on rings.

Robot Domain:

You are controlling a helpful household robot. You can move

items from their current positions to empty positions indicated

by their cooresponding letter.

We provide fewshot examples and prompt the actor with the below prompt:

Your task is to [task description].

Game Description:

[state description]

Choose the best action:

[list of admissible actions]

The model generates an admissible action that is executed in the environment.

†https://platform.openai.com/docs/models/gpt-3-5
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camera inputs. We apply a pipeline to parse image observations

to a canonical state representation and then to natural language

state descriptions.

Given an RGB image of the table, we detect table objects with

an off-the-shelf semantic segmentation mask and determine their 3D location using a corresponding depth

image. The locations of grid cells are implicitly defined relative to the table. The canonical state we

extract describes which objects are in which grid cells. For segmentation, we use a Mask R-CNN (He

et al., 2017) model with a ResNet-101-FPN backbone pre-trained on LVIS (Gupta et al., 2019) using the

Detectron2 library (Wu et al., 2019). Figure 6a shows an example of an RGB image and its corresponding

segmentation result. Figure 6c shows the parsed grid state corresponding to the image in Figure 6a.

Next, we construct a natural language state description from the current grid layout by listing spatial

relationships between each grid cell and every other grid cell. Spatial relationships include left, right,

behind, and beyond. For grid cells that are populated, the residing object labels are used as identifiers for

the grid cells. Table 5 shows an example of a grid state being converted to a full natural language state

description.

D.2.2 Action space

The high-level action defined for object arrangement follows the format “move object_name to

empty_position_name”. In our experiments, the Stretch robot achieves this by using 3D object co-

ordinates obtained from segmented RGB-D camera images in combination with IKPy (Manceron, 2022),

a python library for inverse kinematics.
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