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Abstract

We study the loss landscape of both shallow and deep, mildly overparameterized ReLU
neural networks on a generic finite input dataset for the squared error loss. We show both
by count and volume that most activation patterns correspond to parameter regions with no
bad local minima. Furthermore, for one-dimensional input data, we show most activation
regions realizable by the network contain a high dimensional set of global minima and no bad
local minima. We experimentally confirm these results by finding a phase transition from
most regions having full rank Jacobian to many regions having deficient rank depending on
the amount of overparameterization.

1 Introduction

The optimization landscape of neural networks has been a topic of enormous interest over the years. A
particularly puzzling question is why bad local minima do not seem to be a problem for training. In this
context, an important observation is that overparameterization can yield a more benevolent optimization
landscape. While this type of observation can be traced back at least to the works of Poston et al. (1991);
Gori & Tesi (1992), it has increasingly become a focus of investigation in recent years. In this article we
follow this line of work and describe the optimization landscape of a moderately overparameterized ReLU
network with a view on the di�erent activation regions of the parameter space.

Before going into the details of our results we first provide some context. The existence of non-global local
minima has been documented in numerous works. This is the case even for networks without hidden units
(Sontag & Sussmann, 1989) and single units (Auer et al., 1995). For shallow networks, Fukumizu & Amari
(2000) showed how local minima and plateaus can arise from the hierarchical structure of the model for
general types of targets, loss functions and activation functions. Other works have also constructed concrete
examples of non-global local minima for several architectures (Swirszcz et al., 2017). While these works
considered finite datasets, Safran & Shamir (2018) observed that spurious minima are also common for the
student-teacher population loss of a two-layer ReLU network with unit output weights. In fact, for ReLU
networks Yun et al. (2019b); Goldblum et al. (2020) show that if linear models cannot perfectly fit the data,
one can construct local minima that are not global. He et al. (2020) shows the existence of spurious minima
for arbitrary piecewise linear (non-linear) activations and arbitrary continuously di�erentiable loss functions.
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A number of works suggest overparameterized networks have a more benevolent optimization landscape
than underparameterized ones. For instance, Soudry & Carmon (2016) show for mildly overparameterized
networks with leaky ReLUs that for almost every dataset every di�erentiable local minimum of the squared
error training loss is a zero-loss global minimum, provided a certain type of dropout noise is used. In addition,
for the case of one hidden layer they show this is the case whenever the number of weights in the first
layer matches the number of training samples, d0d1 Ø n. In another work, Safran & Shamir (2016) used a
computer aided approach to study the existence of spurious local minima, arriving at the key finding that
when the student and teacher networks are equal in width spurious local minima are commonly encountered.
However, under only mild overparameterization, no spurious local minima were identified, implying again
that overparameterization leads to a more benign loss landscape. In the work of Tian (2017), the student
and teacher networks are assumed to be equal in width and it is shown that if the dimension of the data is
su�ciently large relative to the width, then the critical points lying outside the span of the ground truth
weight vectors of the teacher network form manifolds. Another related line of works studies the connectivity
of sublevel sets (Nguyen, 2019) and bounds on the overparameterization that ensures existence of descent
paths (Sharifnassab et al., 2020).

The key objects in our investigation will be the rank of the Jacobian of the parametrization map over a finite
input dataset, and the combinatorics of the corresponding subdivision of parameter space into pieces where
the loss is di�erentiable. The Jacobian map captures the local dependency of the functions represented over
the dataset on their parameters. The notion of connecting parameters and functions is prevalent in old and
new studies of neural networks: for instance, in discussions of parameter symmetries (Chen et al., 1993),
functional equivalence (Phuong & Lampert, 2020), functional dimension (Grigsby et al., 2022), the question
of when a ReLU network is a universal approximator over a finite input dataset (Yun et al., 2019a), as well
as in studies involving the neural tangent kernel (Jacot et al., 2018).

We highlight a few works that take a geometric or combinatorial perspective to discuss the optimization land-
scape. Using dimension counting arguments, Cooper (2021) showed that, under suitable overparameterization
and smoothness assumptions, the set of zero-training loss parameters has the expected codimension, equal to
the number of training data points. In the case of ReLU networks, Laurent & von Brecht (2018) used the
piecewise multilinear structure of the parameterization map to describe the location of the minimizers of the
hinge loss. Further, for piecewise linear activation functions Zhou & Liang (2018) partition the parameter
space into cones corresponding to di�erent activation patterns of the network to show that, while linear
networks have no spurious minima, shallow ReLU networks do. In a similar vein, Liu (2021) study one hidden
layer ReLU networks and show for a convex loss that di�erentiable local minima in an activation region
are global minima within the region, as well as providing conditions for the existence of di�erentiable local
minima, saddles and non di�erentiable local minima. Considering the parameter symmetries, Simsek et al.
(2021) show that the level of overparameterization changes the relative number of subspaces that make up
the set of global minima. As a result, overparameterization implies a larger set of global minima relative to
the set of critical points, and underparameterization the reverse. Wang et al. (2022) studied the optimization
landscape in two-layer ReLU networks and showed that all optimal solutions of the non-convex loss can be
found via the optimal solutions of a convex program.

1.1 Contributions

For both shallow and deep neural networks we show most linear regions of parameter space have no bad local
minima and often contain a high-dimensional space of global minima. We examine the loss landscape for
various scalings of the input dimension d0, hidden dimensions dl, and number of data points n.

• Theorem 5 shows for two-layer networks that if d0d1 Ø n and d1 = �(log( n
‘d0

)), then all activation regions,
except for a fraction of size at most ‘, have no bad local minima. We establish this by studying the rank
of the Jacobian with respect to the parameters. By appealing to results from random matrix theory on
binary matrices, we show that the Jacobian will have full rank for most choices of activation patterns.
Given this, all local minima within a region will be zero-loss global minima. For generic high-dimensional
input data d0 Ø n, this implies most non-empty activation regions will have no bad local minima as all
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activation regions are non-empty for generic data in high dimensions. We extend these results to the deep
case in Theorem 14.

• In Theorem 10, we specialize to the case of one-dimensional input data d0 = 1, and consider two-layer
networks with a bias term. We show that if d1 = �(n log( n

‘ )), all but at most a fraction ‘ of non-empty
linear regions in parameter space will have no bad local minima. We remark that this includes the
non-di�erentiable local minima on the boundary between activation regions as per Theorem 13. Further,
in contrast to Theorem 5 which looks at all binary matrices of potential activation patterns, in the one-
dimensional case we are able to explicitly enumerate the binary matrices which correspond to non-empty
activation regions.

• Theorem 12 continues our investigation of one-dimensional input data, this time concerning the existence
of global minima within a region. Suppose that the output head v has d+ positive weights and d≠ negative
weights and d+ + d≠ = d1. We show that if d+, d≠ = �(n log(n

‘ )), then all but at most a fraction ‘ of
non-empty linear regions in parameter space will have global minima. Moreover, the regions with global
minima will contain an a�ne set of global minima of codimension n.

• In addition to counting the number of activation regions with bad local minima, Proposition 15 and
Theorem 17 provide bounds on the fraction of regions with bad local minima by volume under additional
assumptions on the data, notably anti-concentratedness. These results imply that mild overparameterization
su�ces again to ensure that the ‘size’ of activation regions with bad local minima is small not only as
measured by number but also by volume.

1.2 Relation to prior works

As indicated above, several works have studied sets of local and global critical points of two-layer ReLU
networks. We take a di�erent approach by identifying the number of regions which have a favorable
optimization landscape, and as a result are able to avoid having to make certain assumptions about the
dataset or network. Since we are able to exclude pathological regions with many dead neurons, we can
formulate our results for ReLU activations rather than leaky ReLU or other smooth activation functions. In
contrast to Soudry & Carmon (2016), we do not assume dropout noise on the outputs of the network, and as a
result global minima in our setting typically attain zero loss. Unlike Safran & Shamir (2018), we do not assume
any particular distribution on our datasets; our results hold for almost all datasets (a set of full Lebesgue
measure). Extremely overparameterized networks, with d1 = �(n1.5) for smooth activations (Song et al.,
2021) or d1 = �(n4) for ReLU (Oymak & Soltanolkotabi, 2019), are known to follow lazy training (see Chizat
et al., 2019); our theorems hold under more realistic assumptions of mild overparameterization d1 = �(n log n)
or even d1 = �(1) for high-dimensional inputs. We are able to avoid excessive overparameterization by
emphasizing qualitative aspects of the loss landscape, using only the rank of the Jacobian rather than the
smallest eigenvalue of the neural tangent kernel, for instance.

2 Preliminaries

Before specializing to specific neural network architectures, we introduce general definitions which encompass
all of the models we will study. For any d œ N we will write [d] := {1, . . . , d}. We will write 1d for a vector of
d ones, and drop the subscript when the dimension is clear from the context. The Hadamard (entry-wise)
product of two matrices A and B of the same dimension is defined as A § B := (Aij · Bij). The Kronecker
product of two vectors u œ Rn and v œ Rm is defined as u ¢ v := (uivj) œ Rnm.

Let R[x1, . . . , xn] denote the set of polynomials in variables x1, . . . , xn with real coe�cients. We say that a
set V ™ Rn is an algebraic set if there exist f1, . . . , fm œ R[x1, . . . , xn] such that V is the zero locus of the
polynomials fi; that is,

V = {x œ Rn : fi(x) = 0 for all i œ [m]}.

Clearly, ÿ and Rn are algebraic, being zero sets of f = 1 and f = 0 respectively. A finite union of algebraic
subsets is algebraic, as well as an arbitrary intersection of algebraic subsets. In other words, algebraic sets
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form a topological space. Its topology is known as the Zariski topology. The following lemma is a basic fact of
algebraic geometry, and follows from subdividing algebraic sets into submanifolds of Rn.
Lemma 1. Let V be an algebraic subset of Rn. Then either V = Rn or V has Lebesgue measure 0.

For more details on the above facts, we refer the reader to Harris (2013). Justified by Lemma 1, we say that
a property P depending on x œ Rn holds for generic x if there exists a proper algebraic set V such that P
holds whenever x /œ V. So if P is a property that holds for generic x, then in particular it holds for a set of
full Lebesgue measure.

We consider input data
X = (x(1), . . . , x(n)) œ Rd◊n

and output data
y = (y(1), . . . , y(n)) œ R1◊n.

A parameterized model with parameter space Rm is a mapping

F : Rm ◊ Rd æ R.

We overload notation and also define F as a map from Rm ◊ Rd◊n to R1◊n by

F (◊, (x(1), . . . , x(n))) := (F (◊, x(1)), F (◊, x(2)), . . . , F (◊, x(n))).

Whether we are thinking of F as a mapping on individual data points or on datasets will be clear from the
context. We define the mean squared error loss L : Rm ◊ Rd◊n ◊ R1◊n æ R1 by1

L(◊, X, y) :=1
2

nÿ

i=1
(F (◊, x(i)) ≠ y(i))2

=1
2ÎF (◊, X) ≠ yÎ2. (1)

For a fixed dataset (X, y), let GX,y ™ Rm denote the set of global minima of the loss L; that is,

GX,y =
;

◊ œ Rm : L(◊, X, y) = inf
„œRm

L(„, X, y)
<

.

If there exists ◊ú œ Rm such that F (◊ú, X) = y, then L(◊ú, X, y) = 0, so ◊ú is a global minimum. In such a
case,

GX,y = {◊ œ Rm : F (◊, X) = y} .

For a dataset (X, y), we say that ◊ œ Rm is a local minimum if there exists an open set U ™ Rm containing ◊
such that L(◊, X, y) Æ L(„, X, y) for all „ œ U . We say that ◊ is a bad local minimum if it is a local minimum
but not a global minimum.

A key indicator of the local optimization landscape of a neural network is the rank of the Jacobian of the
map F with respect to the parameters ◊. We will use the following observation.
Lemma 2. Fix a dataset (X, y) œ Rd◊n ◊ R1◊n. Let F be a parameterized model and let ◊ œ Rm be a
di�erentiable critical point of the squared error loss equation 1. If rank(Ò◊F (◊, X)) = n, then ◊ is a global
minimizer.

Proof. Suppose that ◊ œ Rm is a di�erentiable critical point of L. Then

0 = Ò◊L(◊, X, y)
= Ò◊F (◊, X) · (F (◊, X) ≠ y).

Since rank(Ò◊F (◊, X, y)) = n, this implies that F (◊, X) ≠ y = 0. In other words, ◊ is a global minimizer.
1We consider the squared error loss function ¸(y, ŷ) = 1

2 (y ≠ ŷ)2 for concreteness, but most of our results hold for other ¸
satisfying ˆŷ¸(y, ŷ) = 0 if and only if y = ŷ.
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Finally, in what follows given data X we study activation regions in parameter space. Informally, these are
sets of parameters which give rise to particular activation patterns of the neurons of a network over the
dataset. We will define this notion formally for each setting we study in the subsequent sections.

3 Shallow ReLU networks: counting activation regions with bad local minima

Here we focus on a two-layer network with d0 inputs, one hidden layer of d1 ReLUs, and an output layer.
The key takeaway of this section is that moderate overparameterization is su�cient to ensure that bad local
minima are scarce. With regard to setup, our parameter space is the input weight matrix in Rd1◊d0 . Our
input dataset will be an element X œ Rd0◊n and our output dataset an element y œ R1◊n, where n is the
cardinality of the dataset. The model F : (Rd1◊d0 ◊ Rd1) ◊ Rd0 æ R is defined by

F (W, v, x) = vT ‡(Wx),

where ‡ is the ReLU activation function s ‘æ max{0, s} applied componentwise. We write W =
(w(1), . . . , w(d1))T , where w(i) œ Rd0 is the ith row of W . Since ‡ is piecewise linear, for any finite in-
put dataset X we may split the parameter space into a finite number of regions on which F is linear in
W (and linear in v). For any binary matrix A œ {0, 1}d1◊n and input dataset X œ Rd0◊n, we define a
corresponding activation region in parameter space by

SA
X :=

Ó
W œ Rd1◊d0 : (2Aij ≠ 1)Èw(i), x(j)Í > 0 for all i œ [d1], j œ [n]

Ô
.

This is a polyhedral cone defined by linear inequalities for each w(i). For each A œ {0, 1}d1◊n and X œ Rd0◊n,
we have F (W, v, X) = vT (A § (WX)) for all W œ SA

X , which is linear in W . The Jacobian with respect to v
is A § (WX) and with respect to W is

Ò◊F (W, X) = [viAijx(j)]ij = [(v § a(j)) ¢ x(j)]j , for all W œ SA
X , A œ {0, 1}d1◊n,

where a(j) denotes the jth column of A. To show that the Jacobian Ò◊F has rank n, we need to ensure that
the activation matrix A does not have too much linear dependence between its rows. The following result,
due to Bourgain et al. (2010), establishes this for most choices of A.
Theorem 3. Let A be a d ◊ d matrix whose entries are iid random variables sampled uniformly from {0, 1}.
Then A is singular with probability at most

3
1Ô
2

+ o(1)
4d

.

The next lemma shows that the specific values of v are not relevant to the rank of the Jacobian.
Lemma 4. Let a(j) œ Rd1 , x(j) œ Rd0 for j œ [n] and v œ Rd1 be vectors, with vi ”= 0 for all i œ [d1]. Then

rank({(v § a(j)) ¢ x(j) : j œ n}) = rank({a(j) ¢ x(j) : j œ [n]}).

Using algebraic techniques, we show that for generic X, the rank of the Jacobian is determined by A. Then
by the above results, Lemma 2 concludes that for most activation regions the smooth critical points are global
minima (see full details in Appendix A):
Theorem 5. Let ‘ > 0. If

d1 Ø max
3

n

d0
, �

3
log

3
n

‘d0

444
,

then for generic datasets (X, y), the following holds. In all but at most Á‘2nd1Ë activation regions (i.e., an ‘
fraction of all regions), every di�erentiable critical point of L with vj ”= 0 for all j is a global minimum.

The proof of this result is presented in Appendix A. The takeaway of Theorem 5 is that most activation
regions do not contain local minima. However, for a given dataset X not all activation regions, each encoded
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by a binary matrix A, may be realizable by the network. Equivalently, A is not realizable if and only
if SA

X = ÿ and we call such activation regions empty. We therefore turn our attention to evaluating the
number of non-empty activation regions. Di�erent activation regions in parameter space are separated by the
hyperplanes {W : Èw(i), x(j)Í = 0}, i œ [d1], j œ [n]. We say that a set of vectors in a d-dimensional space
is in general position if any k Æ d of them are linearly independent, which is a generic property. Standard
results on hyperplane arrangements give the following proposition. Details are provided in Appendix B.
Proposition 6 (Number of non-empty regions). Consider a network with one layer of d1 ReLUs. If the
columns of X are in general position in a d-dimensional linear space, then the number of non-empty activation
regions in the parameter space is (2

qd≠1
k=0

!n≠1
k

"
)d1 .

The formula provided above in Proposition 6 is equal to 2nd1 if and only if n Æ d, and is O(ndd1) if n > d. We
therefore observe that if d is large in relation to n and the data is in general position then by Proposition 6
most activation regions are non-empty. Thus we obtain the following corollary of Theorem 5.
Corollary 7. Under the same assumptions as Theorem 5, if d Ø n, then for X in general position and
arbitrary y, the following holds. In all but at most an ‘ fraction of all non-empty activation regions, every
di�erentiable critical point of L with nonzero entries for v is a zero loss global minimum.

More generally, for an arbitrary dataset that is not necessarily in general position the regions can be enumerated
using a celebrated formula by Zaslavsky (1975), in terms of the intersection poset of the hyperplanes. Moreover,
importantly one can show that the maximal number of non-empty regions is attained when the dataset is in
general position.

From the above discussion we conclude we have a relatively good understanding of how many activation
regions are non-empty. Notably, the number is the same for any dataset that is in general position. However,
it is worth reflecting on the fact that the identity of the non-empty regions, i.e., the sign patterns that are
associated with them, depends more closely on the specific dataset and is harder to catalogue. For a given
dataset X the non-empty regions correspond to the vertices of the Minkowski sum of the line segments with
end points 0, x(j), for j œ [n], as can be inferred from results in tropical geometry (see Joswig, 2021).
Proposition 8 (Identity of non-empty regions). Let A œ {0, 1}d1◊n. The corresponding activation region
is non-empty if and only if

q
j:Aij=1 x(j) is a vertex of

q
jœ[n] conv{0, x(j)} for all i œ [d1]. Here conv(S)

denotes the convex hull of a set S.

We provide a proof in Appendix B. This result provides a sense of which activation regions are non-empty,
depending on X. The explicit list of non-empty regions is known in the literature as the list of maximal
covectors of an oriented matroid (see Björner et al., 1999), which can be interpreted as a combinatorial type
of the dataset.

4 Shallow univariate ReLU networks: activation regions with global vs local minima

In Section 3 we showed that mild overparameterization su�ces to ensure that most activation regions do not
contain bad local minima. This result however does not discuss the relative scarcity of activation regions
with global versus local minima. To this end in this section we take a closer look at the case of a single input
dimension, d0 = 1. Importantly, in the univariate setting we are able to entirely characterize the realizable
(non-empty) activation regions.

Consider a two-layer ReLU network with input dimension d0 = 1, hidden dimension d1, and a dataset consisting
of n data points. We suppose the network has a bias term b œ Rd1 . The model F : (Rd1 ◊Rd1 ◊Rd1)◊R æ R
is given by

F (w, b, v, x) = vT ‡(wx + b).
Since we include a bias term here, we define the activation region SA

X by

SA
X :=

Ó
(w, b) œ Rd1 ◊ Rd1 : (2Aij ≠ 1)(w(i)x(j) + b(i)) > 0 for all i œ [d1], j œ [n]

Ô
.

In this one-dimensional case, we first obtain new bounds on the fraction of favorable activation regions to
show that most non-empty activation regions have no bad di�erentiable local minima. We begin with a
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characterization of which activation regions are non-empty. For k œ [n + 1], we introduce the step vectors
›(k,0), ›(k,1) œ Rn, defined by

(›(k,0))i =
I

1 if i < k,

0 if i Ø k
, and (›(k,1))i =

I
0 if i < k,

1 if i Ø k
.

Note that ›(1,0) = ›(n+1,1) = 0 and ›(n+1,0) = ›(1,1) = 1. There are 2n step vectors in total. Intuitively,
step vectors describe activation regions because all data points on one side of a threshold value activate the
neuron. The following lemma makes this notion precise.
Lemma 9. Fix a dataset (X, y) with x(1) < x(2) < · · · < x(n). Let A œ {0, 1}d1◊n be a binary matrix.
Then SA

X is non-empty if and only if the rows of A are step vectors. In particular, there are exactly (2n)d1

non-empty activation regions.

Using this characterization of the non-empty activation regions, we show that most activation patterns
corresponding to these regions yield full-rank Jacobian matrices, and hence the regions have no bad local
minima.
Theorem 10. Let ‘ œ (0, 1). Suppose that X consists of distinct data points, and

d1 Ø 2n log
1n

‘

2
.

Then in all but at most a fraction ‘ of non-empty activation regions, Ò◊F is full rank and every di�erentiable
critical point of L where v has nonzero entries is a global minimum.

Our strategy for proving Theorem 10 hinges on the following observation. For the sake of example, consider
the step vectors ›(1,1), ›(2,1), . . . , ›(n,1). This set of vectors forms a basis of Rn, so if each of these vectors was
a row of the activation matrix A, it would have full rank. This observation generalizes to cases where some of
the step vectors are taken to be ›(k,0) instead of ›(k,1). If enough step vectors are “collected” by rows of the
activation matrix, it will be of full rank. We can interpret this condition in a probabilistic way. Suppose that
the rows of A are sampled randomly from the set of step vectors. We wish to determine the probability that
after d1 samples, enough step vectors have been sampled to cover a certain set. We use the following lemma.
Lemma 11 (Coupon collector’s problem). Let ‘ œ (0, 1), and let n Æ m be positive integers. Let
C1, C2, . . . , Cd œ [m] be iid random variables such that for all j œ [n] one has P(C1 = j) Ø ”. If

d Ø 1
”

log
1n

‘

2
,

then [n] ™ {C1, . . . , Cd} with probability at least 1 ≠ ‘.

This gives us a bound for the probability that a randomly sampled region is of full rank. We finally convert this
into a combinatorial statement to obtain Theorem 10. For the details and a complete proof, see Appendix C.

In one-dimensional input space, the existence of global minima within a region requires similar conditions
to the region having a full rank Jacobian. Both of them depend on having many di�erent step vectors
represented among the rows of the activation matrix. The condition we need to check for the existence of
global minima is slightly more stringent, and depends on there being enough step vectors for both the positive
and negative entries of v.
Theorem 12 (Fraction of regions with global minima). Let ‘ œ (0, 1) and let v œ Rd

1 have nonzero entries.
Suppose that X consists of distinct data points,

|{i œ [d1] : v(i) > 0}| Ø 2n log
3

2n

‘

4
,

and
|{i œ [d1] : v(i) < 0}| Ø 2n log

3
2n

‘

4
.

Then in all but at most an ‘ fraction of non-empty activation regions SA
X , the subset of global minimizers in

(w, b), GX,y fl SA
X , is a non-empty a�ne set of codimension n. Moreover, all global minima of L have zero

loss.
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We provide the proof of this statement in Appendix C. To conclude, for shallow ReLU networks and univariate
data we have shown that mild overparameterization su�ces to ensure that the loss landscape is favorable
in the sense that most activation regions contain a set of global minima of significant codimension and do
not contain any bad local minima. Furthermore, considering both Sections 3 and 4, we have shown in both
the one-dimensional and higher-dimensional cases that most activation regions have a full rank Jacobian
and contain no bad local minima. This suggests that a large fraction of parameter space by volume should
also have a full rank Jacobian. This indeed turns out to be the case and is discussed in Section 6. Finally,
we highlight to the reader that we provide a discussion of the function space perspective of this setting in
Appendix D.

4.1 Nonsmooth critical points

Our results in this section considered the local minima in the interior of a given activation region. Here we
extend our analysis to handle points on the boundaries between regions where the loss is non-di�erentiable.
Recall that any locally Lipschitz function g : Rm æ R is di�erentiable on a set U of full measure. For such a
function g, its Clarke subdi�erential (Clarke, 1990) ˆg at a point ◊ œ Rm is defined by

ˆg(◊) = conv
;

lim
kæŒ

Òg(◊k) : ◊k œ U , lim
kæŒ

◊k = ◊

<
,

where conv denotes the convex hull. A point ◊ú œ Rm is said to be a Clarke stationary point of g if 0 œ ˆg(◊ú).
Note that this is a nonsmooth generalization of the notion of a critical point; if g is smooth, then ◊ú is a
Clarke stationary point if and only if Òg(◊ú) = 0.

We consider a network on univariate data F (w, b, v, x) as in Section 4. Let sgn : R æ {0, 1} be the unit step
function:

sgn(z) :=
I

0 if z Æ 0
1 if z > 0

.

Here we define the activation regions to include the boundaries:

S̃A
X :=

Ó
(w, b) œ Rd1 ◊ Rd1 : sgn(w(i)x(j) + b(i)) = Aij for all i œ [d1], j œ [n]

Ô
.

We assume that the input dataset X consists of distinct data points x(1) < x(2) < · · · < x(n). By the same
argument as Lemma 9, an activation region S̃A

X is non-empty if and only if the rows of A are step vectors,
and we derive the following result.
Theorem 13. Let ‘ œ (0, 1). If

d1 Ø 2n log
1n

‘

2
,

then in all but at most a fraction ‘ of non-empty activation regions A, every Clarke stationary point of L in
S̃A

X ◊ Rd1 is a global minimum.

5 Extension to deep networks

While the results presented so far focused on shallow networks, they admit generalizations to deep networks.
These generalizations are achieved by considering the Jacobian with respect to parameters of individual
layers of the network. In this section, we demonstrate this technique and prove that in deeper networks, most
activation regions have no spurious critical points. We consider fully connected deep networks with L layers,
where layer l maps from Rdl≠1 to Rdl , and dL = 1. The parameter space consists of tuples of matrices

W = (W1, W2, . . . , WL),

where Wl œ Rdl◊dl≠1 . We identify the vector space of all such tuples with Rm, where m =
qL

l=1 dldl≠1. For
l œ {0, . . . , L}, we define the l-th layer fl : Rm ◊ Rdl≠1 æ Rdl recursively by

f0(W, x) := x,

8
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fl(W, x) := ‡(Wlfl≠1(◊, x))

if l œ [L ≠ 1], and
fL(W, x) := vT fl≠1(◊, x),

where v œ Rdl≠1 is a fixed vector whose entries are nonzero. Then fL is the final layer output of the network,
so the model is given by F := fL. We denote the j-th row of Wl by w(j)

l . The activation patterns of a deep
network are given by tuples

A = (A1, A2, . . . , AL≠1),

where for each l œ [L≠1], Al œ {0, 1}dl◊n. For an activation pattern A, let SA
X denote the subset of parameter

space corresponding to A. More precisely,

SA
X = {W œ Rm : (2[Al]ij ≠ 1)Èw(i)

l , fl≠1(W, x(j))Í > 0 for all l œ [L ≠ 1], i œ [dl], j œ [n]}.

Assuming linear scaling of the second-to-last layer of the network in the number of data points, along with
mild restrictions on the other layers, we prove that most activation regions for deep networks have a full rank
Jacobian.
Theorem 14. Let X œ Rd0◊n be an input dataset with distinct points. Suppose that for all l œ [L ≠ 2],

dl = �
1

log n

‘L

2
,

and that
dL≠1 = n + �

3
log 1

‘

4
.

Then for at least a (1 ≠ ‘) fraction of all activation patterns A, the following holds. For all W œ SA
X ,

ÒW F (W, X) has rank n.

We provide a proof of this statement in Appendix E.

6 Volumes of activation regions

Our main results so far have concerned the number of activation regions containing bad local versus global
minima. Here we compute bounds for the volume of the union of these bad versus good activation regions,
which recall are subsets of parameter space. Proofs of all results in this section are provided in Appendix F.

6.1 One-dimensional input data

Consider the setting of Section 4, where we have a network F (w, b, v, x) on one-dimensional input data. Recall
that for A œ {0, 1}d1◊n, we defined the activation region SA

X by

SA
X := {(w, b) œ Rd1 ◊ Rd1 : (2Aij ≠ 1)(w(i)x(j) + b(i)) > 0 for all i œ [d1], j œ [n]}.

For k œ [n + 1], — œ {0, 1} and corresponding step vectors ›(k,—), we also define the individual neuron
activation regions Nk,— by

Nk,— := {(w, b) œ R ◊ R : (2›(k,—)
j ≠ 1)(wx(j) + b) > 0 for all j œ [n]}.

Let µ denote the Lebesgue measure. First, we compute an exact formula for the volume of the activation regions
intersected with the unit interval. That is, we compute the Lebesgue measure of the set Nk,— fl([≠1, 1]◊[≠1, 1]).
Proposition 15. Let Â : [≠Œ, Œ] æ [0, 2] be defined by

Â(x) :=

Y
_]

_[

≠ 1
2x if x Æ ≠1

1 + x
2 if ≠ 1 < x Æ 1

2 ≠ 1
2x if x > 1

.

9
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Consider data x(1) Æ · · · Æ x(n). Then for k œ [n + 1] and — œ {0, 1},

µ(Nk,— fl ([≠1, 1] ◊ [≠1, 1])) = Â(x(k)) ≠ Â(x(k≠1)).

Here we define x(0) := ≠Œ, x(n+1) := Œ.

We apply this result to bound the volume of activation regions with full rank Jacobian in terms of the
amount of separation between the data points. For overparameterized networks with su�cient separation,
the activation regions with full rank Jacobian fill up most of the parameter space by volume.
Proposition 16. Let n Ø 2. Suppose that the entries of v are nonzero. Suppose that for all j, k œ [n] with
j ”= k, we have |x(j)| Æ 1 and |x(j) ≠ x(k)| Ø „. If

d1 Ø 4
„

log
1n

‘

2
,

then

µ
1

fiAœA SA
X fl ([≠1, 1]d1 ◊ [≠1, 1]d1)

2
Ø (1 ≠ ‘)22d1 ,

where the union runs over the set A consisting of those activation patterns A œ {0, 1}d1◊n such that Òw,bF
has full rank on SA

X .

6.2 Arbitrary dimension input data

We now consider the setting of Section 3. Our model F : Rd1◊d0 ◊ Rd1 ◊ Rd0 æ R is defined by

F (W, v, x) = vT ‡(Wx).

We consider the volume of the set of points (W, v) such that Ò(W,v)F (W, v, X) has rank n. We can formulate
this problem probabilistically. Suppose that the entries of W and v are sampled from the standard normal
distribution N (0, 1). We wish to compute the probability that the Jacobian has full rank.

Let sgn : R æ {0, 1} denote the step function:

sgn(z) =
I

0 if z Æ 0
1 if z > 0

.

For an input dataset X œ Rd0◊n, consider the random variable

sgn(XT w),

where w ≥ N (0, I), and sgn is defined entrywise. This defines the distribution of activation patterns on the
dataset, which we denote by DX . We say that an input dataset X œ Rd0◊n is “-anticoncentrated if for all
nonzero u œ Rn,

Pa≥DX (uT a = 0) Æ 1 ≠ “.

We can interpret this as a condition on the amount of separation between data points. For example, suppose
that two data points x(j) and x(k) are highly correlated: Îx(j)Î = Îx(k)Î = 1 and Èx(j), x(k)Í Ø fl. Let us take
u œ Rn to be defined by uj = 1, uk = ≠1, and ul = 0 for l ”= j, k. Then

Pa≥DX (uT a = 0) = Pa≥DX (aj = ak)
= Pw≥N (0,I)(sgn(wT x(j)) = sgn(wT x(k)))

= 1 ≠ 1
fi

arccos(Èx(j), x(k)Í)

Æ 1 ≠ arccos(fl)
fi

.

10
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So in this case, the dataset is not “-anticoncentrated for “ = arccos(fl)
fi . At the other extreme, suppose that

the dataset is uncorrelated: Èx(j), x(k)Í = 0 for all j, k œ [n]. Then for all z œ R,

Pa≥DX (an = 0 | a1, . . . , an≠1) = Pw≥N (0,I)(Èw, x(n)Í Æ 0 | Èw, x(1)Í, . . . , Èw, x(n≠1)Í)
= Pw≥N (0,I)(Èw, x(n)Í Æ 0)

= 1
2 .

For u œ Rn with un ”= 0,

Pa≥DX (uT a = 0) = E[P(uT a = 0 | a1, . . . , an≠1)]

= E

S

UP

Q

aunan = ≠
n≠1ÿ

j=1
ujaj

------
a1, . . . , an≠1

R

b

T

V

Æ E[1/2]
= 1/2.

So in this case, the dataset is “-anticoncentrated with “ = 1/2. In order to prove that the Jacobian has full
rank with high probability, we must impose a separation condition such as this one – as data points get closer
together, it becomes harder for the network to distinguish between them and the Jacobian drops rank. Once
we impose “-anticoncentration, a mildly overparameterized network will attain full rank at randomly selected
parameters with high probability.
Theorem 17. Let ‘, “ œ (0, 1). Suppose that X œ Rd0◊n is generic and “-anticoncentrated. If

d1 Ø 8
“2 log

3
d0
‘

4
+ 2

“

3
n

d0
+ 1

4
,

then with probability at least 1 ≠ ‘, Ò(W,v)F (W, v, X) has rank n.

7 Experiments

Here we empirically demonstrate that most regions of parameter space have a good optimization landscape
by computing the rank of the Jacobian for two-layer neural networks. We initialize our network with random
weights and biases sampled iid uniformly on

Ë
≠ 1Ô

d1
, 1Ô

d1

È
. We evaluate the network on a random dataset

X œ Rd0◊n whose entries are sampled iid Gaussian with mean 0 and variance 1. This gives us an activation
region corresponding to the network evaluated at X, and we record the rank of the Jacobian of that matrix.
For each choice of d0, d1, and n, we run 100 trials and record the fraction of them which resulted in a Jacobian
of full rank. The results are shown in Figures 1 and 2.

For di�erent scalings of n and d0, we observe di�erent minimal widths d1 needed for the Jacobian to achieve
full rank with high probability. Figure 1 suggests that the minimum value of d1 needed to achieve full rank
increases roughly linearly in the dataset size n, and that the slope decreases as the input dimension d0
increases. This is the behavior predicted by Theorem 2, which finds full rank regions for d1 & n

d0
. Figure 2

operates in the regime d0 ≥ n, and shows that the necessary hidden dimension d1 remains constant in the
dataset size n. This is again consistent with Theorem 5, whose bounds depend only on the ratio n

d0
. Further

supporting experiments, including those involving real-world data, are provided in Appendix G.
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(a) d0 = 1. (b) d0 = 2. (c) d0 = 3. (d) d0 = 5.

Figure 1: The probability of the Jacobian being of full rank from a random initialization for various values of
d1 and n, where the input dimension d0 is left fixed.

(a) d0 = Á n
4 Ë. (b) d0 = Á n

2 Ë. (c) d0 = n. (d) d0 = 2n.

Figure 2: The probability of the Jacobian being of full rank for various values of d1 and n, where the input
dimension d0 scales linearly in the number of samples n.

8 Conclusion

In this work we studied the loss landscape of both shallow and deep ReLU networks. The key takeaway is that
mildly overparameterization in terms of network width su�ces to ensure the loss landscape is favorable in the
sense that bad local minima exist in only a small fraction of parameter space. In particular, using random
matrix theory and combinatorial techniques we showed that most activation regions have no bad di�erentiable
local minima by determining which regions have a full rank Jacobian. For univariate data we further proved
that most regions contain a high-dimensional set of global minimizers and also showed illustrated that the
same takeaway is true when also considering potential bad non-di�erentiable local minima on the boundaries
between regions. Finally the combinatorial approach we adopted allowed us to prove results independent of
the specific choice of initialization of parameters, or on the distribution of the dataset. There are a number
of directions for improvement. Notably we obtain our strongest results for shallow one-dimensional input
case, where we have a concrete grasp of the possible activation patterns; the case 1 < d1 < n remains open.
We leave strengthening our results concerning deep networks and high dimensional data to future work, and
hope that our contributions inspire further exploration to address them.

Reproducibility statement The computer implementation of the scripts needed to reproduce our
experiments can be found at https://github.com/kedar2/loss-landscape.
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A Details on counting activation regions with no bad local minima

We provide the proofs of the results presented in Section 3.

Proof of Lemma 4. Suppose that ⁄(1), . . . , ⁄(n) œ R. Since the entries of v are nonzero, the following are
equivalent:

nÿ

i=1
⁄(i)(v § a(i)) ¢ x(i) = 0

nÿ

i=1
⁄(i)(v § a(i))kx(i)

j = 0 ’j œ [d0], k œ [d1]

nÿ

i=1
⁄(i)vka(i)

k x(i)
j = 0 ’j œ [d0], k œ [d1]

nÿ

i=1
⁄(i)a(i)

k x(i)
j = 0 ’j œ [d0], k œ [d1]

nÿ

i=1
⁄(i)a(i) ¢ x(i) = 0.

So the kernel of the matrix whose i-th row is (v § a(i)) ¢ x(i) is equal to the kernel of the matrix whose i-th
row is a(i) ¢ x(i). It follows that

rank({(v § a(i)) ¢ x(i) : i œ n}) = rank({a(i) ¢ x(i) : i œ [n]}).

Proof of Theorem 5. Suppose that d0d1 Ø n. Consider a matrix A œ {0, 1}d1◊n, which corresponds to one
of the theoretically possible activation pattern of all d1 units across all n input examples, and denote its
columns by a(j) œ {0, 1}d1 , j = 1, . . . , n. For any given input dataset X, the function F is piecewise linear in
W . More specifically, on each activation region SA

X , F (·, v, X) is a linear map in W of the form

F (W, v, x(j)) =
d1ÿ

i=1

d0ÿ

k=1
viAijWikx(j)

k (j œ [n]).

So on SA
X the Jacobian of F (·, X) is given by the Khatri-Rao (columnwise Kronecker) product

ÒW F (W, v, X) = ((v § a(1)) ¢ x(1), . . . , (v § a(n)) ¢ x(n)). (2)

In particular, ÒW F is of full rank on SA
X exactly when the set

{(v § a(i)) ¢ x(i) : i œ [n]}

consists of linearly independent elements of Rd1◊d0 , since d0d1 Ø n. By Lemma 4, this is equivalent to the set

{a(i) ¢ x(i) : i œ [n]}

consisting of linearly independent vectors, or in another words, the Khatri-Rao product A ú X having full
rank.

For a given A œ {0, 1}d1◊n consider the set

J A := {X œ Rd0◊n : A ú X is of full rank}.

The expression A ú X corresponds to ÒW F (W, v, X) in the case that W œ SA
X . Suppose that d1 is large

enough that d1 Ø n
d0

. We will show that for most A œ {0, 1}d1◊n, J A is non-empty and in fact contains
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almost every X. We may partition [n] into r := Á n
d1

Ë subsets S1, S2, . . . , Sr such that |Sk| Æ d1 for all k œ [r]
and partition the set of columns of A accordingly into blocks (a(s))sœSk for all k œ [r]. Let us form a d1 ◊ |Sk|
matrix M whose columns are the a(s), s œ Sk. We will use a probabilistic argument. For this, consider the
entries of M as being iid Bernoulli random variables with parameter 1/2. We may extend M to a d1 ◊ d1
random matrix M̃ whose entries are iid Bernoulli random variables with parameter 1/2. By Theorem 3, M̃
will be singular with probability at most

3
1Ô
2

+ o(1)
4d1

Æ C1 · 0.72d1 ,

where C1 is a universal constant. Whenever M̃ is nonsingular, the vectors a(s), s œ Sk are linearly independent.
Using a simple union bound, we have

P
1

(a(s))sœSk are linearly independent for all k œ [r]
2

Ø 1 ≠ rC1(0.72)d1 .

Now suppose that (a(s))sœSk are linearly independent for all k œ [r]. Let e1, . . . , ed0 be the standard basis of
Rd0 . Since r Æ d0, there exists X œ Rd0◊n such that x(i) = ek whenever i œ Sk. For such an X, we claim
that the set

{a(i) ¢ x(i) : i œ [n]}

consists of linearly independent elements of Rd1◊d0 . To see this, suppose that there exist –1, . . . , –n such that
nÿ

i=1
–i(a(i) ¢ x(i)) = 0.

Then

0 =
rÿ

k=1

ÿ

iœSk

–i(a(i) ¢ x(i))

=
rÿ

k=1

ÿ

iœSk

–i(a(i) ¢ ek)

=
rÿ

k=1

A
ÿ

iœSk

–ia
(i)

B
¢ ek.

The above equation can only hold if
ÿ

iœSk

–ia
(i) = 0, for all k œ [r].

By the linear independence of (a(i))iœSk , this implies that –i = 0 for all i œ [n]. This shows that the elements
a(i) ¢ x(i) are linearly independent for a particular X whenever the (a(i))iœSk are all linearly independent. In
other words, J A is non-empty with probability at least 1 ≠ C1r(0.72d1) when the activation region is chosen
uniformly at random.

Let us define
A := {A œ {0, 1}d1◊n : J A ”= ÿ}.

We have shown that if A is chosen uniformly at random from {0, 1}d1◊n, then A œ A with high probability.
Note that J A is defined in terms of polynomials of X not vanishing, so J A is the complement of a Zariski-closed
subset of Rd0◊n. Let

J := flAœAJA.

Then J is a Zariski-open set of full measure, since it is a finite intersection of non-empty Zariski-open sets
(which are themselves of full measure by Lemma 1). If X œ J and A œ A, then ÒW F (W, X) is of full rank
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for all W œ SA
X , and therefore all local minima in SA

X will be global minima by Lemma 2. So if we take
X œ J and d1 such that

d1 Ø
log

1
C1(n+1)

d0‘

2

log
! 1

0.72
"

and choose A œ {0, 1}d1◊n uniformly at random, then with probability at least

1 ≠ C1r(0.72d1) Ø 1 ≠ C1r

3
d0‘

C1(n + 1)

4

Ø 1 ≠ ‘,

SA
X will have no bad local minima. We rephrase this as a combinatorial result: if d1 satisfies the same bounds

above, then for generic datasets X we have the following: for all but at most Á‘2d0d1Ë activation regions SA
X ,

SA
X has no bad local minima. The theorem follows.

The argument that we used to prove that the Jacobian is full rank for generic data can be applied to arbitrary
binary matrices. The proof is exactly the same as the sub-argument in the proof of Theorem 5.
Lemma 18. For generic datasets X œ Rd0◊n, the following holds. Let a(i) œ {0, 1}d1 for i œ [n]. Suppose
that there exists a partition of [n] into r Æ d0 subsets S1, · · · , Sr such that for all k œ [r],

rank({a(i) : i œ Sk}) = |Sk|.

Then
rank({a(i) ¢ x(i) : i œ [n]}) = n.

B Details on counting non-empty activation regions

We provide the proofs of the results presented in Section 3. The subdivisions of parameter space by activation
properties of neurons is classically studied in VC-dimension computation (Cover, 1965; Sakurai, 1998; Anthony
& Bartlett, 1999). This has similarities to the analysis of linear regions in input space for neural networks
with piecewise linear activation functions (Montúfar et al., 2014).

Proof of Proposition 6. Consider the map Rd0 æ Rn; w ‘æ [wT X]+ that takes the input weights w of a single
ReLU to its activation values over n input data points given by the columns of X. This can equivalently be
interpreted as a map taking an input vector w to the activation values of n ReLUs with input weights given
by the columns of X. The linear regions of the latter correspond to the (full-dimensional) regions of a central
arrangement of n hyperplanes in Rd0 with normals x(1), . . . , x(n). Denote the number of such regions by NX .
If the columns of X are in general position in a d-dimensional linear space, meaning that they are contained
in a d-dimensional linear space and any d columns are linearly independent, then

NX = Nd,n := 2
d≠1ÿ

k=0

3
n ≠ 1

k

4
. (3)

This is a classic result that can be traced back to the work of Schläfli (1950), and which also appeared in the
discussion of linear threshold devices by Cover (1964).

Now for a layer of d1 ReLUs, each unit has its parameter space Rd0 subdivided by an equivalent hyperplane
arrangement that is determined solely by X. Since all units have individual parameters, the arrangement of
each unit essentially lives in a di�erent set of coordinates. In turn, the overall arrangement in the parameter
space Rd0◊d1 of all units is a so-called product arrangement, and the number of regions is (NX)d1 . This
conclusion is su�ciently intuitive, but it can also be derived from Zaslavsky (1975, Lemma 4A3). If the input
data X is in general position in a d-dimensional linear subspace of the input space, then we can substitute
equation 3 into (NX)d1 and obtain the number of regions stated in the proposition.
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We are also interested in the specific identity of the non-empty regions; that is, the sign patterns that are
associated with them. As we have seen above, the set of sign patterns of a layer of units is the d1-Cartesian
power of the set of sign patterns of an individual unit. Therefore, it is su�cient to understand the set of sign
patterns of an individual unit; that is, the set of dichotomies that can be computed over the columns of X by
a bias-free simple perceptron x ‘æ sgn(wT x). Note that this subsumes networks with biases as the special
case where the first row of X consists of ones, in which case the first component of the weight vector can be
regarded as the bias. Let LX be the NX ◊ n matrix whose NX rows are the di�erent possible dichotomies
(sgn wT x(1), . . . , sgn wT x(n)) œ {≠1, +1}n. If we extend the definition of dichotomies to allow not only +1
and ≠1 but also zeros for the case that data points fall on the decision boundary, then we obtain a matrix
LX that is referred to as the oriented matroid of the vector configuration X, and whose rows are referred to
as the covectors of X (Björner et al., 1999). This is also known as the list of sign sequences of the faces of
the hyperplane arrangement.

To provide more intuitions for Proposition 8, we give a self-contained proof below.

Proof of Proposition 8. For each unit, the parameter space Rd0 is subdivided by an arrangement of n
hyperplanes with normals given by x(j), j œ [n]. A weight vector w is in the interior of the activation region
with pattern a œ {0, 1}n if and only if (2aj ≠ 1)wT x(j) > 0 for all j œ [n]. Equivalently,

wT x(j) > wT 0 for all j with aj = +1

wT 0 > wT x(jÕ) for all jÕ with aÕ
j = 0.

This means that w is a point where the function w ‘æ wT
q

j : aj=1 x(j) attains the maximum value among of
all linear functions with gradients given by sums of x(j)s, meaning that at w this function attains the same
value as

Â : w ‘æ
ÿ

jœ[n]
max{0, wT x(j)} = max

S™[n]
wT

ÿ

jœS

x(j). (4)

Dually, the linear function x ‘æ wT x attains its maximum over the polytope

P = conv{
ÿ

jœS

x(j) : S ™ [n]} (5)

precisely at
q

j : aj=1 x(j). In other words,
q

j : aj=1 x(j) is an extreme point or vertex of P with a supporting
hyperplane with normal w. For a polytope P ™ Rd0 , the normal cone of P at a point x œ P is defined as
the set of w œ Rd0 such that wT x Ø wT xÕ for all xÕ œ P . For any S ™ [n] let us denote by 1S œ {0, 1}[n]

the vector with ones at components in S and zeros otherwise. Then the above discussion shows that the
activation region Sa

X with a = 1S is the interior of the normal cone of P at
q

jœS x(j). In particular, the
activation region is non empty if and only if

q
jœS x(j) is a vertex of P .

To conclude, we show that P is a Minkowski sum of line segments,

P =
ÿ

jœ[n]
Pj , Pi = conv{0, x(j)}.

To see this note that x œ P if and only if there exist –S Ø 0,
q

S –S = 1 with

x =
ÿ

S™[n]
–S

ÿ

jœS

x(j)

=
ÿ

jœ[n]

ÿ

S : jœS

–Sx(j)

=
ÿ

jœ[n]
[(

ÿ

S : j ”œS

–S)0 + (
ÿ

S : jœS

–S)x(j)]

=
ÿ

jœ[n]
[(1 ≠ —j)0 + —jx(j)] =

ÿ

jœ[n]
z(j),
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Figure 3: Illustration of Proposition 8. The polytope P for a ReLU on three data points x(1), x(2), x(3) is
the Minkowski sum of the line segments Pi = conv{0, x(i)} highlighted in red. The activation regions in
parameter space are the normal cones of P at its di�erent vertices. Hence the vertices correspond to the
non-empty activation regions. These are naturally labeled by vectors 1S that indicate which x(i) are added
to produce the vertex and record the activation patterns.

where —j =
q

S : jœS –S and z(j) = [(1 ≠ —j)0 + —jx(j)]. Thus, x œ P if and only if x is a sum of points
z(j) œ Pj = conv{0, x(j)}, meaning that P =

q
j Pj as was claimed.

The polytope equation 5 may be regarded as the Newton polytope of the piecewise linear convex function
equation 4 in the context of tropical geometry (Joswig, 2021). This perspective has been used to study the
linear regions in input space for ReLU (Zhang et al., 2018) and maxout networks (Montúfar et al., 2022).

We note that each vertex of a Minkowski sum of polytopes P = P1 + · · · + Pn is a sum of vertices of the
summands Pj , but not every sum of vertices of the Pj results in a vertex of P . Our polytope P is a sum of line
segments, which is a type of polytope known as a zonotope. Each vertex of P takes the form v =

q
jœ[n] vj ,

where each vj is a vertex of Pj , either the zero vertex 0 or the nonzero vertex x(j), and is naturally labeled
by a vector 1S œ {0, 1}n ≥= 2[n] that indicates the js for which vj = x(j). A zonotope can be interpreted as
the image of a cube by a linear map; in our case it is the projection of the n-cube conv{a œ {0, 1}n} ™ Rn

into Rd0 by the matrix X œ Rd0◊n. The situation is illustrated in Figure 3.

Example 19 (Non-empty activation regions for 1-dimensional inputs). In the case of one-dimensional inputs
and units with biases, the parameter space of each unit is R2. We treat the data as points x(1), . . . , x(n) œ 1◊R,
where the first coordinate is to accommodate the bias. For generic data (i.e., no data points on top of each
other), the polytope P =

q
jœ[d1] conv{0, x(j)} is a polygon with 2n vertices. The vertices have labels 1S

indicating, for each k = 0, . . . , n, the subsets S ™ [n] containing the largest respectively smallest k elements
in the dataset with respect to the non-bias coordinate.

C Details on counting non-empty activation regions with no bad minima

We provide the proofs of the statements in Section 4.

Proof of Lemma 9. First we establish that the rows of the matrices A corresponding to non-empty activation
regions must be step vectors. To this end, assume A œ SA

X and for an arbitrary row i œ [d1] let Ai1 = – œ {0, 1}.
If Aij = – for all j œ [n], then the i-th row of A is a step vector equal to either ›(n+1,0) or ›(n+1,1). Otherwise,
there exists a minimal k œ [n + 1] such that Aik = 1 ≠ –. We proceed by contradiction to prove in this
setting that Aij = 1 ≠ – for all j Ø k. Suppose there exists a j > k such that Aij = –, then as A œ SA

X and
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x(k) < x(j) this implies that the following two inequalities are simultaneously satisfied,

0 < (2Aik ≠ 1)(w(i)x(k) + b(i)) = (1 ≠ 2–)(w(i)x(k) + b(i)) < (1 ≠ 2–)(w(i)x(j) + b(i)),
0 < (2Aij ≠ 1)(w(i)x(j) + b(i)) = (2– ≠ 1)(w(i)x(j) + b(i)) = ≠(1 ≠ 2–)(w(i)x(j) + b(i)).

However, these inequalities clearly contradict one another and therefore we conclude Ai,· is a step vector
equal to either ›(k,0) or ›(k,1)

Conversely, assume the rows of A are all step vectors. We proceed to prove SA
X is non-empty under this

assumption by constructing (w, b) such that sign(w(i)x(j) + b(i)) = Aij for all j œ [n] and any row i œ [d1].
To this end, let Ai1 = – œ {0, 1}. First, consider the case where Aij = – for all j œ [n]. If – = 0 then with
w(i) = 1 and b(i) = ≠2|x(n)| ≠ 1 it follows that

w(i)x(j) + b(i) < x(n) + b(i) < ≠|x(n)| ≠ 1

for all j œ [n]. If – = 1, then with w(i) = 1 and b(i) = 2|x(i)| + 1 we have

w(i)x(j) + b(i) > w(i)x(1) + b(i) > |x(1)| + 1

for all j œ [n]. Otherwise, suppose Ai,· is not constant: then by construction there exists a k œ {2, · · · , n}
such that Aij = – for all j œ [1, k ≠ 1] and Aij = 1 ≠ – for all j œ [k, n]. Letting

w(i) = (2– ≠ 1),

b(i) = ≠(2– ≠ 1)
3

x(k≠1) + x(k)

2

4
,

then for any j œ [n]

sgn(w(i)x(j) + b(i)) = sgn
3

(2– ≠ 1)
3

x(j) ≠ x(k≠1) + x(k)

2

44
= Aij .

Thus, for any A with step vector rows, given a dataset consisting distinct one dimensional points we can
construct network whose preactivations correspond to the activation pattern encoded by A.

In summary, given a fixed, distinct one dimensional dataset we have established a one-to-one correspondence
between the non-empty activation regions and the set of binary matrices whose rows are step vectors. For
convenience we refer to these as row-step matrices. As there are 2n step vector rows of dimension n and d1
rows in A, then there are (2n)d1 binary row-step matrices and hence (2n)d1 non-empty activation regions.

Proof of Lemma 11. By the union bound,

P([n] ”™ {C1, . . . , Cd}) Æ
nÿ

j=1
P(j /œ {C1, · · · , Cd})

=
nÿ

j=1
(1 ≠ ”)d

Æ
nÿ

j=1
e≠”d

= ne≠”d.

So if d > 1
” log( n

‘ ),

P([n] ™ {C1, . . . , Cd}) Ø 1 ≠ ne≠”d

Ø 1 ≠ ‘.

This concludes the proof.
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Proof of Theorem 10. Consider a dataset (X, y) consisting of distinct data points. Without loss of generality
we may index these points such that

x(1) < x(2) < · · · < x(n).

Now consider a matrix A œ {0, 1}d1◊n whose rows are step vectors and which therefore corresponds to a
non-empty activation region by Lemma 9. As in the proof of Theorem 5, denote its columns by a(j) œ {0, 1}d1

for j œ [n]. On SA
X , the Jacobian of F with respect to b is given by

ÒbF (w, b, v, X) = (v § a(1), . . . , v § a(n)).

We claim that if A has full rank, then ÒbF (w, b, v, X) has full rank for all w, b, v, X with the entries of v
nonzero. To see this, suppose that A is of full rank, and that

nÿ

j=1
–j(v § a(j)) = 0

for some –1, . . . , –n œ R. Then for all i œ [d1],

nÿ

j=1
–jviAij = 0,

nÿ

j=1
–iAij = 0.

But A is of full rank, so this implies that –i = 0 for all i œ [n]. As a result, if A is full rank then ÒbF (w, b, v, X)
is full rank, and in particular Ò(w,b,v)F (w, b, v, X) is rank. Therefore, to show most non-empty activation
regions have no bad local minima, it su�ces to show most non-empty activation regions are defined by a full
rank binary matrix A.

To this end, if A is a binary matrix with step vector rows, we say that A is diverse if it satisfies the following
properties:

1. For all k œ [n], there exists i œ [d1] such that Ai,· œ {›(k,0), ›(k,1)}.

2. There exists i œ [d1] such that Ai,· = ›(1,1).

We proceed by i) showing all diverse matrices are of full rank and then ii) non-empty activation regions are
defined by a diverse matrix. Suppose A is diverse and denote the span of the rows of A by row(A). Then
›(1,1) = (1, . . . , 1) œ row(A) and for each k œ [n] either ›(k,0) or ›(k,1) is in row(A). Observe if ›(k,0) œ row(A)
then 1 ≠ ›(k,0) = ›(k,1) œ row(A), therefore for all k œ [n] ›(k,1) œ row(A). As the set of vectors

{›(k,1) : k œ [n]}

forms a basis of Rn we conclude that all diverse matrices are full rank.

Now we show most binary matrices with step vector rows are diverse. Let A be a random binary matrix
whose rows are selected mutually iid from the set of all step vectors. For i œ [d1], let Ci œ [n + 1] be defined
as follows: if Ai,· œ {›(k,0), ›(k,1)} for some k œ {2, 3, . . . , n}, we define Ci = k; if Ai,· = ›(1,1), then we define
Ci = 1; otherwise, we define Ci = n + 1. By definition A is diverse if and only if

[n] ™ {C1, . . . , Cd1}.

As the rows of A are chosen uniformly at random from the set of all step vectors, the Ci are iid and

P(C1 = k) Ø 1
2n
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for all k œ [n], then by Lemma 11, if d Ø 2n log( n
‘ ),

P(A is diverse) = P([n] ™ {C1, . . . , Cd1})
Ø 1 ≠ ‘.

This holds for a randomly selected matrix with step vector rows. Translating this into a combinatorial
statement, we see for all but at most a fraction ‘ of matrices with step vector rows are diverse. Furthermore,
in each activation region SA

X corresponding to a diverse A the Jacobian is full rank and every di�erentiable
critical point of L is a global minimum.

Proof of Theorem 12. Let ‘ > 0. We define the following two sets of neurons based on the sign of their output
weight,

D1 = {i œ [d1] : v(i) > 0},

D0 = {i œ [d1] : v(i) < 0}.

Suppose that |D1|, |D0| Ø 2n log( 2n
‘ ). Furthermore, without loss of generality, we index the points in the

dataset such that
x(1) < x(2) < · · · < x(n).

Now consider a matrix A œ {0, 1}d1◊n whose rows are step vectors, then by Lemma 9 A corresponds to a
non-empty activation region. We say that A is complete if for all k œ {0, . . . , n ≠ 1} and — œ {0, 1} there
exists i œ [d1] such that Ai,· = ›(k,1) and sgn(v(i)) = —. We first show that if A is complete, then there exists
a global minimizer in SA

X . Consider the linear map Ï : Rd1 ◊ Rd1 æ R1◊n defined by

Ï(w, b) =
C

d1ÿ

i=1
v(i)(2Aij ≠ 1)(w(i)x(j) + b(i))

D

j=1,...,n

.

Note for (w, b) œ SA
X then Ï(w, b) = F (w, b, v, X). As proved in Lemma 20, for every z œ R1◊n there exists

(w, b) œ SA
X such that F (w, b, v, X) = z. In particular, this means that Ï is surjective and therefore SA

X
contains zero-loss global minimizers. Define

Vy = {(w, b) œ Rd1 ◊ Rd1 : Ï(w, b) = y},

then GX,y fl SA
X = Vy fl SA

X and by the rank-nullity theorem

dim(Vy) = dim(Ï≠1({y}))
= 2d1 ≠ n.

We therefore conclude that if A is complete, then GX,y fl SA
X is the restriction of a (2d1 ≠ n)-dimensional linear

subspace to the open set SA
X . This is equivalent to GX,y fl SA

X being an a�ne set of codimension n as claimed.

To prove the desired result it therefore su�ces to show that most binary matrices with step vector rows are
complete. Let A be a random binary matrix whose rows are selected mutually iid uniformly at random from
the set of all step vectors. For — œ {0, 1} and i œ D— let C—,i œ [n] be defined as follows: if Ai,· = ›(k≠1,1) for
some k œ [n] then C—,i = k, otherwise C—,i = n + 1. Observe that A is complete if and only if

[n] ™ {C0,i : i œ D0} and [n] ™ {C1,i : i œ D1}.

Since there are 2n step vectors,
P(C—,i = k) = 1

2n
for all k œ [n]. So by the union bound and Lemma 11,

P(A is complete) = P([n] ™ {C0,i : i œ D0}) and [n] ™ {C1,i : i œ D1})
Ø 1 ≠ P([n] ”™ {C0,i : i œ D0}) ≠ P([n] ”™ {C1,i : i œ D1})

Ø 1 ≠ ‘

2 ≠ ‘

2
= 1 ≠ ‘.
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As this holds for a matrix with step vectors chosen uniformly at random, it therefore follows that all but at
most a fraction ‘ of such matrices are complete. This concludes the proof.

Lemma 20. Let A œ {0, 1}d1◊n be complete, and let X œ Rd0◊n be an input dataset with distinct points.
Then for any y œ R1◊n, there exists (w, b) œ SA

X such that F (w, b, v, X) = y.

Proof. If A is complete then there exist row indices i0,0, i1,0, . . . , in≠1,0 œ [d1] and i0,1, i1,1, . . . , in≠1,1 œ [d1]
such that for all k œ {0, . . . , n ≠ 1} and — œ {0, 1} the ik,—-th row of A is equal to ›(k,1) with v(ik,—) = —. For
— œ {0, 1}, we define

I— = {i0,— , . . . , in≠1,—}.

We will construct weights w(1), . . . , w(d1) and biases b(1), . . . , b(d1) such that (w, b) œ SA
X and F (w, b, v, X) = y.

For i /œ I0 fi I1, we define w(i) and b(i) arbitrarily such that

sgn(w(i)x(j) + b(i)) = Aij

for all j œ [n]. Note by Lemma 9 that this is possible as each Ai,· is a step vector. Therefore, in order to
show the desired result it su�ces only to appropriately construct w(i), b(i) for i œ I0 fi I1. To this end we
proceed using the following sequence of steps.

1. First we separately consider the contributions to the output of the network coming from the slack
neurons, those with index i ”œ I0 fi I1, and the key neurons, those with index i œ I0 fi I1. For j œ [n],
we denote the residual of the target y(j) leftover after removing the corresponding output from the
slack part of the network as z(j). We then recursively build a sequence of functions (g(l))n≠1

l=0 in such
a manner that g(l)(x(j)) = z(j) for all j Æ n.

2. Based on this construction, we select the parameters of the key neurons, i.e., (w(i), b(i)) for i œ I0 fiI1,
and prove (w, b) œ SA

X .

3. Finally, using these parameters and the function g(n≠1) we show F (w, b, v, X) = y.

Step 1: for j œ [n] we define the residual

z(j) = y(j) ≠
ÿ

i/œI0fiI1

v(i)‡(w(i)x(j) + b(i)). (6)

For j œ {0, . . . , n ≠ 1}, consider the values —(j), b̃(j), w̃(j) œ R, and the functions g(j) : R æ R, defined
recursively across the dataset as

—(0) = sgn(z(1))
w̃(0) = 1
b̃(0) = |z(1)| ≠ x̃(1)

g(0)(x) = (2—(0) ≠ 1)‡(w̃(0)x + b̃(0))
—(j) = sgn(z(j+1) ≠ g(j≠1)(x(j+1))) (1 Æ j Æ n ≠ 1)

w̃(j) = 2|z(j+1) ≠ g(j≠1)(x(j+1))|
x(j+1) ≠ x(j) (1 Æ j Æ n ≠ 1)

b̃(j) = ≠ |z(j+1) ≠ g(j≠1)(x(j+1))|(x(j+1) + x(j))
x(j+1) ≠ x(j) (1 Æ j Æ n ≠ 1)

g(j)(x) =
jÿ

¸=0
(2—(¸) ≠ 1)‡(w̃(¸)x + b̃¸) (1 Æ j Æ n ≠ 1).

Observe for all j œ {1, . . . , n ≠ 1} that w̃(j) Ø 0 and

w̃(j)
3

x(j) + x(j+1)

2

4
+ b(j) = 0.
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In particular, w̃(j)x(jÕ) + b̃(j) < 0 if jÕ Æ j and w̃(j)x(jÕ) + b(j) > 0 otherwise. Moreover, for all jÕ œ [n],

w̃(0)x(jÕ) + b(0) = x(jÕ) + |ỹ(1)| ≠ x(1)

> 0.

We claim that for all j œ [n], g(n≠1)(x(j)) = z(j). For the case j = 1, we compute

g(n≠1)(x(1)) =
n≠1ÿ

¸=0
(2—(¸) ≠ 1)‡(w̃(¸)x(1) + b̃(¸))

= (2—(0) ≠ 1)‡(w̃(0)x(1) + b̃(0))
= (2 sgn(z̃(1)) ≠ 1)‡(x(1) + |z̃(1)| ≠ x(1))
= z̃(1).

For j œ {2, · · · , n ≠ 1},

g(n≠1)(x(j))

=
n≠1ÿ

¸=0
(2—(¸) ≠ 1)‡(w̃(¸)x(j) + b̃(¸))

=
j≠1ÿ

¸=0
(2—(¸) ≠ 1)‡(w̃(¸)x(j) + b̃(¸))

= (2—(j≠1) ≠ 1)‡(w̃(j≠1)x(j) + b̃(j≠1)) + g(j≠2)(x(j))
= (2—(j≠1) ≠ 1)(w̃(j≠1)x(j) + b̃(j≠1)) + g(j≠2)(x(j))
= (2—(j≠1) ≠ 1)(w̃(j≠1)x(j) + b̃(j≠1)) + g(j≠2)(x(j))

= (2—(j≠1) ≠ 1)
3

2|z(j) ≠ g(j≠2)(x(j))|
x(j) ≠ x(j≠1) x(j) ≠ |z(j) ≠ g(j≠2)(x(j))|(x(j) + x(j≠1))

x(j) ≠ x(j≠1)

4

+ g(j≠2)(x(j))
= (2—(j≠1) ≠ 1)|z(j) ≠ g(j≠2)(x(j))| + g(j≠2)(x(j))
= (z(j) ≠ g(j≠2)(x(j))) + g(j≠2)(x(j))
= z(j).

Hence, g(n≠1)(x(j)) = z(j) for all j œ [n].

Step 2: based on the construction above we define (w(i), b(i)) for i œ I0 fi I1. For k œ {0, . . . , n ≠ 1} and
— œ {0, 1}, we define

w(ik,—) = 3 + (2—(k) ≠ 1)(2— ≠ 1)
2

w̃(k)

|v(ik,—)|

b(ik,—) = 3 + (2—(k) ≠ 1)(2— ≠ 1)
2

b̃(k)

|v(ik,—)|
.

Now we show that this pair (w, b) satisfies the desired properties. By construction, we have

sgn(w(i)x(j) + b(i)) = Aij
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for i /œ I0 fiI1, j œ [n]. If i œ I0 fiI1, j œ [n], then we can write i = ik,— for some k œ {0, . . . , n≠1}, — œ {0, 1}.
Then

sgn(w(i)x(j) + b(i)) = sgn
3

3 + (2—(k) ≠ 1)(2— ≠ 1)
2|v(ik,—)|

(w̃(k)x(j) + b̃(k))
4

= sgn(w̃(k)x(j) + b̃(k))
= 1k<j

= Aij ,

where the second-to-last line follows from the construction of w̃ and b̃ and the last line follows from the fact
that Ai,· = ›(k,1).

Step 3: finally, we show that F (w, b, v, X) = y. For j œ [n],

F (w, b, x(j)) =
d1ÿ

i=1
v(i)‡(w(i)x(j) + b(i))

=
ÿ

i/œI0fiI1

v(i)‡(w(i)x(j) + b(i)) +
ÿ

iœI0fiI1

v(i)‡(w(i)x(j) + b(i))

= z(j) ≠ y(j) +
n≠1ÿ

k=0

1ÿ

—=0
v(ik,—)‡(w(ik,—)x(j) + b(ik,—)),

where the last line follows from (6). By the definition of w(ik,—) and b(ik,—), this is equal to

z(j) ≠ y(j) +
n≠1ÿ

k=0

1ÿ

—=0

v(ik,—)

|v(ik,—)|
3 + (2—(k) ≠ 1)(2— ≠ 1)

2 ‡(w̃(k)x(j) + b̃(k)).

By construction sgn(v(ik,—)) = —, so the above is equal to

y(j) ≠ z(j) +
n≠1ÿ

k=0

1ÿ

—=0
(2— ≠ 1)3 + (2—(k) ≠ 1)(2— ≠ 1)

2 ‡(w̃(k)x(j) + b̃(k))

= y(j) ≠ z(j) +
n≠1ÿ

k=0
(2—(k) ≠ 1)‡(w̃(k)x(j) + b̃(k))

= y(j) ≠ z(j) + g(n≠1)(x(j))
= y(j).

We have therefore successfully identified weights and biases (w, b) œ SA
X such that F (w, b, v, X) = y.

Proof of Theorem 13. We say that a binary matrix A with step vector rows is diverse if for all k œ [n], there
exists i œ [d1] such that Ai,· = ›(k,1). Suppose that A is a binary matrix uniformly selected among all binary
matrices with step vector rows. Define the random variables C1, · · · , Cd1 œ [n + 1] by Ci = k if Ai,· = ›(k,1)

for some k œ [n], and Ci = n + 1 otherwise. Since the rows of A are iid, the Ci are iid. Moreover, for each
k œ [n], we have P(Ci = k) Ø 1

2n . So by Lemma 11, if

d1 Ø 2n log
1n

‘

2
,

then with probability at least 1 ≠ ‘,
[n] ™ {C1, · · · , Cd1}.

This means that for each k œ [n], there exists i such that Ci = ›(k,1). In other words, A is diverse. Since
we chose A uniformly at random among all binary matrices with step vector rows, it follows that all but a
fraction ‘ of such matrices are diverse.
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Now it su�ces to show that when A is diverse, every Clarke stationary point of L in S̃A
X ◊ Rd1 is a global

minimum. Note that F is continuously di�erentiable with respect to v everywhere. We will show that
ÒvF (w, b, v, X) has rank n for all (w, b, v) œ S̃A

X ◊ Rd1 . Since A is diverse, there exist i1, · · · , in œ [d1] such
that for all k œ [n], Aik,· = ›(k,1). Consider the n ◊ n submatrix M of ÒvF (w, b, v, X) generated by the rows
i1, · · · , in. That is,

Mpq = ˆF

ˆv(ip) (w, b, v, x(q)).

Then

Mpq = ‡(w(ip)x(q) + b(ip)),

so the entries of M are non-negative, and

sgn(Mpq) = sgn(w(ip)x(q) + b(ip))
= Aip,q

= (›(p,1))q

= 1qØp.

Hence, M is upper triangular with positive entries on its diagonals, implying that rank(M) = n. Since
M is a submatrix of ÒvF (w, b, v, X), we have rank(ÒvF (w, b, v, X)) = n as well. Now suppose that
(w, b, v) œ S̃A

X ◊Rd1 is a Clarke stationary point of L. Then since L is continuously di�erentiable with respect
to v,

ÒvL(w, b, v, X) = ÒvF (w, b, v, X) · (F (w, b, v, X) ≠ y) = 0.

Since ÒvF (w, b, v, X) has rank n, this implies that F (w, b, v, X) = y, and so (w, b, v) is a global minimizer of
F . So whenever A is diverse, the region S̃A

X ◊ Rd1 has no spurious Clarke stationary points. This concludes
the proof.

D Function space on one-dimensional data

We have studied activation regions in parameter space over which the Jacobian has full rank. We can give a
picture of what the function space looks like as follows. We describe the function space of a ReLU over the
data and based on this the function space of a network with a hidden layer of ReLUs.

Consider a single ReLU with one input with bias on n input data points in R. Equivalently, this is as a
ReLU with two input dimensions and no bias on n input data points in 1 ◊ R. For fixed X, denote by
FX = [f(x(1)), . . . , f(x(n))] the vector of outputs on all input data points, and by FX = {FX(◊) : ◊} the set
of all such vectors for any choice of the parameters. For a network with a single output coordinate, this is a
subset of RX . As before, without loss of generality we sort the input data as x(1) < · · · < x(n) (according to
the non-constant component). We will use notation of the form XØi = [0, . . . , 0, x(i), . . . , x(n)]. Further, we
write x̄(i) = [x(i)

2 , ≠1], which is a solution of the linear equation Èw, x(i)Í = 0. Recall that a polyline is a list
of points with line segments drawn between consecutive points.

Since the parametrization map is piecewise linear, the function space is the union of the images of the Jacobian
over the parameter regions where it is constant. In the case of a single ReLU one quickly verifies that, for
n = 1, FX = RØ0, and for n = 2, FX = R2

Ø0. For general n, there will be equality and inequality constraints,
coming from the bounded rank of the Jacobian and the boundaries of the linear regions in parameter space.

The function space of a single ReLU on 3 and 4 data points is illustrated in Figure 4.

For a single ReLU, there are 2n non-empty activation regions in parameter space. One of them has Jacobian
rank 0 and is mapped to the 0 function, two others have Jacobian rank 1 and are mapped to non-negative
scalar multiples of the coordinate vectors e1 and en, and the other 2n ≠ 3 regions have Jacobian rank 2 and
are each mapped to the set of non-negative scalar multiples of a line segment in the polyline. Vertices in
the list equation 7 correspond to the extreme rays of the linear pieces of the function space of the ReLU.
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f1

f2

f3

f1

f2

f3

f4

Figure 4: Function space of a ReLU on n data points in R, for n = 3, 4. The function space is a polyhedral cone
in the non-negative orthant of Rn. We can represent this, up to scaling by non-negative factors, by functions
f = (f1, . . . , fn) with f1 + · · · + fn = 1. These form a polyline, shown in red, inside the (n ≠ 1)-simplex.
The sum of m ReLUs corresponds to non-negative multiples of convex combinations of any m points in the
polyline, and arbitrary linear combinations of m ReLUs correspond to arbitrary scalar multiples of a�ne
combinations of any m points in this polyline.

They are the extreme rays of the cone of non-negative convex functions on X. Here a function on X is
convex if f(x(j+1))≠f(x(i))

x(i+1)≠x(i) Æ f(x(i+2))≠f(x(i+1))
x(i+2)≠x(i+1) . A non-negative sum of ReLUs is always contained in the cone

of non-negative convex functions, which over n data points is an n-dimensional convex polyhedral cone.
For an overparameterized network, if an activation region in parameter space has full rank Jacobian, then
that region maps to an n-dimensional polyhedral cone. It contains a zero-loss minimizer if and only if the
corresponding cone intersects the output data vector y œ RX .

Proposition 21 (Function space on one-dimensional data). Let X be a list of n distinct points in 1 ◊ R
sorted in increasing order with respect to the second coordinate.

• Then the set of functions a ReLU represents on X is a polyhedral cone consisting of functions –f , where
– Ø 0 and f is an element of the polyline with vertices

x̄(i)XÆi, i = 1, . . . , n and ≠ x̄(i)XØi, i = 1, . . . , n. (7)

• The set of functions represented by a sum of m ReLUs consists of non-negative scalar multiples of convex
combinations of any m points on this polyline.

• The set of functions represented by arbitrary linear combinations of m ReLUs consists of arbitrary scalar
multiples of a�ne combinations of any m points on this polyline.

Proof of Proposition 21. Consider first the case of a single ReLU. We write x(i) for the input data points
in 1 ◊ R. The activation regions in parameter space are determined by the arrangement of hyperplanes
Hi = {w : Èw, x(i)Í = 0}. Namely, the unit is active on the input data point x(i) if and only if the parameter
is contained in the half-space H+

i = {w : Èw, x(i)Í > 0} and it is inactive otherwise. We write x̄(i) = [x(i)
2 , ≠1],

which is a row vector that satisfies Èx̄(i), x(i)Í = 0. We write 1S for a vector in R1◊n with ones at the
coordinates S and zeros elsewhere, and write XS = 1S ú X for the matrix in Rd0◊n where we substitute
columns of X whose index is not in S by zero columns.

With these notations, in the following table we list, for each of the non-empty activation regions, the rank of
the Jacobian, the activation pattern, the description of the activation region as an intersection of half-spaces,
the extreme rays of the activation region, and the extreme rays of the function space represented by the
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Parameter space

w2

w1
x(1) x(2)

x̄(1)

≠x̄(2)

x̄(2)

≠x̄(1)

H+
1 fl H+

2

H+
1 fl H≠

2

H≠
1 fl H+

2

H≠
1 fl H≠

2

Function space

f1

f2

F10

F
01 F11

F00

Figure 5: Subdivision of the parameter space of a single ReLU on two data points x(1), x(2) in 1 ◊ R1 by
values of the Jacobian (left) and corresponding pieces of the function space in R2 (right). The activation
regions are intersections of half-spaces with activation patterns indicating the positive ones or, equivalently,
the indices of data points where the unit is active.

activation region, which is simply the image of the Jacobian over the activation region.

rank A SA
X extreme rays of SA

X extreme rays of FA
X

0 1ÿ H≠
1 fl H≠

n x̄(1), ≠x̄(n) 0
1 11 H+

1 fl H≠
2 x̄(1), x̄(2) e1

2 1Æi H+
i fl H≠

i+1 x̄(i), x̄(i+1) x̄(i)XÆi≠1, x̄(i+1)XÆi (i = 2, . . . , n ≠ 1)
2 1[n] H+

n fl H+
1 x̄(n), ≠x̄(1) x̄(n)XÆn≠1, ≠x̄(1)XØ2

2 1Øi H≠
i≠1 fl H+

i ≠x̄(i), ≠x̄(i≠1) ≠x̄(i)XØi+1, ≠x̄(i≠1)XØi (i = 2, . . . , n ≠ 1)
1 1n H≠

n≠1 fl H+
n ≠x̄(n), ≠x̄(n≠1) en

The situation is illustrated in Figure 5 (see also Figure 4). On one of the parameter regions the unit is
inactive on all data points so that the Jacobian has rank 0 and maps to 0. There are precisely two parameter
regions where the unit is active on just one data point, x(1) or x(n), so that the Jacobian has rank 1 and
maps to non-negative multiples of e1 and en, respectively. On all the other parameter regions the unit is
active at least on two data points. On those data points where the unit is active it can adjust the slope
and intercept by local changes of the bias and weight and these are all the available degrees of freedom, so
that the Jacobian has rank 2. These regions map to two-dimensional cones in function space. To obtain the
extreme rays of these cones, we just evaluate the Jacobian on the two extreme rays of the activation region.
This gives us item 1 in the proposition.

Consider now d1 ReLUs. Recall that the Minkowski sum of two sets M, N in a vector space is defined as
M + N = {f + g : f œ M, g œ N}. An activation region §A

X with activation pattern A for all units corresponds
to picking one region with pattern a(i) for each of the units, i = 1, . . . , d1. Since the parametrization map is
linear on the activation region, the overall computed function is simply the sum of the functions computed by
each of the units,

F (W, v, X) =
ÿ

iœd1

viF (w(i), X).

Here F (W, v, X) =
q

i vi‡(WX) is the overall function and F (w(i), X) = ‡(w(i)X) is the function computed
by the ith unit. The parameters and activation regions of all units are independent of each other. Thus

FA
X =

ÿ

iœ[d1]
viFa(i)

X .
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Here we write Fa(i)

X = {(a(i)
j w(i)x(j))j œ RX : w(i) œ Sa(i)

X } for the function space of the ith unit over its
activation region Sa(i)

X . This is a cone and thus it is closed under nonegative scaling,

Fa(i)

X = –iFa(i)

X for all –i Ø 0.

Thus, for an arbitrary linear combination of d1 ReLUs we have

f =
ÿ

iœ[d1]
vif

(i) =
ÿ

iœ[d1] : f(i) ”=0
viÎf (i)Î1

f (i)

Îf (i)Î1
.

Here f (i) is an arbitrary function represented by the ith unit. We have
q

j f (i)
j = Îf (i)Î1 and

q
j fj =q

i viÎf (i)Î1. Thus if f satisfies f1 + · · · + fn = 1, then
q

i viÎf (i)Î = 1, and hence f is an a�ne combination
of the functions f(i)

Îf(i)Î . If all vi are non-negative, then viÎf (i)Î Ø 0 and the a�ne combination is a convex
combination. Each of the summands is an element of the function space of a single ReLU with entries adding
to one.

In conclusion, the function space of a network with one hidden layer of d1 ReLUs with non-negative output
weights is the set of non-negative scalar multiples of functions in the convex hull of any d1 functions in the
normalized function space of a single ReLU. For a network with arbitrary output weights we obtain arbitrary
scalar multiples of the a�ne hulls of any d1 functions in the normalized function space of a single ReLU. This
is what was claimed in items 2 and 3, respectively.

E Details on loss landscapes of deep networks

We provide details and proofs of the results in Section 5. We say that a binary matrix B is non-repeating if
its columns are distinct.
Proposition 22. Let X œ Rd0◊n be an input dataset with distinct points. Suppose that A is an activation
pattern such that AL≠1 has rank n, and such that Al is non-repeating for all l œ [L≠2]. Then for all W œ SA

X ,
ÒW F (W, X) has rank n.

Proof. Suppose that A is an activation pattern satisfying the stated properties. We claim that for all W œ SA
X ,

l œ {0, · · · , L ≠ 2}, and j, k œ [n] with j ”= k, that fl(W, x(j)) ”= fl(W, x(k)). We prove by induction on l.
The base case l = 0 holds by assumption. Suppose that the claim holds for some l œ {0, · · · , L ≠ 3}. By
assumption, Al+1 is non-repeating, so the columns (Al+1)·,j and (Al+1)·,k are not equal. Let i œ [dl+1] be
such that (Al+1)ij ”= (Al+1)ik. Then, since W œ SA

X ,

sgn(Èw(i)
l+1, fl(W, x(j))Í) ”= sgn(Èw(i)

l+1, fl(W, x(k))Í).

This implies that

‡(Èw(i)
l+1, fl(W, x(j))Í) ”= ‡(Èw(i)

l+1, fl(W, x(k))Í),

or in other words

(fl+1(W, x(j)))i ”= (fl+1(W, x(k)))i.

So fl+1(W, x(j)) ”= fl+1(W, x(k)), proving the claim by induction.

Now we consider the gradient of F with respect to the (L ≠ 1)-th layer. Let X̃ œ RdL≠2◊n be defined by
X̃ := fL≠2(W, X), and for j œ [n] let x̃(j) denote the j-th column of X̃. Let a(1), · · · , a(n) denote the rows of
AL≠1. Then for all W œ SA

X ,

ÒWL≠1F (W, X) = ((v § a(1)) ¢ x̃(1), · · · , (v § a(n)) ¢ x̃(n)).
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By Lemma 4, the rank of this matrix is equal to the rank of the matrix

(a(1) ¢ x̃(1), · · · , a(n) ¢ x̃(n)).

But AL≠1 has rank n by assumption, so the set a(1), · · · , a(n) is linearly independent, implying that the above
matrix is full rank. Hence, ÒWL≠1F (W, X) has full rank, and so ÒW F (W, X) has full rank.

Now we count the number of activation patterns which satisfy the assumptions of Proposition 22 and hence
correspond to regions with full rank Jacobian.
Lemma 23. Suppose that B œ Rd◊n has entries chosen iid uniformly from {0, 1}. If

d = �
1

log n

”

2
,

then with probability at least 1 ≠ ”, B is non-repeating.

Proof. For any j, k œ [n] with j ”= k,

P(B·,j = B·,k) = P(Bij = Bik for all i œ [d])
= 2≠d.

So

P(B is non-repeating) = P(B·,j ”= B·,k for all j, k œ [n] with j ”= k)

Ø 1 ≠
ÿ

j,kœ[n]
j ”=k

P(B·,j = B·,k)

Ø 1 ≠ n22≠d.

If
d Ø

2 log n + log 1
”

log 2 ,

then the above expression is at least 1 ≠ ”.

Lemma 24. Suppose that B œ Rd◊n has entries chosen iid uniformly from {0, 1}. If

d = n + �
3

log 1
”

4
,

then with probability at least 1 ≠ ”, B has rank n.

Proof. Suppose that d Ø n. Let BÕ be a d ◊ d matrix selected uniformly at random from {0, 1}d◊d, and let
B be the top d ◊ n minor of BÕ. Note that B has entries chosen iid uniformly from {0, 1}. Moreover, B has
rank n whenever BÕ is invertible. Moreover, by Theorem 3, BÕ will be singular with probability at most
C(0.72)d, where C Ø 1 is a universal constant. Then

P(rank(B) = n) Ø P(BÕ is invertible)
Ø 1 ≠ C(0.72)d.

Setting

d Ø n +
log C

”

log 1
0.72

,

we get that the above expression is at least

1 ≠ C(0.72)log(C/”)/ log(1/0.72) = 1 ≠ ”.

Hence, if d = n + �(log 1
” ), then B has rank n with probability at least 1 ≠ ”.
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Proof of Theorem 14. By Proposition 22, it su�ces to count the fraction of activation patterns A such that
Al is non-repeating for l œ [L ≠ 2] and AL≠1 has rank n. Let A be an activation pattern whose entries
are chosen iid uniformly from {0, 1}. Fix l œ [L ≠ 2]. Since dl = �(log( n

‘L )), by Lemma 23 we have with
probability at least 1 ≠ ‘

2L that Al is non-repeating. Hence, with probability at least 1 ≠ ‘
2 , all of the Al for

l œ [L ≠ 2] are non-repeating. Since dL≠1 = n + �(log 1
‘ ), by Lemma 24 we have with probability at least

1 ≠ ‘
2 that AL≠1 has rank n. Putting everything together, we have with probability at least 1 ≠ ‘ that Al is

non-repeating for l œ [L ≠ 2] and AL≠1 has rank n. So with this probability, ÒW F (W, X) has rank n. Since
we generated the activation pattern uniformly at random from all activation regions, the fraction of patterns
A with full rank Jacobian is at least 1 ≠ ‘.

F Details on the volume of activation regions

We provide details and proofs of the statements in Section 6.

F.1 One-dimensional input data

Proof of Proposition 15. Let us define Ẫ : [≠Œ, Œ] æ [0, 2] by

Ẫ(x) := µ

3;
(w, b) œ (0, 1] ◊ [≠1, 1] : b

w
Æ x

<4
.

For x œ R,

Ẫ(x) =
⁄ 1

0

⁄ 1

≠1
1bÆwxdbdw

=
⁄ 1

0
(1wÆ1/|x|(1 + wx) + 1wxØ1(2))dw

=

Y
_]

_[

≠ 1
2x if x Æ ≠1

1 + x
2 if ≠ 1 < x Æ 1

2 ≠ 1
2x if x Ø 1

= Â(x).

Moreover, Ẫ(Œ) = 2 = Â(Œ) and Ẫ(≠Œ) = 0 = Â(Œ). So Â = Ẫ. For all k œ [n + 1], a neuron (w, b) has
activation pattern ›(k,0) if and only if wx(k≠1) + b > 0 and wx(k) + b < 0. So

µ(Nk,0 fl ([≠1, 1] ◊ [≠1, 1])) = µ
1Ó

(w, b) œ [≠1, 1] ◊ [≠1, 1] : wx(k≠1) + b < 0, wx(k) + b > 0
Ô2

= µ
1Ó

(w, b) œ [0, 1] ◊ [≠1, 1] : wx(k≠1) + b < 0, wx(k) + b > 0
Ô2

= µ
1Ó

(w, b) œ [0, 1] ◊ [≠1, 1] : wx(k≠1) ≠ b < 0, wx(k) ≠ b > 0
Ô2

= µ

3;
(w, b) œ [0, 1] ◊ [≠1, 1] : x(k≠1) <

b

w
< x(k)

<4

= Â(x(k)) ≠ Â(x(k≠1)).

Similarly, a neuron (w, b) has activation pattern ›(k,1) if and only if wx(k≠1) + b < 0 and wx(k) + b > 0. So

µ(Nk,1 fl ([≠1, 1] ◊ [≠1, 1])) = µ
1Ó

(w, b) œ [≠1, 1] ◊ [≠1, 1] : wx(k≠1) + b > 0, wx(k) + b < 0
Ô2

= µ
1Ó

(w, b) œ [≠1, 0] ◊ [≠1, 1] : wx(k≠1) + b > 0, wx(k) + b < 0
Ô2

= µ
1Ó

(w, b) œ [0, 1] ◊ [≠1, 1] : ≠wx(k≠1) + b > 0, ≠wx(k) + b < 0
Ô2

= µ

3;
(w, b) œ [0, 1] ◊ [≠1, 1] : x(k≠1) <

b

w
< x(k)

<4

= Â(x(k)) ≠ Â(x(k≠1)).
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This establishes the result.

If the amount of separation between data points is large enough, the volume of the activation regions
separating them should be large. The following proposition formalizes this.
Proposition 25. Let n Ø 2. Suppose that for all j, k œ [n] with j ”= k, we have |x(j)| Æ 1 and |x(j) ≠x(k)| Ø „.
Then for all k œ [n + 1] and — œ {0, 1},

µ(Nk,— fl ([≠1, 1] ◊ [≠1, 1])) Ø „

4 .

Moreover, for all A œ {0, 1}d1◊n whose rows are step vectors,

µ(SA
X fl ([≠1, 1]d1 ◊ [≠1, 1]d1)) Ø

3
„

4

4d1

.

Proof. Since n Ø 2, |x1|, |x2| Æ 1, and |x1 ≠ x2| Ø „, we have

„ Æ |x1 ≠ x2|
Æ |x1| + |x2|
Æ 2.

Let Â, x(0), x(n+1) be defined as in Proposition 15. Fix — œ {0, 1}. If k œ {2, 3, · · · , n}, then by Proposition 15
and the assumption that |x(j)| Æ 1 for j œ [n],

µ(Nk,— fl ([≠1, 1] ◊ [≠1, 1])) = Â(x(k)) ≠ Â(x(k≠1))

= x(k) ≠ x(k≠1)

2

Ø „

2

Ø „

4 .

If k = 1, then

µ(Nk,— fl ([≠1, 1] ◊ [≠1, 1])) = Â(x(1)) ≠ Â(x(0))

= 1 + x(1)

2
Ø 1

2

Ø „

4 .

If k = n + 1, then

µ(Nk,— fl ([≠1, 1] ◊ [≠1, 1])) = Â(x(n+1)) ≠ Â(x(n))

= 1 ≠ x(n)

2
Ø 1

2

Ø „

4 .

Hence, for all k œ [n + 1] and — œ {0, 1}, µ(Nk,—) Ø „
4 .
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The rows of A are step vectors, so for each i œ [d1], there exists ki œ [n + 1] and —i œ {0, 1} such that

Ai,· = ›(ki,—i).

Then

µ(SA
X fl ([≠1, 1]d1 ◊ [≠1, 1]d1))

= µ({(w, b) œ [≠1, 1]d1 ◊ [≠1, 1]d1 : (2Aij ≠ 1)(w(i)x(j) + b(i)) > 0 for all i œ [d1], j œ [n]})

=
d1Ÿ

i=1
µ({(w, b) œ [≠1, 1] ◊ [≠1, 1] : (2Aij ≠ 1)(wx(j) + b) > 0 for all j œ [n]})

=
d1Ÿ

i=1
µ({(w, b) œ [≠1, 1] ◊ [≠1, 1] : (2›(ki,—i)

j ≠ 1)(wx(j) + b) > 0 for all j œ [n]})

=
d1Ÿ

i=1
µ(Nki,—i)

Ø
d1Ÿ

i=1

„

4

=
3

„

4

4d1

.

Proof of Proposition 16. We use a probabilistic argument similar to the proof of Theorem 10. Let us choose
a parameter initialization (w, b) œ [≠1, 1]d1 ◊ [≠1, 1]d1 uniformly at random. Then the i-th row Ai,· of the
activation matrix is a random step vector. By Proposition 25, for all k œ [n + 1] and — œ {0, 1},

P(Ai,· = ›(k,—)) Ø „

4 . (8)

By the proof of Theorem 10, the Jacobian of SA
X is full rank when A is a diverse matrix. That is, for all

k œ [n], there exists i œ [d1] such that Ai,· œ {›(k,0), ›(k,1)}, and there exists i œ [d1] such that Ai,· = ›(1,1).
For i œ [d1], let Ci œ [n + 1] be defined as follows. If Ai,· œ {›(k,0), ›(k,1)} for some k œ {2, 3, · · · , n}, then we
define Ci = k. If Ai,· = ›(1,1), then we define Ci = 1. Otherwise, we define Ci = n + 1. By definition, A is
diverse if and only if

[n] ™ {Ci : i œ [d1]}.

By (8), if d1 Ø 4
„ log( n

‘ ), then for all j œ [n],

P(Ci = j) Ø „

4 .

Thus, by Lemma 11,

P(A is diverse) = P(n ™ {Ci : i œ [d1]})
Ø 1 ≠ ‘.

This holds for (w, b) selected uniformly from [≠1, 1]d1 ◊ [≠1, 1]d1 . Hence, the volume of the union of regions
with full rank Jacobian is at least

(1 ≠ ‘)µ([≠1, 1]d1 ◊ [≠1, 1]d1) = (1 ≠ ‘)22d1 .
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F.2 Arbitrary dimension input data

Suppose that the entries of W and v are sampled iid from the standard normal distribution N (0, 1). We wish
to show that the Jacobian of the network will be full rank with high probability. Our strategy will be to
think of a random process which successively adds neurons to the network, and we will bound the amount of
time necessary until the network has full rank with high probability.
Definition 26. For “ œ (0, 1), we say that a distribution D on {0, 1}n is “-anticoncentrated if for all nonzero
u œ Rn,

Pa≥D(uT a = 0) Æ 1 ≠ “.

Lemma 27. Let “, ‘ œ (0, 1). Suppose that A œ {0, 1}d◊n is a random matrix whose rows are selected iid
from a distribution D on {0, 1}n which is “-anticoncentrated. If

d Ø 8 log(‘≠1)
“2 + 2n

“
,

then A has rank n with probability at least 1 ≠ ‘.

Proof. Suppose that a(1), a(2), · · · œ {0, 1}n are selected iid from D. Define the filtration (Ft)tœN by letting
Ft be the ‡-algebra generated by a(1), · · · , a(t). For t œ N, let Dt denote the dimension of the vector space
spanned by a(1), · · · , a(t), and let

Rt := Dt ≠ “t.

Let Ê œ Ft be an event in which a(1), · · · , a(t) do not span Rn. Then there exists u(Ê) œ Rn nonzero such
that uT a(s) = 0 for all s Æ t. Then

P(Dt+1 ≠ Dt = 1 | Ft)(Ê) = P(a(t+1) /œ span(a(1), · · · , a(t)) | Ft)(Ê)
Ø P(uT a(t+1) ”= 0 | Ft)(Ê)
= P(uT a(t+1) ”= 0)
Ø “,

where the third line from the independence of the a(s). Hence, for all t œ N,

E[1Dt ”=n(Dt+1 ≠ Dt) | Ft] = 1Dt ”=nE[Dt+1 ≠ Dt | Ft]
= 1Dt ”=nP(Dt+1 ≠ Dt = 1 | Ft) (9)
Ø 1Dt ”=n“

Let · œ N be a stopping time with respect to (Ft)tœN defined by

· := min({Œ} fi {t œ N : Dt = n}).

We also define the sequence (Mt)tœN by Mt := Rmin(t,·). Then for all t œ N,

E[Mt+1 | Ft] = E[Rmin(t+1,·) | Ft]
= E[1·ÆtR· + 1·>tRt+1 | Ft]
= 1·ÆtR· + E[1·>tRt+1 | Ft]
= 1·ÆtR· + E [1Dt ”=n (Dt+1 ≠ “(t + 1))|Ft]
= 1·ÆtR· ≠ 1Dt ”=n“(t + 1) + E[1Dt ”=nDt+1 | Ft]
Ø 1·ÆtR· ≠ 1Dt ”=n“(t + 1) + 1Dt ”=n“ + E[1Dt ”=nDt | Ft]
= 1·ÆtR· ≠ 1Dt ”=n“t + 1Dt ”=nDt

= 1·ÆtR· + 1Dt ”=nRt

= 1·ÆtR· + 1·>tRt

= Rmin(t,·)

= Mt,
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where we used (9) in the sixth line with properties of the conditional expectation. Moreover, we have
E|Mt| < Œ for all t œ N. Hence, the sequence (Mt)tœN is a submartinagle with respect to the filtration
(Ft)tœN. We also have |Mt+1 ≠ Mt| Æ 1 for all t œ N. By Azuma-Hoe�ding, for all ” > 0 and t œ N,

P(Mt Æ ≠”) Æ P(Mt ≠ M1 Æ ≠”)

Æ exp
3

≠ ”2

2(t ≠ 1)

4

Æ exp
3

≠”2

2t

4
.

So for any ‘ œ (0, 1),
P(Mt Æ ≠


2t log(‘≠1)) Æ ‘.

We also have

P(Dt Æ n ≠ 1) = P(Dt Æ n ≠ 1, · > t)
= P(Rt Æ n ≠ 1 ≠ “t, · > t)
= P(Mt Æ n ≠ 1 ≠ “t, · > t)
Æ P(Mt Æ n ≠ 1 ≠ “t)
Æ P(Mt Æ n ≠ “t)

So we have Dt Æ n ≠ 1 with probability at most ‘ when

n ≠ “t Æ ≠


2t log(‘≠1).

If
t Ø 8

“2 log(‘≠1) + 2n

“
,

then

“t ≠


2t log(‘≠1) = “

2 t + “
Ô

t

2
Ô

t ≠


2t log(‘≠1)

Ø “

2

3
2n

“

4
+ “

Ô
t

2

Ú
8
“2 log(‘≠1) ≠


2t log(‘≠1)

= n.

Hence, for such values of t, we have Dt Ø n with probability at least 1 ≠ ‘. In other words, with probability at
least 1 ≠ ‘, the vectors a(1), · · · , a(t) span Rn. We can rephrase this as follows. If A œ {0, 1}d◊n is a random
matrix whose columns are selected iid from D and

d Ø 8
“2 log(‘≠1) + 2n

“
,

then with probability at least 1 ≠ ‘, A has full rank. This proves the result.

Now we apply this lemma to study the rank of the Jacobian of the network. We rely on the observation that
an input dataset X is “-anticoncentrated exactly when DX is “-anticoncentrated.

Proof of Theorem 17. We employ the strategy used in the proof of Theorem 5. The Jacobian of F with
respect to W is given by

ÒW F (W, v, X) = ((v § a(1)) ¢ x(1), · · · , (v § a(n)) ¢ x(n)),

where a(j) is the activation pattern of the j-th data point. With probability 1, none of the entries of v are 0.
So by Lemma 4, this Jacobian is of full rank when the set

{a(i) ¢ x(i) : i œ [n]}
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consists of linearly independent elements of Rd1◊d0 . We may partition [n] into d0 subsets S1, · · · , Sd0 such
that |Sk| Æ

Ï
n
d0

Ì
Æ n

d0
+ 1 for all k œ [r] and partition the columns of A accordingly into blocks (a(s))sœSk

for each k œ [r]. Let Mk denote the d1 ◊ |Sk| matrix whose columns are the a(s), s œ k. Then the rows of
Mk are activation patterns of individual neurons of the network. So the rows of Mk are iid and distributed
according to DX . Since DX is “-anticoncentrated and

d1 Ø 8
“2 log

3
d0
‘

4
+ 2

“

3
n

d0
+ 1

4

Ø 8
“2 log

3
d0
‘

4
+ 2|Sk|

“
,

we have by Lemma 24 that with probability at least 1 ≠ ‘
d0

, Mk has rank |Sk|. So with probability at least
1 ≠ ‘, all of the Mk have full rank. This means that for each k,

rank({a(i) : i œ Sk}) = |Sk|.

Then by Lemma 18,
rank({a(i) ¢ x(i) : i œ [n]}) = n,

so the Jacobian has rank n.

G Details on the experiments

We provide details on the experiments presented in Section 7. In addition, we provide experiments evaluating
the number of activation regions that contain global optima, illustrating Theorem 12. Experiments were
implemented in Python using PyTorch (Paszke et al., 2019), numpy (Harris et al., 2020), and mpi4py (Dalcin
et al., 2011). The plots were created using Matplotlib (Hunter, 2007). The experiments in Section G.1 were
run on the CPU of a MacBook Pro with an M2 chip and 8GB RAM. The experiments in Section G.2 were
run on a CPU cluster that uses Intel Xeon IceLake-SP processors (Platinum 8360Y) with 72 cores per node
and 256 GB RAM. The computer implementation of the scripts needed to reproduce our experiments can be
found at https://anonymous.4open.science/r/loss-landscape-4271.

G.1 Non-empty activation regions with full rank Jacobian

We sample a dataset X œ Rd0◊n whose entries are sampled iid Gaussian with mean 0 and variance 1. We use
a two-layer network with weights W œ Rd1◊d0 and biases b œ Rd1 initialized iid uniformly on

Ë
≠ 1Ô

d1
, 1Ô

d1

È
.

We choose a random activation region by evaluating F at parameters (W, b) and dataset X. Then we compute
the Jacobian of F on this activation region, and record whether or not it is of full rank. We repeat this 100
times to estimate the probability of the Jacobian being of full rank for a randomly sampled activation region.
We calculate this for various values of n, d0, and d1. The results are reported in Figure 1 and Figure 2.

G.2 Non-empty activation regions with global minimizers

We sample data X, y as follows. The input data X is generated as independent samples from a uniform
distribution on the cube [≠1, 1]d0 . We consider three types of samples for the labels y:

• Polynomial: We construct a polynomial of degree 2 with the coe�cients sampled from a uniform
distribution on the interval [≠1, 1]. The labels are then the evaluations of this polynomial at the
points from X.

• Teacher: We construct a teacher network with an identical architecture to the main network used
in the experiment. Then we initialize it with the same procedure as described below for the main
network, which acts as a student network in this setup, and we take the outputs of the teacher
network on X as the labels.
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• Random output: We sample labels from a uniform distribution on the interval [≠1, 1].

We sample activation regions as follows. For each experiment trial, we construct a ReLU fully-connected
network with d0 inputs, d1 hidden units, and 1 output. Weights and biases of the hidden units are sampled
iid from the uniform distribution on the interval [≠


6/fan-in,


6/fan-in] according to the uniform-He

initialization (He et al., 2015). The weights of the output layer are initialized as alternating 1 and ≠1 and
look like [1, ≠1, 1, ≠1, . . .]. Additionally, we generate a new dataset X, y for each experiment trial. Afterward,
we consider an activation pattern A corresponding to the network and the input data X.

For a given dataset (X, y) and activation pattern A, we look for a zero-loss global minimizer to the linear regres-
sion problem: min◊œR1◊(d0+1)d1

1
2 ÎX̃◊ ≠ yT Î2

2 subject to ◊ œ SA
X , where ◊ œ R(d0+1)d1◊1 is a flattened matrix

of the first layer weights and X̃ œ Rn◊(d0+1)d1 is a vector with entries X̃jk = vk mod d1Aj(k mod d1)XjÂk/d1Ê,
y œ R1◊n. Here we appended the first layer biases to the weight rows and appended 1 to each network input.
Following the descriptions given in Section 3, the second condition is a system of linear inequalities. Thus,
this linear regression problem corresponds to the next quadratic program:

min
◊œR1◊(d0+1)d1

1
2◊T P◊ + qT ◊, where P = X̃T X̃, q = ≠X̃T yT

(2Aij ≠ 1)Èw(i), x(j)Í > 0 for all i œ [d1], j œ [n].

We record the percentage of sampled regions with a zero-loss minimizer. This is reported in Figures 6, 7, 8 for
the three di�erent types of data and d0 = 1, 2, 5. The result is consistent with Theorem 12 in that, for d0 = 1,
the minimal width d1, needed for most regions to have a global minimum, is close to d1 ≥ n log n predicted
by the theorem. We believe that this dependence will be relatively precise for most datasets. However, for
specific data distributions, the probability of being in a region with a global minimum might be larger. In
Figure 6, we see that, for instance, for data on a parabola, there are more interpolating activation regions
than for data from a teacher network or random data. For higher input dimensions, we observe in Figures 7
and 8 that most of the regions contain a global minimum which is consistent with Theorem 5 and Corollary 7,
by which any di�erentiable critical point in most non-empty activation regions is a global minimum.

Complementary to the above experiments, we conduct a further experiment now using the MNIST data set,
which consists of real data with d0 = 784. The result is reported in Figure 9b. This again aligns well with
the theory.

Our figures are reminiscent of figures in the work of Oymak & Soltanolkotabi (2019). They showed for shallow
ReLU networks that if the number of hidden units is large enough,

Ô
d1d0 Ø Cn2/d0, then gradient descent

from random initialization converges to a global optimum. Empirically they observed a phase transition at
roughly (but not exactly) d0d1 = n for the probability that gradient descent from a random initialization
successfully fits n random labels. Note that, in contrast, we are recording the number of regions that contain
global optima.
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(a) Polynomial data, degree 1. (b) Polynomial data, degree 2. (c) Polynomial data, degree 10.

(d) Polynomial data, degree 100. (e) Teacher-student setup. (f) Random output.

Figure 6: Percentage of randomly sampled activation regions that contain a global minimum of the loss for
the networks with input dimension d0 = 1, depending on the size n of the dataset and the width d1 of the
hidden layer. The results are based on 140 random samples of the activation region for each fixed value of
n, d1. The target data is the same for each random network initialization for the same combination of n and
d1. The black dashed line corresponds to the lower bound on d1 estimated for a given n and ‘ = 0.1 based on
the condition on the number of the negative and positive weights in the last network layer from Theorem 12.
Precisely, it represents the function d1 = 4n log(2n/‘).

(a) Polynomial data, degree 2. (b) Teacher-student setup. (c) Random output.

Figure 7: Percentage of randomly sampled activation regions that contain a global minimum of the loss for
networks with input dimension d0 = 2, depending on the size n of the dataset and the width d1 of the hidden
layer. The results are based on 100 random samples of the activation region for each fixed value of n, d1. The
target data is the same for each random network initialization for the same combination of n and d1.
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(a) Polynomial data, degree 2. (b) Teacher-student setup. (c) Random output.

Figure 8: Percentage of randomly sampled activation regions that contain a global minimum of the loss for
networks with input dimension d0 = 5, depending on the size n of the dataset and the width d1 of the hidden
layer. The results are based on 100 random samples of the activation region for each fixed value of n, d1. The
target data is the same for each random network initialization for the same combination of n and d1.

(a) (%) Full rank Jacobian at initialization (b) (%) Convergence of GD to global minimizer

Figure 9: Classification task on MNIST to predict one hot binary class vectors. These heatmaps show
percentages out of 100 trials of networks trained with GD from a random Gaussian initialization which (a)
have a full rank Jacobian at initialization, (b) achieve a cross-entropy loss of at most 10≠2 after 1000 epochs.
The number of network parameters matches the training set size n when the width satisfies d1 = n/d0, where
for MNIST the input dimension is d0 = 784. As d0 is large our results predict that there should exist some
linear scaling of the network width d1 and the data size n such that in all but a very small fraction of regions
every critical point is a global minimum.
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