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Background

Solar flares are intense eruptions of energy from the Sun that release massive amounts of

electromagnetic radiation and pose a significant risk to space- and ground-based infrastruc-

tures. Hence, a precise and reliable prediction is essential for mitigating potential impacts.

As part of our study, we present a deep-learning model that utilizes hourly full-disk line-

of-sight magnetogram images that can predict ≥M1.0-class flares within the subsequent

24-hour window. We apply the Guided Grad-CAM [2] attribution method to generate post

hoc explanations for our model’s prediction and provide empirical findings from qualitative

and quantitative evaluations of these explanations.

Motivation

Most of the current operational forecasting systems rely on active regions (ARs). Magnetic

field measurements, which form the basis of AR-based forecasting techniques, suffer from

projection effects when ARs are close to the limbs (beyond ±70◦ of the central meridian

of the solar disk). As a result, the data is limited to ARs located in central positions (within

±70◦). Therefore, it is essential to address the near-limb events as well and extend the

coverage area to the entire full-disk, and issue global prediction.

Recent advances in deep learning have accelerated the development of data-driven mod-

els for solar flare prediction; however, the complex learned data representations of these

models hinder transparency and pose challenges in comprehending their prediction ratio-

nale, which can be particularly problematic in critical applications like solar flare prediction

wheremodel reliability is crucial. Post hoc explanations offervaluable insights into amodel’s

decision-making process, improving transparency and reliability.

Method: Data, Model, & Explanation

Labeled Input

Magnetograms (m) are collected at time (t), each sampled at an interval (h)=1 hour; 
 t∈[2010-12-06, 2018-12-31],  and prediction window (Pw) = 24 hours, then

Label(mt+h) := 𝟙[ max(peak X-ray flux in next Pw) ≥ M1.0]; 𝟙 is an indicator function.
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Figure 1. An overview of our methodology for full-disk solar flare prediction with model explanation in three

broad steps. Note: The outcome of the indicator function (1), is ‘Flare’ when true, and ‘No Flare’ otherwise.

Data

We collected full-disk line-of-sight magnetograms obtained from the Helioseismic and

Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO) available as com-

pressed JPEG 2000 (JP2) images in near real-time publicly via Helioviewer.

We sampled magnetogram images every hour of the day, starting at 00:00 and ending

at 23:00, from December 2010 to December 2018 and labeled them using a 24-hour

prediction window (Pw). To elaborate, if the maximum peak x-ray flux of flare, converted

to NOAA/GOES class, in subsequent Pw was weaker than M, we labeled it as “No Flare”

(NF: <M1.0), and if it was ≥M1.0, we labeled it as “Flare” (FL: ≥M1.0) as shown in Fig. 1.

Model

We extend theAlexNet [1] model to accommodate 1-channel input magnetogram images

by adding an additional convolutional layer at the beginning of the network that uses a

3×3 kernel, size-1 stride and outputs a 3-channel image as shown in Fig 2.
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Figure 2. The architecture of our flare prediction model.

Explanation Method

We utilized Guided Grad-CAM, a fusion of Grad-CAM [2] and guided backpropagation

[3] techniques, both of which are based on class-specific gradient, i.e., activations are

generated for a given target class (y). It combines the detailed precision of guided back-

propagation with the localization advantages of Grad-CAM.

The size of attributions obtained from Grad-CAM depends on the dimensions of the fea-

ture maps of the last convolutional layer and hence is smaller than the size of the input

(x). Therefore, in Guided Grad-CAM, the activation maps of Grad-CAM attributions are

upscaled to the size of the input and computed as shown in Eq. (1).

Guided Grad-CAM(x,y) =Upscaled(GradCAM(x,y))⊙GuidedBackProp(x,y) (1)

Model Evaluation

Model’s overall performance was evaluated using true skill statistic (TSS) and Heidke skill

score (HSS). The aggregated results from our 4-fold cross-validation experiments have on

average TSS∼0.51±0.05 and HSS∼0.38±0.08.
In addition, we compute recall scores for correctly predicted and missed flare counts for

class-specific flares (X-class and M-class) in central locations (within ±70◦) and near-limb

locations (beyond±70◦) of the Sun. We observed∼95%ofX-class flares and∼73%ofM-

class flares in central locations were correctly predicted. Similarly, ∼74% of X-class flares

and ∼50% of M-class flares in near-limb regions were predicted correctly. The heatmap

of recall scores for ≥M1.0-class flares is shown in Fig 3.
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Figure 3. A heatmap showcasing recall for ≥M-class flares binned into 5◦ × 5◦ flare locations used as the

label. Beyond vertical red lines are near-limb events. Red crosses in white grids indicate zero correct

predictions, while white cells without red crosses represent unavailable instances.

Explanation and Evaluation

Through qualitative inspection of generated visual explanations using Guided Grad-CAM,

we observed that ourmodels grasp the shape and texture-based properties of flaring active

regions, even in proximity to limb areas. As an example shown in Fig. 4, it was observed

that as soon as a region becomes visible, the pixels covering the AR on the East limb are

activated, in fact, the model focuses on specific ARs including the relatively smaller AR on

the East limb, even though other, ARs are present in the magnetogram image.

Input Image: 2011-09-22T04:00:00UTC  Magnetogram at the time of X1.4 Flare: 
2011-09-22T10:29:00UTC 

Overlayed Guided Grad-CAM Attribution

Figure 4. A visual explanation of a correctly predicted near-limb (East) X-class flare. Green flags indicate the

flare locations, while red flags represent all active regions in the line-of-sight magnetogram. Approximate

near-limb (beyond±70◦) and central (within ±70◦) regions are delineated with a red-dotted circle.

Quantitative Evaluation of Explanations

We rigorously evaluated explanations for X-class flares using a human-centered approach

mentioned in [4], employing a set of close-ended questionnaires to validate 880 instances

in our dataset. The questionnaires were structured as follows:

1. Determine the activation{T, F} of the responsible X-class flare locationwith the maximum

peak X-ray flux used for labeling the image.

2. Determine the activation {T, F, n/a} of other (i) X-class, (ii) M-class, and (iii) C-class flare

locations coexisting within the 24-hour prediction window, besides the flare’s location

used for labeling.

Here, “T”, “F”, and “n/a” represents True (activation), False (non-activation), and absence of

relevant flares respectively.

For ∼99% of total instances, the relevant locations of the flares were activated.

In ∼53% of the total instances, the locations of co-existing M- & C-flares were activated.

In ∼39% of the total instances, the AR-locations of co-existing C-flares were activated.

Conclusion and FutureWork

In this study, we show that a full-disk model can skillfully tackle near-limb flare events and

evaluated our model’s predictions with visual explanations, showing that the decisions are

primarily capturing characteristics corresponding to the active regions in the magnetogram

instances. We intend to develop an automated method to evaluate the explanations.
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